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Abstract
This paper concerns an infinite-dimensional observer for manipulation of flexible beam by a rigid arm robot. The complex
dynamic of the system is described by distributed parameter model in terms of ordinary differential equations and partial
differential equation. A novel infinite-dimensional observer is proposed to estimate the vibration information of the flexible
object. In addition, an observer-based independent joint controller is designed to achieve the position control and vibration
suppression, which do not need end-point boundary control. The semigroup theory and LaSalle’s invariance principle are
adopted to prove the asymptotic stability of the robot system. The efficiency of the observers and the proposed control strategy
are demonstrated by numerical simulations.
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Introduction

In industry, the research of robotic manipulators handling
rigid bodies has received extensive attentions [1,2]. How-
ever, flexible objects such as solar panels, flexible metal
plates and spring components are often used in the auto-
motive, aerospace and medical fields [3,4]. For example,
space robotic arms are used to maintain the aircraft and
replace failed batteries, and the panels are mostly made of
flexible materials. Different from rigid parts, flexible parts
have the characteristics of light weight, high flexibility, man–
machine interaction and low energy consumption, which
also bring vibration. In the field of high accuracy and safety
requirements, the vibration is necessary to be solved [5,6].
Therefore, it is of theoretical and practical significance to
research the trajectory and vibration control of manipulation
for flexible beam during industry operation and assembly
tasks.
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In the literature, researchonmanipulationofflexible struc-
tures is always based on simplified lumped parameter model
[7,8]. In [9,10], the rigid control method has been used in
moving flexible object by rigid robot based on assumed
modes model. [11] researched two rigid robot manipulating
flexible beam by finite element method. However, the simpli-
fied model may bring control or observer overflow problem,
which may bring instability to the robot system. To avoid the
above drawbacks, great attention has been paid to study the
control design based upon distributed parameter model [12–
14]. Distributed parameter model is an infinite-dimensional
model, which refers to the relationship between the system
state and the change of space coordinates and time variables.
The PDE–ODE model is established for dual-arm coordi-
nated operation of large spatial flexible structures in [15]. [16]
studied the position/force control of flexible beams based on
PDE model. [17,18] address robust control for flexible sys-
tembased on distributed parameter system.However,most of
the above achievements are about the flexible beam, research
about the system of manipulation for flexible object based on
distributed parameter model are relatively few, which exists
many problems to be solved.

Furthermore, flexible beam operating system is a com-
plex dynamically coupled system, which includes not only
the rigid motion of large range, but also the local elastic
deformation. The most important problem in this system
is the vibration of the flexible structure in motion. Due
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to the requirements of high accuracy and high flexibility,
the resulting vibration cannot be ignored [19,20]. At the
same time, the characteristics of flexible object to be han-
dled vary with different manipulation tasks. So this makes
it impractical to outfit the flexible object with sensors and
actuators. Therefore, it is necessary to propose an observer
to estimate the vibration states [21]. At present, the results
of PDE observers for infinite-dimensional systems are lim-
ited. In [22], the PDE observer for flexible single-link robot
was proposed to estimate the infinite-dimensional states in
task space. Feng et al. [23] designed an exponentially con-
verging observer to estimates the state for the heat system
[24] develops PDE observer to estimate the freeway traffic
states. In [25], the Luenberger-like observers is proposed for
an infinite-dimensional rotating body-beam system. There-
fore, the research on infinite dimensional observer design for
manipulation of flexible object is necessary and meaningful,
and has not been reported yet.

Besides, the boundary control is always used for the con-
trol design of flexible system [26–28]. It not only needs joint
input actuator to adjust the position of the robot, but also
needs end-point input force to suppress the vibration. For the
single-link manipulator or multi-link manipulator, boundary
control is relatively easy to achieve, and is also effective to
suppress the vibration for the manipulator [29,30]. The actu-
ator installed at the end of the manipulator will not vary with
the change of the taskwhen themanipulator systems perform
different operations. However, different from the manipula-
tor system, the flexible object operated by the manipulator
is the actuated mechanism, the actuator must be reinstalled
when the operation object is changed, it is not appropriate
to install the actuator at the end of the flexible object sys-
tem [31]. In this paper, we only use the independent joint
input to control the system, which do not need the end-point
input force. The vibration can be suppressed by adding the
root vibration observer signals of flexible object into the joint
input controller. The contributions are summarized below:

1. The complex dynamic is expressed as original infinite-
dimensional model without any simplification or dis-
cretization, which is very effective to reduce the vibration
of the system.

2. An infinite-dimensional observer is designed for the
manipulation of flexible object by a rigid arm manip-
ulator, it prevents the installation of sensors on flexible
objects.

3. The independent joint observer-based controller is pro-
posedbasedondistributed parametermodel. The stability
is proved by LaSalle’s Invariance Principle.

This paper is structured as follows. “Systemdescription” sec-
tion describes the system dynamic. The infinite-dimensional
observer is designed in “Infinite-dimensional observer” sec-

Fig. 1 The structure diagram of manipulator operation

tion. “Observer-based controller design” sectionproposes the
observer-based controller and the asymptotic stability. The
“Simulation” section shows validation results by simulation,
and the conclusion is given in “Conclusion” section.

System description

Distributed parameter model

In the following, we consider a three-link robot moving a
flexible object as shown in Fig. 1. XOY is the inertial coordi-
nate. The flexible object is supposed to be an Euler–Bernoulli
beam due to its own characteristics. The beam has uniform
mass density ρK , length l and uniform flexural rigidity E I ,
u(t, r) stands for the elastic deformation at length r of flex-
ible beam at time t . The rigid link i(i = 1, 2, 3) has length
Li , mass center length Lig , mass mi , and moment of inertia
Ii . θi denotes the rotation angle of link i , and τi is the joint
torque at the motor i . S2 = [S2x S2y]T, S3 = [S3x S3y]T
and S = [Sx Sy]T express the position of the second link,
the third link and the mass center of the flexible object in the
reference coordinate system, respectively.

S2x = L1 cos θ1 + L2g cos(θ1 + θ2), (1)

S2y = L1 sin θ1 + L2g sin(θ1 + θ2), (2)

S3x = L1 cos θ1+L2 cos(θ1 + θ2)+L3g cos(θ1 + θ2 + θ3),

(3)

S3y = L1 sin θ1 + L2 sin(θ1 + θ2) + L3g sin(θ1 + θ2 + θ3),

(4)

Sx = L1 cos θ1 + L2 cos(θ1 + θ2) + L3 cos(θ1 + θ2 + θ3)

+ r cos(θ1 + θ2 + θ3) − u sin(θ1 + θ2 + θ3), (5)

Sy = L1 sin θ1 + L2 sin(θ1 + θ2) + L3 sin(θ1 + θ2 + θ3)

+ r sin(θ1 + θ2 + θ3) − u cos(θ1 + θ2 + θ3). (6)

Two assumptions are introduced [9]:
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Assumption 1 Assumed the longitudinal deflection of flex-
ible object is ignored, and only transverse deflection and
deflection angle are taken into consideration.

Assumption 2 The flexible beam is grasped rigidly, no defor-
mation occurs between the manipulator and the contacted
beam.

Remark 1 The superscript “.” is denoted as the derivative
of time t and superscript “′” is the derivative of length r .
The subscript “E” of u(t, r) express variable r equal to l
and subscript “0” represent r equal to “0”, that is u0 =
u(t, r)|r=0, uE = u(t, r)|r=l

The total kinetic and potential energy are expressed as

T = 1

2

[
m1L

2
1g θ̇

2
1 + I1θ̇

2
1 + m2 Ṡ

T
2 Ṡ2 + I2(θ̇1 + θ̇2)

2

+m3 Ṡ
T
3 Ṡ3 + I3(θ̇1 + θ̇2 + θ̇3)

2
]

+ 1

2
ρK

∫ l

0
ṠT Ṡdr ,

(7)

U = m1gL1g sin θ1 + m2gL1 sin θ1 + m2gL2g sin(θ1 + θ2)

+ m3gL1 sin θ1+m3gL2 sin(θ1+θ2) + m3gL3g sin(θ1

+ θ2 + θ3) + ρKg
∫ l

0
Sydr + 1

2

∫ l

0
E I (u′′)2dr . (8)

The virtual work of the system is

δW =
3∑

i=1

τiδθi . (9)

By Hamilton’s principle, we have

∫ t1

t0
(δT − δU + δW )dt ≡ 0. (10)

The system dynamic model is expressed as

M (θ) θ̈ + [C(θ, θ̇ ) + f (θ, u̇)]θ̇ + F
(
θ, u0

′′, u0′′′)

+ G = τ, (11)

z̈ + E Iu(4)

ρK
= 0, (12)

u0 = 0, u′
0 = 0, u′′′

E = 0, u′′
E = 0. (13)

Parameters of (11) and (12) are as following

z(r , t) = (r + L3)(θ1 + θ2 + θ3) + u(t, r)

+
∫ t

0
[θ̇1L1 cos(θ2 + θ3) + (θ̇1 + θ̇2)L2 cos θ3]dt,

(14)

θ = [ θ1 θ2 θ3 ]T , F (
θ, u0′′, u0′′′) = [ F1 F2 F3 ]T ,

τ = [ τ1 τ2 τ3 ]T , G = [G1 G2 G3 ]T . M(θ),

C(θ, θ̇ ) and f (θ, u̇) are 3×3matrix; θ ,G and τ are 3×1 vec-
tor (see Appendix A). The Eq. (11) also have the following
property:

Property 1 M (θ) is symmetrical andpositive definite,M(θ),
C(θ, θ̇ ) and f (θ, u̇) satisfy Ṁ − 2(C + f ) = −(Ṁ − 2
(C + f ))T .

Energy analysis of flexible beam

First, the elastic deformation of Euler–Bernoulli beam is
assumed to bemuch smaller than the beam length (|u| << l),
so the square velocity ṠT Ṡ of flexible beam in (7) is simplified
as follows

ṠT Ṡ = [
θ̇1L1 cos(θ2 + θ3) + (L3 + r)(θ̇1 + θ̇2 + θ̇3) + (θ̇1

+ θ̇2)L2 cos θ3 +u̇]2 + [
θ̇1L1 sin(θ2 + θ3) + (θ̇1 + θ̇2)

L2 sin θ3]
2 . (15)

The transversal velocity Ṡt is only considered since the
vibration of beam is hardly affected by the kinetic energy
due to the longitudinal velocity. The transversal component
ṠT Ṡ of the beam is

ṠTt Ṡt = [L1θ̇1 cos(θ2 + θ3) + (L3 + r)(θ̇1 + θ̇2 + θ̇3)

+(θ̇1 + θ̇2)L2 cos θ3 + u̇]2. (16)

Then, the kinetic energy T f and the potential energy U f

of flexible beam due to the transversal velocity are computed
as

T f +U f = 1

2

∫ l

0
ρK ṠTt Ṡtdr + 1

2

∫ l

0
E I (u′′)2dr . (17)

Next, the time derivative of the total flexible energy T f +
U f can be derived as

Ṫ f + U̇ f

= ρK
∫ l

0
[L1θ̇1 cos(θ2 + θ3) + (θ̇1 + θ̇2 + θ̇3)(L3 + r)

+ cos θ3L2(θ̇1 + θ̇2) + u̇][−θ̇1L1 sin(θ2 + θ3)(θ̇2 + θ̇3)

+ L1θ̈1 cos(θ2 + θ3) + (θ̈1 + θ̈2)L2 cos θ3

− (θ̇1 + θ̇2)L2 sin θ3θ̇3

+ (L3 + r)(θ̈1 + θ̈2 + θ̈3) + ü]dr +
∫ l

0
E Iu(4)u̇dr ,

(18)

where ü can be get from the vibration Eq. (6).
Finally, according to the boundary condition (7), we can

get

Ṫ f + U̇ f = [L1θ̇1 cos(θ2 + θ3) + (θ̇1 + θ̇2)L2 cos θ3
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+ (θ̇1 + θ̇2 + θ̇3)L3]E Iu′′′
0

− E Iu′′
0(θ̇1 + θ̇2 + θ̇3) = −qTθ̇ , (19)

where θ̇ = [θ̇1 θ̇2 θ̇3]T, q is defined as

q =
⎛
⎝

[− cos(θ2 + θ3)L1 − cos θ3L2 − L3]E Iu′′′
0 + E Iu′′

0
(− cos θ3L2 − L3)E Iu′′′

0 + E Iu′′
0−E I L3u′′′

0 + E Iu′′
0

⎞
⎠ .

(20)

Infinite-dimensional observer

Observer design

For avoid installing sensors in the flexible beam, a non-
linear infinite-dimensional observer is designed to estimate
the root strain and shear force of flexible beam based on
Eqs. (11)–(13). Assume that the angular θi , angular veloc-
ity θ̇i are available for measurement, and the estimates of
the angular and the flexible deformation are defined as θ̂i
and û(r , t). The estimate errors are defined as θ̃i = θi − θ̂i ,
ũ(t, r) = u(t, r) − û(t, r) and z̃(r , t) = z(r , t) − ẑ(r , t).
The observer is proposed to satisfy the following relations as
t → ∞:

θ̂i → θi ,
˙̂
θi → θ̇i , û(t, r) → u(t, r), ˙̂u(t, r) → u̇(t, r).

(21)

Define the estimate ẑ(r , t) of z(r , t) as

ẑ(r , t) = (r + L3)(θ̂1 + θ̂2 + θ̂3) + û(t, r)

+
∫ t

0
[ ˙̂θ1L1 cos(θ2 + θ3) + (

˙̂
θ1 + ˙̂

θ2)L2 cos θ3]dt .
(22)

An observer is designed to reconstruct the states in the
domain as follows

M (θ)
¨̂
θ + C(θ, θ̇ )

˙̂
θ + f (θ̇ , û)θ̇ + F(θ, û′′

0, û
′′′
0 )

− kd(
˙̂
θ − θ̇ ) − kp(θ̂ − θ) + G = τ, (23)

¨̂z(r , t) + E I

ρK
û(4)(t, r) = 0, (24)

û0 = 0, û′
0 = 0, û′′

E = 0, û′′′
E = 0, (25)

where kd = diag(kd1, kd2, kd3), kp = diag(kp1, kp2, kp3),
kdi , kpi ∈ R+ (i = 1, 2, 3). Then, we subtract systemmodel
(11)–(13) by (23)–(25) and get the model of estimate errors.

M11(θ)
¨̃
θ1 + M12(θ)

¨̃
θ2 + M13(θ)

¨̃
θ3 + C11(θ, θ̇ )

˙̃
θ1

+ C12(θ, θ̇ )
˙̃
θ2 + C13(θ, θ̇ )

˙̃
θ3

− ρK [L1 sin(θ2 + θ3)]
∫ l

0

˙̃udr θ̇2 − ρK [sin(θ2 + θ3)L1

+ sin θ3L2]
∫ l

0

˙̃udr θ̇3
− E I ũ′′

0 + [cos(θ2 + θ3)L1 + cos θ3L2 + L3]E I ũ′′′
0

+ kd1
˙̃
θ1 + kp1θ̃1 = 0, (26)

M21(θ)
¨̃
θ1 + M22(θ)

¨̃
θ2 + M23(θ)

¨̃
θ3 + C21(θ, θ̇ )

˙̃
θ1

+ C22(θ, θ̇ )
˙̃
θ2

+ C23(θ, θ̇ )
˙̃
θ3

+ ρK sin(θ2 + θ3)L1

∫ l

0

˙̃udr θ̇1 − ρK sin θ3L2

∫ l

0

˙̃udr θ̇3 − E I ũ′′
0

+ (L2 cos θ3 + L3)E I ũ′′′
0 + kd2

˙̃
θ2 + kp2θ̃2 = 0, (27)

M31(θ)
¨̃
θ1 + M32(θ)

¨̃
θ2 + M33(θ)

¨̃
θ3 + C31(θ, θ̇ )

˙̃
θ1

+ C32(θ, θ̇ )
˙̃
θ2 + C33(θ, θ̇ )

˙̃
θ3

+ ρK [sin(θ2 + θ3)L1 + sin θ3L2]
∫ l

0

˙̃udr θ̇1
+ ρK L2 sin θ3∫ l

0

˙̃udr θ̇2
− E I ũ′′

0 + L3E I ũ′′′
0 + kd3

˙̃
θ3 + kp3θ̃3 = 0, (28)

¨̃z(r , t) + E I

ρK
ũ(4)(t, r) = 0, (29)

ũ0 = 0, ũ′
0 = 0, ũ′′

E = 0, ũ′′′
E = 0. (30)

The asymptotic stability of the observer

Define a generalized coordinate vector as

w = [w1 w2 w3 w4 w5 w6 w7 w8 ]T
= [ θ̃1 ˙̃

θ1 θ̃2
˙̃
θ2 θ̃3

˙̃
θ3 ũ ˙̃u ]T. (31)

The estimate error model (26)–(30) can be rewritten as

ẇ = Aw + Y (w), w(0) ∈ H , (32)

where A is infinite-dimensional linear operator,Y (w) is finite
dimensional nonlinear operator.

Aw = [w2 ϕ1 w4 ϕ2 w6 ϕ3 w8 ϕ4 ]T, ∀w ∈ D(A),

(33)

Y (w) = [ 0 Y1 0 Y2 0 Y3 0 Y4 ]T, (34)
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where

ϕ1 = (E Iw′′
7(0) − E I L3w

′′′
7 (0) − kd1w2 − kp1w1)/M11,

ϕ2 = (E Iw′′
7(0) − E I L3w

′′′
7 (0) − kd2w4 − kp2w3)/M22,

ϕ3 = (E Iw′′
7(0) − E I L3w

′′′
7 (0) − kd3w6 − kp3w5)/M33,

ϕ4 = −E Iw(4)
7 /ρK ,

Y1 =
{
− �

M11(θ)ẇ2 − M12(θ)ẇ4 − M13(θ)ẇ6 − C11w2

− C12w4 − C13w6

+ [L1 sin(θ2 + θ3)θ̇2 + [sin(θ2 + θ3)L2

+ sin θ3L2]θ̇3]ρK
∫ l

0
w8dr

− [cos(θ2 + θ3)L1 + cos θ3L2]E Iw′′′
7 (0)

}
/M11,

Y2 = {− �

M22(θ)ẇ4 − M21(θ)ẇ2 − M23(θ)ẇ6 − C21w2

− C22w4 − C23w6

− [L1 sin(θ2 + θ3)θ̇1 − L2 sin θ3θ̇3]ρK∫ l

0
w8dr − L2 cos θ3E Iw′′′

7 (0)}/M22,

Y3 = {− �

M33(θ)ẇ6 − M31(θ)ẇ2 − M32(θ)ẇ4 − C31w2

− C32w4 − C33w6

− [sin(θ2 + θ3)L1θ̇1 + sinθ3L2θ̇1 + sin θ3L2θ̇2]ρK∫ l

0
w8dr}/M33,

Y4 = −L1ẇ2 cos(θ2 + θ3) − L2(ẇ2 + ẇ4)cos(θ3)

+ L2ẇ6 sin θ3

− (L3 + r)(ẇ2 + ẇ4 + ẇ6) − ẇ4[θ̇1L1 sin(θ2 + θ3)

+ sin θ3L2θ̇3] − ẇ6[θ̇1L1 sin(θ2 + θ3)

+ (θ̇1 + θ̇2)L2 sin θ3],

in which Mi j (θ) (i, j = 1, 2, 3) in (23) contains θ form as
Mi j (θ), otherwise form as Mi j . The defined Hilbert space is
shown below

H = R6 × H2(�) × L2(�),

D(A) = R6 × H4(�) × H2(�),

where

� = [0, l], L2(�) = { f : � → R|
∫ l

0
| f |2dr < ∞},

Hk(�) = { f : � → R| f , f ′, f ′′, · · · , f (k) ∈ L2(�)}.

Define the energy of estimate error model as follows

Ea = 1

2

∫ l

0
[ρK ˙̃z2(r , t) + E I ũ′′2(t, r)]dr

+1

2
˙̃
θTM(θ)

˙̃
θ + 1

2
kp θ̃

Tθ̃ . (35)

Then the time derivative of (35) is computed as

Ėa =
∫ l

0
[ρK ˙̃z(r , t) ¨̃z(r , t) + E I ũ′′(t, r) ˙̃u′′(t, r)]dr

+ ˙̃
θTM(θ)

¨̃
θ + 1

2
˙̃
θT ˙M(θ)

˙̃
θ + kp

˙̃
θTθ̃ . (36)

Substituting the observer error dynamics (26)–(30) into
the above equation, then further obtain(see Appendix B)

Ėa = −kd
˙̃
θT

˙̃
θ ≤ 0. (37)

FromEq. (37), it can be easily shown that operator A is dis-
sipated, and A generates aC0 semigroup in H . Since Y (0) =
0, Y (w) is differentiable, we can easily get (λI − A)−1 is a
compact operator for sufficiently large λ > 0(e.g., forλ > α̃)

[32,33], then the solutions of (32) locally exist in, more-
over the bounded solutions are also precompact in D ⊂ H ;
Based on the LaSalle’s Invariance Principle, it then follows
that the solution of the system w(t) → Ĉ asymptotically
as t → ∞, where Ĉ = {w ∈ D|Ė(w) = 0}, and �̂ is the
largest invariant set in Ĉ . However, Eq. (37) is not sufficient
to prove the stability of the designed observer. To strictly
prove the observer is asymptotically stable, we should apply
the extended LaSalle’s Invariance Principle to show Ėa = 0
implies w = 0 and then verify the observer stability.

So from Ėa = 0, yields

˙̃
θi = 0, θ̃i = θi − θ̂i = const. (38)

Putting (38) into (26)–(30) yields

ρK
∫ l

0
[−L1 sin(θ2 + θ3)] ˙̃udr θ̇2 − ρK [sin(θ2 + θ3)L1

+ sin θ3L2]
∫ l

0

˙̃udr θ̇3
−E I ũ′′

0 + [cos(θ2 + θ3)L1 + cos θ3L2 + L3]E I ũ′′′
0

+kp1θ̃1 = 0, (39)

ρK L1 sin(θ2 + θ3)

∫ l

0

˙̃udr θ̇1 − ρK L2 sin θ3

∫ l

0

˙̃udr θ̇3 − E I ũ′′
0

+(L2 cos θ3 + L3)E I ũ′′′
0 + kp2θ̃2 = 0, (40)

ρK [sin(θ2 + θ3)L1 + sin θ3L2]
∫ l

0

˙̃udr θ̇1 + ρK L2 sin θ3

∫ l

0

˙̃udr θ̇2 − E I ũ′′
0 + L3E I ũ′′′

0 + kp3θ̃3 = 0, (41)

¨̃u(t, r) + E I

ρK
ũ4(t, r) = 0, (42)
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ũ0 = 0, ũ′
0 = 0, ũ′′

E = 0, ũ′′′
E = 0. (43)

By solving (42) and (43), the solutions ũ(t, r) can be get
according to the method of separating variables.

ũ(t, r) = ϕ(r)eλt , (44)

where ϕ(r) are eigenfunctions for Eq. (44) and λ are nonzero
complex eigenvalues. Substituting (44) into (42), we have

ϕ4(r) = −λ2ρK

E I
ϕ(r). (45)

The solution of (45) is given by

ϕ(r) = γ1e
βr + γ2e

−βr + γ3e
jβr + γ4e

− jβr , (46)

where γi (i = 1, 2, 3, 4) ∈ R, β = (4)
√−λ2ρK/E I ∈ C ; j

is the imaginary unit, j2 = −1.
Applying Eq. (46) to the boundary condition (43), we

obtain

ϕ(0) = ϕ′(0) = ϕ′′(l) = ϕ′′′(l) = 0. (47)

Using (46) and (47), we have

⎧
⎪⎪⎨
⎪⎪⎩

γ1 + γ2 + γ3 + γ4 = 0
γ1 − γ2 + γ3 − γ4 = 0
γ1 + γ2 − γ3 − γ4 = 0
γ1 − γ2 − γ3 + γ4 = 0.

(48)

The solution of Eq. (48) is γ1 = γ2 = γ3 = γ4 = 0, hence
ϕ(r) = 0, then we have

ũ(t, r) = ϕ(r)eλt = 0. (49)

From Eqs. (39)–(41), we obtain that θ̃i = 0 and thus get

θ̂i → θi ,
˙̂
θi → θ̇i , û(t, r) → u(t, r), ˙̂u(t, r) → u̇(t, r).

(50)

Therefore, we proved w = 0 from Ėa = 0, the designed
observer is asymptotic stability.

Observer-based controller design

Furthermore, we propose the observer-based controller that
requires only the independent joint input, and the controller
can ensure the asymptotic stability.

Theorem 1 If we set the control law as follows based on
the estimate of observer (23)–(25), the closed-loop system is
asymptotically stability.

τ = −k1e−k2ė−k3ėF(θ, û′′
0, û

′′′
0 )

TF(θ, û′′
0, û

′′′
0 )+G, (51)

inwhich k1 = diag(k11, k12, k13), k2 = diag(k21, k22, k23),
k3 = diag(k31, k32, k33) are 3×3 positive-definite diagonal
matrix.

Proof First, define vector p as

p = [ p1 p2 p3 p4 p5 p6 p7 p8 wT ]T
= [ e1 ė1 e2 ė2 e3 ė3 u u̇ wT ]T. (52)

The observer error dynamics (26)–(30), closed-loop sys-
tem model (11)–(13) and (51) are rewritten in the matrix
operator form as

ṗ = Bp + N (p), p(0) ∈ H , (53)

where B represents an infinite-dimensional linear operator
as follows

Bp = [ p2 s1 p4 s2 p6 s3 p8 s4 AwT]T,

N (p) = [ 0 N1 0 N2 0 N3 0 N4 Y (w)T]T,

in which

s1 = (E I p′′
7 (0) − E I L3 p

′′′
7 (0) − k11 p1 − k21 p2)/M11,

s2 = (E I p′′
7 (0) − E I L3 p

′′′
7 (0) − k12 p3 − k22 p4)/M22,

s3 = (E I p′′
7 (0) − E I L3 p

′′′
7 (0) − k13 p5 − k23 p6)/M33,

s4 = − E I

ρK
p(4)
7 ,

N1 =
{
−�

M11(θ) ṗ2 − M12(θ) ṗ4 − M13(θ) ṗ6 − C11 p2

− C12 p4 − C13 p6

+ [sin(θ2 + θ3)L1 p4 + [sin(θ2 + θ3)L1

+ sin θ3L2]p6]p2ρK
∫ l

0
p8dr

− [cos(θ2 + θ3)L1 + cos θ3L2]E I p′′′
7 (0) − k31 p2 F̂1

T
F̂1

}
/M11,

N2 = {−�

M22(θ) ṗ4 − M21(θ) ṗ2 − M23(θ) ṗ6 − C21 p2 − C22 p4

− C23 p6 − [L1 sin(θ2 + θ3)p2 − L2 sin θ3 p6]p4ρK
∫ l

0
p8dr

− L2 cos θ3E I p′′′
7 (0) − k32 p4 F̂2

T
F̂2}/M22,

N3 = {−�

M33(θ) ṗ6 − M31(θ) ṗ2 − M32(θ) ṗ4 − C31 p2 − C32 p4

− C33 p6 − [sin(θ2 + θ3)L1 p2 + sin(θ3)L2 p2

+ L2 sin θ3 p4]p6ρK
∫ l

0
p8dr − k33 p6 F̂3

T
F̂3}/M33,

N4 = −L1 ṗ2 cos(θ2 + θ3) − L2( ṗ2 + ṗ4) cos(θ3) + L2 ṗ6 sin θ3

− (L3 + r)( ṗ2 + ṗ4 + ṗ6) − ṗ4[θ̇1L1 sin(θ2 + θ3) + sin θ3L2 θ̇3]
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Table 1 Physical parameters of
the system

Parameter Value Parameter Value Parameter Value

L1 0.7m L1g 0.35m m1 8 kg

L2 0.6m L2g 0.35m m2 8 kg

L3 0.2m L3g 0.17m m3 4 kg

Ii 37 × 10−5 kg m E I 20Nm2 l 1 m

ρK 0.5kg/m

− ṗ6[θ̇1L1 sin(θ2 + θ3) + (θ̇1 + θ̇2)L2 sin θ3].

The state space H and the domain D(B) of the operator
B are defined as

H = R6 × H2(�) × L2(�) × R6 × H2(�) × L2(�),

D(B) = R6 × H4(�) × H2(�) × R6 × H4(�) × H2(�).

Then, choose the energy function of the close-loop system
as

E = 1

2

∫ l

0
[ρK ż2(r , t) + E Iu′′2(t, r)]dr

+1

2
ėTM(θ)ė + 1

2
eTk1e + Ea . (54)

Differentiating (54) with respect to time by using (19) and
(37) yields

Ė = −qT ė + ėT[M(θ)ë + 1

2
˙M(θ)ė] + ėTk1e −˙̇̃θTkd ˙̃

θ.

(55)

We further have

Ė = −qT ė + ėT[τ − F
(
θ, u0

′′, u0′′′) − G] −˙̇̃θTkd ˙̃
θ. (56)

From (20), we can get F
(
θ, u0′′, u0′′′) − q = 0, then

substitute controller (51) into (56) and have

Ė=−ėTk2ė− k3ė
TėF(θ, û′′

0, û
′′′
0 )

TF(θ, û′′
0, û

′′′
0 )− ˙̃

θTkd
˙̃
θ ≤ 0.

(57)

According to (57), we can know that operator B is
dissipated. It can be also verified operator B generates a
C0-semigroup in H based on Lumer–Phillips theorem that
used in “Infinite-dimensional observer” section. Then sim-
ilar to the application of LaSalle’s Invariance Principle in
“Infinite-dimensional observer” section, from Ė = 0 we can
also get

e= ė=u(t, r)= u̇(t, r)= θ̃ = ˙̃
θ = ũ(t, r)= ˙̃u(t, r)=0. (58)

Table 2 Control parameters of the system

Parameter Value Parameter Value Parameter Value

k11 50 k12 20 k13 12

k21 45 k22 20 k23 9

k31 10 k32 10 k33 10

kd1 37 kd2 10 kd3 7

kp1 22 kp2 17 kp3 8

This means p = 0, it can be proved that the solution of
Ė = 0 is p = 0, and therefore, we get the asymptotically
stable of the proposed observer-based control. 
�

Simulation

The designed observer and controller strategy are tested with
the simulation implemented in MATLAB. System physical
parameters are given in Table 1.

The initial and desired trajectory are as follows:

θ10 = 2.2 rad, θ20 = 1.7 rad, θ30 = 0.2 rad,

θ1d = 2.3 rad, θ2d = 1.8 rad, θ3d = 0.1 rad.

The controller and observer parameters of the system are
given in Table 2. The observer-based controller is given to
guarantee the asymptotic stability, which make the robot
track the desired joint angular and its speed, and suppress the
vibration. The simulation result of the proposed controller is
provided byFigs. 2, 3, 4, 5, 6, 7 and8.Note that the simulation
time is 10 s. Figure 2 displays the three angles, angular veloc-
ities and the corresponding estimates, which can all track the
desired trajectory. It is clear that the estimate angles and angle
velocities could converge to their true values within 4 s. Fig-
ure 3 shows the deflection at link end of the flexible beam and
its estimation value, we can conclude that the vibration of the
beam is suppressed and the estimate can converge to the real
value. Figures 4 and 5 represent the strain force, the shear
force and their estimate values, which indicate the vibration
informations can be exactly observed. Figure 6 indicates the
three-dimensional deformation and its estimation of flexi-
ble beam. From Fig. 7, we can see the deformation error
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Fig. 2 Angle θi , angle velocity θ̇i and estimations θ̂i ,
˙̂
θi

Fig. 3 End-point deflection uE and estimation ûE

Fig. 4 Strain force u′′
0 and estimation û′′

0

Fig. 5 Shear force u′′′
0 and estimation û′′′

0
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Fig. 6 Deformation u(t, r) and estimation û(t, r) of flexible beam

Fig. 7 Deformation error ũ(t, r) of flexible beam

Fig. 8 Control input τi (i = 1, 2, 3)

can be effectively suppressed to asymptotically approach 0,
which demonstrates the observer could accurately estimate
the vibration deformation states. As shown in Fig. 8, the
result is the controller input of the proposed independent joint
control. Therefore, the simulations demonstrate the good per-
formance of the proposed infinite-dimensional observer and
controller.

Conclusion

In this paper, a non-linear infinite-dimensional observer is
proposed for manipulator operating a flexible beam based on
distributed parameter model. We further design an observer-
based independent joint control to regulate the angles to
follow the desired states and suppress the vibration of the
beam simultaneously, which can avoid setting sensors and
actuators on the beam. The asymptotic convergence of the
observer and the controller is validated through theoretical
proof. Numerical simulations have demonstrated the perfor-
mance of the proposed observer and the control strategy. The
next problem to be tackled is to research the cooperative force
control ofmanipulation for flexible object bymulti-arm robot
based on infinite-dimensional model.
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Appendix A: Modeling parameters

The parameters of joint Eq. (11) are as follows.

M11 = I1 + I2 + I3 + m1L
2
1g + m2L

2
2g + m3L

2
3g
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+ (m2 + m3)L
2
1+

m3L
2
2 + 2L1(m2L2g + m3L2) cos θ2

+ 2m3L1L3g cos(θ2 + θ3)

+ 2m3L2L3g cos θ3 + ρKl[sin(θ2 + θ3)L1

+ sin θ3L2]2, (A1)
M12 = M21 = I2 + I3 + m2L

2
2g + m3L

2
3g

+ m3L
2
2 + (m2L2g

+ m3L2) cos θ2L1 + m3L1L3g cos(θ2 + θ3)

+ 2m3L2L3g cos θ3

+ ρKlL2[sin(θ2 + θ3)L1 + sin θ3L2] sin θ3, (A2)
M13 = M31 = I3 + m3L

2
3g + m3L1L3g cos(θ2 + θ3)

+ m3L2L3g cos θ3, (A3)
M22 = I2 + I3 + m2L

2
2g + m3L

2
3g + m3L

2
2

+ 2m3L2L3g cos θ3

+ ρK L2
2l sin θ3 sin θ3, (A4)

M23 = M32 = I3 + m3L
2
3g + m3L2L3g cos θ, (A5)

M33 = I3 + m3L
2
3g , (A6)

C11 = −(m2L2g + m3L2)L1 θ̇2 sin θ2

− m3L1L3g sin(θ2 + θ3)(θ̇2+θ̇3)

− m3L2L3g θ̇3 sin θ3 + ρKl[sin(θ2 + θ3)L1

+ sin θ3L2][L1(θ̇2
+ θ̇3) cos(θ2 + θ3) + L2 θ̇3 cos θ3], (A7)

C12 = −(m2L2g + m3L2)(θ̇1 + θ̇2)L1 sin θ2

− m3(θ̇1 + θ̇2 + θ̇3)L1L3g sin(θ2

+ θ3) − m3L2L2g θ̇3 sin θ3 − (L3l + 1

2
l2)

× (θ̇1 + θ̇2 + θ̇3)[L1 sin(θ2
+ θ3)] + ρK L2l sin θ3[L1(θ̇2 + θ̇3) cos(θ2 + θ3)

+ L2 θ̇3 cos θ3] − ρK L2(θ̇1

+ θ̇2) cos θ3[L1 sin(θ2 + θ3)]
+ ρK L1L2l θ̇1 cos(θ2 + θ3) sin θ3, (A8)

C13 = −m3L1L3g(θ̇1 + θ̇2 + θ̇3) sin(θ2 + θ3)

− m3L2L3g(θ̇1 + θ̇2 + θ̇3) sin θ3

− ρK (L3l + 1

2
l2)(θ̇1 + θ̇2 + θ̇3)

× [L1 sin(θ2 + θ3) + L2 sin θ3], (A9)
C21 = (m2L2g + m3L2)L1 θ̇1 sin θ2

+ m3L1L3g θ̇1 sin(θ2 + θ3)

− m3L2L2g θ̇3 sin θ3 + ρK (L3l + 1

2
l2)(θ̇1 + θ̇2 + θ̇3)

× sin(θ2

+ θ3) + ρK L2l cos θ3[L1(θ̇1 + θ̇2 + θ̇3) sin(θ2 + θ3)

+ L2 θ̇3 sin θ3]
− ρK L1L2l θ̇1 cos(θ2 + θ3) sin θ3, (A10)

C22 = −(m3L2g + ρK L2 cos θ3)L2 θ̇3 sin θ3, (A11)
C23 = −m3L2L3g(θ̇1 + θ̇2 + θ̇3) sin θ3

− ρK (L3l + 1

2
l2)(θ̇1 + θ̇2 + θ̇3)L2 sin θ3, (A12)

C31 = m3L1L3g θ̇1 sin(θ2 + θ3) + m3(θ̇1 + θ̇2)

L2L3g sin θ3

+ ρK (L3l + 1

2
l2)(θ̇1 + θ̇2 + θ̇3)[sin(θ2 + θ3)

L1 + sin θ3L2], (A13)
C32 = m3L2L3g(θ̇1 + θ̇2) sin θ3 + ρK (L3l

+ 1

2
l2)(θ̇1 + θ̇2 + θ̇3)L2 sin θ3, (A14)

C33 = 0, (A15)
F1 = −E Iu′′

0 + (L1 cos(θ2 + θ3) + L2 cos θ3 + L3)E Iu′′′
0 , (A16)

F2 = −E Iu′′
0 + (L2 cos θ3 + L3)E Iu′′′

0 , (A17)
F3 = −E Iu′′

0 + L3E Iu′′′
0 . (A18)

G1 = g(m1L1g + m2L1 + m3L1) cos θ1

+ g(m2L2g + m3L2) cos(θ1 + θ2)

+ m3L3gg cos(θ1 + θ2 + θ3), (A19)
G2 = g(m2L2g + m3L2) cos(θ1 + θ2)

+ m3L3gg cos(θ1 + θ2 + θ3), (A20)
G3 = m3gL3g cos(θ1 + θ2 + θ3), (A21)

f =
⎛
⎜⎝

−A
∫ l
0 u̇dr −A − ρK L2 sin θ3

∫ l
0 u̇dr

A
∫ l
0 u̇dr −ρK L2 sin θ3

∫ l
0 u̇dr

A + ρK L2 sin θ3
∫ l
0 u̇dr ρK L2 sin θ3

∫ l
0 u̇dr

⎞
⎟⎠ ,

(A22)

where A = ρK L1 sin(θ2 + θ3).

Appendix B: Calculation of the derivative of
Lyapunov function

Substituting the observer error dynamics (26)–(30) into Eq.
(36), then further obtain

Ėa = ρK
∫ l

0

˙̃z(− E I

ρK
ũ(4))dr + E Iu′′u̇′|l

0
− E Iu′′′u̇|l

0

+
∫ l

0
E Iu(4)u̇dr

+ ˙̃
θT[M(θ)

¨̃
θ + 1

2
˙M(θ)

˙̃
θ ] + kp

˙̃
θTθ̃

= ρK
∫ l

0
[˙̃z(− E I

ρK
ũ(4)) + E I ũ(4) ˙̃u]dr + ˙̃

θ1{E I ũ′′
0

− [L1cos(θ2 + θ3)

+ L2 cos θ3 + L3]E I ũ′′′
0 − kd1

˙̃
θ1 − kp1θ̃1}

+ ˙̃
θ2{E I ũ′′

0

− (L2 cos θ3 + L3)E I ũ′′′
0 − kd2

˙̃
θ2 − kp2θ̃2}

+ ˙̃
θ3{E I ũ′′

0 − L3E I ũ′′′
0

− kd3
˙̃
θ3 − kp3θ̃3} + kp

˙̃
θTθ̃ , (B1)

where E Iu′′u̇′|l0 = 0, E Iu′′′u̇|l0 = 0. Based on the energy
dynamic of flexible beam, we can obtain

ρK
∫ l

0

˙̃z(− E I

ρK
ũ(4))dr +

∫ l

0
E I ũ(4) ˙̃udr

= ρK
∫ l

0
[ ˙̃θ1L1 cos(θ2 + θ3) + (

˙̃
θ1 + ˙̃

θ2)L2 cos θ3

+ (L3 + r)( ˙̃θ1 + ˙̃
θ2 + ˙̃

θ3)
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+ ˙̃u][L1θ̈1 cos(θ2 + θ3) − ˙̃
θ1 sin(θ2 + θ3)L1(θ̇2 + θ̇3)

+ L2(
¨̃
θ1 + ¨̃

θ2) cos θ3

− (
˙̃
θ1 + ˙̃

θ2)L2θ̇3 sin θ3 + (L3 + r)( ¨̃θ1 + ¨̃
θ2 + ¨̃

θ3) + ¨̃u]dr

+
∫ l

0
E I ũ(4) ˙̃udr

= ρK
∫ l

0

˙̃rTt ¨̃rtdr +
∫ l

0
E I ũ(4) ˙̃udr . (B2)

From Eq. (19), we can get

ρK
∫ l

0

˙̃z
(

− E I

ρK
ũ(4)

)
dr +

∫ l

0
E I ũ(4) ˙̃udr

= [L1
˙̃
θ1 cos(θ2 + θ3) + (

˙̃
θ1 + ˙̃

θ2)L2 cos θ3 + (
˙̃
θ1 + ˙̃

θ2

+ ˙̃
θ3)L3]E I ũ′′′

0 − E I ũ′′
0(

˙̃
θ1 + ˙̃

θ2 + ˙̃
θ3)

= ˙̃
θ1{E I ũ′′

0 − [L1 cos(θ2 + θ3)+L2 cos θ3 + L3]E I ũ′′′
0 }

+ ˙̃
θ2{E I ũ′′

0 − (L2 cos θ3 + L3)E I ũ′′′
0 }

+ ˙̃
θ3{E I ũ′′

0 − L3E I ũ′′′
0 }. (B3)

Thus, we get

Ėa = −kd
˙̃
θT

˙̃
θ ≤ 0. (B4)

References

1. ZhaoB, LiuDR (2019)Event-triggered decentralized tracking con-
trol of modular reconfigurable robots through adaptive dynamic
programming. IEEE Trans Ind Electron 67(4):3054–3064

2. RenXL,LiHW(2022)Adaptive dynamic programming-based fea-
ture tracking control of visual serving manipulators with unknown
dynamics. Complex Intell Syst 8(1):255–269

3. He W, Tang XY, Wang TT, Liu ZJ (2022) Trajectory tracking con-
trol for a three-dimensional flexible wing. IEEE Trans Control Syst
Technol. https://doi.org/10.1109/TCST.2021.3139087

4. Han ZJ, Liu ZJ, KangW, HeW (2022) Boundary feedback control
of a nonhomogeneous wind turbine tower with exogenous distur-
bances. IEEE Trans Automat Control 67(4):1952–1959

5. Zhao ZJ, Liu ZJ, HeW,HongKS, Li HX (2021) Boundary adaptive
fault-tolerant control for a flexible Timoshenko armwith backlash-
like hysteresis. Automatica 130(8):109690

6. Liu Y, Chen XB, Mei YF, Wu YL (2022) Observer-based bound-
ary control for an asymmetric output-constrained flexible robotic
manipulator. Sci China Inf Sci 65(3):139203:1-139203:3

7. Sun C, He W, Hong J (2017) Neural network control of a flexible
robotic manipulator using the lumped spring-mass model. IEEE
Trans Syst Man Cybern Syst 47(8):1863–1874

8. GaoHJ, HeW, ZhouC, Sun CY (2019) Neural network control of a
two-link flexible roboticmanipulator using assumedmodemethod.
IEEE Trans Ind Inform 15(2):755–765

9. Liu YH, Sun D (2000) Stabilizing a flexible beam handled by
two manipulators via PD feedback. IEEE Trans Automat Control
45(11):2159–2164

10. ZhangQ,Mills JK, CleghornWL, Jin J, Zhao CS (2015) Trajectory
tracking and vibration suppression of a 3-PRR parallel manipulator
with flexible links. Multibody Syst Dyn 33(1):27–60

11. Zhang P, Li YC (2007) Position/force control of two manipulators
handling aflexible payload based onfinite-elementmodel. In: IEEE
international conference on robotics and biomimetics, pp 2178–
2182

12. Meng TT, HeW,HeXY (2021) Tracking control of a flexible string
systembased on iterative learning control. IEEETransControl Syst
Technol 29(1):436–443

13. Liu SY, Langari R, Li YC (2019) Nonlinear direct joint control for
manipulator handling a flexible payload with input constraints. Int
J Robot Autom 34(6):645–653

14. Zhao ZJ, He XY, Ahn CK (2021) Boundary disturbance obsserver-
based control of a vibrating single-link exible manipulator. IEEE
Trans Syst Man Cybern Syst 51(4):2382–2390

15. Kawai Y, Endo T, Matsuno F (2020) Cooperative control of large
flexible space structure by two planar robots. IET Control Theory
A 12:1–13

16. Endo T, Sasaki M, Matsuno F (2017) Contact-force control
of a flexible Timoshenko arm. IEEE Trans Automat Control
62(2):1004–1009

17. Liu ZJ, Han ZJ, Zhao ZJ, HeW (2021)Modeling and adaptive con-
trol for a spatial flexible spacecraft with unknown actuator failures.
Sci China Inform Sci 64(5):1–16

18. He W, Kang FS, Kong LH, Feng YH, Cheng GQ, Sun CY
(2022) Vibration control of a constrained two-link flexible robotic
manipulator with fixed-time convergence. IEEE Trans Cybern
52(7):5973–5983

19. Ren Y, Zhao ZJ, Zhang CL, Yang QM, Hong KS (2020) Adap-
tive neural-network boundary control for a flexible manipulator
with input constraints andmodel uncertainties. IEEE Trans Cybern
51(10):4796–4807

20. Liu ZJ, He XY, Zhao ZJ, Ahn CK, Li HX (2021) Vibration control
for spatial aerial refueling hoses with bounded actuators. IEEE
Trans Ind Electron 68(5):4209–4217

21. Jiang TT, Liu JK, He W (2017) A robust observer design for
a flexible manipulator based on a PDE model. J Vib Control
23(6):871–882

22. Yang HJ, Liu JK, Lan X (2015) Observer design for a flexible-link
manipulator with PDE model. J Sound Vib 341(4):237–245

23. Feng H, Xu CZ, Yao PF (2020) Observers and disturbance rejec-
tion control for a heat equation. IEEE Trans Automat Control
65(131):4957–4964

24. Yu H, Gan G, Bayen A, Krstic M (2020) PDE trac observer
validated on freeway data. IEEE Trans Control Syst Technol
29(3):1048–1060

25. Li XD, Xu CZ (2011) Infinite-dimensional Luenberger-like
observers for a rotating body-beam system. Syst Control Lett
60(2):138–145

26. Cao FF, Liu JK (2017) An adaptive iterative learning algorithm for
boundary control of a coupled ODE–PDE two-link rigid-flexible
manipulator. J Franklin Inst 354(1):277–297

27. He W, Wang TT, He XY, Yang LJ, Kaynak O (2020) Dynamical
modeling and boundary vibration control of a rigid-flexible wing
system. IEEE/ASME Trans Mech 25(6):2711–2721

28. Cao FF, Liu JK (2019) Partial differential equation modeling and
vibration control for a nonlinear 3D rigid-flexible manipulator sys-
temwith actuator faults. Int J Robust Nonlinear 29(11):3793–3807

29. Xing XY, Liu JK (2018) LMI-based boundary and distributed con-
trol design for a flexible string subject to disturbance. Int J Control
92(8):1–11

30. Wang JW, Liu YQ, Sun CY (2019) Adaptive neural boundary con-
trol design for nonlinear flexible distributed parameter systems.
IEEE Trans Control Syst Technol 27(5):2085–2099

31. Liu SY, Liu ZJ, Li YC, He W (2022) Nonlinear disturbance
observer-based direct joint control for manipulation of a flexible
payload with output constraints. Int J Control. https://doi.org/10.
1080/00207179.2022.2046858

123

https://doi.org/10.1109/TCST.2021.3139087
https://doi.org/10.1080/00207179.2022.2046858
https://doi.org/10.1080/00207179.2022.2046858


3260 Complex & Intelligent Systems (2023) 9:3249–3260

32. Pazy A (1983) Semigroups of linear operators and applications to
partial differential equations. Appl Math Sci 44:13–17

33. Luo ZH, Guo BZ, Morgul O (1999) Stability and stabilization of
infinite dimensional systems with applications. Springer, London,
pp 157–161

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Dynamic modeling and infinite-dimensional observer-based control for manipulation of flexible beam by a multi-link robot
	Abstract
	Introduction
	System description
	Distributed parameter model
	Energy analysis of flexible beam

	Infinite-dimensional observer
	Observer design
	The asymptotic stability of the observer

	Observer-based controller design
	Simulation
	Conclusion
	Acknowledgements
	Appendix A: Modeling parameters
	Appendix B: Calculation of the derivative of Lyapunov function
	References




