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Abstract
Red tide data are typical multivariate time series (MTS) and complete data help analyze red tide more conveniently. However,
missing values due to artificial or accidental events hinder further analysis of red tide phenomenon. Generative adversarial
network (GAN) is effective in capturing distribution of MTS while the imputation performance is far from satisfactory,
especially in conditions of high missing rate. One of the remaining open challenges is that common GAN-based imputation
methods usually lack the ability to excavate implicit correlations between different attributions and downstream tasks, from
which advanced latent information about missing values can be mined to improve imputation performance. To deal with the
problem, a novel multi-task learning-based generative adversarial imputation network (MTGAIN) is proposed by introducing
the prediction task into GAN to unearth more detailed information about missing values to better model distribution of red
tide MTS. Furthermore, the homoscedastic uncertainty of multiple tasks is exploited to balance the weights of losses between
generation and prediction tasks. The experiments conducted on a real-world dataset demonstrate that MTGAIN outperforms
existing methods in terms of imputation and post-imputation performances, especially in conditions of high missing rate.

Keywords Red tide · Imputation · Generative adversarial network · Multi-task learning

Introduction

MTS is one of the most common and important data for-
mats. Complete MTS contains rich temporal dependencies
between different time intervals as well as intimate relation-
ships among different attributions [1]. Various applications
of MTS include meteorological prediction, fault diagnosis,
financial analysis, traffic flow adjustment, etc. [2].

Red tide data are a typical form of MTS. Red tide anal-
ysis requires complete and detailed datasets which will
contribute to the exhaustive understanding of the red tide.
However, the phenomenon of missing values in red tideMTS
is almost inevitable and poses a crucial challenge for related
researches. Plenty of reasons will give rise to the problem,
such as malfunctions in data collection, anomalies in trans-
mission procedure, device failures in machine operation, etc.
[3]. Missing values in MTS will not merely result in a seri-
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ous deviation between complete and incomplete data but also
bring about poor model performance and more complicated
analysis in real-world applications [4]. Consequently, miss-
ing values in red tide MTS is deemed an urgent problem to
be carefully addressed with practical methods for the subse-
quent downstream analysis.

The deletion and imputation are among the most popular
methods to handle missing values [5]. Deletion is to delete
the entire attributions if any of the samples has a missing
value in the corresponding attribution and reserve the ones
with complete values. In spite of the convenience and simple
operation, the deleted attributions may contain significant
latent patterns and dependencies, making the deletion not
a suitable strategy, especially in conditions of high missing
rate.

The imputation method is a more widely accepted way to
deal with missing values with the purpose of using existing
information under observations to recover original data in
the pre-processing step [6]. Many analysis methodologies of
MTS can be applied to the recovered data after imputation
[7]. Traditional statistical methods attempt to impute miss-
ing values through statistical properties of MTS. Mean and
medianmethods conduct imputation, respectively, by replac-
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ing the missing values with mean and median values of the
observed data [8]. However, statistical imputation methods
usually omit the temporal relationships among different time
intervals and ignore the variance of missing values, which
may introduce outliers and change statistical characteristics
of the original data.

Machine learning imputation methods utilize some prop-
erties ofMTS through complicated ways to finish imputation
process. Popularmethods includeK-nearest neighbor (KNN)
[9], singular value decomposition (SVD) [10] and expecta-
tion maximization (EM) [11]. KNN attempts to calculate the
similarity distance between the given samples and other sam-
ples through distance measurements like Euclidean distance.
This aims to identify corresponding samples which are sim-
ilar to the incomplete samples. However, it is inevitable for
KNN to search thewhole dataset to find samples thatmeet the
requirements, which is a time-consuming procedure, espe-
cially in conditions of large datasets. SVDmethods carry out
singular value decomposition of the complete data matrix
and specific the number of singular values to be retained.
This process will restore an approximate matrix through the
eigenmatrix corresponding to the retained singular values.
Thevalues of approximatematrix are imputed in thepositions
where correspondingmissing value takes place in the original
matrix. It is a time-consuming process for SVD to repeatedly
conduct new decomposition for each missing sample, result-
ing in SVD inefficient on large matrices. EM algorithm is an
iterativemethod to calculate maximum likelihood estimation
or posterior distribution to impute missing values. However,
EM methods may fall into the local extremum and converge
slowly. The above methods fail to fully explore the temporal
dependencies to impute accurate values, which means they
tend to lose efficiency because the temporal dependencies
contained in MTS accounts for a large proportion.

Recently, plenty of deep learning methods have been
applied to various fields including MTS analysis, image pro-
cessing and speech recognition, etc. Deep learning-based
imputation methods have been proposed and shown great
potential [12]. Recurrent neural network (RNN) [13] and
auto-encoder (AE) [14] are among the most popular as well
as relevant variants of them. RNN methods utilize recursive
connection to memorize the temporal dependencies between
different time intervals which are vital for the reconstruc-
tion of MTS. AE learns a compressed representation of
complete data by bottleneck layers to reserve the impor-
tant characteristic to reconstruct original data. However, AE
methods may lose generalization without any constraints,
which makes it hard to operate well given new samples. Vari-
ational auto-encoder (VAE) [15] is probabilistic AE designed
to find a low-dimensional representation of real data. VAE
has the ability to produce realistic fake data by constraining
the form of latent space distribution [16]. Uses the VAE to
approximate the probability distribution of the traffic data

based on the assumption that traffic data can be generated
from a low-dimensional latent space. The heterogeneous-
incomplete VAE (HI-VAE) [17] extends the vanilla VAE to
handle incomplete and heterogeneous data. It aims to learn
the correlations between different attributes through a Gaus-
sian mixture to span a latent space.

GAN [18] is a more appropriate option to model data
distribution compared with VAE. As a class of generative
models, GAN specializes in learning a mapping from latent
space to the real data distribution. Deep convolutional gen-
erative adversarial network (DCGAN) [19] is composed of
various deep convolutional neural networks and good at
handling 2-D data with spatial regularities. DCGAN suf-
fers from dealing with MTS which have no such spatial
regularities. To handle the limitations of DCGAN, multivari-
ate time series generative adversarial network (MTS-GAN)
[20] reconstructs missing values by replacing 2-D convo-
lution in DCGAN with multi-channel 1-D convolution to
better capture the characteristics of MTS. GAN-2-stage [21]
conducts data imputation through the time lag matrix con-
sidering that the time dependencies between missing values
and recently observed values should decay with the increase
of time interval. It tries to find the optimal noise vectors to
generate synthetic data with a 2-part loss including masked
reconstruction loss and discriminative loss and thus leads
to poor time efficiency. Compared with [21], end-to-end
GAN (E2GAN) [22] takes a compressing and reconstruct-
ing strategy to avoid the noise optimization stage. E2GAN
can generate reasonable missing values at one stage and gain
better time efficiency than multi-stage methods. Generative
adversarial imputationnets (GAIN) [23] exploits the standard
GAN architecture and operates well when complete data are
unavailable. The generator conducts the imputation process
and the discriminator is trained to distinguish imputed values
from original values. GAIN introduces the hint mechanism
to provide partial information for the discriminator to con-
firm the generator has learned the real data distribution. The
hint mechanism is also exploited in [24] with the modified
RNN to capture temporal dependencies across time steps. To
alleviate the interference of local clutter and the inaccurate
imputation boundary details, Generative Adversarial Guider
Imputation Network (GAGIN) [25] designed different com-
ponents to incorporate local and global results from rough to
accurate.

More recently, some works exploit graph convolutional
network (GCN) to deal with the imputation task. Gated atten-
tional GAN (GaGAN) [26] combines the GCN and the gate
recurrent unit to, respectively, capture spatial and temporal
correlation for signalized road networks. The self-attention
mechanism is applied to better model traffic patterns. Graph
imputer neural network (GINN) [27] frames the imputa-
tion problem in terms of a GCN auto-encoder. The GCN
encoder encodes data into the intermediate embeddingwhich
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Fig. 1 The architecture of vanilla GAN

is used to reconstruct imputed data by another GCN decoder.
GCNMF [28] uses Gaussian mixture distributions to repre-
sent incomplete features and derive the expected activation of
the first layer neurons in GCN. Other graph-based methods
focus on traffic data imputation including [29–31].

These imputation methods merely try to find information
about missing values in local generation tasks. They tend
to ignore the fact that implicit correlations between multi-
ple attributions and downstream tasks usually contain more
detailed information about the missing values, which can be
unearthed by multi-task learning methods [32]. This inspires
us to introduce the idea of multi-task learning into GAIN
to handle the limitations of existing GAN-based imputation
methods. The prediction task is added into the training stage
of GAIN. The generation task and prediction task consti-
tute the two basic tasks of MTGAIN. The prediction task
is designed to discover more necessary information about
missing values by mining underlying correlations between
the generation and prediction tasks. Besides, homoscedas-
tic uncertainty is employed to calculate more reasonable
weights for different losses. Experimental results indicate
that MTGAIN presents a notable improvement in modeling
red tide MTS distribution and imputes missing values more
accurately compared with the state-of-the-art methods.

The main contributions of this work are summarized as
follows:

(1) We propose a novel multi-task learning-based GAN to
exploits the implicit information about missing values
contained in the prediction tasks to improve the impu-
tation accuracy for red tide MTS.

(2) To balance the weights between multiple tasks, we uti-
lize the homoscedastic uncertainty to learn the proper
allocation of weights. The improvement ensures that the
model will not be updated to a fixed direction.

(3) Extensive experiments on a real-world dataset demon-
strate that our method achieves state-of-the-art impu-

tation accuracy and model data distribution faithfully,
especially in conditions of high missing rates.

The rest of the paper is organized as below. In “Related
works”, we describe the related works of this paper including
the vanilla GAN and homoscedastic uncertainty. The prob-
lem formulation is presented in “Problem formulation”. Our
proposed model MTGAIN and its building block are elabo-
rated in “Proposed method”. After extensive experiments in
“Experiments”, we conclude our work in “Conclusion”.

Related works

Vanilla GAN

The vanilla GAN is capable of generating sufficiently real-
istic data by making the distribution of generated data
approximate that of original data when trained with proper
strategies. Figure 1 shows the general structure of vanilla
GAN which is composed of a generator G and a discrimi-
nator D to conduct the competitive process to perform the
generation task [20]. G and D are a set of mirrored network
structures. G takes the latent random noise z which usually
obeys the normal distribution as input to perform deconvo-
lution or decoding operation and obtain generated samples
G(z). D is designed to take original samples x and G(z)
as input to perform convolution or coding operation. D out-
puts the probability that G(z) conforms the distribution of x
to adjust G to generate more authentic samples. Fully con-
nected networks (FCN) are stacked at the end of both G and
D to cope the results of deconvolution and convolution to
output the desired forms [19].

G decodes the input noise z to get the generated data as real
as possible to confuse D so that D will judge the generated
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Fig. 2 The architecture of MTGAIN

data as positive labels. The generation process ofG conforms
to the following formula:

min
G

Ez∼P(z)[1 − log(D(G(z)))]. (1)

The goal of D is to distinguish the real data from the gen-
erated data, i.e., to judge the real data as positive labels and
judge the generated data as negative labels. The discriminant
process of D conforms to the following formula:

max
D

Ex∼P(x)[log(D(x))] + Ez∼P(z)[log(1 − D(G(z)))].

(2)

When the above two loss functions converge after a certain
number of iterations, GAN can obtain the mapping between
the distribution of original data and the input noise to make
the generated data approximate to the original data.

Homoscedastic uncertainty for multi-task learning

Multi-task learning is designed to optimize learning effi-
ciency and generalization of multiple related tasks. It is
realized mainly through shared representation to comple-
ment the domain information learned by different tasks. One
of the key factors influencing the performance of the multi-

task learning model is the allocation of weights for different
losses. The previous approaches mainly utilize a weighted
linear sum of the losses corresponding to different tasks to
balance multiple losses. The formula is shown below [33]:

Ltotal �
∑

i

wi Li , (3)

where wi and L i denote the weight and corresponding loss,
respectively. The weights in previous work are usually uni-
form which means each task shares the same importance
while this approach ignores the fact that the performance of
multi-task learning model highly depends on an appropriate
combination ofweights betweenmultiple losses [33]. To deal
with the problem, some works try to tune the weights man-
ually with practical experience to alleviate the sensitivity of
models to weights, which is regarded as a time-consuming
process and hard to achieve the best combination.

To find the optimal weights for multi-task learning with a
more convenient way, lots of methods are proposed includ-
ing gradient normalization [34], dynamic task prioritization
[35] and dynamic weight averaging [36], etc. Homoscedas-
tic uncertainty is among the most popular. It is the aleatoric
uncertainty which remains unchanged for data and varies
between multiple tasks and thus an appropriate option for
multi-task learning [37]. Homoscedastic uncertainty is intro-
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duced to improve the general representation of the integral
model and performance of individual task instead of simply
performing naive weighted linear combination of the losses,
which is able to unearth the correlations between multiple
tasks. Reference [38] utilizes the below equation as the min-
imization objective function of a multi-task model through
the homoscedastic uncertainty:

L(W , σ1, · · · , σi ) �
∑

i

(
1

2σ 2
i

Li (W ) + logσi

)
, (4)

where Li (W ) denotes the loss functions of different tasks
and W is the learnable model parameter. σi is the noise
scalar and equivalent to adaptive weights of loss functions
Li (W ). σi can be either fixed or learned. The last item acts as
the regulator of weights to suppress the excessive increment
or decrement of weights. The homoscedastic uncertainty is
inversely proportional to the weight of corresponding task.
Large scale σi will decreases the contribution of Li (W )

while small scale σi will increase its contribution. The core
contribution of the objective function is formulating the rea-
sonable representation of multiple losses. The scale of σi is
constrained by logarithmic expression term in the objective
function to punish objective function when weights are set
too large or too small.

Problem formulation

Given a d-dimensional space X � X1 × ...X d , the
MTS observed at T � (t1, ..., ti ) is denoted by
X � (X1, ..., Xd ) ∈ R

n×d taking values in X , where Xti

denotes the observation of X at ti and X j
ti is the j-th value

of Xti . P(X ) denotes the distribution of X . The value of X is
either continuous or binary. In the following example of X ,
“none” means a missing value.

X �
⎡

⎣
10
none
15

4
3
2

none
4

none

3
none
9

none
2
6

5
none
none

⎤

⎦, T �
⎡

⎣
1
2
3

⎤

⎦. (5)

Suppose thatM ∈ R
n×d is a maskmatrix that takes values

in {0, 1}d . M indicates whether the values of X exist or not
by the following formula:

M j
ti �

{
1, i f X j

ti exists
0, otherwise

. (6)

The missing rate of X is defined as below:

MisssingRate �
∑t

i�1
∑d

j�1(1 − M j
ti )

t × d
. (7)

The main target of imputation task is to reconstruct mask
matrix M and impute the missing values of X as accurately
as possible.

Proposedmethod

Model architecture

Modeling precise MTS distribution is beneficial for improv-
ing the performance of MTS imputation. GAIN [23] is an
appropriate choice to handle the imputation task due to the
superior performance inmodeling distribution. GAIN adopts
the FCN in bothG and D and replaces the pooling layerswith
deconvolution and convolution operations. For more details
about GAIN please refer to the original GAIN literature. In
this section, the ideal ofmulti-task learning is introduced into
GAIN to dig out more implicit correlations between multi-
ple attributions and prediction tasks to impute missing values
more precisely. The prediction task usually reserves part of
the information about missing values, which can contribute
to the imputation task.

As shown in Fig. 2, the generation task and prediction
task are two basic stages of MTGAIN. The generation task
is exploited to generate synthetic values which is similar to
original values to conduct imputation stage. The prediction
task exploits the imputed data to conduct the prediction with
a pre-trainedLSTM-FCN [39]. Themodel has been proved to
be effective for MTS prediction and the structure is the same
as that in original literature. The LSTM-FCN is well trained
with original complete data, which means the pre-trained
model contains rich label information about input values.
The pre-trained model is incorporated into GAIN to restrict
the generated data to follow the corresponding distribution,
that is to obey the prediction result. This constrain along with
the discriminative result from D jointly forces G to generate
accurate imputed values.

The green dot and orange cross, respectively, denote the
missing and observed values of the original data X . Orange
dot represents the imputed values in generated matrix. HU in
green framedenotes the homoscedastic uncertainty operation
to balance the weights of multiple losses. The green dash line
indicates the back propagation. Cross entropy (CE) losses,
respectively, from the prediction task and generation task are
balanced with HU and the balanced loss is back propagated
into D. The mean square errors (MSE) from the generation
task and previous balanced loss are further balanced with HU
and back propagated into G.

In generation task, G and D are two basic parts of
MTGAIN and the minimax game between G and D keeps
them in contest. G outputs a generated matrix according to
the real observation and D aims to identify which values in
the matrix are observed or imputed.
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G and D are all composed of multiple FCN layers, which
is the same as GAIN. Generated MTS matrix and X are fed
into D to conduct the assessment of the authenticity of gener-
ated data to achieve the CE loss. The training objective of D
is to distinguish that which values in the generated matrix are
original or imputed andG will be trained to update its param-
eters to generate more realistic data. Through the adversarial
way between G and D,G is able to produce data that are
almost identical to the original ones at the end of the training
stage.

Model procedure

Let Z be a d-dimensional random matrix and X̃ be a data
matrix which replaces missing values in X with zero and
reserves observed values. G takes X̃ ,M and Z as input and
outputs imputed values X . The generation process in gener-
ation task can be formulated as follows:

X � G(X̃ , M, (1 − M) � Z )

X̂ � M � X̃ + (1 − M) � X ) (8)

H � B � M + 0.5(1 − B)),

where � denotes element-wise multiplication. X̂ is the
complete generated matrix calculated from X̃ and X .X̂ is
composed of the observed data from X̃ and imputed data
from X , which means that some components of X̂ are real
and some are fake. That is different from a standard GAN
where the output of G is either completely real or com-
pletely fake.H denotes the hint matrix which is utilized
to provide D with partial information about M to prevent
G from overfitting and repeatedly generating several opti-
mal distribution. The hint mechanism guarantees that G can
generate desired missing values conditioned by the original
incomplete data.B ∈ {0, 1}d is a random matrix that obeys
the following uniform distribution to select elements of M
to pass to H :

P(B j
i � b) �

{
0.5, b � 0
0.5, b � 1

. (9)

G is designed to generate data approximate to the original
data. G receives the compressed low-dimensional random
noise vector as input. It is trained to learn a mapping from
the low-dimensional representation to the original data with
no missing values. The generated data from G are regarded
as another representation of the original data.D tries to dis-
tinguish the real and fake values from the generated matrix
by comparing estimated mask matrix M̂ with original mask
matrix M . Both G and D utilize FCN layers to map the input
matrix into a fixed-dimensional representation.

D is trained to output estimated mask matrix M̂ with
regard to the complete generated matrix X̂ and optimize the
probability of correctly predictingM . In contrast,G is trained
to minimize the possibility of D correctly predicting M . The
above procedure can be defined by V (G, D) as follows:

V (G, D) � EX̂ ,M,H [M
T logD(X̂ , H ) + (1 − M)T log(1 − D(X̂ , H ))].

(10)

The objective loss of MTGAIN is a minimax game which
is similar to that in the vanilla GAN and follows the formula
below:

min
G

max
D

V (D,G). (11)

According to V (G,D), for the j-th sample m( j) from
original data set m and j-th sample from m̂( j), the CE loss
of these samples is

LD( j) � −
∑

i�0

[milog(m̂i ) + (1 − mi )log(1 − m̂i )], (12)

where mi is the i-th element of m( j) and m̂i is the i-th ele-
ment of m̂( j).D is trained to measure the similarity between
M̂ and M by minimizing the following loss LD:

LD �
k1∑

j�1

LD( j). (13)

G is then trained to minimize the weighted sum of the two
losses as follows:

LG1( j) � −
d∑

i�0

(1 − mi )log(m̂i ) (14)

LG2( j) �
d∑

i�0

−mi xi log(x
′
i ) (15)

LG �
k2∑

j�1

(LG1( j) + αLG2( j)). (16)

LG1 and LG2, respectively, represent the CE and MSE
losses and α is a hyper-parameter to measure the proportion
between LG1 and LG2 [23]. LG1 is applied to the missing
values and LG2 is applied to the actually observed values.
According to [23], α needs manual adjustment to approach
the optimal value. Inspired by the ideal of multi-task learn-
ing, the loss of GAIN is extended to a different form. The
modified loss of G and D in MTGAIN is shown as below by
introducing homoscedastic uncertainty into LD and LG :

LD � 1

2σ 2
1

LD(W ) +
1

2σ 2
2

LP (W ) + logσ1σ2 (17)

LG � 1

2σ 2
3

LG1(W ) +
1

2σ 2
4

LG2(W ) + logσ3σ4. (18)
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LP is the prediction loss achieved by the prediction task.
LD and LG , respectively, denote the final form of loss func-
tion of D and G in MTGAIN. The training procedure of
MTGAIN is shown as the following pseudo code. Firstly,
data matrix, random matrix are calculated from original data
according to the positions where missing values exist. Then
the above matrices are fed into G and generated matrix is
obtained as the output of G. The hint matrix is worked out
based onmaskmatrix. Then generatedmatrix and hintmatrix
are fed into D and estimated matrix is worked out as the out-
put of D. CE losses LD and LG1 are calculated with mask
matrix and estimated mask matrix. MSE loss LG2 is calcu-
lated with data matrix and generated matrix. The generated
matrix is fed into prediction task to achieve prediction loss
LP . Finally, D and G are, respectively, updated with LD and
LG through the back propagation.

Pseudo code of MTGAIN
1:  for number in training epochs do
2:   (1) Training D 
3: Samples: ( ) ( ) ( ) ( ) respectively from 

datasets 

4: Ensure: and respectively follow distribution 

and , = 1,..., 1

5: for = 1,..., 1 do
( )← ( ) ( ), ( ))                   

( )← ( ) ⊙ ( ) + ⊙ ( )

ℎ( )← ( ) ⊙ ( ) + 0.5

6: end for
Apply homoscedastic uncertainty to D

=
1

2 2
1

+
1

2 2
2

+ 1 2

7:    Update D with stochastic gradient descent (SGD)

∇

8: (2) Training G 
9: Samples: ( ) ( ) ( ) ( ) respectively from 

datasets

10: Ensure: and respectively follow distribution and

, = 1,..., 2

11: for = 1,..., 2  do
ℎ( )← ( ) ⊙ ( ) + 0.5

12:   Apply homoscedastic uncertainty to G 

=
1

2 2
3

+
1

2 2
4

+ 3 4

Update D with SGD

∇

13: end for
14: end for

Table 1 The AUROC results in various missing rates

Methods Missing rate (%)

10 20 30 40 50 60 70

E2GAN 0.752 0.734 0.713 0.682 0.647 0.614 0.579

GAIN 0.753 0.743 0.728 0.679 0.652 0.611 0.568

MTGAIN 0.763 0.746 0.721 0.693 0.664 0.623 0.593

The bold values represent the best performance

Experiments

Dataset description and experiment settings

MTGAIN is evaluated on a real-world red tide MTS dataset
and compared with other state-of-the-art methods. The
dataset is composed of multiple attributions which influence
the occurrence of red tide. Fujian province, located on China
southeastern coast, is often plagued by red tides. From 2000
to the middle of 2017, a total of 219 red tides occurred along
the coast of Fujian, of which 35 had a huge impact on fishing
and aquaculture as well as public health, resulting in a large
number of economic losses.

This experiment is conducted on the data collected from
the monitoring data of buoys from Dongshan Bay, Fujian
Province.Thedetection time spanwas from2007.1 to 2007.3.
Themonitoring and collection frequencywas once every half
an hour, which forms a total of 1632 samples. Each sample
is labeled with a binary label indicating the occurrence or
absence of red tides at the current detection time. The buoy
is equipped with multiple marine physical, chemical, biosen-
sors and atmospheric sensors. The dataset uses 8 of them as
attributions, respectively: surface temperature (Temp), sur-
face salinity (Salt), saturated oxygen content (SDO), oxygen
content (DO), chlorophyll (Chl), turbidity (Turb), pH value
(PH), and tide. The models in the experiments are trained to
impute missing values and calculate the imputation accuracy
as well as post-imputation prediction performance. When
imputation operation is accomplished, downstream tasks
are performed on the imputed dataset. Excellent imputation
methods should have the ability to help downstream models
become more effective. Therefore, the prediction task on the
red tide dataset is performed to compare the post-imputation
prediction performance between different imputation meth-
ods directly.

In imputation task, missing values are introduced to the
original data in the form of missing completely at random
(MCAR) [40], which means the values are removed com-
pletely at random and the missing pattern is independent of
the observed values. 30%, 50% and 70% of the observed
values are discarded by MCAR, respectively. After filling
in the missing values with different imputation methods, the
imputed dataset is utilized to predict whether red tide will
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Fig. 3 The distributions of different attributions reconstructed by different methods under 50% missing rate

occur at the current detection time. Each experiment is con-
ducted ten times and 7-cross validation is utilizedwithin each
experiment. All experiments of the work were performed
with a GPUNvidia 3060Ti, CPU Intel i7-11700 k and 32 GB
of RAM. The software includes Pytorch 1.7.1 + cu110 and
Python 3.6.4 in Windows 10 system.

Evaluationmetrics and baselinemethods

The imputation performance of various imputation methods
are quantitatively evaluated with four different evaluation
metrics: kernel density estimation (KDE) [41], Pearson cor-
relation coefficient (PCC) [42], root mean square error
(RMSE) and area under the receiver operating characteristic
curve (AUROC) [21]. See the Appendix for variables and
abbreviations. KDE is used to estimate density function of
given data and belongs to non-parametric test. The distribu-
tion characteristics of every single attribution in the imputed
dataset can be seen intuitively through the KDEmethod. The
formula is shown below:

f̂h(x) � 1

nh

n∑

i�1

K

(
x − xi

h

)
, (19)

where xi denotes the i-th value in the attribution samples
and n is the length of x .h denotes the bandwidth which is
a smoothing parameter.K (·) represents the kernel function,
such as uniform kernel, biweight kernel and Gaussian kernel,
etc. The Gaussian kernel is adopted in the experiment as the
kernel function of KDE in consideration of the ease in the
calculation of waveform synthesis.

PCC is amethod tomeasure the strength of the correlations
between two variables and proportional to the strength. The
formula is shown below:

ρ(X ,Y ) � cov(X ,Y )√
D(X )

√
D(Y )

, (20)

where cov(·) denotes the covariance of variable X andY . D(·)
is the variance. The value is closer to 1 when the correlations
between the variables become stronger. PCC can be used to
check whether the correlations between the imputed attribu-
tions are consistent with that of original data. The closer PCC
is to that of original data, the better the method can dig out
the relationships between different attributions. RMSE of the
original and imputed values at the corresponding positions
is utilized to compare the imputation performances of dif-
ferent methods directly. Due to the fact that the real-world
red tide dataset is imbalanced, which means the occurrence
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Fig. 4 The distributions of different attributions reconstructed by different methods under 70% missing rate

of red tide is concentrated in a few days or months and the
number is small, AUROC is a more appropriate evaluation
metric to compare accuracy of post-imputation prediction.
The advantage of AUROC is that it is not affected by class
imbalance and different sample rates will not affect the eval-
uation results of AUROC.

To evaluate the imputation performance, MTGAIN is
compared with some most commonly used missing values
imputation methods: GAIN [23], E2GAN [22], VAE [15],
SVD [10], KNN [9].

GAIN: It introduces the hint mechanism to help the gen-
erator and discriminator learn the real missing pattern.

E2GAN: It utilizes the decay term to the GRUI and simu-
late the influence of observed values on missing values with
different time interval between them.

VAE: It conducts imputation by constraining the latent
space distribution to learn important properties of real data.

SVD: It employs approximatematrix restored from eigen-
matrix corresponding to the reserved singular values to
impute values iteratively.

KNN: It employs the k-nearest neighbor algorithm to find
similar samples with normalized Euclidean distances and
impute missing values.

Experiment results

KDE comparison

Note that due to the limitation of article layout, only GAIN,
E2GAN and MTGAIN are compared with KDE and PCC
performance in 50% and 70% missing rate. All imputation
methods mentioned in “Model procedure” are compared
with RMSE performance.

Figures 3 and 4 show the KDE performance by multiple
imputationmethods including E2GAN,GAIN andMTGAIN
in different missing rates. Each figure includes reconstructed
and original distribution of eight attributions under 50%
and 70% missing rate, respectively. To clearly compare the
differences between the model performance, a sub-graph
describing the peak area is used in the KDE curves of several
attributions including SDO, Chl and Turb. The curves with
different color represent the distribution of different attri-
butions reconstructed by corresponding methods. Figures 3
and 4 indicate that even though theKDEperformance of each
algorithmdecreases asmissing rate increases,MTGAINcon-
sistently outperforms other models in most scenarios.

It is obvious that in some cases the green curve is closer
to the black one than others, taking Salt, SDO, Chl and
Turb, for example. In cases of above attributions whose dis-
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Fig. 5 The PCCs between
different attributions
reconstructed by different
methods under 50% missing rate

tributions appears more complicated with multiple peaks,
the curves reconstructed by MTGAIN is more consistent
with the original curves than that by other imputation meth-
ods. It is probably due to the fact that attributions with
complicated distributions produce missing values that are
harder to be imputed while MTGAIN is able to capture more
implicit information about themissingvalues fromprediction
task, thus providing more extra references for imputation.
Although in cases ofTempandDO,MTGAIN fails to achieve
the best performances, it indeed obtains the second best dis-
tribution reconstruction results which are very close to that
of GAIN and E2GAN, respectively. While in 70% missing
rate, MTGAIN outperforms GAIN and E2GAN in cases of
Temp and DO as well as other attributions. It can be seen
that the curves reconstructed by MTGAIN at the peak area
are closer to the ground truth. In case of Temp in 70% miss-
ing rate, although the fitting of MTGAIN at the peak area is
not as good as the other two models, MTGAIN successfully
simulates the two peaks of the original distribution on the
whole, which the other two models fail to achieve. The KDE
performance by multiple imputation methods indicates that
MTGAIN is superior to other models in modeling compli-

cated distribution, especially in conditions of high missing
rate.

PCC performance

Figures 5 and 6 show the PCCperformance between different
attributions reconstructed by different imputation methods
including E2GAN, GAIN and MTGAIN in 50% and 70%
missing rates, respectively. The heat map in the upper left
corner of each figure is the original PCCs obtained from the
original dataset. The values framed in red squares indicate
strong positive correlated patterns between corresponding
attributions. The larger value means a stronger correlation.
The PCCs reconstructed by MTGAIN in general are more
consistent with original ones than other methods. The PCCs
with red square frames in Fig. 5 reconstructed by MTGAIN
are extremely close to ground truth, which indicates great
superiority of MTGAIN over other methods in maintain-
ing correlations between attributions. Figure 5 shows that
MTGAIN still outperforms other models in many cases
despite a decline in performance as miss rate increases.
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Fig. 6 The PCCs between
different attributions
reconstructed by different
methods under 70% missing rate

In low missing rate, the values imputed by E2GAN and
GAIN can still retain the implicit relationships between attri-
butions as much as possible because the correlations are not
broken heavily. The performance advantage of MTGAIN is
not significantly better than other models in some cases such
as PCC between Salt and Temp. In high missing rate, the
implicit relationships is destroyed heavily. It is difficult for
other methods to capture more information between attri-
butions. MTGAIN adds the loss of prediction task and the
pre-trained FCN-LSTM is used to capture the relationships
between multiple attributions as much as possible so that the
generator and discriminator can be updated in the direction of
improving the accuracy of prediction. To improve the accu-
racy of prediction, the imputed values should conform to the
relationships between the original values and the correct pre-
diction results as much as possible, which means they will be
generated in the direction of approximating the original data
as much as possible. Therefore, adding the prediction loss
can improve the performance of imputation and prediction
of MTGAIN. These two indicators complement each other.
Accurate prediction means that the imputed values are more
consistent with the original ones.

On the whole, it can be inferred that as the information
contained in the observed data decreases, E2GAN and GAIN
fail to capture correlations between attributions and result in
poor performance while MTGAIN is still better than others
even ifmissing rate becomes higher. It can be attributed to the
characteristics of combination of generation and prediction
tasks.

RMSE and AUROC

Figure 7 shows the RMSE results of the five existing
approaches and MTGAIN tested when the missing rate
varies. As can be seen from Fig. 7, generative models, such
as MTGAIN, GAIN, E2GAN and VAE show better RMSE
performances when compared with non-generative models
including SVD and KNN.MTGAIN achieves the best recon-
struction accuracy compared with other approaches in most
experiment scenarios. As demonstrated in Fig. 7, MTGAIN
is still able to outperform other models and achieve the best
imputation results with a relatively tiny increment of RMSE
even under high missing rates.
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Fig. 7 RMSE performance comparison in MCAR

Fig. 8 RMSE comparisons in structural missing

Fig. 9 RMSE comparisons in biased missing

MTGAIN is compared against the same methods with
respect to the accuracy of post-imputation prediction when
the missing rate varies. For this purpose, AUROC is uti-
lized as the measurement. Table 1 shows MTGAIN yields
the best post-imputation prediction performance. In particu-
lar, the advantage of MTGAIN over other models enlarges
with the increase of miss rate. This is due to the fact that
as the information contained in observed data decreases,

the implicit information between attributions and prediction
tasks extracted by MTGAIN is more conducive to impute
missing values, thus improving prediction performancemea-
sured by AUROC under high missing rates.

The main reason for MTGAIN to perform well in mod-
eling red tide MTS distribution and further achieve the best
imputation performance is that MTGAIN is designed with
the purpose of mining latent information of missing patterns
by introducing the idea of multi-task learning into GAIN. In
this way MTGAIN combines the strong abilities of GAN in
modeling distribution with prediction tasks to utilize implicit
correlations between MTS attributions.

Robustness analysis

The above results are based on the missing pattern of MACR
while it is inevitable to encounter other missing scenarios. To
test the robustness ofMTGAIN, it is necessary to evaluate the
imputation performance in other scenarios. Biased missing
and structural missing are two common missing scenarios
[28]. In biased missing, 90% of certain attributions are ran-
domly removed. These attributions are regarded as important
information which will notably influence the occurrence or
absence of red tides. 10% of the remaining attributions are
also randomly removed. These attributions are considered
less useful which have little impact on red tides. In struc-
tural missing, the entire attributions of certain samples are
removed. The samples are randomly selected with uniform
probability. This missing pattern fits the scenario where the
buoy encounters a halt on this day because of power failure
or other reasons. In the scenario, no sensors can work nor-
mally and the attributions are structurallymissed. TheRMSE
results based on the twomissing patterns are shown in Figs. 8
and 9, respectively.

In structuralmissing, testedmodels show tiny decline than
in MCAR. The main reason is that in structural missing,
part of the important attributions are removed and there is
no much useful information available. In biased missing,
other models present significant decline especially under
high missing rates. It is probably due to the fact that with
the deletion of almost entire import attributions, these mod-
els have no access to useful information to impute missing
values and become less reliable. MTGAINmaintains robust-
ness and only exhibits tiny deterioration than in othermissing
scenarios. This is because it can infer the removed attribu-
tions by the prediction taskwhile othermodels rely heavily on
these important attributions. Once the important attributions
are removed, other models will show sharp deterioration of
performance. The advantage of MTGAIN is that it relies on
the prediction task with less emphasis on important attribu-
tions, which implies the great applicability to variousmissing
scenarios and the strong robustness of MTGAIN.
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Limitations

The main limitations include the expensive cost of com-
putational time and the difficulty to coordinate multiple
components during training. On one hand, the inclusion of an
extra prediction task increases computational time. In future
work, we will investigate the use of model pruning and dis-
tillation techniques to alleviate the issue. On the other hand,
the appropriate training steps matter for the model to con-
verge. The pre-trained model may be more powerful than
other components including the generator and discriminator,
which makes it difficult for other components to be updated
effectively. It is necessary to try different combinations of
training steps for convergence.

Conclusion

In this article, MTGAIN is proposed by combining the gen-
eration and prediction tasks for red tide MTS imputation.
MTGAIN utilizes multiple complementary tasks to learn a
rich representation about original data to unearth the implicit
correlations between attributions and prediction tasks. The
imputed values maintain the correlations between attribu-
tions which are also suitable for prediction tasks. In addition,
homoscedastic uncertainty is exploited to balance the weight
of losses between generation and prediction tasks to ensure
that the parameters of MTGAIN will not be updated to a
fixed direction. Experiment results indicate that MTGAIN
performs well in modeling distributions of red tide MTS and
mining implicit correlations between attributions and pre-
diction tasks, especially under high missing rates. MTGAIN
achieves better imputation performance and robustness than
the state-of-art models, which makes it a strong alternative
to other methods for red tide MTS imputation.
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Table 2 List of variables and abbreviations mentioned in the article

Variables Abbreviations Type Range

Cross entropy CE Continuous ≥0

Mean square errors MSE Continuous ≥0

Surface temperature Temp Continuous 12.84–17.36

Surface salinity Salt Continuous 29.09–34.26

Saturated oxygen
content

SDO Continuous 88.1–130.6

Oxygen content DO Continuous 7.07–10.49

Chlorophyll Chl Continuous 0.4–34.6

Turbidity Turb Continuous 0.1–306.3

PH value PH Continuous 8.15–8.46

Kernel density
estimation

KDE Continuous ≥0

Pearson correlation
coefficient

PCC Continuous 0–1

Root mean squard error RMSE Continuous ≥0

Area under the receiver
operating
characteristic curve

AUROC Continuous 0–1

Appendix

See Table 2.
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