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Abstract
Traditional recommender systems often face the filter bubble problem when they focus on recommending familiar items to
users. The over-specialized recommended contents will make users bored. To solve this problem, researchers have proposed
models that focus on unexpectedness, but thesemodels all suffer from incomplete learning of features. To address this problem,
we propose an unexpected interest recommender system with graph neural network (UIRS-GNN). First, we preprocess
the input data with a graph convolutional network. It enriches user and item feature vectors by aggregating neighborhood
information. Second, we transform the GRU and propose the attention-based long short-term gated recurrent unit network to
learn user preferences hidden in historical behavior sequences. Then, we input the preprocessed feature vectors of users and
items into the unexpected interest model, and solve the problem of insufficient feature information learning by aggregating
neighborhood information. Furthermore, our model also alleviates data sparsity due to our deep learning feature information.
Finally, empirical evaluations with several competitive baseline models on three real-world datasets reveal the superior
performance of UIRS-GNN.

Keywords Graph neural network · Long term and short term · Recommender system · Unexpectedness

Introduction

The massive volume of user–item interactions’ data on the
internet today has expedited the creation of diverse person-
alized recommendation models with the goal of presenting
to users a set of unseen items that may be of interest to
them. Among them, content-based recommendation [1] and
collaborative filtering recommendation [2] are two represen-
tative methods. To learn the interests of users’ more deeply,
session-based recommendation [3] has also been incorpo-
rated to learn information such as user behavior sequences,
and has achieved success. However, recent studies have
shown that traditional recommendation methods often lead
to over-professional recommended content [4], which leads
to user boredom [5], and even reduce user satisfaction with
the product.
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To address these issues, researchers propose to incorporate
an unexpected measure of user interest in the recommenda-
tionmodels [6]. Thesemodels recommendnovel, unexpected
and satisfying content to users. These contents are not com-
pletely in line with or deviate from the user’s interests, but
are reasonable recommendations made after deep learning
of the users’ characteristics and behavior sequences. Unlike
traditional diversity [7] methods that focus on the differ-
ences between recommended items, the unexpected measure
detects the deviation between user interests and recom-
mended items. Through a series of studies on unexpected
measurement algorithms [6, 8, 9], it is found that the model
with unexpected measurement will recommend more satis-
fying items to users.

However, because researchers pay more attention to opti-
mizing the indicators of unexpectedmetrics, they lack deeper
learning of users and items. This will cause users to be dis-
satisfied with the recommended content. The problem is that
the model does not deep learn the potential characteristics
of users and items while learning the deviation between user
interests and recommended items. This will cause a certain
degree of misinterpretation of the range of users’ interest
preferences, and result in the recommended content being
too relevant or too unexpected. For example, each user’s
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needs for recommended content are personalized. Someusers
prefer things they are familiar with, while others are more
willing to accept novel things. They also have different defi-
nitions of whether the item recommended to them is familiar
or surprising. It is necessary to focus on the different inter-
est preferences and personal characteristics of each user, and
customize the recommended content that meets their rele-
vance and unexpectedness.

In this paper, we propose an unexpected interest recom-
mender system with graph neural network (UIRS-GNN) to
address the current limitations of models. Building on the
work of the PURS model [9], we use a graph neural net-
work to aggregate the features of neighbor nodes into the
target node. Then we use the attention-based [10] long short-
term gated recurrent unit network (A-LSGRU) to model the
user’s behavior sequence, and respectively, learn the user’s
long-term preference and short-term preference. A-LSGRU
will capture each user’s personalized content of interest. In
the next, we input the richer feature target nodes in the unex-
pectedness model and model the unexpectedness metric as
the weighted distance between the user’s interest and the
recommended item. At last, we combine the A-LSGRU and
the unexpected interest model to construct a new unexpected
interest model.

In summary, the following are our major contributions:

1. We propose the UIRS-GNN, a novel unexpected interest
recommendation model which use graph neural network
to construct the neighborhood of target node, and aggre-
gate the neighbor node features into the target node. Our
model can enrich the feature information of the target
node and also improve the feature expression ability.

2. The proposed model can learn the user’s interest prefer-
ence through using the attention-based long short-term
gated recurrent unit network (A-LSGRU). We model the
user’s global and local interest preference to obtain more
comprehensive user characteristics.

3. The proposedmodel is based on user interest preferences,
and considers both the relevance and unexpectedness of
the recommendation in an end-to-end manner. We can
optimize onemodule independentlywithout affecting the
results of the other.

4. We conduct empirical evaluations with several compet-
itive baseline models on three real-world datasets to
demonstrate the superior performance of UIRS-GNN.

The remaining parts of this paper are organized in this
method. Relation works are discussed in "Related works". In
"Unexpected interest recommender system with graph neu-
ral network (UIRS-GNN)", we give the structure and details
of the UIRS-GNNmodel. In "Empirical study", we also pro-
vide our model’s empirical setup. The result and analysis are

described in "Result". In "Conclusions", we summarize our
work and what we can do in the future.

Related works

This section reviews related recommender systems tech-
niques, which include three part: the recommendation with
graph convolutional neural networks, the session-based rec-
ommendation focusing on user’s behavior sequences, and
unexpected interest recommendation.

The recommendation with graph convolutional
neural (GCN) networks

Convolutional neural networks have achieved success in
different domains such as image [11] and text [12]. In con-
trast to regular images and text, researchers have begun to
generalize convolutions to inherently irregular graphs [13].
Graph convolutional networks have attracted much attention
of researchers due to their rigorous theory and relatively effi-
cient performance [14]. The core idea of GCNs is to model
message passing or information diffusion in a graph struc-
ture to generate node embeddings. Each node obtains its
own embedding by aggregating the information of its neigh-
bors, and the messages from the neighbors come from the
neighbors of their neighbors, and so on. These models are
called convolutions, because the operation of aggregating
from neighbors is similar to convolutional layers in computer
vision. GraphSAGE [15] expands GCN into an inductive
learning task by training a function that aggregates the neigh-
bors of nodes (convolutional layer), which generalizes to
unknown nodes. Following the success of applying GCNs to
graphs, researchers propose to learn latent features of users
and items by passing information on a user–item interaction
graph under the graph [16]. Among them, PinSage [17] uses
a combination of random walks and graph convolutions to
capture the features of the graph structure and the features of
nodes to generate embedded representations of nodes;NGCF
[18] explicitly models user–item to effectively inject collab-
orative signals into the embedding process; LightGCN [19]
simplifies the learning process by deleting the feature trans-
formation and nonlinear activation operations of traditional
GCNs, and proves that these two operations are effective
in recommender systems with no significant effect. These
attempts to apply GCNs to recommender systems simply
transform the user–item interaction matrix into a graph and
focus on the relevance of recommendations. Compared to
these models, we use GCN as a way of data preprocessing.
We take the data processed by neighborhood aggregation as
the input of theA-LSGRUand the unexpected interestmodel.
These data will then be processed to discover the user’s pref-
erence interest.

123



Complex & Intelligent Systems (2023) 9:3819–3833 3821

The session-based recommendation focusing
on user’s behavior sequences

Traditional CF methods such as matrix factorization fail in
session-based recommendation because user profiles cannot
be constructed from past user behaviors. A natural solution
to this problem is the item-to-item recommendation method
[20]. The model will precompute an item-to-item similarity
matrix from the available session data, and consider the items
which frequently clicked in the session similar. These simi-
larities are used to create user interest profiles. The method,
although simple, has been shown to be effective and then
widelyused.However, thesemethodsonly consider the user’s
last click and effectively ignoring information about previous
clicks. It is necessary to completely model the user’s behav-
ior sequence to learn the user’s characteristics. Researchers
have found that RNNs are very effective when dealing with
sequence data [21]. RNNs have been applied to image, video
captioning, time series prediction, natural language process-
ing, etc. long short-term memory network (LSTM) [22] and
gated recurrent unit network (GRU) [23] are two variants
of RNN. They are relative to RNN by introducing a gating
mechanism to control the accumulation speed of information,
including selective of adding new information and selectively
forgetting previously accumulated information. This helps
to improve the long-range dependency problem of RNN and
deep learn the user’s behavior sequence. However, different
users have different preferences for the same recommenda-
tion and even the same user has different preferences for
similar recommended items in different sessions. It is nec-
essary to model a personalized session recommender system
to learn user’s behavior sequences. DIN [24], DeepFM [25],
Wide and Deep [26], PNN [27] recommend personalized
content for each user through modeling the features of users
and items, and the user’s behavioral interest sequence. Com-
pared with these conversational recommender systems, we
introduce an attention mechanism to capture the interest bias
of each user. It assigns different weights to users according
to user’s behavior sequences. In addition, we emphasize the
weighting of short-term interests. We separately extract the
last interaction in the user behavior sequence as the user’s
short-term interest. Then we spliced it with the user’s long-
term interest as the user’s feature.

Unexpected interest recommendation

To address the problems of over-specialized recommen-
dations and user boredom, researchers have proposed the
concept of unexpectedness. The unexpectedness measures
users’ emotional responses to the item they did not know
before, and detects the surprise of target users to broaden
user’s interest preference and improve the user’s satisfaction

Fig. 1 Framework of UIRS-GNN

[28]. Unlike evaluation criteria such as diversity, unexpected-
ness measures those recommendations that are not included
in the user’s previous purchases or deviate from the user’s
expectations. It is usually defined as the distance between
the target item in the feature space and the user’s interest
set. But as pointed out in the literature [16], it is simpler to
compute the distance of item embeddings in the latent space
than in the feature space.Auralist [29] improves user satisfac-
tion by balancing accuracy and noveltymeasures while using
topic modeling; PURS [9] provides multi-cluster modeling
of user interests in the latent space, as well as through self-
attention mechanisms and selecting appropriate Unexpected
activation functions to achieve personalized unanticipated
recommendations. Thesemodels generally suffer from insuf-
ficient feature learning. Therefore, we introduce GCN to
aggregate the features of neighbor nodes into the target node.
It greatly enriches the features of users and items and effec-
tively alleviating the problem of insufficient feature learning.

Unexpected interest recommender system
with graph neural network (UIRS-GNN)

The structure of UIRS-GNN model is shown in Fig. 1. It
consists of three parts: neighborhood aggregation with graph
neural network, the attention-based long short-term gated
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Fig. 2 Graph of user–item interaction

recurrent unit network (A-LSGRU), and unexpected interest
recommendation. We will introduce them as following.

Neighborhood aggregation with graph neural
network

Neighborhood aggregation

Neighborhood aggregation is the initial step of our model.
The main function of this step is to aggregate the features
of neighbor nodes into the target node, so as to enrich the
features of the target node, and provide input data for the
A-LSGRU and the unexpected interest model.

In the initial steps, we need to associate users and items
with their embedded ID. Here, we set ui ∈ U to represent
users, whereU represents the total set of users; ii ∈ I items,
where I represents the total set of items. We use eu to rep-
resent the user’s embedding and ei to represent the item’s
embedding, and then use the user–item adjacency graph to
learn latent features and propagate the learned features to the
next layer. The corresponding interaction graph and adja-
cency graph are shown in Figs. 2 and 3.

After establishing the adjacency relationship between
users and items, we need to aggregate the feature information
of these neighbor nodes into the target node. The propagation
formula [18] is as follows:

Fig. 3 Graph of user–item adjacency
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where eku and eki represent the embedding vectors of user u
and item u in the layer, σ represent the nonlinear activation
function, w1 and w2 represent the weight matrix for feature
transformation at each layer, Nu and Ni represent the adjacent
nodes of user u and item i .

After the model obtains the node embedding vector and
adjacency information, it will follow the order of the layers in
Fig. 3, starting from the first layer to obtain the description
vector of each layer about the user

(
e1u , e

2
u . . . eku

)
and the

description vector of the item
(
e1i , e

2
i . . . eki

)
, and then use

these obtained embedding vectors. Connect with the embed-
ding vector of the target node to obtain the final user eau and
item eai embedding sum, which a represents the neighbor-
hood aggregation operation, generally using the splicing ||
operation. The formula [18] is as follows:

{
eau � e1u‖e2u‖· · · ‖eku
eai � e1i ‖e2i ‖· · · ‖eki

. (2)
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LightGCN

We use a binary data set without textual information, and
choose a simplified GCN model-LightGCN, which greatly
simplifies the operation of neighborhood aggregation.

The idea of neighborhood aggregation in the field of rec-
ommender systems comes from the traditional GCN—the
relevant knowledge of graph convolutional neural networks.
The core is the neighborhood aggregation function, such as
formula (1). The purpose is to aggregate the target node
and the neighbor nodes of the K th layer as a feature rep-
resentation. It includes two essential operations—nonlinear
activation function and feature transformation, which have
a pivotal role in the task of dealing with nodes with rich
semantics. But in recommendation tasks where only user and
item ids are input, they may not be effective. He et al. [19]
proposed LightGCN, which removes feature transformation
and nonlinear activation function according to the character-
istics of sparse recommendation task node information and
low feature dimension. LightGCN can improve the training
speed and accuracy.

The improvement of LightGCN is mainly in the reason-
able deletion of nonlinear activation function and feature
transformation. First, we need to perform a neighborhood
aggregation operation. The aggregation formula [19] of
LightGCN is as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ek+1u �
∑

i∈Nu

1√|Nu‖Ni |e
k
i

ek+1i �
∑

u∈Ni

1√|Ni‖Nu |e
k
u

, (3)

where eku and eki represent the embedding vectors of user u
and item i at k-layer, Nu and Ni represent the adjacent nodes
of user u and item i . Looking at formula (3), themost obvious
feature is that the nonlinear activation function and feature
transformation in formula (1) are deleted. In addition, the for-
mula cancels the self-connection operation. LightGCN has
captured the information of the target node in the operation of
layer combination, so the self-connection is deleted to avoid
redundant operations.

After obtaining the node feature information of each layer,
the model uses the weighted method to fuse the target node
and the neighbor nodes. The formula [19] is as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

eau �
K∑

k�1
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k
u

eai �
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k�1

ake
k
i

, (4)

where K denotes the number of neighborhood layers, ak
denotes the weight of the K th layer embedding, here we use
a simple 1/(K + 1) to denote it, which has been proven to
work well.

Attention-based long short-term gated recurrent
unit network (A-LSGRU)

Our model uses an attention-based long short-term gated
recurrent unit network to enrich user features. The pur-
pose is to learn the user’s long-term and short-term behavior
sequences that change over time and discover the user’s hid-
den preferences and interests in the behavior sequence.

In recommender systems, for an item i , our purpose is to
predict whether user u will click on the item, and this pre-
diction depends to some extent on whether the user’s interest
preference matches the item. In this section, we will use an
attention mechanism based long short-term memory neural
network to learn the user’s preference interests. We will use
si ∈ Iu to represent each node in the behavior sequence,
set the behavior sequence to [s1, s2, s3 . . . , sn], sorted by
timestamp, which Iu represents the user’s behavior sequence
(click item sequence), model as shown in Fig. 4.

Node processing

In our model, we convert user’s behavior sequence into an
embedding vector. It is worth noting that the node informa-
tion at this time is not just the embedding vector containing its
own information, but the nodes aggregated by the graph neu-
ral network. Each node in the behavior sequence contains
the feature information of its neighborhood, which greatly
enriches the node features. The node at this time should be
represented as sai ∈ Iu , where a represents the domain aggre-
gation operation, but for the sake of brevity, it is still used
si .

Gated recurrent unit network

When dealing with sequence information, RNN [30] has
unique advantages. It is a kind of neural network with short-
term memory, which can not only receive information from
other neurons, but also receive its own information. We use
a gated recurrent unit network GRU to model user inter-
est and capture temporal and click information in behavior
sequences. Compared with other recurrent neural networks
such as traditional RNN and LSTM,GRU is computationally
more compact and efficient.

First, we transform the user’s behavior sequences into cor-
responding embedding vectors in the feature space, which
are then fed into the GRU. The update function [23] of its
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Fig. 4 Attention-based long
short-term gated recurrent unit
network (A-LSGRU)

learning process is as follows:

Zt � σ(WZxt +Uzht−1 + bZ ) (5)

rt � σ(Wr xt +Urht−1 + br ) (6)

ht � Zt � ht−1 + (1 − Zt )�
tanh(Whxt +Uh(rt � ht−1) + bh),

(7)

where Zt and rt represent the update gate and reset gate of
the GRU, respectively,WZ andWr ,UZ andUr are the weight
matrix of the current input xt and the last state ht−1 of the
update gate and the reset gate. bZ and br are the bias vec-
tors, and σ represent the sigmoid function. Wh and bh are
the weight matrix and bias vector of the candidate state, and
� represent the Hadamard product. After the user behav-
ior sequence embedding vector is input into the GRU, the
update gate such as Eq. (5) and the reset gate such as Eq. (6)
will control how much information the current state needs
to retain from the historical information and how much new
information is accepted from the candidate state. Then, the
GRU will obtain the final state ht according to the combined
algorithm of the current state, candidate state, update gate
and reset gate.

However, while learning the user behavior sequence,
we found that each node has different correlations to user
preference interests. For example, when processing a behav-
ior sequence of a user whose preference is science fiction
movies, the movies related to science fiction in the sequence
are more likely to satisfy the user, so its weight value should
be higher. On the contrary, other types of movies should
appropriately reduce the weight. To capture the user’s inter-
est bias, we introduce an attention mechanism when dealing
with sequence modeling:

ut , i � σ(W3ht +W4xi + bu) (8)

au, t � exp(ut , i)∑n
i�1 exp(ut , i)

(9)

Sg �
n∑

i�1

at , i xi , (10)

where ut , i denotes the compatible function value of each
input node in the sequence with the final state, W3, W4 and
bu are theweight matrix and bias vector of formula (8). Then,

they are brought into the attention formula (9) to obtain the
attention weights, and the global vector is obtained through
the weighting function Sg .

Finally, after deriving the global vector, we pay more
attention to the user’s latest preference interest. We sepa-
rately extract the last embedding vector in the user behavior
sequence as a local preference vector. Then, we concate-
nate it with the global preference vector and perform a linear
transformation to obtain the final sequencemixed embedding
hsu, i :

hsu, i � W5
(
Sg‖sn

)
+ bs , (11)

where W5 ∈ Rd×2d is the transformation matrix that com-
presses the concatenation of two vectors into Rd×d space,
bs is the bias vector of the formula, || is the concatenation
operation.

Unexpected interest recommendation

The purpose of our model using the unexpected interest rec-
ommendationmodel is to address filter bubble problem.After
learning the characteristics of users, the model will recom-
mend surprisingly content to users.

Currently, recommender systems focus on accurately rec-
ommending items related to user interests. However, too
much attention to accurate recommendation is likely to lead
to a single recommendation item, which will lead to user
boredom. Therefore, unexpected interest recommendation
began to enter the researchers’ perspective. It considers that
recommended items should be related to user interests and
avoid homogenization. Reza et al. generalized it as serendip-
ity [6]. Our unexpected interest model (as shown in Fig. 5)
refers to the paper [9].We define themethod ofmeasuring the
unexpectedness as the distance between the recommended
item and the user’s behavioral interest sequence. However,
since the distance function is difficult to define in the feature
space, and related methods are also difficult to achieve the
best performance, we model the unexpected function in the
latent space. It enables the model not only to guarantee the
recommendation accuracy, but also to improve the recom-
mendation.
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Fig. 5 Model of unexpected
interests

Fig. 6 Interest modeling in latent
space

(a) Single interest model   (b) Cluster interest model 

Unexpected function

First, we use clustering to model the user’s interest space.
Compared with classifying all user interests into the same
space, clustering can divide the interests of users into differ-
ent groups according to the similarity. We can exclude some
items in the latent space that are not related to user interests
and more easily identify the types of user interests in each
cluster group. Then, model will learn for different interest
types of users and deeply discover the unexpected interests
of users. The principle is shown in Fig. 6, where the gray
points represent irrelevant items, the red points represent user
behavior items, and the green points represent target items.

It is worth noting that the items related to the target user in
the latent space are also the items that have been aggregated
through the graph neural network. Unlike items that only
contain their own information, they contain relevant features
of the neighborhood. In the latent space, they are equivalent to
a collection of nodes. Visually, their relative positions have
changed. As shown in Fig. 7, the red point represents the
previous item of the aggregation operation, the blue point
represents the post-aggregation operation item. The arrows
between the two represent the position movement before and
after the aggregationoperation, and thegreenpoint represents
the target item. The model can more accurately model the
user’s interest clustering after the aggregation operation.

When modeling interest clustering, the choice of cluster-
ing algorithm also affects the group of interests. Here, we
choose the mean shift algorithm, because it is an unsuper-
vised clustering algorithm. We do not need to choose the

number and shape of clusters, and can flexibly implement
different modeling for each user. We set the user’s behavior
sequence as [s1, s2, . . . , sn], and the embedding mapped in
the latent space as [l1, l2, . . . , ln]. Then, we use the Mean
Shift algorithm to cluster the embeddings to obtain user inter-
est clusters [C1, C2, . . . , Cn]. Referring to the method of
Panagiotis et al.[8], we model the unexpected function as the
weighted average distance between the target item and each
cluster. The formula [8] is as follows:

unexp_cluu, i �
N∑

k�1

d(ei , Ck) × |Ck |
∑N

k�1|Ck |
. (12)

After the unexpected result value is obtained, it can be
used directly for the scoring function. But considering that
the clustering operation is invisible, the obtained unexpected
value is likely to deviate excessively. These valuesmay cause
the model to tend to recommend items with a high degree of
surprise, which is likely to have a negative impact. Therefore,
to make the recommendation within a certain controllable
range, we need to weigh the unexpected values. Panagio-
tis et al. [8] recommended using a unimodal function to
adjust unexpected values, which needs to satisfy the four
necessary conditions of continuity, boundedness, unimodal-
ity, and short-tail. We choose a commonly used function
f (x) � xe−x in the gamma function [31] as the activation
function. This activation function satisfies all the conditions,
and is enough simple and effective.
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Fig. 7 The influence of
neighborhood aggregation on
cluster interest model

(a) Item cluster migration   (b) Cluster interest model 

Unexpected factor

As mentioned in the previous section, we should use a uni-
modal activation function to keep the recommendationwithin
the controllable range. However, this function focuses on
improving the unexpectedness of the recommendation, and
we also need to deal with the relevance of the recommenda-
tion.

Each user’s interest preferences are different, which is also
reflected in the unexpectedness. According to the method
of Li et al. [9], we set an unexpected factor to adjust the
user’s personal unexpected interest preference. First, we set
the behavior sequence of user u as [s1, s2, . . . , sn]. To obtain
the user’s latest interest preference, we choosing the most
recent behavior as the personalization factor for each user
instead of using the entire sequence to learn the user’s inter-
est preference. This behavior length is a hyperparameter that
can be adjusted manually. We set the last three items as per-
sonalized windows. Similarly, since the embeddings in the
personalized window are not unique, their influence on the
target user is also different. To capture the differential influ-
ence of different items on the target user, we use an attention
mechanism to learn their influence weights. Then, we use
the multi-layer perceptron to integrate the output results. The
formula [9] is as follows:

unexp_factoru, i � MLP

(

eu ,
K∑

k�1

ak, i sk , ei

)

, (13)

whereMLP is a multi-layer perceptron, and a is the attention
factor of each item to the target user.

After the model finds the formulas representing unex-
pectedness and correlation respectively, we multiply the two
results to obtain the final unexpected function result. The
formula [9] is as follows:

unexpu, i � f
(
unexp_cluu, i

)
× unexp_factoru, i . (14)

Model training

After the model receives all the variables it needs, we need
to integrate them to calculate the score Z∼

u, i . First, we put the
target user embedding eu , the target user embedding ei , and
the sequence hybrid embedding hsu, i into the multi-layer per-
ceptron MLP network to get the relevance score ru, i . Then,
we add it to the unexpected score unexpu, i to get the final
score. The formula is as follows:

ru, i � MLP
[
eau0 , e

a
i0
, hsu, i

]
(15)

Z∼
u, i � ru, i + unexpu, i . (16)

Second, we apply the sigmoid function to get the output
vector of the model y∼:

y∼ � sigmoid(Z∼), (17)

where Z∼ denotes the recommendation score for all candi-
date items, y∼ denotes the probability that the node becomes
the next target.

Finally, we define the loss function as the cross-entropy of
the predicted result y∼ and the true value y, and its formula
is as follows:

loss �
n∑

i�1

−[
yi ln

(
y∼
i

)
+ (1 − yi )ln

(
1 − y∼

i

)]
. (18)

The workflow of UIRS-GNN is depicted in Algorithm 1.
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Empirical study

Dataset

We validate our model on three real datasets: Yelp Challenge
Dataset,1 which contains information about users, restau-
rants, and user ratings of restaurants; MovieLens 1M2 and
MovieLens 10M,3 which includes users, movies, and user
ratings of movies. We convert the task data into binary clas-
sification data. The original user’s rating for the item is a
continuous value between 0 and 5. We mark the rating of 3.5
and above as 1 (positive), and mark scores below 3.5 as 0
(negative). The data are then divided into training and test-
ing datasets based on user id. We randomly select users with
about 80% of the data to enter the training set, and the rest of
the users to enter the test set. The purpose is to test whether

1 https://www.yelp.com/dataset.
2 https://grouplens.org/datasets/movielens/1m/.
3 https://grouplens.org/datasets/movielens/10m/.

users would rate a given item above 3.5 (positive) based on
historical behavior.

Besides, we also used K-fold cross-validation method
based on time series to divide the dataset and did the cor-
responding comparative experiments. Since the sequence
sorted by time cannot be disrupted, time-based K-fold
cross-validation will inevitably result in a part of the vali-
dation set data not participating in training. After the K-fold
cross-validation training is completed, we do another model
training that includes the entire training set. Then, we choose
themodel with the smallest error in the validation set for each
fold, and put the test set on the model for evaluation. Finally,
we define model performance as the average error on the test
set of the models selected in each fold of cross-validation.

Table 1 below lists the information on the datasets we
used.

123

https://www.yelp.com/dataset
https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/10m/


3828 Complex & Intelligent Systems (2023) 9:3819–3833

Table 1 Basic information of
datasets Dataset User Item Ratings Sparsity

Yelp 46,712 78,654 1,262,486 0.9997

MovieLens 1M 6040 3706 1,000,209 0.9553

MovieLens 10M 69,878 10,677 10,000,054 0.9866

Parameter settings

The hyperparameters used in this paper are shown in Table
2.

Baselines’models

To show the results achieved by the proposedmodel, we took
the following baselines:

DIN [24]: the model designs a local activation unit in the
deep interest network to adaptively learn the representation of
the user’s interest from the user’s historical behavior toward
an item.

DeepFM [25]: the model uses the power of factorization
machines for recommendation and deep learning for feature
learning in a new neural network architecture.

Wide and deep [26]: the model utilizes the wide model
to process manually labeled cross-product features, and the
deep model to extract nonlinear relationships between fea-
tures.

PNN [27]: the model introduces an additional product
layer as a feature extractor.

HOM-LIN [8]: the model defines a new unexpected inter-
est distance function and recommends amodel of unexpected
interest to users through a mixed utility function.

PURS [9]: themodelmulti-clustersmodeling of user inter-
est and personalized surprise in a latent space through a
self-attention mechanism and choosing an appropriate sur-
prise activation function.

Evaluationmetrics

It is worth noting that there is currently no clear evaluation
metric to measure the standard of unexpected recommen-
dation. Different researchers have given different evaluation
metrics in their papers. The baseline models we compare
include not only unexpected interest recommendation mod-
els, but also other types of models. Therefore, we finally
choose the traditional recommendation system evaluation
metrics to evaluate our model after comprehensive consider-
ation.

To verify the superiority of the model, we chose the fol-
lowing two metrics:

HR@K : The hit rate is calculated by collecting the first K
pieces of data. This model uses HR@10, and the formula is

Table 2 Hyperparameters’ configuration

Hidden_size 128 Dropout 0.1

n_layers 3 Epochs 100

n_fold 100 Batch_size 256

Weight_size 3 × 64 Learning rate 0.01

as follows:

HR@K � 1

N

N∑

i�1

HITS@K (i),

where N is the total number of users, HITS@K indicates
whether the value accessed by the i-th user is in the top-K
items, the hit is 1, otherwise it is 0.

precision@K : The precision represents the probability of
correctly predicting a positive sample among the samples
predicted as positive samples. Our model predicts the accu-
racy of the top ten items.

In addition to the above two metrics, we additionally use
the AUC metric to observe the ranking loss of the model.
However, since we choose to use binary data, the amount of
information contained is limited, so the experimental results
are for reference only. It is defined as follows:

AUC:Measure the accuracy of the recommendation order
by ranking all items that predict click-through rate and
comparing with click information. A variation of the user-
weighted AUC is introduced in UIRS-GNN, whichmeasures
the goodness of the user’s internal order by averaging the
user’s AUC. We employ this metric in our experiments. For
simplicity, we will still refer to it as AUC. The definition is
as follows:

AUC �
∑n

i�1impressioni × AUCi
∑n

i�1impressioni
,

where n is the number of users, impressioni and AUCi are
the impressions and AUC of the i-th user.
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Table 3 Comparison of experimental results

Model Yelp MovieLens 1m MovieLens 10m

HR@10 precision@10 AUC HR@10 precision@10 AUC HR@10 precision@10 AUC

DIN* 0.5905 0.7362 0.6828 0.6909 0.6955 0.7283 0.6807 0.7140 0.7327

DeepFM* 0.5868 0.7285 0.6763 0.6921 0.6912 0.7280 0.6825 0.7132 0.7322

Wide&Deep* 0.5587 0.7333 0.6538 0.6918 0.6965 0.7281 0.6811 0.7135 0.7311

PNN* 0.5879 0.7361 0.6822 0.6843 0.6940 0.7251 0.6812 0.7138 0.7312

HOM-LIN* 0.5556 0.6715 0.5527 0.6620 0.6726 0.7043 0.6682 0.7004 0.7124

PURS* 0.5563 0.6726 0.6680 0.6927 0.6962 0.7284 0.6831 0.7171 0.7329

UIRS-GNN 0.5960 0.7621 0.6870 0.7076 0.7052 0.7290 0.7157 0.8628 0.7331

The best results for each dataset are shown in bold, where * is the result reproduced by the public code of the original paper in the experimental
environment of this paper, and the others are quoted from the original paper

Table 4 Comparison of experimental results (K-fold cross-validation)

Model Yelp MovieLens 1m MovieLens 10m

HR@10 precision@10 AUC HR@10 precision@10 AUC HR@10 precision@10 AUC

DIN* 0.4706 0.7020 0.6430 0.5806 0.6523 0.7214 0.5791 0.7081 0.7324

DeepFM* 0.4762 0.7208 0.6313 0.5811 0.6644 0.7296 0.5777 0.6989 0.7364

Wide&Deep* 0.4766 0.7156 0.6394 0.5803 0.6619 0.7319 0.5773 0.7040 0.7334

PNN* 0.4652 0.6898 0.6326 0.5808 0.6528 0.7219 0.5788 0.7078 0.7319

HOM-LIN* 0.4591 0.6774 0.5503 0.5220 0.5659 0.6316 0.5623 0.6974 0.7157

PURS* 0.4620 0.6909 0.6385 0.5813 0.6660 0.7357 0.5796 0.7186 0.7487

UIRS-GNN 0.4847 0.7409 0.6493 0.5969 0.7036 0.7473 0.5944 0.7375 0.7588

The best results for each dataset are shown in bold, where * is the result reproduced by the public code of the original paper in the experimental
environment of this paper, and the others are quoted from the original paper.

Result

Comparative experimental results and analysis

We validate our model with several competitive baseline
models on three real datasets, and the experimental results
are shown in Tables 3, 4 and Fig. 8. In terms of the scoring
standard HR@10, compared to the sub-optimal baseline, our
model has improved by 0.93%, 2.15% and 4.77%, respec-
tively, on the three real datasets Yelp, MovieLens 1m and
MovieLens 10m. In terms of scoring standard precision@10,
our model improves by 3.52%, 1.25% and 20.32%, respec-
tively, compared to the sub-optimal baseline. In addition, in
terms of AUC indicators, since our given dataset is binary
data (labels are defined as 0 and 1) and the amount of infor-
mation contained in it is limited, the model can only give the
final ranking value through themapping relationship between
features and binary labels. It can be understood that the clas-
sification task is accepted during training, and the regression
task is to be completed during testing. But it can still be seen
that our model is slightly ahead of other models.

In the comparative experiments ofK-fold cross-validation
methods, our model also performs well. In terms of HR@10,
compared to the sub-optimal baseline, our model improves
by 1.70%, 2.68% and 2.55%, respectively, on datasets Yelp,
MovieLens 1m and MovieLens 10m. In terms of preci-
sion@10, our model improves by 2.79%, 5.65% and 2.63%
on the three datasets. Notably, our model also has 0.96%,
1.58% and 1.35% improvement in AUC. In summary, our
model achieves a significant improvement over the baseline
model in training with both ways of splitting the dataset.

Among all the baseline models, HOM-LIN performs
unsatisfactory. This is because it focuses on the unexpected-
ness of the recommendation and ignores the characteristics
of learning users. These reasons lead to the deviation of the
recommended content from the topic due to the high unex-
pectedness.

DIN adaptively learns preferences and interests in user
behavior sequences by designing a local activation unit.
DeepFM uses deep learning methods to learn user features in
an end-to-end manner, and then combines them with a fac-
torization machine for recommendation. Wide&Deep learns
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(a)Yelp dataset (b)MovieLens-1m dataset

(c)MovieLens-10m dataset
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Fig. 8 Comparison of results of the model on three datasets

features through theWidemodel, and uses the Deepmodel to
learn the nonlinear relationship between features. It combines
the benefits of recommender system memory and general-
ization. PNN mainly enriches node features by introducing
product classification. Although they all made some break-
throughs in the relevance of recommended content, they
ignored the over-specialization problem of recommendation.

PURS simultaneously pays attention to the problems of
two types of models. It simultaneously learns user character-
istics and the unexpectedness of recommended content in an
end-to-end manner to improve user’s satisfaction. However,
since the PURSmodel only uses themost basic recommenda-
tion model in the process of learning user and item features,
it leads to the problem of insufficient feature learning. Tak-
ing the Yelp dataset as an example, when the user interaction
data is too sparse, PURS does not learn enough data. Its unex-
pected recommendation module cannot accurately discover
the user’s preferences and interests and has a negative impact.

To address this problem, our model introduces a graph
neural network to deep learn the characteristics of users and
items, and inputs these data into A-LSGRU and an unex-
pected interest recommendation module in an end-to-end
manner. In addition, it can be seen that the richness of the
user’s historical behavior also affects the accuracy of the

model to a certain extent. Compared using the Yelp dataset
where user interaction behavior is sparse, ourmodel achieves
more significant improvements with the MovieLens dataset.

Ablation study

As we can see in the previous section, our model has a sig-
nificant improvement over the baseline. This is because the
graph neural network enriches the features of the target node,
and A-LSGRU combines the learning of the user’s long-term
and short-term preferences. Moreover, our model also adds
an expected interest recommendation model to pay attention
to the unexpectedness of the recommendation.

In this section, we conduct ablation studies for four points:

• Version1: In this model, we no longer learn users’ short-
term preferences and interests, and only focus on users’
long-term preferences and interests to obtain user charac-
teristics.

• Version2: In this model, we do not use neighborhood
aggregation operations to enrich user features, but directly
use the original user and item data as the input content of
the model.
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Table 5 Ablation experiment

Model Yelp MovieLens 1m MovieLens 10m

HR@10 precision@10 AUC HR@10 precision@10 AUC HR@10 precision@10 AUC

Version1 0.5930 0.7461 0.6856 0.7051 0.7019 0.7278 0.7149 0.8619 0.7321

Version2 0.5559 0.6719 0.6673 0.6998 0.6966 0.7283 0.6747 0.7049 0.7326

Version3 0.5907 0.7431 0.6837 0.7042 0.7006 0.7273 0.7110 0.8581 0.7320

Version4 0.5920 0.7405 0.6828 0.7043 0.7008 0.7274 0.7109 0.8578 0.7319

UIRS-GNN 0.5960 0.7621 0.6870 0.7076 0.7052 0.7290 0.7157 0.8628 0.7331

The best results for each dataset are shown in bold

Table 6 Influence of neighborhood layers

Layer Yelp MovieLens 1m MovieLens 10m

HR@10 precision@10 AUC HR@10 precision@10 AUC HR@10 precision@10 AUC

Layer-1 0.5906 0.7605 0.6839 0.7065 0.7042 0.7283 0.7151 0.8612 0.7319

Layer-2 0.5917 0.7614 0.6854 0.7061 0.7036 0.7282 0.7152 0.8619 0.7320

Layer-3 0.5960 0.7621 0.6870 0.7076 0.7052 0.7290 0.7157 0.8628 0.7331

Layer-4 0.5924 0.7616 0.6840 0.7068 0.7048 0.7288 0.7155 0.8622 0.7328

The best results for each dataset are shown in bold

• Version3: In this model, we do not use the A-LSGRU to
learn the user’s long-term preference interest and short-
term preference interest.

• Version4: In this model, we do not use the unexpected
interest recommendation model, and only focus on the
user’s relevance recommendation.

The results are shown in Table 5.
As can be seen from Table 5, the model that remove graph

neural networks performs worst. When we remove the graph
neural network, themodel exposes the problemof insufficient
feature learning. The A-LSGRU also improve the accuracy
of our model. As mentioned in "Evaluation metrics" above,
unexpected interest recommendation model does not have a
unified unexpected evaluation metric. We only used it as a
part of our model and tested its effect on our model. It is
obvious that it improves the score of our model. Our spe-
cial operations for short-term interests also contribute to the
model. Therefore, it can be seen that several components in
our model contribute to our model, and removing any one
will reduce the effect of the model to a certain extent.

The influence of neighborhood layers
on the recommendation effect

In Table 6, we examine the influence of neighborhood layers
on the model. We test the performance of the model with the

[1–4] layer neighborhood, respectively. Its performance is as
follows:

As can be seen from Table 6, the model works best when
the number of neighborhood layers is 3, which is consis-
tent with the results found in the paper [19]. This is because
the number of neighborhood layers will lead to insufficient
aggregated domain nodes, so that user features cannot be
fully learned. On the other hand, too many domain layers
can also lead to overfitting, which reduces the performance
of the model. In contrast, we set the number of domain layers
of the model to three layers.

Conclusions

In this paper, we propose an unexpected interest recom-
mender system with graph neural network (UIRS-GNN).
UIRS-GNN pays attention to the relevance and unexpected-
ness of user-recommended content, and intends to improve
user satisfaction while recommending unexpected content to
users. We use a graph convolutional neural network to learn
the neighborhood features of users and items, and then use the
A-LSGRU to learn the user’s interest preferences. We map
the learned content into the latent space. We model the unex-
pectednessmetric as theweighted distance between the target
item and the set of interests to discovering the unexpected
interests of users. Finally, we combine the results of the A-
LSGRU and the unexpected interest model to improve user
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satisfaction. Our experimental results on the three datasets
demonstrate the superiority of the UIRS-GNN model com-
paring with several competitive baseline models.
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