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Abstract
In group decision making with social network analysis (SNA), determining the weights of experts and constructing the
consensus-reaching process (CRP) are hot topics. With respect to the generation of weights of experts, this paper firstly
develops a distributed linguistic trust propagation operator and a path order weighted averaging (POWA) operator to explore
the trust propagation and aggregation between indirectly connected experts, and the weights of experts can be derived by
using relative node in-degree centrality in a complete distributed linguistic trust relationship matrix. Then, three levels of
consensus are proposed, in which the most inconsistent evaluation information in distributed linguistic trust decision-making
matrices can be pinpointed. Subsequently, the distance between experts’ evaluation information and collective evaluation
information is designed to be applied as the adjustment cost in CRP. Finally, a novel feedback mechanism supported by the
minimum adjustment cost is activated until the group consensus degree reaches the predefined threshold. The novelties of
this paper are as follows: (1) the proposed POWA considers the trust value as well as the propagation efficiency of trust path
when aggregating the trust relationship in SNA; (2) the consensus reaching mechanism can gradually improve the value of
group consensus degree by continuously adjusting the most inconsistent evaluation information.

Keywords Group decision making · Social network analysis ·Consensus reaching process ·Distributed linguistic information

Introduction

Group decision-making (GDM) process is a decision circum-
stance where some individuals make great efforts to come to
an agreement based on their views, attitudes, intentions and
individualities on an identical issue [1]. In actual GDMactiv-
ities, people’s evaluations are always vague and uncertain.
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To describe the ambiguous evaluation information, starting
with the pioneering work of Zadeh, interval-valued fuzzy
sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets, hesi-
tant fuzzy sets and other extension and integration languages
were proposed successively to describe the vague informa-
tion [2–6]. It can be concluded that the fuzzy sets mentioned
above represent vague information from the perspective of a
single term. In practical applications, the decision makers
(DMs) may be hesitant between several possible linguis-
tic terms rather than being limited to using a single term.
To lift this restriction, Rodriguez et al. [7] defined hesi-
tant fuzzy linguistic term set (HFLTS), allowing DMs to use
several consecutive terms for a linguistic variable. Consid-
ering that linguistic variables may be discontinuous, Zhang
and Wu [8] proposed extended hesitant fuzzy linguistic term
sets (EHFLTSs). However, when describing the evaluation
information, most existing languages are inclined to use par-
tial linguistic variables to express but lack of considering
the importance of linguistic variables [9]. By integrating
proportional information into linguistic terms, Zhang et al.
[10] proposed the linguistic distribution assessment model,
where the proportion represents DM’s personal preference.
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Chen et al. [11] defined proportional hesitant fuzzy linguistic
fuzzy term sets (PHFLTSs), where the proportion repre-
sents DMs’ team preference. In this paper, the concept of
distributed linguistic information inwhich the linguistic vari-
ables are assigned a corresponding non-negative trust weight
is introduced, making DMs’ evaluation information more
comprehensive and accurate [10]. Then we propose the dis-
tributed linguistic trust function to facilitate the calculation
of trust information [12].

When coming to solving the GDM problems, introducing
social network analysis (SNA) which studies the relation-
ships among individuals, teams, corporations and regions
to it becomes a trend today [13, 14]. In the real social net-
work, decisionmakersmay not be familiarwith each other, so
they cannot express a complete trust relationship. Based on
the transitivity of trust relationship, some scholars built trust
paths through trusted third-partners (TTPs) to connect DMs
without direct trust relationship. Victor et al. [15] proposed
several trust propagation operators for trust/distrust values
and developed aggregation operators subsequently [16]. Wu
et al. [17] presented a more rational dual trust propagation
operator on the basis of t-norms and t-conorms to solve the
problem of severe information attenuation. Risk attitude was
integrated into trust score induced order weighted averag-
ing operator to improve the flexibility of the operator in Ref.
[18]. Lu et al. [19] introduced a social network clustering
method based on grey clustering algorithm. However, these
methodsmentioned above are not suitable for distributed lan-
guage variables. So based on Einstein product operator, Wu
et al. [14] developed a novel trust propagation operator to fill
this research gap. In addition, in the process of trust propa-
gation, the trust relationship attenuates with the increase in
trust path length [20, 21]. Nasir et al. [22] estimated the final
trust by aggregating information from the most reliable in-
neighbors of the target person. Some papers adopted the trust
relationship carried by the shortest indirect path to avoid the
influence of propagation path length on the final trust value
[14, 17]. In this case, the original information conveyed by
distributed linguistic trust relationship matrix (DLTRM) is
not fully utilized. Considering the existence of information
attenuation, this article performs as follows to fully use the
trust relationship of each indirect path. Firstly, based on the
distributed linguistic trust propagationoperator, the trust rela-
tionship of each path between indirectly connected experts
can be obtained. Then, calculate the propagation efficiency
of each path, which decreases with the increase of the num-
ber of TTPs. Finally, we introduce the path order weighted
averaging (POWA) operator to aggregate the trust value and
propagation efficiency to get the final trust value between
indirectly connected experts.

Reaching an appropriate group consensus degree (GCD)
by adjusting evaluation information is the other critical issue
in SN-GDM problems. High GCD means a high degree of

recognition and less disagreement of thefinal decision among
DMs [23]. When the GCD is lower than the predefined
threshold, we need to set a mechanism to adjust the eval-
uation information of inconsistent experts to improve group
consensus. Some consensus-reaching process (CRP) models
used static feedback parameters to adjust the inconsistent
evaluation information [24–26]. However, these feedback
mechanisms are compulsive and do not consider DMs’ atti-
tudes towards changing their evaluation information. To
solve this problem, Ben-Arieh and Easton [27] used a linear
cost function to define the concept of minimum-cost consen-
sus (MCC). Wu et al. [12] proposed a feedback mechanism
that can produce the boundary feedback parameter based on
minimum adjustment cost. Liu et al. [28] presented a novel
trust induced recommendation mechanism which used the
recommendations of certain experts trusted by the inconsis-
tent experts to adjust the inconsistent evaluation information.
Wu et al. [14] designed an optimization model with the
maximum retention of self-esteem degree to obtain optimal
feedback parameters in the process of reaching the GCD. Li
et al. [29] set the assumption that experts accept the opinions
of trusted experts, and then introduced the opinion dynamics
model to adjust the opinions of experts. Yu et al. [30] set up a
punishment-driven consensus reaching process and take dif-
ferent adjustment measures based on four different levels of
consensus. As for the unacceptable consistent probabilistic
linguistic preference relation, Zhang et al. [31] introduced an
automatic optimization method to improve GCD. However,
in the process of using feedback parameters to reach a high
consensus, all the evaluation information whose consensus
degree is lower than the threshold is modified at one time. As
a result, the adjustment width is large, damaging the integrity
of the original information. Therefore, the research on how
to achieve the consensus threshold with the minimum adjust-
ment cost while maintaining the maximum integrity of the
original information is of great significance. In this paper, to
maximize the preservation of the original information, three
levels of consensus are put forward to pick up themost incon-
sistent evaluation information in each circulation. Then, we
introduce adjustment cost as the basis for selecting the eval-
uation information that needs to be adjusted until the value
of GCD reaches the predefined threshold.

The remainder of this article contains six sections. In the
following section, some preliminaries about linguistic term
sets (LTSs) and distributed linguistic trust functions (DLTFs)
are introduced. The subsequent section proposes the concept
of propagation efficiency and developed the POWA operator
to aggregate the trust value of each trust chain. In “CRP
for distributed linguistic trust decision-making information”,
three different levels of consensus are put forward to pick
up the most inconsistent evaluation information and a novel
feedback mechanism based on minimum adjustment cost is
presented to improve the value of GCD. In the subsequent
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section, a case study is provided to prove the validity of our
model. The next section remarks on the conclusions of this
paper.

Preliminaries

This section briefly presents some basic concepts and defi-
nitions about LTSs, distributed linguistic term sets (DLTSs)
and DLTF), which are conducive to understanding this arti-
cle.

LTSs and DLTSs

Let S � {s0, s1, . . . , s2r } be an ordered and definite LTS,
where si is the linguistic variable and r is a non-negative
and finite integer [32]. There are two characteristics of S: (a)
If α ≥ β, then sα ≥ sβ ; (b) neg(sα) � s2τ−α , especially
neg(sτ ) � sτ .

Example 1 S � {s0, s1, . . . , s8} with nine terms can be
expressed as follows:

S �

⎧
⎪⎨

⎪⎩

s0 � extremely disagree s1 � very disagree s2 � disagree
s3 � slight disagree s4 � neutral s5 � slight agree

s6 � agree s7 � very agree s8 � extermely agree

⎫
⎪⎬

⎪⎭
.

To reduce the attenuation of information, Xu [33]
expanded the dispersed LTS into a continuous one S �
{sα|s0 ≤ sα ≤ s2rα ∈ [0, 2r ]}[0, 2r ], where 2r represents a
sufficiently large integer. The operational laws between any
two linguistic terms sα , sβ∈ S are as follows:

(1) sα ⊕ sβ � sα+β ;
(2) sα ⊕ sβ � sβ ⊕ sα;
(3) μsα � sμα , μ > 0;
(4) (μ1 + μ2)sα � μ1sα + μ2sα , μ1 > 0, μ2 > 0;
(5) μ(sα ⊕ sβ ) � μsα ⊕ μsβ , μ > 0.

Considering experts’ different preference for linguistic
terms, Zhang et al. [10] have generalized the LTSs to the
DLTSs by assigning symbolic proportions to each linguistic
term.

Definition 1 [10] Assuming that S � {s0, s1, . . . , s2r } is
an ordered and definite LTS, then a DLTS can be defined as
m � {

(si , λi )|i � 0, 1, 2 . . . , 2r
}
, where si ∈ S,λi ≥ 0,

∑2r
i�0 λi � 1 and λi is the corresponding symbolic propor-

tion of si .

Definition 2 [10] Let S � {s0, s1, . . . , s2r } be an LTS,
P � {

(si , λi )|i � 0, 1, 2 . . . , 2r
}
be a DLTS, where si ∈

Table 1 Different representation schemes of SNA

Sociometric Graph Algebraic

0 1 0 1 0 0

1 0 1 0 1 0

1 1 0 0 0 0

1 0 1 0 0 1

0 1 1 0 0 1

0 0 1 1 0 0

A

1e

2e 3e 4e

5e 6e

1 2e Re 3 2e Re 5 6e Re

1 4e Re 4 1e Re 6 3e Re

2 1e Re 4 3e Re 6 4e Re

2 3e Re 4 6e Re 2 5e Re

5 2e Re 3 1e Re 5 3e Re

S,λi ≥ 0,
∑2r

k�0 λi � 1 and λi is the symbolic proportion of
si . The expectation degree of P can be defined as follows:

E(P) �
2r∑

k�0

siλ
i . (1)

DLTFs

SNA is concerned with relational data, which allows us
to learn the structural and locational properties, including
centrality, prestige and trust relationships [34]. The set of

actors, their relationships, and the actor attributes are the
three main elements in SNA. The following three representa-
tion schemes are introduced to explain the important network
concepts (see Table 1).

However, the trust relationship conveyed by the social
network matrix is merely the terms of ‘trusting’ and ‘not
trusting’, which are binary and direct. In daily life, people
cling to define trust as a gradual concept, thus, they tend
to use trust with varying degrees, such as ‘extremely trust’
or ‘very trust’ or ‘slight trust’ [35]. To definitely present the
extent of trust, the concept of DLTF based on DLTSs is intro-
duced below [12].

Definition 3 [10] Assuming that S � {s0, s1, . . . , s2r } is
an ordered and definite LTS, then a DLTF can be defined as
follows:

P �
{
(si , T

(i))|i � 0, 1, 2 . . . , 2r
}
. (2)

where si ∈ S,T (i) ≥ 0,
∑2r

i�0 T
(i) � 1 and T

(i)
is the corre-

sponding trust weight of si .

Definition 4 Let Pj � {(si , T (i)
j )|i � 0, 1, . . . 2r , T (i) ≥ 0,

∑2r
i�0 T

(i)
j � 1}( j � 1, 2) be two DLTFs, the operational

laws among them are as follows:
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(1) P1 ⊕ P2 �
{
(si , T

(i)
1 + T (i)

2 )|i � 0, 1, . . . 2r
}
;

(2) P1 ⊗ P2 �
{
(si , T

(i)
1 × T (i)

2 )|i � 0, 1, . . . 2r
}
;

(3) λP1 �
{
(si , λT (i)

1 )|i � 0, 1, . . . 2r
}
, λ > 0;

(4) Pλ
1 �

{(

si ,
(
T (i)
1

)λ
)

|i � 0, 1, . . . 2r

}

, λ > 0.

Theorem 1 Let Pj � {(si , T (i)
j )|i � 0, 1, . . . 2r , T (i) ≥ 0,

∑2r
i�0 T

(i)
j � 1}( j � 1, 2) be two DLTFs, then we have

(i) P1 ⊕ P2 � P2 ⊕ P1;

(ii) P1 ⊗ P2 � P2 ⊗ P1;

(iii) λ(P1 ⊕ P2) � λP1 ⊕ λP2,λ > 0;

(iv) (P1 ⊗ P2)λ � Pλ
1 ⊗ Pλ

2 ,λ > 0;

(v) λ1P1 ⊕ λ2P1 � (λ1 + λ2)P1,λ1, λ2 > 0;

(vi) Pλ1
1 ⊗ Pλ2

1 � Pλ1+λ2
1 , λ1, λ2 > 0.

Then, the distributed linguistic trust weighted average
(DLTWA) operator based on the basic operation laws of
DLTFs is proposed to aggregate a list of DLTFs.

Definition 5 (DLTWA) Let Pj �
{
(si , T

(i)
j )|i � 0, 1,

. . . 2r , T (i) ≥ 0,
∑2r

i�0 T
(i)
j � 1

}
( j � 1, 2, . . . , n) be a

series of DLTFs and w � (w1, w2, . . . wn) be the corre-
sponding weight vector, where w j > 0 and

∑n
j�1 w j � 1.

Then, the DLTWA is defined as follows:

DLTWA(P1, P2, . . . , Pn) � n⊕
j�1

w j Pj

�
⎧
⎨

⎩

⎛

⎝si ,
n∑

j�1

w j T
(i)
j

⎞

⎠|i � 0, 1, 2, . . . , 2r

⎫
⎬

⎭

�
{
(si , T

(i)
)|i � 0, 1, 2, . . . , 2r

}
. (3)

Then, the expectation degree and uncertainty degree are
introduced to present the ranking among a series of DLTFs.

Definition 6 Let P � {(si , T (i))|i � 0, 1, . . . 2r , T (i) ≥ 0,
∑2r

t�0 T
(i) � 1} be a DLTF, the expectation and uncertainty

degree of E(P) � ∑2r
i�0 T

(i) I (si ) can be defined as follows:

E(P) �
2r∑

i�0

T (i) I (si ), (4)

U (P) �
2r∑

i�0

(I (si ) − E(P))2 · T (i). (5)

where I (·) : S̃ → [0, 1] is a subscript function, and I (si ) �
i/2r . In addition, there must be an inverse function I−1(·) :
[0, 1] → S̃, such as I (−1)(α) � s2rα .

Based on the expectation and uncertainty degree of
trust functions, a distributed linguistic trust decision space
(DLTDS) is constructed to make an order of a series of trust
functions.

Definition 7 Assume that Pj �{
(si , T

(i)
j )|i � 0, 1, . . . 2r , T (i) ≥ 0,

∑2r
i�0 T

(i)
j � 1

}
( j �

1, 2, . . . , n) is a set of DLTFs. The DLTDS on

DLT DS
��(M, ≤E(P), ≤U (P)) can be defined as follows:

DLTDS
�� (M, ≤E(P), ≤U (P)). (6)

where E(P) and E(P) are the order of expectation degree and
uncertainty degree. E(P) reflects the trust degree of DLTF,
which means that the trust degree of DLTF changes in the
same direction as the value of E(P). Specifically, the greater
the expectation, the higher the trust degree of DLTF. U (P)
reflects the deviation between linguistic term variables and
trust expectation ofDLTFs, whichmeans that the trust degree
of DLTF changes in the opposite direction as the value of
U (P). Specifically, the bigger the deviation is, the lower the
trust degree of DLTF is. Then we are able to conclude the
following properties:

P1 ≤E(P) P2 iff E(P1) ≤ E(P1);

P1 ≤U (P) P2 iff U (P1) ≥ U (P1).

Definition 8 (Order regulations) Let Pj �{
(si , T

(i)
j )|i � 0, 1, . . . 2r , T (i) ≥ 0,

∑2r
i�0 T

(i)
j � 1

}
( j �

1, 2) be two DLTFs; the ranking methods among two DLTFs
are defined as follows:

(1) If E(P1) > E(P1), then P1 > P2;
(2) If E(P1) < E(P1), then P1 < P2;
(3) If E(P1) � E(P2), then

when U (P1) < U (P2), P1 > P2;
when U (P1) � U (P2), P1 � P2;
when U (P1) > U (P2), P1 < P2.

Trust propagation and aggregation in social
network

This section focuses on the trust relationship between experts
who are indirectly connected in social network. First, the dis-
tributed trust propagation operator based on Einstein product
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Fig. 1 The two types of the social
network

operator is introduced to calculate the trust value of each path
[17]. Then, the POWA operator in which we set the propa-
gation efficiency as the path weight can be used to aggregate
the trust value of each path. Finally, in a complete DLTRM,
we can calculate the weights of experts through relative node
in-degree centrality.

DLTRM

Trust network reflects the trust relationship among experts.
However, experts usually cannot determine the trust relation-
ship towards unfamiliar experts [36], which accounts for an
incomplete trust network, as shown in Fig. 1. In order to
facilitate the calculation of the propagation and aggregation,
we construct a DLTRM to represent the trust relationships
among experts.

Definition 9 Let e � {e1, e2, . . . el} be an expert term set.
The trust degree from expert ep to expert eq can be expressed
as follows:

T Dpq

� T (ep, eq )

�
{

(si , T
(i)
pq )|i � 0, 1, . . . 2r , T (i) ≥ 0,

2r∑

i�0

T (i)
pq � 1

}

.

(7)

Definition 10 A DLTRM T D on e in e × e can be defined
as follows:

T D � (T Dpq )l×l (8)

In T D, the distributed linguistic trust relationship from ep
to eq is always not the same as the distributed linguistic trust
relationship from eq to ep. Simultaneously, unfamiliarity
between experts can lead to a lack of direct trust relation-
ships in trust networks. Then, the characteristics of T D can
be concluded as follows:

(1) Directional: T D can be regarded as a directed relation
matrix;

(2) Incomplete: Unfamiliarity can lead to a lack of direct
trust relationships in social trust network;

(3) Asymmetric: The expression T Dpq � T Dqp is usually
not valid;

(4) Transitive: Trust relationship in social network can be
transferred through TTPs.

Trust propagation

Given that the Einstein product operator has been proved
suitable in the process of propagation [17], we select the
distributed trust propagation operator to propagate the trust
value for completing the indirect relationship.

Definition 11 Triangular norm (briefly t-norm) is a binary
operation T on the unit interval [0, 1]. Its function T : [0,
1]2 → [0, 1] satisfies the four conditions as follows for ∀m,
n, l ∈ [0, 1]:

(1) ∀m, n ∈ [0, 1], T (m, n) � T (n, m);
(2) ∀m, n, l ∈ [0, 1], T (m, T (n, l)) � T (T (m, n), l);
(3) ∀m, n, l ∈ [0, 1] T (m, n) ≤ T (m, l) whenever n ≤ l;
(4) ∀m ∈ [0, 1] T (m, 1) � m.

The Einstein product operator is a t-norm, which can be
expressed as follows:

E⊗(t1, t2) � t1t2
1 + (1 − t1)(1 − t2)

, ∀t1, t2 ∈ [0, 1]2. (9)

It is necessary to mention that the minimum operator is
the greatest of all t-norms. Consequently, we have:

E⊗(t1, t2) ≤ min{t1, t2}. (10)

These two expressions can only be applied to the situation
of two parameters. To expand the scope of its application,
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the Eqs. (9) and (10) can be extended to Eqs. (11) and (12),
respectively:

E⊗(t1, t2, . . . , tn) � 2
∏n

i�1 ti∏n
i�1(2 − ti ) +

∏n
i�1 ti

. (11)

E⊗(t1, t2, . . . , tn) ≤ min{t1, t2, . . . , tn}. (12)

Definition 12 Let T Dpq � T (ep, eq ) �{
(si , T

(i)
pq )|i � 0, 1, . . . 2r , T (i)

pq ≥ 0,
∑2r

i�0 T
(i)
pq � 1

}

and T Dqk � T (eq , ek) �{
(si , T

(i)
qk )|i � 0, 1, . . . 2r , T (i)

qk ≥ 0,
∑2r

i�0 T
(i)
qk � 1

}
be

two known distributed trust relationships from expert ep
to expert eq and from expert eq to expert ek , respectively.
Supposing there is no direct connection between ep and ek .
Consequently, expert eq acts as an intermediary to transfer
the trust relationship. Then, the distributed linguistic trust
propagation operator PDL : �×� → �, where� be the set
of DLTFs, is introduced to propagate the trust relationship
from expert ep to expert ek :

T Dpk � PDL (T Dpq , T Dqk) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s2r , E⊗(T (2r )
pq , T (2r )

qk )
...

s1, E⊗(T (1)
pq , T

(1)
qk )

s0, 1 − E⊗(T (0)
pq , T

(0)
qk )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(13)

Equation (13) is applied to the situationwhere there is only
one TTP. If there are two TTPs, we speculate the distributed
linguistic trust propagation which has been verified in [14]:

(14)

T Dpl � PDL (PDL (T Dpq , T Dqk), T Dkl )

� PDL (T Dpq , PDL (T Dqk , T Dkl )).

Trust aggregation

There may be several trust paths among indirectly connected
experts [37]. In the process of trust propagation, the trust
relationship attenuates with the increase of trust path [20,
21]. Specifically, information attenuation intensity increases
as the number of intermediaries in the trust path increases.
In order to reduce the influence of information attenuation
on the final trust value, there should be a decreasing func-
tion between the weight of each path and the number of
intermediaries [37]. Therefore, this paper proposes the con-
cept of trust propagation efficiency based on the number of
intermediaries. Then through the proposed POWA opera-
tor, the propagation efficiency and trust values of each path
are combined to obtain the total trust relationship between
indirect-connected experts.

Definition 13 Given that there is no direct trust relationship
from ep to eq in the social network and there are h paths
{C1, C2, . . . , Ch} building bridges from expert eq to ep.The
propagation efficiency of trust path Ci is defined as follows:

pe � b′
i∑n

i�1 b
′
i
, (15)

where b′
i � 1/bi , bi is the number of intermediaries of the

path Ci . From Eq. (15), we can find that with the unchanged
total intermediaries, the larger the bi is, the smaller the path’s
weight is.

Definition 14 (POWA) Let
{
T D1

pq , T D2
pq , . . . , T Dh

pq

}

be the trust relationship of path {C1, C2, . . . , Ch}
between indirect-connected experts ep and eq , PE �
{pe1, pe2, . . . , peh} be associated path weighting, where
∑h

i�1 pei � 1 and pwi ≥ 0. Then trust degree between ep
and eq can be defined as follows:

(16)

T Dpq � POWA
(
T D1

pq , T D2
pq , . . . , T Dh

pq

)

�
h∑

i�1

pei · T Di
pq .

Important degrees of experts

Definition15 Let T D � (T Dpq )l×l be a completeDLTRM,
then the relative node in-degree centrality index can be cal-
culated as follows:

T Pq � 1

l − 1

l⊕
p�1

T Dpq . (17)

The higher the value of relative centrality index, the high
importance of experts. Then the weight of an expert e �
{e1, e2, . . . , el} can be defined as follows:

Definition 16 Let e � {e1, e2, . . . , el} be an expert term
set and its corresponding complete DLTRM is T D �
(T Dpq )l×l . We can define the weights of experts as follows:

wq � E(T Pq )
∑l

q�1 E(T Pq )
, q � 1, 2, . . . , l. (18)

where T Pq refers to the relative node in-degree centrality
index of experts in social network.
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CRP for distributed linguistic trust
decision-making information

In the process of GDM problems, experts perhaps make
different decisions influenced by educational background,
personality and risk attitude. Therefore, in order to obtain a
common opinion, we need to adjust the evaluation informa-
tion of some inconsistent experts. The solution in the existing
literature is to find experts whose consensus degree is below
the threshold value and then start the recommendation mech-
anism to reach the threshold value. However, the behavior of
adjustingmultiple experts ormultiple decisions of one expert
at one time resulting in an excessivelywide adjustmentwidth,
which affects the integrity of the original information.

To maximize the integrity of the original information
while improving the consensus of the group. This part defines
three levels of trust consensus in distributed linguistic trust
decision-making matrices (DLTDMMs) to pick up the most
inconsistent evaluation information. Then a novel feedback
mechanism supported by the minimum adjustment cost is
introduced to improve GCD until it reaches the predefined
threshold.

Consensus measures for distributed linguistic trust
decision-making information

Definition 17 Suppose that there are m alternatives
{a1, a2, . . . , am}, n attributes C � { c1, c2, . . . , cn} , l
experts e � {e1, e2, . . . , el}, expert ep expresses his/her
distributed linguistic evaluation information of alternative ak
over attribute c j as follow:

d p
k j �

{

(si , T
p(i)
k j )|i � 0, 1, . . . 2r , T p(i)

k j ≥ 0,
2r∑

i�0

T p(i)
k j � 1

}

. (19)

Definition 18 Let Dp � (d p
k j )m×n(p � 1, 2, . . . , l) be a

set of DLTDMMs, where d p
k j is the evaluation information of

alternative ak over attribute c j expressed by experts ep,W �
(w1, w2, . . . , wl)

T be the corresponding weight vector of
expert derived from Eq. (18). The collective DLTDMM D �
(dkj )m×n can be obtained by the DLTWA operator defined in
Eq. (20):

(20)

D � DLTWA(D1, D2, . . . , Dl )

�
({

(si ,
∑l

p�1
wpT

p(i)
k j )|i � 0, 1, . . . , 2r

})

m×n
.

Then, three levels of consensus degree of an expert with
the group can be calculated:

(1) Calculate the FV information levels. As d p
k j and d

q
k j

are the evaluation information from Dp and Dq , respectively,
then, the consensus degree ds pqk j between them is:

ds pqk j � 1 − |d p
k j − dqk j |� 1 −

∑2r
i�0 |T p(i)

k j − T q(i)
k j |

2r + 1
; (21)

(2) Calculate consensus degree at expert level. Suppose
that DSpq � (ds pqk j )n×m is the similarity matrix between
expert ep and expert eq , then the consensus index between
expert ep and expert eq can be defined as follow:

dbpq � 1

n × m

n∑

k�1

m∑

j�1

ds pqk j ; (22)

(3) Calculate consensus degree at trust group level.
Suppose that DBpq � (dbpq )l×l is defined as a group con-
sensus matrix. Therefore, the consensus index at group level
is:

GCD � 2

l(l − 1)

∑

p≤q

dbpq . (23)

Example 2 Suppose that three experts e1, e2 and e3 give the
following DLTDMMs:

D(1) �
⎛

⎜
⎝

{(s0, 0.20), (s1, 0.45), (s2, 0.35)} {(s0, 0.13), (s1, 0.45), (s2, 0.42)} {(s0, 0.10), (s1, 0.4), (s2, 0.50)}
{(s0, 0.35), (s1, 0.35), (s2, 0.30)} {(s0, 0.23), (s1, 0.32), (s2, 0.45)} {(s0, 0.20), (s1, 0.17), (s2, 0.63)}
{(s0, 0.12), (s1, 0.48), (s2, 0.40)} {(s0, 0.20), (s1, 0.55), (s2, 0.25)} {(s0, 0.23), (s1, 0.43), (s2, 0.34)}

⎞

⎟
⎠;
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D(2) �
⎛

⎜
⎝

{(s0, 0.40), (s1, 0..23), (s2, 0.37)} {(s0, 0.34), (s1, 0.36), (s2, 0.30)} {(s0, 0.46), (s1, 0.35), (s2, 0.19)}
{(s0, 0.27), (s1, 0.35), (s2, 0.38)} {(s0, 0.56), (s1, 0.12), (s2, 0.32)} {(s0, 0.21), (s1, 0.45), (s2, 0.34)}
{(s0, 0.45), (s1, 0.48), (s2, 0.07)} {(s0, 0.37), (s1, 0.55), (s2, 0.08)} {(s0, 0.53), (s1, 0.13), (s2, 0.34)}

⎞

⎟
⎠;

D(3) �
⎛

⎜
⎝

{(s0, 0.50), (s1, 0.45), (s2, 0.05)} {(s0, 0.72), (s1, 0.21), (s2, 0.07)} {(s0, 0.18), (s1, 0.40), (s2, 0.42)}
{(s0, 0.55), (s1, 0.35), (s2, 0.10)} {(s0, 0.34), (s1, 0.45), (s2, 0.21)} {(s0, 0.31), (s1, 0.11), (s2, 0.58)}
{(s0, 0.35), (s1, 0.56), (s2, 0.09)} {(s0, 0.45), (s1, 0.14), (s2, 0.41)} {(s0, 0.32), (s1, 0.34), (s2, 0.34)}

⎞

⎟
⎠.

The consensus degree at evaluation information levels can
be calculated:

DS12 �
⎛

⎜
⎝

0.85 0.86 0.76
0.95 0.78 0.81
0.78 0.89 0.80

⎞

⎟
⎠; DS23 �

⎛

⎜
⎝

0.79 0.75 0.81
0.81 0.78 0.77
0.93 0.73 0.86

⎞

⎟
⎠; DS13 �

⎛

⎜
⎝

0.80 0.61 0.95
0.87 0.84 0.93
0.80 0.73 0.94

⎞

⎟
⎠..

The consensus degree at experts’ level is:

DB �

⎧
⎪⎨

⎪⎩

− 0.83 0.83
0.83 − 0.81
0.83 0.81 −

⎫
⎪⎬

⎪⎭
..

Therefore, the group consensus degree is GCD � 0.823.
From Eq. (23), it is observed that the larger the value of

GCD, the larger consensus degree. Specifically, when GCD
�0, itmeans no consensus amongexperts.WhenGCD�1, It
means complete and unanimous consensus among experts. In
order to make sure of the rational consensus, we set a thresh-
old value of GCD � 0.8. If the value of GCD is lower than
the threshold, the following feedbackmechanism is activated
to adjust the lowest consensus evaluation information until
it reaches the predefined threshold.

Feedbackmechanism supported by theminimum
adjustment cost

Three parts make up the feedback mechanism supported by
minimum adjustment cost. They respectively are (1) recog-
nition of the most inconsistent evaluation information (2)
calculate the adjustment cost to determine recommended
advice (3) renew the value of GCD.

(1) Recognition of the most inconsistent evaluation
information

Step 1: distinguish GCD. If the GCD is lower than the
predefined thresholdGCD, it is necessary to adjust evaluation
information to improve the consensus level.

Step 2: find min(dbpq
k j ) in DBpq . The smaller bpq

k j is, the
lower consensus between ep and eq is. Then a pair of experts
with the lowest consensus level can be pinpointed.

Step 3: find min(ds pqk j ) in DSpq . The smaller ds pqk j is, the

lower consensus between evaluation information d p
k j and d

q
k j

is. Then themost inconsistent evaluation information dkj that
needs to be adjusted can be pinpointed.

(2) Calculate the adjustment cost to determine recom-
mended advice

Step 1: calculate the distance from d p
k j and dqk j to dkj

respectively.

H (d p
k j , dkj ) �

∑2r
i�0 |T p(i)

k j − T
(i)
k j |

2r + 1
. (24)

H (dqk j , dkj ) �
∑2r

i�0 |T q(i)
k j − T

(i)
k j |

2r + 1
. (25)

Step 2: determine the recommended advice.

d p
i j �

⎧
⎪⎪⎨

⎪⎪⎩

d p
k j , H (d p

k j , dkj ) < H (dqk j , dkj )

dkj , H (d p
k j , dkj ) � H (dqk j , dkj )

dqk j , H (d p
k j , dkj ) > H (dqk j , dkj )

. (26)

(3) Renewed the value of GCD
After the adjustment of the most inconsistent evaluation

information, calculate the renewed GCD∗. Repeat the feed-
back mechanism if the renewed GCD∗ is still lower than the
predefined threshold.

Distributed linguistic GDMmodel and its
application

This section first summarizes the overall model framework.
Then, a case of evaluating the strength of the company is
put forward to show the model’s validity and applicability.
Finally, the discussion about the results of this example is pre-
sented. The flow chart of the proposed distributed linguistic
GDM method is shown in Fig. 2.
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Fig. 2 Distributed linguistic GDM method
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Distributed linguistic GDMmodel in social network

Stage 1 Calculate the weight of each expert under SNA
Step 1: collect the trust relationship among experts to

construct DLTRM T D� (T Dpq )l×l . Simultaneously, every
expert expresses their evaluation information with decision
matrices Dp � (d p

k j )m×n(p � 1, 2, . . . , l).

Step 2: construct the complete trust networks matrix
T D� (T Dpq )l×l by propagating and aggregating trust rela-
tionships in Eqs. (13) and (16).

Step 3: based on the complete trust networks matrix
T D� (T Dpq )l×l , we determine the weights wq (q � 1, 2,
. . . , l) of experts {e1, e2, . . . , el} by utilizing Eq. (18).

Stage 2 Aggregation of DLTDMMs.
Step 4: based on the weights of experts wq (q � 1, 2,

. . . , l), the DLTDMMs Dp � (d p
k j )m×n(p � 1, 2, . . . , l) is

aggregated into a collective DLTDMM D� (Dkj )m×n with
DLTWA operator.

Stage 3 Consensus test and adjustment
Step 5: calculate three-level consensus index at evaluation

information levels, expert level and group level by using Eqs.
(21)–(23). Then, if the value of GCD reaches the predefined
threshold λ, turn to Step 7. Otherwise, turn to step 6.

Step 6: checking the most inconsistent evaluation infor-
mation and applying the feedback mechanism to adjust the
evaluation information with Eqs. (24)–(26), then we obtain
the adjusted individual DLTDMM D′p � (d ′p

k j )m×n(p � 1,
2, . . . , l).

Stage 4 Determination of the ranking among m alter-
natives.

Step 7: Renew the collective DLTDMM. Based on the
weight vector of experts W � (w1, w2, . . . , wl)

T and the
adjusted individual DLTDMM D′p � (d ′p

k j )m×n(p � 1, 2,

. . . , l), the collective adjusted DLTDMM D′ �
(
d ′
k j

)

m×n
is

derived, where

d ′
k j � DLTWA(d ′1

k j , d
′2
k j , . . . , d ′l

k j )

�
{

(si ,
∑l

p�1
wpT

′p(i)
k j )|i � 0, 1, . . . , 2r

}

�
{
(si , T

′(i)
k j )|i � 0, 1, . . . , 2r

}
.

Step 8:Calculate the expectation E(ak ) of each alternative
{a1, a2, . . . , am} as follows:

E(ak) �
n∑

j�1

2r∑

i�0

T ′(i)
k j · I (si ),

and the complete ranking of the alternatives is determined in
accordance with the decreasing E(ak)(k � 1, 2, . . . , m).

Numerical experiment

In 2019, the Chinese government issued the “Outline of
the Yangtze River Delta Regional Integration Development
Plan”which clearly pointedout that the Jiangsu,Zhejiang and
Anhui provinces should promote their respective strengths
and strengthen cross-regional coordination and interaction.
The construction of inter-provincial cooperative industrial
parks is not only an important way to achieve regional inte-
gration, but also is of great significance to improve themarket
operation level of Anhui’s economy.

Recently, Anhui Province and Jiangsu Province have
cooperated to build an industrial park. In order to enhance
the pertinence of investment, these two local governments
need to strictly control the conditions of the companies that
want to settle. The three criteria are the company’s devel-
opment prospects (x1), pollution control capabilities (x2),
and the company’s profitability (x3). Now Anhui Provincial
Government invites four experts { e1, e2, e3, e4} to evalu-
ate the three alternative companies { a1, a2, a3} to select
the most appropriate one from the three aspects. The above
three alternative companies compete with each other. Let
S � {s0 : poor, s1 : medium, s2 : good} be a LST. In order
to make the four experts express their evaluation information
reasonably, we explain the related concepts of distributed
linguistic in detail. Then, they are required to provide their
preference using distributed linguistic. For example, after
expert e1 compares the alternative company x1 and alterna-
tive company x3, he/she think that the linguistic preference
degree of alternative company x1 over alternative com-
pany x3 may be “poor ′′, “medium′′ or “good ′′, and the
their corresponding probabilities are 20%, 10% and 70%,
respectively. Thus, the evaluation information of alternative
company x1 over alternative company x3 from expert e1
can be depicted by DLTS d113 = { (s0, 0.2), (s1, 0.1), (s2,
0.7)}. Therefore, after interviewing 4 experts and selecting
the evaluation information in a similar way, four DLTDMMs
Dp � (d p

k j )3×3(p � 1, 2, 3, 4). In the meanwhile, they are

required to give the DLTRM Dp � (d p
k j )3×3(p � 1, 2, 3, 4)

and a DLTRM T D� (T Dpq )4×4 are obtained.

Stage 1 Calculate the weight of each expert under SNA
Step 1: Collect expert’s individual DLTDMMs Dp �

(d p
k j )3×3(p � 1, 2, 3, 4) and the DLTRM T D� (T Dpq )4×4

under social network:
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(s1, 0.1)

(s2, 0.6)

⎫
⎪⎬

⎪⎭
− −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Step 2: complement the uncomplete social networks
matrix T D� (T Dpq )4×4 by propagating and aggregating
trust relationship.

According to T D� (T Dpq )4×4, the expert e1 does not
directly express his trust relationship towards expert e2, so

taking the process of the trust relationship’s propagation and
aggregation between expert e1 and expert e2 as an example.
There are two indirect paths connecting e1 and e2. Path 1:
e1 → e3 → e4 → e2 and Path 2: e1 → e3 → e2. The
weights of each path are as follows:

pe1 � 1/2

1 + 1/2
≈ 0.3333; pe2 � 1

1 + 1/2
≈ 0.6667.

Then calculate the trust relationship conveyed by each
path:

T D1
12 � PDL (PDL (T D13, T D34), T D42)

�

⎧
⎪⎨

⎪⎩

s2, E⊗(T (2)
13 , T (2)

34 , T (2)
42 )

s1, E⊗(T (1)
13 , T (1)

34 , T (1)
42 )

s0, 1 − E⊗(T (0)
13 , T (0)

34 , T (0)
42 )

⎫
⎪⎬

⎪⎭

�

⎧
⎪⎨

⎪⎩

s2, 0.1743
s1, 0.0012
s0, 0.8245

⎫
⎪⎬

⎪⎭
;

T D2
12 � PDL (T D13, T D32)

�

⎧
⎪⎨

⎪⎩

s2, E⊗(T (2)
13 , T (2)

32 )
s1, E⊗(T (1)

13 , T (1)
32 )

s0, 1 − E⊗(T (0)
13 , T (0)

32 )

⎫
⎪⎬

⎪⎭
�

⎧
⎪⎨

⎪⎩

s2, 0.2501
s1, 0.0373
s0, 0.7126)

⎫
⎪⎬

⎪⎭
.

The trust relationship between expert e1 and expert e2 can
be calculated by Eq. (16):

T D13 � HOWAw (Q1, Q2) �
n∑

i�1

pei Qσ (i)

� 0.3333∗

⎧
⎪⎨

⎪⎩

s2, 0.1743
s1, 0.0012
s0, 0.8245)

⎫
⎪⎬

⎪⎭
+0.6667∗

⎧
⎪⎨

⎪⎩

s2, 0.2501
s1, 0.0373
s0, 0.7126)

⎫
⎪⎬

⎪⎭

�

⎧
⎪⎨

⎪⎩

s2, 0.2248
s1, 0.0253
s0, 0.7499

⎫
⎪⎬

⎪⎭

The complete DLTRM is shown as follows:

T D �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−

⎧
⎪⎨

⎪⎩

(s0, 0.7499)

(s1, 0.0253)

(s2, 0.2248)

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

(s0, 0.2000)

(s1, 0.3000)

(s2, 0.5000)

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

(s0, 0.6182)

(s1, 0.0175)

(s2, 0.3643)

⎫
⎪⎬

⎪⎭
⎧
⎪⎨

⎪⎩

(s0, 0.3000)

(s1, 0.5000)

(s2, 0.2000)

⎫
⎪⎬

⎪⎭
−

⎧
⎪⎨

⎪⎩

(s0, 0.8176)

(s1, 0.1111)

(s2, 0.0713)

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

(s0, 0.9456)

(s1, 0.0057)

(s2, 0.0487)

⎫
⎪⎬

⎪⎭
⎧
⎪⎨

⎪⎩

(s0, 0.1000)

(s1, 0.3000)

(s2, 0.6000)

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

(s0, 0.2000)

(s1, 0.2000)

(s2, 0.6000)

⎫
⎪⎬

⎪⎭
−

⎧
⎪⎨

⎪⎩

(s0, 0.1000)

(s1, 0.1000)

(s2, 0.8000)

⎫
⎪⎬

⎪⎭
⎧
⎪⎨

⎪⎩

(s0, 0.7253)

(s1, 0.1834)

(s2, 0.0913)

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

(s0, 0.3000)

(s1, 0.1000)

(s2, 0.6000)

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

(s0, 0.9634)

(s1, 0.0054)

(s2, 0.0312)

⎫
⎪⎬

⎪⎭
−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Step 3: compute the weight wq (q � 1, 2, 3, 4) of each
expert e � {e1, e2, e3, e4} by Eqs. (17) and (18):

w1 � 0.2495; w1 � 0.2835; w1 � 0.2123; w1 � 0.2547.

Stage 2 Aggregation of DLTDM.
Step 4: connecting the weight of each expert and

the individual distributed linguistic trust decision matrices
Dp � (d p

k j )3×3(p � 1, 2, 3, 4), a collective DLTDMM

D� (Dkj )3×3 can be obtained:

D �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎧
⎨

⎩

(s0, 0.1034)
(s1, 0.3167)
(s2, 0.5797)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1952)
(s1, 0.5754)
(s2, 0.2294)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2608)
(s1, 0.2954)
(s2, 0.4438)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.0971)
(s1, 0.1250)
(s2, 0.7779)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2758)
(s1, 0.5900)
(s2, 0.1342)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.5394)
(s1, 0.1530)
(s2, 0.3076)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.0963)
(s1, 0.2637)
(s2, 0.6400)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.4824)
(s1, 0.0424)
(s2, 0.4752)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1212)
(s1, 0.3560)
(s2, 0.5228)

⎫
⎬

⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Stage 3 Consensus test and adjustment
Step 5: by using Eqs. (21)–(23), calculate the three-level

consensus degree at the evaluation information level, expert
level and group level:

(1) The consensus degree at evaluation information levels
can be calculated via Eq. (21):

DS12 �
⎛

⎝
0.80 0.80 0.80
0.87 0.73 0.67
0.93 0.73 0.53

⎞

⎠; DS13 �
⎛

⎝
0.50 0.87 0.53
0.93 0.87 0.87
0.67 0.80 0.93

⎞

⎠;

DS14 �
⎛

⎝
0.93 0.73 0.87
0.93 0.93 0.80
0.93 0.93 1.00

⎞

⎠;

DS23 �
⎛

⎝
0.40 0.93 0.67
0.93 0.70 0.70
0.73 0.80 0.87

⎞

⎠; DS24 �
⎛

⎝
0.87 0.87 0.87
0.67 0.73 0.87
1.00 0.80 0.53

⎞

⎠;

DS34 �
⎛

⎝
0.53 0.80 0.67
0.93 0.93 0.87
0.73 0.73 0.87

⎞

⎠.

(2) The consensus degree at experts’ level is:

DB �

⎛

⎜
⎜
⎜
⎝

− 0.7622 0.7644 0.8944
0.7622 − 0.7477 0.8011
0.7644 0.7477 − 0.7800
0.8944 0.8011 0.7800 −

⎞

⎟
⎟
⎟
⎠

.

db12 � 0.7622;db13 � 0.7644;db14 � 0.8944;db23 �
0.7477;db24 � 0.8011;db34 � 0.7800.

(3) The value of GCD is:
GCD � 0.7916 < 0.8000.

The GCD is lower than the threshold value λ � 0.8000,
the feedbackmechanism is activated to adjust themost incon-
sistent evaluation information.

Step 6: checking themost inconsistent distribute informa-
tion with the lowest adjustment cost through Eqs. (24) and
(25).

The order of the consensus index at experts’ level:
0.7477 < 0.7622 < 0.7644 < 0.7800 < 0.8011 < 0.8944.
The 0.7477 is derived from DS23, then the smallest num-

ber 0.4 in DS23 can be pinpointed. The 0.4 is the consensus
degree at evaluation information levels between d211 and d

3
11:

d211 �

⎧
⎪⎨

⎪⎩

(s0, 0.2)

(s1, 0.0)

(s2, 0.8)

⎫
⎪⎬

⎪⎭
; d311 �

⎧
⎪⎨

⎪⎩

(s0, 0.1)

(s1, 0.9)

(s2, 0.0)

⎫
⎪⎬

⎪⎭
.

Then, calculate the distance between d211, d
3
11 and d11 sep-

arately to decide which evaluation information needs to be
adjusted:

H (d211, d11) �
∑2

i�0 |T 2(i)
11 − T i

11|
3

� 0.2112.

H (d311, d11) �
∑2

i�0 |T 3(i)
11 − T i

11|
3

� 0.3888.

Owing to 0.2112 < 0.3888, replace the evaluation infor-
mation d311 with d

2
11.Then recalculate the value of GCD∗:

DB1 �

⎛

⎜
⎜
⎜
⎝

− 0.7622 0.8071 0.8944
0.7616 − 0.8242 0.8011
0.8071 0.8242 − 0.8023
0.8944 0.8011 0.8023 −

⎞

⎟
⎟
⎟
⎠

.

GCD∗ � 0.8152 > 0.8000.

The value of GCD∗ is higher than the threshold value
λ � 0.800, so end the feedback mechanism and turn to step
7.

Stage 4 Determining the order relationship among m
alternatives.

Step 7: renew the collective distributed linguistic trust
decision matrices. Combining the weight of each expert
(w1, w2, w3, w4)

T and the adjusted individual distributed
linguistic trust decision matrices D′p � (d ′p

k j )3×3(p � 1, 2,
3, 4), the new collective DLTDMM can be obtained:
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D1 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎧
⎨

⎩

(s0, 0.1246)
(s1, 0.1258)
(s2, 0.7496)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1952)
(s1, 0.5754)
(s2, 0.2294)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2608)
(s1, 0.2954)
(s2, 0.4438)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.0971)
(s1, 0.1250)
(s2, 0.7779)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2754)
(s1, 0.5900)
(s2, 0.1346)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.5394)
(s1, 0.1530)
(s2, 0.3076)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.0963)
(s1, 0.2637)
(s2, 0.6400)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.4824)
(s1, 0.0424)
(s2, 0.4752)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1212)
(s1, 0.3560)
(s2, 0.5228)

⎫
⎬

⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Step 8: calculate the expectation of each alternative
{a1, a2, a3} as follows:

E(a1) � 4.6444; E(a2) � 3.6606; E(a3) � 4.9140.

As E(a2) < E(a1) < E(a3), thus the company a3 per-
forms best in the three aspects of the company’s development
prospects (x1), pollution control capabilities (x2) and the
company’s profitability (x3). The government can choose a3
as a resident enterprise in the industrial park.

Comparative analysis

To prove our model’s validity and applicability, this subsec-
tion applies three models proposed in [12, 14, 31] to solve
the problem mentioned in Sect. "Numerical experiment".

To solve the unreasonable assumption that the decision
maker knows the weight in advance, Wu et al. [12] devel-
oped theDLTDMScomposed of related properties ofDLTFs.
Then the weight of expert can be obtained by calculating in-
degree of centrality. Finally, a novel feedback mechanism
based on the minimum adjustment cost which can produce
the boundary feedback parameter was constructed to recom-
mend personalized advice for inconsistent experts.

Step 1: calculate the trust in-degree centrality by Eq. (6)
and weight of each expert by Eq. (7) in [12]:

CL
D(e1) �

{

(s0, 0.20) (s1, 0.40) (s2, 0.20)
}
;

CL
D(e2) �

{

(s0, 0.25) (s1, 0.15) (s2, 0.60)
}
;

CL
D(e3) �

{

(s0, 0.20) (s1, 0.30) (s2, 0.50)
}
;

CL
D(e4) �

{

(s0, 0.10) (s1, 0.10) (s2, 0.80)
}
.

w1 � 0.1787; w2 � 0.2625; w3

� 0.2569; w4 � 0.3019.

Step 2: get a collective DLTDMM D� (Dpq )3×3 by
Eq. (8) in [12]:

D �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎧
⎨

⎩

(s0, 0.1340)
(s1, 0.1141)
(s2, 0.7519)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1832)
(s1, 0.5660)
(s2, 0.2508)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2766)
(s1, 0.3077)
(s2, 0.4157)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.1040)
(s1, 0.1179)
(s2, 0.7781)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2674)
(s1, 0.6078)
(s2, 0.1249)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.5241)
(s1, 0.1650)
(s2, 0.3110)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.1059)
(s1, 0.2725)
(s2, 0.6216)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.4925)
(s1, 0.0494)
(s2, 0.4581)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1257)
(s1, 0.3320)
(s2, 0.5423)

⎫
⎬

⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Step 3: calculate the consensus levels with the group by
Eqs. (9)–(11) in [12]:

(1) Consensus degree at the level of evaluation informa-
tion:

CE1 �
⎛

⎜
⎝

0.8761 0.8328 0.8049
0.9453 0.9107 0.8180
0.8767 0.9271 0.8949

⎞

⎟
⎠ ; CE2

�
⎛

⎜
⎝

0.9239 0.9560 0.8793
0.9187 0.8203 0.8487
0.9434 0.7719 0.6213

⎞

⎟
⎠ ;

CE3 �
⎛

⎜
⎝

0.9239 0.9221 0.7285
0.9854 0.9357 0.9248
0.7899 0.7614 0.7787

⎞

⎟
⎠ ; CE4

�
⎛

⎜
⎝

0.9427 0.8779 0.9256
0.9360 0.9130 0.9419
0.9434 0.9657 0.8949

⎞

⎟
⎠ .

(2) Consensus degree at the level of alternatives:

CA1� ( 0.8379 0.8913 0.8996 );

CA2� ( 0.9197 0.8626 0.7789 );

CA3� ( 0.8582 0.9486 0.7767 );

CA4� ( 0.9154 0.9303 0.9347) .

(3) Consensus degree at the level of group decision matrix
level:

CI1 � 0.8763; CI2 � 0.8612;

CI3 � 0.8537; CI4 � 0.9268.

Under the condition of λ� 0.87,then the CI2 < λ and
CI3 < λ.

Step 4: identification of the inconsistent evaluation ele-
ments:

APS � {(2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3),
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(3, 1, 3), (3, 3, 1), (3, 3, 2), (3, 3, 3)}.

Step 5: calculate the boundary feedback parameter by solv-
ing the optimization model to obtain the recommendation
advice:

Min
∑

h, i , j∈APS

δ|dh − d
h
i j |

s.t.

⎧
⎪⎨

⎪⎩

CIh(RDh , RD) ≥ γ

CIs(RDs , RD) ≥ γ

RD � DTWA(RDh , RD1 . . . , RDs , . . . , RDk)

.

δmin � 0.08

The recommendations advice for expert e2 and e3 are:

(2, 2, 2) → {(s0, 0.2053), (s1, 0.4164), (s2, 0.3773)};

(2, 2, 3) → {(s0, 0.2891), (s1, 0.3181), (s2, 0.3928)};

(2, 3, 2) → {(s0, 0.2235), (s1, 0.0045), (s2, 0.7720)};

(2, 3, 3) → {(s0, 0.1017), (s1, 0.8551), (s2, 0.0432)};

(3, 1, 3) → {(s0, 0.4819), (s1, 0.4850), (s2, 0.0331)};

(3, 3, 2) → {(s0, 0.6835), (s1, 0.1885), (s2, 0.1280)};

(3, 3, 3) → {(s0, 0.1946), (s1, 0.0261), (s2, 0.7793)}

Step 6: after modifying the inconsistent evaluation infor-
mation, the new collective DLTDMM would be:

D′ �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎧
⎨

⎩

(s0, 0.1340)
(s1, 0.1141)
(s2, 0.7519)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1832)
(s1, 0.5660)
(s2, 0.2508)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2766)
(s1, 0.3077)
(s2, 0.4157)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.1040)
(s1, 0.1179)
(s2, 0.7781)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2674)
(s1, 0.6078)
(s2, 0.1248)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.5240)
(s1, 0.1650)
(s2, 0.3110)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.1059)
(s1, 0.2725)
(s2, 0.6216)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.4925)
(s1, 0.0494)
(s2, 0.4581)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1247)
(s1, 0.3269)
(s2, 0.5484)

⎫
⎬

⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Step 7: their corresponding expected trust scores are by
Eq. (3):

E(a1) � 4.6173; E(a2) � 3.6418; E(a3) � 4.8841.

E(a2) < E(a1) < E(a3).

Therefore, the alternative a3 is the best choose.
Wu et al. [14] first developed a propagation operator on the

basis of t-norms to get a complete DLTRM. Then to comple-
ment the incomplete individual DLTDMM, a trust estimation
mechanism in which the evaluation information of unknown
experts was estimated from other experts’ evaluation infor-
mation was set up. Finally, an optimization model with the
maximum retention of self-esteem degree was designed to
obtain optimal feedback parameters in the process of reach-
ing the GCD.

Step 1: complete the DLTRMwith the support of the trust
propagation operator PLD in [14]:

T D �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
⎧
⎨

⎩

(s0, 0.7121)
(s1, 0.0378)
(s2, 0.2501)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2000)
(s1, 0.3000)
(s2, 0.5000)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.6175)
(s1, 0.0184)
(s2, 0.3641)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.3000)
(s1, 0.5000)
(s2, 0.2000)

⎫
⎬

⎭
−

⎧
⎨

⎩

(s0, 0.8200)
(s1, 0.1100)
(s2, 0.0700)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.9462)
(s1, 0.0064)
(s2, 0.0474)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.1000)
(s1, 0.3000)
(s2, 0.6000)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2000)
(s1, 0.2000)
(s2, 0.6000)

⎫
⎬

⎭
−

⎧
⎨

⎩

(s0, 0.1000)
(s1, 0.1000)
(s2, 0.8000)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.8084)
(s1, 0.1535)
(s2, 0.0381)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.3000)
(s1, 0.4000)
(s2, 0.300)

⎫
⎬

⎭
0

⎧
⎨

⎩

(s0, 0.9623)
(s1, 0.0065)
(s2, 0.0312)

⎫
⎬

⎭
−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Step 2: calculate the relative node in-degree centrality
index by Eq. (10) and the weight of each expert by Eq. (11)
in [14]:

CL
D(e1) � {(s1, 0.4032), (s1, 0.3176), (s2, 0.2792)};

CL
D(e2) � {(s1, 0.4041), (s1, 0.2124), (s2, 0.3835)};
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CL
D(e3) � {(s1, 0.6614), (s1, 0.1045), (s2, 0.2341)};

CL
D(e4) � {(s1, 0.5553), (s1, 0.0405), (s2, 0.4042)};

w1 � 0.2581; w2 � 0.2722; w3 � 0.2153; w4 � 0.2544.

Step 3: get a collective DLTDMM D� (Dkj )3×3 by
Eq. (18) in [14]:

D �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎧
⎨

⎩

(s0, 0.1014)
(s1, 0.3226)
(s2, 0.5760)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1966)
(s1, 0.5770)
(s2, 0.2264)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2630)
(s1, 0.2934)
(s2, 0.4436)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.0982)
(s1, 0.1258)
(s2, 0.7760)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2770)
(s1, 0.5926)
(s2, 0.1304)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.5446)
(s1, 0.1502)
(s2, 0.3052)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.0958)
(s1, 0.2648)
(s2, 0.6394)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.4874)
(s1, 0.0432)
(s2, 0.4694)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1216)
(s1, 0.3472)
(s2, 0.5312)

⎫
⎬

⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Step 4: consensus test.
(1) Deviation indexes at the level of evaluation informa-

tion:

DE1 �
⎛

⎜
⎝

0.0087 0.0257 0.0357
0.0038 0.0107 0.0330
0.0131 0.0065 0.0169

⎞

⎟
⎠ ; DE2

�
⎛

⎜
⎝

0.0547 0.0038 0.0137
0.0086 0.0386 0.0304
0.0026 0.0646 0.1961

⎞

⎟
⎠ ;

DE3 �
⎛

⎜
⎝

0.2217 0.0058 0.0985
0.0004 0.0061 0.0055
0.0605 0.0687 0.0663

⎞

⎟
⎠ ; DE4

�
⎛

⎜
⎝

0.0101 0.0231 0.0044
0.0056 0.0097 0.0045
0.0026 0.0010 0.0169

⎞

⎟
⎠ .

(2) Deviation indexes at the level of alternatives:

DA1 � ( 0.0234 0.0158 0.0121 ); DA2

� ( 0.0240 0.0258 0.0878 );

DA3 � ( 0.1087 0.0040 0.0652 ); DA4

� ( 0.0126 0.0066 0.0068 ).

(3)Deviation indexes at the level of group decisionmatrix:

DI1 � 0.0171; DI2 � 0.0459; DI3 � 0.0593; DI4 � 0.0086.

The evaluation information that does not meet the thresh-
oldλ � 0.04 are classified into the setAPSbyEqs. (23)–(25):

APS �
⎛

⎜
⎝

(2, 3, 2) (3, 1, 2) (3, 3, 3)
(2, 3, 3) (3, 3, 1)
(3, 1, 1) (3, 3, 2)

⎞

⎟
⎠.

Step 5: determine the optimal boundary feedback param-
eter:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max : 2 − δ22

3 ∗ 2
·

∑

i . j∈APS

ξ∑

a�0

[
(sα )

2
i j − (sα )i j

]2 − δ23

3 ∗ 5
·

∑

i . j∈APS

ξ∑

a�0

[
(sα )

3
i j − (sα )i j

]2

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DI1 ≤ 0.04

DI2 ≤ 0.04

DI3 ≤ 0.04

DI4 ≤ 0.04

r (sα )
2
i j � (1 − δ2) · (sα )1i j + δ2 · (sα )i j , α ∈ {0, 1, 2}

r (sα )
2
i j � (1 − δ3) · (sα )1i j + δ3 · (sα )i j , α ∈ {0, 1, 2}

0 ≤ δ2 ≤ 1

0 ≤ δ3 ≤ 1

.

The value of δ2� 0.1271 δ3� 0.2352 can be obtained by
solving the nonlinearmodel. The recommendation advice for
e2 are:

(2, 3, 2) → {(s0, 0.2362), (s1, 0.0048), (s2, 0.7590)} ; (2,

3, 3) → {(s0, 0.1031), (s1, 0.8303), (s2, 0.0666)} .

The recommendation advice for e3 are:

(3, 1, 2) → {(s0, 0.2754), (s1, 0.5183), (s2, 0.2063)};

(3, 1, 3) → {(s0, 0.4824), (s1, 0.4845), (s2, 0.0331)}

(3, 3, 1) → {(s0, 0.1743), (s1, 0.4454), (s2, 0.3803)}

(3, 3, 2) → {(s0, 0.6526), (s1, 0.1624), (s2, 0.1850)};

(3, 3, 3) → {(s0, 0.1827), (s1, 0.0761), (s2, 0.7412)}

After modifying the inconsistent evaluation information,
the new collective DLTDMM will be:

D′ �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎧
⎨

⎩

(s0, 0.1015)
(s1, 0.2933)
(s2, 0.6052)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1914)
(s1, 0.5809)
(s2, 0.2277)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2630)
(s1, 0.2934)
(s2, 0.4436)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.0982)
(s1, 0.1258)
(s2, 0.776)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2770)
(s1, 0.5926)
(s2, 0.1304)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.5446)
(s1, 0.1502)
(s2, 0.3052)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.0905)
(s1, 0.2529)
(s2, 0.6566)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.4870)
(s1, 0.0368)
(s2, 0.4762)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1184)
(s1, 0.3448)
(s2, 0.5368)

⎫
⎬

⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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The new deviation indexes at the level of decision matrix
are as follows:

DI1 � 0.0153; DI2 � 0.0400; DI3 � 0.0400; DI4 � 0.0075.

Step6: calculate the expectation degree of each alternative
and make a rank of them:

E(a1) � 6.7208; E(a2) � 6.2918; E(a3) � 6.9735.

E(a2) < E(a1) < E(a3).

Therefore, the best alternative is the company a3.
In Ref. [31], Zhang et al. defined the consistency of

PLPR based on graph theory’s preference graph. As for the
unacceptable consistent probabilistic linguistic preference
relation, an automatic optimization method was designed to
improve GCD. Finally, Zhang et al. used the aggregation
operator to calculate the collective preference value of all
the alternatives and make an order of them.

Step 1: see Step 1 in the above method.
Step 2: calculate the consistency indices (CI) by Eq. (13)

in [31]:

CI1 � 0.0826 > CI; CI2 � 0.0793 < CI; CI3

� 0.0793 < CI; CI4 � 0.0779 < CI.

Step 3: let θ � 0.1. The modified NPLPR is obtained by
Eq. (10) in [31]:

D(1)′ �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎧
⎨

⎩

(s0, 0.0131)
(s1, 0.2819)
(s2, 0.7050)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2886)
(s1, 0.6864)
(s2, 0.0250)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2078)
(s1, 0.1216)
(s2, 0.6706)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.1003)
(s1.0.1919)
(s2, 0.7078)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.3868)
(s1, 0.6001)
(s2, 0.0131)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.7734)
(s1, 0.0156)
(s2, 0.2110)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.0116)
(s1, 0.2073)
(s2, 0.7821)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.5888)
(s1, 0.0049)
(s2, 0.4063)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1035)
(s1, 0.2133)
(s2, 0.6832)

⎫
⎬

⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then we can get CI′1 � 0.0818 < CI.
Step 4: get a collective DLTDMM by applying the model

in Stages II and III:

D �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎧
⎨

⎩

(s0, 0.1365)
(s1, 0.1107)
(s2, 0.7528)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1811)
(s1, 0.5636)
(s2, 0.2553)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2825)
(s1, 0.3154)
(s2, 0.4021)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.1041)
(s1, 0.1164)
(s2, 0.7795)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.2636)
(s1, 0.6036)
(s2, 0.1328)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.5221)
(s1, 0.1631)
(s2, 0.3148)

⎫
⎬

⎭
⎧
⎨

⎩

(s0, 0.1097)
(s1, 0.2785)
(s2, 0.6118)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.4887)
(s1, 0.0524)
(s2, 0.4589)

⎫
⎬

⎭

⎧
⎨

⎩

(s0, 0.1262)
(s1, 0.3344)
(s2, 0.5394)

⎫
⎬

⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Table 2 GDM results with different methods

Methods Ranking order of
alternatives

The desirable
alternative

Our GDM method a2 ≺ a1 ≺ a3 a3

Wu et al. [12]’s method a2 ≺ a1 ≺ a3 a3

Wu et al. [14]’s method a2 ≺ a1 ≺ a3 a3

Zhang et al. [31]’s
method

a2 ≺ a1 ≺ a3 a3

Step 5: calculate the comprehensive preference values
(PVs):

PV1 � {s0.6003, s1.9800, s4.2310};

PV2 � {s0.8903, s1.7661, s3.6815};

PV3 � {s0.7254, s1.3305, s4.8318}.

Step 6: calculate the expectation of PV by definition 4 in
[31]:

E(PV1) � s2.2704;

E(PV2) � s2.1126;

E(PV3) � s2.2959.

Then the order of PVi is as follows:PV3 > PV1 > PV2,
and the best option is the company a3.

The GDM results with different methods are displayed in
Table 2.

Comparedwith themodels inRefs. [12, 14, 31], the advan-
tages of our model are summarized as follows:

1. Using the distributed linguistic group decision making
model with SNA, we can find that the final selection of
the settled company is entirely consistent with the result
in [12, 14, 31], which verifies the effectiveness of our
model.

2. SNA is an important method to determine the weight of
DMs, which requires that the designed models are sup-
posed to have the ability to dig deeply into the available
information in theDLTRM.Themethods proposed inWu
et al. [12] and Zhang et al. [31] did not research the trust’s
propagation and aggregation operators in social networks
but directly calculated the weight of each expert based
on the incomplete DLTRM. In Ref. [14],Wu investigated
the propagation operator for experts who are not directly
connected and used the shortest indirect path (use the
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average value of them on the assumption that there is
more than one shortest path) as the path of trust transfer.
However, it is more common that a series of trust paths of
different lengths that transfer trust relationships between
indirectly connected experts. This method does not con-
sider the influence of trust paths of different length on
the final result. To solve this problem, the model in this
article designs a POWA operator, which not only con-
siders the trust relationship from all trust paths between
experts, but also takes the weights of each path into con-
sideration. In general, compared with [12, 14, 31], the
trust model based on SNA in this paper more compre-
hensively mines trust relationships in social networks to
obtain more accurate weights.

3. Owing to DMs’ different background and knowledge,
they may be inconsistent with each other when making
decisions. Therefore, CRP is important for selecting a
reliable decision. In Ref. [14], Wu designed an optimiza-
tion model with the maximum retention of self-esteem
degree to get optimal feedback parameters in CRP.
However, the proposed objective function and solution
process are complicated. At the same time, we can find
δ2� 0.127, δ3� 0.235, which means that 12.7% and
23.5% of the initial inconsistent information of e2 and e3
need to be adjusted which greatly damages the integrity
of the original data. In Ref. [12], an optimization model
based on the minimum adjustment cost was established
to maintain individual independence while ensuring that
the group consensus reaches the threshold. However, it
only takes themodel tominimize the adjustment cost into
account, ignoring the deviation degree between experts
and the group. In view of the advantages and disadvan-
tages of the above two models in [12, 14], our model
finds themost inconsistent evaluation information in each
cycle of CRP, which greatly maintains the integrity of
the original information. At the same time, to simplify
the complexity of the model, we choose the evaluation
information that needs to be adjusted based on the prin-
ciple of minimum adjustment costs.

Conclusion

This paper presents a SNA and consensus reaching process-
driven group decision making method with distributed lin-
guistic information. It mainly consists of two processes: (1)
develop a distributed linguistic trust propagation operator and
a path order weighted averaging (POWA) operator to explore
the trust propagation and aggregation between indirectly
connected experts; (2) set up a novel feedback mechanism
based on the minimum adjustment cost to gradually improve
the group consensus degree. Compared with other literature

related with group decision making problems, this model has
the following contributions.

1. It proposes a new POWA operator under multi-path sce-
narios between indirectly connected experts. There are
two characteristics of it: (i) considering the influence
of trust chain length on trust attenuation, it constructs a
decreasing function between trust propagation efficiency
(dependent variable) and the number of intermediaries
(independent variable). (ii) The trust propagation effi-
ciency is used as the path weight variable in POWA
operator. Then, we can then get the final trust value by
aggregating the trust value and the corresponding propa-
gation efficiency. Consequently, it can be concluded that
the aggregation operator not only utilizes the information
transmitted by each path, but also reduces the influence
of information decay on the final trust value.

2. It develops a new feedbackmechanism based on themin-
imum adjustment cost to improve the value of GCD.
By setting three progressive levels of consensus, we can
pinpoint the most inconsistent evaluation information
between two experts. Then, the distance between two
experts’ evaluation information and collective evalua-
tion information is defined as the adjustment cost. Based
on the principle of minimum adjustment cost, the feed-
backmechanism adjusts the most inconsistent evaluation
information in each circulation until the value of group
consensus degree reaches the predefined threshold. The
feedback mechanism we proposed makes it possible to
retain the original information to the greatest extent and
continuously improve the value of the group consensus
until it reaches the threshold.

However, the complexity of research questions may pre-
vent experts from expressing their evaluation information,
which will lead to incomplete evaluation information. This
paper only considers the possibility of an incomplete trust
relationship but ignores incomplete evaluation information.
Besides, this paper sets the group consensus threshold based
on related papers, making it kind of subjective. Therefore,
in further research work, we will study how to complete
the evaluation information and set the reasonable group con-
sensus threshold by designing a reasonable model, and the
proposed methods can also be employed in other fields, such
as passenger demands determination, passenger satisfaction
evaluation, online product recommendation and social risk
evaluation.
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permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
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