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Abstract
The correlation filtering-based target tracking method has impressive tracking performance and computational efficiency.
Nevertheless, a few issues limit the accuracy of the correlation filter-based tracking methods including the object deformation,
boundary effects, scale variations, and the target occlusion. This article proposes a robust target tracking algorithm to solve
these issues. First, a feature fusion method is used to enhance feature response discrimination between the target and others.
Second, a spatial weight function is introduced to penalize the magnitude of filter coefficients and an ADMM algorithm is
employed to reduce the iteration of filter coefficients when tracking. Third, an adaptive scale filter is designed to make the
algorithm adaptable to the scale variations. Finally, the correlation peak average difference ratio is applied to realize the
adaptive updating and improve the stability. The experiment’s result demonstrates the proposed algorithm improved tracking
results compared to the state-of-the-art correlation filtering-based target tracking method.

Keywords Visual tracking · Correlation filters · Feature fusion · Spatial regularization · Scale variation · Adaptive model
updating

Introduction

In recent years, target tracking has become a research
hotspot in the computer vision domain due to its practical
application in multiple fields, including video surveillance,
human-computer interaction, driver less, and medical image
analysis [1–3]. Target tracking requires providing the tar-
get size and position information in the initial frame, then
predicts the accurate size and the position of the target
in subsequent frames of the video sequence. Despite the
remarkable progress made in target tracking technologies
in the past few decades, a few associated limitations remain
unresolved, which include scale variations, background clut-
ter, motion blur, among others. Bolme et al. [2] first applied
correlation filtering in the tracking field, and proposed a
new filter, namely minimum output sum of squared error
filter (MOSSE) [4] to find the largest response of tracking
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target. The Exploiting circulation structure of Tracking-by-
detection with Kernels (CSK) [5] algorithm adds dense
sampling and kernel mechanisms based on MOSEE to
increase the tracking frame rate from 20FPS to 400FPS. Joao
et al. [4] proposed the Kernel Correlation Filter algorithm
that improved the CSK algorithm by extending the HOG
feature of the multi-channel gradient. Martin Daniella et al.
[6] designed a color names (CN) feature and added multi-
channel color features to the CSK algorithm. Poria et al. [7]
identify important features of rough theory to find a higher
accuracy in retrieval results. Reza et al. [8] proposed an edge
calculation method to solve the problem of the concepts of
the fuzzy similarity relation and homogeneity region. Those
archived good results.

Despite the apparent advantages of high speed in correla-
tion filtering algorithms, there is still scope for improvement.
The first area for consideration is that the target deformation
in the tracking process leads to unstable tracking. The tradi-
tional KCF and DCF [4] algorithms use the HOG feature [9]
as the sample feature, showing strong stability for phenomena
like motion blur and illumination change. But these model
relies heavily on the contour structure of the tracking target.
Consequently, the algorithm becomes extremely sensitive to
object deformation leading to unstable tracking results. The
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second area for consideration is the boundary effect of sam-
ples caused by circular shift of the center image block. In
the training phase, while the dense samples are obtained by
the circular shifting of the center image block, making only
the center samples accurate, the others have displacement
boundaries leading to the fact that even the trained classi-
fier cannot accurately track the object moving rapidly. The
third area for consideration is the lowering of the tracking
accuracy due to the non-scalability of the target scale as per
the target size. In the target tracking process, both the reduc-
tion and expansion of the target scale cause the tracking drift
by including a large amount of background information and
containing only part of the target information, respectively, in
the selected image block. The fourth area for consideration is
target occlusion. In target tracking, the occluded target causes
drift in the tracking results, which affect the target training
model to a certain extent. Thus, with longer occlusion time,
the tracking fails. This paper mainly provides solutions to
the above discussed four limitations of correlation filtering
algorithms. In summary, the main contributions of this paper
are as follows: (1) A feature fused by HOG, CN, and HSV is
to enhance feature responses discrimination and improve the
stability of tracking when the scene is deformed or lighting
changes.

(2) A spatial regularization weight is set according to the
location information of training samples and the target space.
And a spatial weight function is proposed to penalize the
magnitude of the filter coefficients of ADMM [10] to reduce
iteration of filter coefficients, weaken the boundary effect to
keep the efficiency of tracking.

(3) An adaptive scale filter with a 7-scale pool is designed,
which makes the algorithm adaptable to the scale variations.

(4) The correlation peak average difference ratio is applied
to estimate the state of occlusion, which can realize the adap-
tive updating of the tracking model and improve the stability
when the target occlusion.

Related work

Despite the correlation filtering based target tracking method
achieved remarkable progress, there are a few limitations
remain unseasoned, which include target de-formations,
boundary effects, scale variations and target occlusion.
Researchers put a lot of efforts to solve these issues.

For the target deformation, Poria et al. [7] identify impor-
tant features of rough theory to find a higher accuracy in
retrieval results. Gupta et al. [11] proposed a RE-SiamNets
to circumvent the adverse effect of rotation. The SiamNets
allow estimating the change in the orientation of object in an
unsupervised manner. Joao et al. [3] proposed an algorithm
(CN) based on color space to limit the scope of the problem.
As color features only focus on color changes and are not

sensitive to contour changes, they show strong robustness to
target deformation. This algorithm extends the RGB color
space and proposes CN space, with eleven channels (named
black, blue, brown, gray, green, orange, pink, purple, red,
white, and yellow). Bertinetto et al. [12] improved this track-
ing algorithm from the aspect of feature fusion HOG feature
training the correlation filter and the color histogram are used
for obtaining a tracking score and the statistical score, respec-
tively, and are fused to generate the final response image and
estimate the target position. This feature fusion improves the
accuracy of the tracking algorithm but also makes the calcu-
lation slightly more complicated. Ma et al. [13] introduced
depth features based on correlation filtering and designed a
tracker (HCFT) based on multi-layer convolution features
With the depth features being are more robust than the com-
mon features. VGG16 [14] was used to extract the output
features of conv3-4, conv4-4, and conv5-4 layers, as well as
train the respective correlation filters. During target track-
ing, the 3-layer features of the search area are the input to
the corresponding correlation filter, and the response image
is generated by adding the weights, and the target is located
through the maximum position.

For resolving the boundary effect problem, the solution
of most algorithms is to add a cosine window on the image
to weaken the influence of image boundary on the result, as
KCF. The influence of the boundary effect remains weak, as
long as the center part of the shifted image is reasonable.
However, with an increasing number of reasonable samples,
the validity of all training samples cannot be guaranteed in
this method. Besides, the addition of a cosine window can
make the tracker block the background information and only
accept part of the valid information, thereby reducing the dis-
criminating ability of the classifier. Danelljan et al. proposed
a spatial constrained correlation filter (SRDCF) [15], with the
filter coefficients mainly concentrated in the central region
by adding weight con-straints. Lukei et al. [16] proposed a
critical correlation filter CSR-DCF for reliable channel and
space. Yan et al. [17] propose a novel, flexible and accu-
rate refinement module called Alpha-Refine, which exploits
a precise pixel-wise correlation layer together with a spatial-
aware non-local layer to fuse features and can predict three
complementary outputs: bounding box, corners and mask. In
the proposed filter, the binary mask is obtained by using spa-
tial reliability for adaptive selecting the target region easier
to track and thus, reduce the boundary effect. CF+CA [18]
points out that the negative samples, used for correlation fil-
tering training, are obtained only by cyclic displacement of
positive samples,which limits the backgrounddiscrimination
ability of the trained classifier. Therefore, negative samples
collected around the positive samples are introduced in train-
ing to improve the tracking accuracy.

To solves the impact of scale variation on tracking perfor-
mance, the adaptive scale variation correlation filter tracker
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Fig. 1 Algorithm flowchart.
The algorithm structure is
roughly divided into three main
parts: (1) feature extraction and
fusion, (2) template and
response calculation and (3)
template update

Fig. 2 A fusion features provides a 45-dimensions including
31-dimensional HOG feature, 11-dimensional CN feature and 3-
dimensional HSV feature

(SAMF) [19] and scale judgment space tracker (DSST) [20]
introduced scale estimation in KCF. SAMF [19] with 7-
thick scales is used in a translation filter to detect multi-scale
image blocks and selects the translation position and target
scale corresponding to the largest response value. DSST [20]
simultaneously trains the translation filter and the scale filter,
respectively using 35 fine scales. At the on-set, the transla-
tion filter and the scale filter are used for position estimation
and scale estimation, respectively. Most popular algorithms
use these two scales to estimate position and scale.

For the target occlusion, Zhang et al. [21] used the ker-
nel gray histogram as the description feature tracking each
component of the target. It not only increases the robustness
to occlusion but also solves the problem of non-rigid defor-
mation of the target. Liu et al. [22] proposed a modeling
method for unknown parts using hidden variables By extend-
ing the online Pegasus algorithm to the structured prediction

Fig. 3 Fusion response graph. The single feature response graph being
affected by a large amount of surrounding noise impacted accurate dis-
tinguishing of the target, while the feature response after fusion depicted
a stronger discrimination between target and others

of hidden variables of various parts, this method provides a
better tracking effect than the best contemporary linear and
nonlinear kernel tracker. Harley et at. [23] propose an unsu-
pervised method for detecting and tracking moving objects
in 3D, in unlabeled RGB-D videos. The constraint of ensem-
ble agreement helps combat contamination of the generated
pseudo-labels, and data augmentation helps themodules gen-
eralize to yet-unlabeled data.
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Proposedmethod

The proposed methods is illustrated in Fig. 1, which is com-
posed of three components. (1) Feature extraction. TheHOG,
CN, HSV features on target prediction area and candidate
area are extracted, then fuse the feature to obtain the feature
template. (2) Temple and response calculation. The response
value of the template is calculated, and the credibility of the
template is calculated by the correlation peak difference ratio.
(3)Model update. If the credibility of the template is high, the
template is updated. If it is low, the previous frame template
is retained.

Feature fusion

Afeature fusionmethodbased onHOG,CN, andHSV is used
to enhance feature responses discrimination and improves
the stability of the target tracking. HOG feature that stable
for light, which consists of 18 direction-sensitive channels,
9 direction-insensitive channels, 4 texture channels, and 1
zero channel [24]. The CN feature is the low dimensional
adaptive extension of a color attribute, which is the lan-
guage label commonly used to describe color [25]. HSV
contains hue, saturation, and intensity information. Due to
more similaritywith human visual characteristics, HSVcolor
space performs better than the RGB color space in visual
tracking. The proposed method fused the HOG feature to
represent the gradient change, the CN color space to rep-
resent color information, and the HSV space to obtain more
detailed information. HOG feature is 31-dimensional (except
for zero channel), CN feature is 11-dimensional (RGB col-
ors map to eleven basic colors, namely, black, brown, gray,
green, orange, pink, purple, red, blue, white, and yellow), and
HSV feature is 3-dimensional. A fusion features provides a
45-dimensions integration feature as shown in Fig. 2. Fig-
ure3 presents the response graphs for both single feature and
fusion feature that shows the discrimination between target
and others stronger.

Spatial regularization based on ADMM

In the KCF correlation filtering algorithm, to obtain the
optimal classifier under the minimum square error [26], the
circular shift sample is used to train the classifier, and Eq. 1
defines the training process loss function.

ψt (ω) =
t∑

i=1

1

2
‖ f (xi ) − yi‖2 + λ

2

d∑

j=1

∥∥∥ω j
∥∥∥
2

(1)

where ψt is the training error for the first t frame classifier,
t is the current frame number, i is the history frame serial
number, xi is the first i frame of input samples, f (xi ) is

the response score after the input sample of the i-th frame,
yi is the expected response of the sample in the i-th frame,
omega is the filter coefficient for training, j is the number
of channels of the filter, ai is the frame weighting factor of
classifier learning, d is the classifier dimensions, and λ is a
constant regularization factor for over-fitting prevention.

It can be noted that the regularization factorλ is constant in
the training process that treats the sample in the background
area as the sample in the target area. However, in practical
tracking, the target area is much more important than the
background region. Thus, the regularization weight of the
target area sample should be less than the background part.
The paper introduced the spatial regularization weighting
factor θ , building the spatial regularization correlation filter
for weakening the interference of the background region, and
improving the classification ability of classifiers in a cluttered
background. Simultaneously, the use of this characteristic
expands the search area and solves the issue of target loss
due to rapid movement.

The original formula, after the introduction of the weight
factor θ , is represented in Eq. 2

ψt (ω) = 1

2

t∑

i=1

‖ f (xi ) − yi‖2 + 1

2

d∑

j=1

∥∥∥θ � ω j
∥∥∥
2

(2)

Here � is the dot product operation for θ = √
λ, and the

remaining parameters are similar to Eq. 1. The regularized
weight is defined by Eq. 3.

θ(m, n) = θbase + θshi f t (m, n) (3)

Where m and n represents the offset of the cyclic sample,
θbase represents the constant basic weight of spatial regular-
ization, and θshi f t represents the regularized weight offset of
the training sample and is defined Eq. 4.

θshi f t (m, n) = θwidth(
m

ρwidth
)2 + θheight (

n

ρheight
)2 (4)

ρwidth and ρheight represent the width and height of the
search image, respectively. θwidth and θheight represent the
weighting factors in the horizontal and vertical directions,
respectively. Equation3 depicts that the distance between the
training sample and the target center is directly proportional
to the value of θshi f t , i.e., the greater the regularizationweight
of the background region, the smaller the weight of the target
region.

Find the solution for the filter coefficient ω, a key issue
in the correlation filtering algorithm. Advancements in the
related tracker filters, including CFLB [27] with the BACF
[26] algorithm in the training of the filter, have introduced the
space constraints in handling the boundary effect. Although
this algorithm has solved the issue of the boundary effect, it
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has made the filter model more complex, slowed the com-
puting speed, and made the computing speed advantage less
apparent in the correlation filtering algorithm.

The alternating direction multiplier method (ADMM) is
proposed in this paper to solve the correlation filter. ADMM
divides a large optimization problem into multiple sub-
problems to obtain the solutions. The approximated solution
of the filter can be quickly obtained by iteration of the sub-
problems.

ADMM algorithm, in general, is used to solve the follow-
ing form of minimization problem (Eq. 5.):

argmin
x,y

f (x) + g(y)

s.t .Ax + By = c (5)

The augmented Lagrange function of this problem is defined
as Eq. 6.

L(x, y, ς) = f (x) + g(y) + ςT (Ax + By − c)

+μ

2
‖Ax + By − c‖22 (6)

The augmentation of the augmented Lagrangian function is
to add a square regular term to the Lagrangian function. The
main purpose of introducing the augmented term is to make
f as long as a convex function and to ensure its convergence.
Then L is solved by the dual ascent method. The dual ascent
method is (Eq. 7):

(x (k+1), z(k+1)):= argmin Lρ(x, z, yk)

y(k+1):=yk + ρ(Ax (k+1) + Bz(k+1) − c) (7)

The classic ADMM algorithm framework is as follows: Ini-
tialize y0, ς0,μ > 0; The alternating direction in the ADMM
algorithm is to modify the above dual ascending problem (x ,
z iterates together) to iterate x , z alternately, the iterative steps
are as follows: Eq. 8

xk+1 := argmin
x

Lμ(x, yk, ςk)

yk+1 := argmin
y

Lμ(xk+1, yk, ςk)

ςk+1 := ςk + μ(Axk+1 + Byk+1 − c)

(8)

If the termination condition is fulfilled, the iteration is
stopped, presenting output results or return to continue
the iteration. Equation 2 is converted to the augmented
Lagrangian function form. As ADMM iteration requires two
variables, constructed as auxiliary variable and set and then
converted Eq. 2 is represented as Eq. 9,

argmin
ω,β

1
2

t∑
i=1

∥∥∥∥∥
d∑
j=1

x j
i ∗ β j − yi

∥∥∥∥∥

2

+ 1
2

d∑
j=1

∥∥θ � ω j
∥∥2

s.t .β = ω

(9)

Converting the above equation to the frequency domain
(Eq. 10),

argmin
ω,β̂

= 1
2

∥∥∥ŷ − X̂ β̂

∥∥∥
2

2
+ 1

2 ‖θω‖22
s.t .β̂ = √

t Fω

(10)

where ∧ represents the Fourier transform of the variable, for
example, the discrete Fourier transform of a one-dimensional
signal a is represented as â = √

t Fa, F represents the
orthogonal Fourier transform matrix of size t × t, ŷ =
[ŷ(1), ŷ(2), ..., ŷ(t)], X̂ = [diag(x̂1)T , ..., diag(x̂d)T ]with
the size t × dt β̂ = [β̂T

1 , ..., β̂T
d ],and h = [hT1 , ..., hTd ] is a

matrix composed of multi-channel cyclic samples with the
size dt × 1 Thus, the Augmented Lagrange expression is as
Eq. 11:

L(ω, β̂, ς̂) = 1
2

∥∥∥ŷ − X̂ β̂

∥∥∥
2

2
+ 1

2 ‖θω‖22 + ς̂T (β̂ − √
t Fω)

+μ
2

∥∥∥β̂ − √
t Fω

∥∥∥
2

2

(11)

Here μ is the penalty factor and ς̂ = [ς̂T
1 , ..., ς̂T

K ]T is the
Lagrange vector of size dt × 1 in the Fourier domain. The
ADMM algorithm can be used to solve the above equation
iteratively according to Eq. 8 and every sub-problem ω and
β̂ has a closed-form solution.

For sub-problem ω the solution formula is Eq. 12

ω = argmin
ω

{ 12 ‖θω‖22 + ς̂T (β̂ − √
t Fω)

+μ
2

∥∥∥β̂ − √
t Fω

∥∥∥
2

2
} = ς+μβ

ωT ω+μ

(12)

Here ς = 1√
t
F−1ς̂ and β = 1√

t
F−1β̂. Due to the linear

nature of the discrete Fourier trans-form, each channel in the
arrays {ς1, ..., ςd} and {β1, ..., βd} can be solved separately
in the Fourier domain and the computational complexity of
Eq. 12 is O(dt log(t)).

For sub-problem β̂ the solution formula is Eq. 13:

β̂ = argmin
β̂

1
2

∥∥∥ŷ − X̂ β̂

∥∥∥
2

2
+ ς̂T (β̂ − √

t Fω)

+μ
2

∥∥∥β̂ − √
t Fω

∥∥∥
2

2

(13)

The complexity of directly solving this equation is O(t3d3),
as each ADMM iteration needs to solveβ̂, it significantly
affects the real-time performance of the algorithm. However,
sample a represents X̂ , which is a banded sparse matrix.
Accordingly elements of the array ŷ(s) = [ŷ(1), ŷ(2), ...,
ŷ(t)] are only related to the k-th element of arrays x̂(s) =
[x̂1(t), ..., x̂k(t)]T and β̂(s) = [conj(β̂1(t)), ..., conj(β̂k(t))]T .
The operator conj is the complex conjugate applied to com-
plex number vectors. Therefore,β̂ the above equation can be
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represented as,β̂(s), s = [1, ..., t], where t is independent
small targets.

β̂(s) = argmin
β̂(s)

{ 12
∥∥∥ŷ(s) − x̂(s)T β̂(s)

∥∥∥
2

2
+ ς̂ (s)T (β̂(s) − ω̂(s))

+μ
2

∥∥∥β̂(s) − ω̂(s)
∥∥∥
2

2
}

(14)

Here, ω̂(s) = [ω̂1(s), ..., ω̂k(s)], ω̂k = √
t Fωk .

β̂(s) = ŷ(s)x̂(s) − t ς̂ (s) + μtω̂(s)

x̂(s)x̂(s)T + μt Ik
(15)

The computational complexity of Eq. 13 is O(td3) due to
the issue of dealing with the t independent K × K linear
systems. The d dimensional variables in the de-nominator
and use of the Sherman-Morrison formula((uvT + A)−1 =
A−1 − (vT A−1u)−1A−1uvT A−1) for acceleration makes
A = μt Ik and u = v = x̂(s). Thus, the original formula
can be simplified as Eq. 16,

β̂(s) = 1
μ
(t ŷ(s)x̂(s) − ς̂ (s) + μω̂(s))

− x̂(s)
μb

(
t ŷ(s)Ŝx (s) − Ŝς (s) + μŜω(s)

) (16)

Here,Ŝx (s) = x̂(s)T x̂, Ŝς (s) = x̂(s)T ς̂ ,Ŝω(s) = x̂(s)T ω̂

,andb = Ŝx (s)+μt . Therefore, the computational complex-
ity of the formula is reduced to O(td).

The Eq. 17 is iterative update:

ς̂k+1 := ς̂k + μ(β̂k+1 − ω̂k+1) (17)

where β̂k+1 and ωk+1 are the current solutions to the above
sub-problems at iteration k + 1 within the iterative ADMM.
Thus, ω̂k+1 = √

t Fωk+1 and μk+1 = min(μmax, αμk). The
filter parameter β̂

j
t is obtained through the ADMM itera-

tive optimization solution, and the change of tracking target
position is estimated through the target response graph of the
standard correlation filter used in tracking. Thus, the target
output response in the time domain is as Eq. 18:

f (z) = F−1

⎛

⎝
d∑

j=1

ẑ j � β̂
j
t

⎞

⎠ (18)

Scale adaptive scheme

The size of the target template remains fixed for most of
the tracing methods. Thus, to deal with scale variation, an
extension of scale-space from countable integer space to
uncountable floating point space is proposed. Assuming that
the size of the original image in the template is sk , the dif-
ferent scale d form scale pool S = {d1sk, d2sk, ..., ddsk} is
defined at the track. The d image blocks of different sizes

according to s are taken in the new frame, and then through
the bilinear interpolationmethod, the image block is adjusted
for the same dimensions as the initial frame template sk . Fig-
ure 4 depicts the specific process.

We have specially trained a scale filter in the algorithm to
estimate the scale of the target. Themethodof slidingwindow
sampling is used to sample candidates with different scales
in the scale pool, and then calculate separately the response
value. The scale of the new frame target is updated according
to the value of the scale with the largest response in the input
scale pool, which improves the adaptability to changes in the
scale of different targets, thereby achieving adaptive update
of the scale. The step of target candidate box is calculated by
Eq. 19,

box = argmax F−1 f̂ (zdi ) (19)

Here zdi is the image block detected of size di sk(i = 1, .., d)

in a new frame. The response graph infers themoving steps of
the target, and thereby, the corresponding real displacement
deviation is the result of multiplication with the resulting
displacement d.

Model update strategy based on high confidence

The current target tracking algorithm updates the model in
almost every frame, regardless of the accuracy of the target
detection. In the case of an inaccurate new tracking result, the
result updates the model and pollutes it, which leads to track-
ing drift. In this algorithm, the HSV feature, HOG feature,
and CN feature are combined for the target tracking. As the
final feature dimension is very high, quite a lot of parameters
need to be updated every time to update the model, which
is quite time-consuming. Thus, model updating with every
frame predictably slows the speed.

Therefore, the model update strategy based on high con-
fidence solves the pollution problem of the model, improves
the robustness of the tracking algorithm to occlusion and
other issues, improves the tracking speed, and prevents over-
fitting.

The actual use of KCF revealed that with the blocking of
the target, the tracking result drifts, and the longer block-
ing time fails the tracking. The KCF [4] updates the model
for every frame without considering the target blocking, and
so with the blocked target, the tracking model gets polluted
causing target loss. It infers that only when the part in the
target box of the current frame has high confidence (the tar-
get is not obscured or blurred), the model could be updated.
Therefore, the method of judging the sample confidence is
the problem research problem of this chapter.Wang [28] con-
cluded, throughmultiple KCF experiments, that the response
profile of KCF has only one distinct peak and its overall dis-
tribution represents a two-dimensionalGaussian distribution,
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Fig. 4 Sampling and adjustment process. (1) In the new frame of image,
sample the image by sliding window according to d scales of different
scales in S, and calculate the sample response of each scale, so as to
determine the candidate regions of different scales. (2) Adjust these

candidate area image blocks to the same dimension as the initial frame
template by bilinear interpolation. (3) Perform feature extraction on the
candidate ar-ea image blocks

approximately. Thus, when a complicated situation occurs in
the tracking process (especially occlusion, loss, blur, and so),
the response graph oscillates violently.

The peaks and fluctuations in the response graph reflect
the confidence of tracking results to some extent. The perfect
matching of the detected with the correct target results in the
ideal response graphwith only one peak, and other areas tend
to be smooth. The higher the correlation peak, the better is
the positioning accuracy. In case of inaccurate positioning,
the response graph oscillates violently, and its shape becomes
significantly different from that of the correct match. Thus,
this paper proposes a judgment formula CPMDR (Eq. 20):

CPMDR = | fmax − fmin|2 MN
M∑

m=0

N∑
n=0

( fm,n − fmin)
2

(20)

Where fmax is the maximum value of the response graph,
fmin is the minimum value of the response graph, and fm,n

is the value of the response graph at (m, n).
The Correlation Peak Mean Difference Ratio (CPMDR)

reflects the fluctuation of the response graph.When CPMDR
is below a certain threshold, the target is judges as lost in the
tracking process, obscured, or out of sight.

In traditional KCF tracing, the simple model update
method used is as Eq. 21:

x̂ ( f )
mod el = (1 − η)x̂ ( f −1)

mod el + ηx̂ ( f )
mod el (21)

Here, η is the update rate of the model. According to this
method, every frame for the classifier is to be updated.

Once tracking fails, it cannot continue tracking. The pro-
posed solution is to use the updating strategy of the learning
rate adaptive high confidence model. To prevent the model
from being contaminated, when the target area is blocked,
the target model must not update. When the CPMDR value
exceeds a certain threshold, the model can update. By set-
ting the model update rate to be positively correlated with
the CPMDR value, η = η1(1− 1

CPMDR ) can be made. With
η1 set to 0.02, the updated adaptive model is Eq. 22:

x̂ ( f )
mod el =

{
(1 − η)x̂ ( f −1)

mod el + ηx̂ ( f )
mod el , η > threshold

x̂ ( f −1)
mod el , else

(22)

This updatedmodel calculates, β̂(s), Ŝx (s), Ŝς (s), and Ŝω(s).
As measured by the experiment, when the CPMDR value
is greater than 50, it identifies as accurate tracking, so the
threshold is set as 0.0196. Figures 5 and 6 are comparison to
Basic KCF and advanced method.

The comparison of the two sets of pictures reveals that the
KCFalgorithmwith a high-confidencemodel update strategy
is better than the basic KCF algorithm. As the improved KCF
algorithm does not update the model when it is occluded, the
model is not contaminated. Besides, after the target reap-
peared, the algorithm tracked the target again.

Experiments

The experimental configuration

Theproposed algorithm is implemented inMATLABR2014a
with a tracking speed of 12 frames per second. The experi-

123



292 Complex & Intelligent Systems (2023) 9:285–299

Fig. 5 a The result of Basic KCF algorithm tracking. b The result of
KCF algorithm tracking with high confidence model update strategy
added. The comparison of the two sets of pictures reveals that the KCF
algorithm with a high-confidence model update strategy is better than

the basic KCF algorithm. As the improved KCF algorithm does not
update the model when it is occluded, the model is not contaminated.
Besides, after the target reappeared, the algorithm tracked the target
again

mental platform is configured in the following manner, the
operating system is 64-bit Windows 7, the memory is 16 GB,
the CPU is Intel i7-8700 k (6 core 3.7 GHZ), and the graphics
card is NVIDIA GeForce GTX 1060.

The basic parameters of the experiment are as follows: The
HOG feature uses a 4×4 pixel cell size, the scale pool size is
7, and the scale factor S = [0.97, 0.98, 0.99, 1.00, 1.01, 1.02,
1.03].The search area is 42 times the target area, the regular-
ized base weight θbase is 0.1, and the weight factors θwidth

and θheight are 3. For ADMMoptimization, the iterations are
2 and the penalty factor μ is 1. In iteration k + 1, the penalty
factor is updated by μk+1 = min(μmax, αμk), among them
α = 10 andμmax = 103. The threshold of the target template
learning rate is 0.0196.

The OTB50 standard target tracking test set [28], contain-
ing 50 video sequences, tests the proposed algorithm. The
complete demonstration of the tracking effect of the proposed
algorithm is through a comparison of selected 9 relevant algo-
rithms for the same dataset. These algorithms are, ECO [29],
SRDCF [30], STAPLE-CA [12], SAMF [18], DCF-CA [31],
KCF [4], STRUCK [32], TLD [32], and CT [33]. Among
them, CF [4], STRUCK [32], TLD [10], and CT [33] are the
best classical algorithm from the OTB benchmark test. ECO
[29], SRDCF [30], STAPLE-CA [12], SAMF [18], DCF-CA
[31] are the best tracking algorithms based on correlation

filtering, and ECO is also a classical algorithm combining
correlation filtering and deep learning.

Quantitative comparisons

Overall performance

Acomprehensive evaluation of the tracking results, in the fol-
lowing two ways, assesses the performance of algorithm. (1)
The success rate for distance error; If in a specific frame, the
distance error between the tracking algorithm and the manu-
ally calibrated tracking results is less than a certain threshold,
then that frame is regarded as successful. (2) The success rate
for coincidence degree; If in a specific frame, the coincidence
degree between the tracking algorithm and the manually cal-
ibrated tracking results is larger than a certain threshold, then
that frame is regarded as successful.

Figure 7 is the success rate schematic diagram of track-
ing OTB50 test video, (a) is the precision plot, and (a) is the
success plot. In (a), the horizontal axis represents the thresh-
old of the distance error, and the vertical axis represents the
ratio of the number of frames with the distance error less than
the threshold value to the total number of frames. The num-
ber after the title indicates the number of videos containing
the tracking feature in the test video. The number after the
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algorithm indicates the area under the curve (AUC) with the
coordinate axis, and OPE (One-Pass Evaluation) is the com-
plete segment of the one-time tracking video. The range error
success rate reflects the accuracy of the tracking position. (b)
Shows the success rate of the degree of coincidence, where
the horizontal axis represents the threshold of the degree of
coincidence, and the vertical axis represents the ratio of the
number of frameswith the degree of coincidence greater than
the threshold value to the total number of frames. The suc-
cess rate of coincidence degree reflects the overall tracking
accuracy of the algorithm.

In addition, statistics of calculation time among the com-
petitors and proposed is show in the Table 1, which illustrates
that the proposed method performance best in the accuracy
of tracking with a short time.

Figure 7 depicts the accuracy and success rate scores of
the proposed algorithm are 0.853 and 0.821, respectively,
which is best among the ten tracking algorithms compared.
The accuracy and success rate increase by 11.3 and 19.8%,
respectively, as compared to the classic KCF [4] algorithm.
Compared to the second ECO [29] algorithm increase is by
0.5 and 1.8, respectively. Among the top five algorithms,
SAMF [18] and STAPLE-CA [12] are the improved ver-
sions of the KCF [4]. SAMF [18] adds an adaptive scale
transformation to KCF [4], and STAPLE-CA [12] adds the
feature fusion and combination of CN and HOG to KCF [4].
ECO [29] and SRDCF [30] are the improved versions of the
DCF [31] tracker with contextual awareness and taking back-
ground information into account in its model appearance.
SRDCF adds spatial regularization based on DCF [31]. ECO
[29] integrates the functions of CNN [34] into SRDCF [30]
and realizes the acceleration of the algorithm. The proposed
algorithm is SRDCF-based, with the addition of the feature
fusion and the model update based on confidence. Besides,
the introduction of the iterative acceleration calculation in
the ADMM algorithm reduces the computational complex-
ity and improves the accuracy of tracking and the calculation
speed.Experimental results show that the proposed algorithm
has higher tracking accuracy and robustness.

Performance analysis based on video attributes

To better analyze the performance strengths and limitations
of the algorithm proposed in this paper. Figures8 and 9
depicts the recorded accuracy scores and success rate scores
of 10 algorithms in 11 video attributes. These 11 attributes
include (a) fast motion, (b) background clutter, (c) motion
blur, (d) deformation, (e) illumination variation, (f) in-plane
rotation, (g) low resolution, (h) occlusion, (i) out-of-plane
rotation, (j) out of view, (k) scale variation. In the accuracy
score, the proposed algorithm scores among the top four algo-
rithms, with six out of eleven attributes ranked in the top two.
In the success rate score, the proposed algorithm is best in all

the eleven attribute scores, with eight scores in the top two
and five scores ranked first.

Figure 9 shows the recorded success plot of ten algo-
rithms for the eleven video attributes, simultaneously. The
eleven attributes include illumination variation, scale vari-
ation, occlusion, deformation, motion blur, fast motion,
in-plane rotation, out-of-plane, rotation, out of view, back-
ground clutter, and low resolution. In the success rate score,
eight of the eleven attributes of the proposed algorithm is in
the top two, and five are ranked first.

Among the two attributes of fast movement and target
occlusion, the proposed algorithm ranks first in tracking
accuracy and success rate scores. Among them, in the case
of fast-moving, the algorithm improves the accuracy by
17.5 compared with the traditional KCF [4] algorithm and
improves the success rate by 20.4. This is because traditional
algorithms update each frame of the target model, which can
easily lead to template pollution and lead to tracking failure,
and the general algorithm treats the background and the tar-
get equally, which may cause the target to be lost when it is
moving fast. As the algorithm introduces spatial regulariza-
tion to penalize the sample boundary, it reduces the influence
of the background on the target model and the boundary
effect, allowing a broader range search for the target, effec-
tively preventing the loss of the target case. In the case of
target occlusion, tracking accuracy and success rate of the
proposed algorithm scores are 0.864 and 0.827, respectively.
The tracking accuracy is improved by 2 compared to the sec-
ond place SRDCF (0.844) [30], and the tracking success rate
is relative to the second place ECO (0.796) [29] is increased
by 3.1.When the target is occluded, the tracking result drifts.
At this time, updating the model would pollute the tracking
model and affect the follow-up tracking accuracy. For this,
the paper proposes a correlation peak-to-average difference
ratio, which determines whether or not the target is in an
occluded state. Besides, it also decides whether to update the
model or prevent the model from being polluted due to the
resulting drift. The above experimental results also prove that
this method is effective. There are 25 sequences in the OTB-
50 video sequence that have lighting changes. The accuracy
and success rate of our algorithm under this attribute are
0.777 and 0.740, ranking second and first, respectively, for
occurring nineteen sequences. Considering the deformation,
the accuracy and success rate of the algorithm under this
attribute are 0.823 and 0.808, ranking 3rd and 2nd, respec-
tively. This is due to the merger of the three features of HOG,
CN, and HSV in the feature improvement. The HOG feature
mainly focuses on the contour gradient changes of the target
and is not sensitive to change in color, so it is very stable to
change in light. CN and HSV feature mainly focuses on the
color of the target and is not sensitive to the changes of target
shape, so it is very stable against the deformation. The exper-
imental results reveal that other algorithms using feature
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Table 1 The comparison of
calculated time among
competitors and proposed

DCF-CA [31] SRDCF [30] ECO [29] STAPLE-CA [12] KCF [4]

60.0fps 4.0fps 8.0fps 80.0fps 172.0fps

SAMF [18] STRUCH [32] TLK [32] CT [33] Proposed

7.0fps 20.2fps 28.1fps 64.4fps 12.0fps

Fig. 6 The comparison success rate on the OTB-50 test video (red line is ours)

fusion has also achieved better results, such as STAPLE-CA
[12]. Therefore, the introduction of feature fusion signifi-
cantly improves the success rate of the algorithm under both
conditions of illumination change and deformation. Besides,
the introduction of both an adaptive scale update method and
seven scale filters set-up update the scale of the target in real-
time. The proposed algorithm also has a good performance in
the attribute of scale transformation, tracking accuracy, and
success rate with scores 0.803 and 0.763 which ranks second
and first, respectively.

Analysis

Performance analysis under occlusion

To verify the performance under occlusion, we conduct
some evaluations on videos sequences where all the target
is occluded in the scene by a large area as shown in Fig. 10.

In the Jogging sequence, the tracked target is the girl on
the left. The girl, at frame 75, was obscured by the tele-phone
pole completely. After the obscuring, TLD [10], STRUCK
[32], STAPLE-CA [12], and CT [33] algorithms produced
large center errors in tracking depicting failure phenomenon.
However, other algorithms demonstrated more stable track-
ing. Among them, the new proposed algorithm, SRDCF [30],
and ECO [29] completed the frame selection of the target as
soon as it appears after the occlusion. In theDavid3 sequence,
the tracked target is the walking person, and in the 28-th

frame, the road signs obscure the target. In the 82-nd frame,
the target is obscured by the tree trunk, causing the failure of
the TLD [10], CT [33], and Struck algorithms [32]. The pro-
posed algorithm always completed Stable tracking. Besides,
in the subway sequence, the target is blocked by pedestri-
ans passing by at frame 46 and frame 94, and the center
error is still minute for the proposed algorithm. Traditional
algorithms update the target model in every frame, which
can easily lead to template pollution and tracking failure.
Moreover, traditional algorithms treat the target area and the
background area equally, and it is difficult to find the target
when the target is lost due to occlusion. As the algorithm has
an adaptive template update strategy, if the target is occluded,
the output response has multiple peaks, making the correla-
tion peak-average difference ratio less than the threshold.
Consequently, suspending the model update and prevent-
ing the model from being contaminated. The introduction
of spatial regularization suppresses the boundary effect and
the influence of background information, which allowed a
broader search area to accurately and timely locate the target
on reappearance.

Performance analysis under fast-moving and cluttered
background

To investigate the effectiveness under fast-moving and clut-
tered background, we conduct some evaluations on videos
sequences in the case of fast movement and cluttered back-
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Fig. 7 Accuracy score curve of 11 algorithms on an OTB-50 dataset

ground as shown in Fig 11 Among them, Deer, Liquor, and
Jumping are all fast-moving cases, and Deer and Liquor are
cases of the cluttered background.

In the sequence Blot, the tracked target is a sprinter, a
non-rigid object. In this video, the deformation and moving
speed of the target are relatively large, causing failure for
STRUCK [32], SAMF [18], TLD [10], and CT [33] from the
13th frame. Since the traditional algorithm generally uses
a single feature for feature extraction, it has certain limi-
tations. In a specific scene, such as target deformation, the
performance of illumination change will relatively be poor.
The proposed algorithm lost the target at the beginning, even
though it is relatively robust due to the feature fusion ofHOG,
CN, HSV in the algorithm. As the color-related features are
more affected by color changes and havemore stability to the
target deformation, so the algorithm can keep accurate track-
ing. In the sequence singer, the tracked target is a singer. In
the 94th frame, the light of the video changes significantly
compared to the previous frame, which also causes a specific
drift in the CT [33]. Due to the HOG used by the proposed
algorithm, features are not sensitive to changes in color, and

so the algorithm is also very stable to changes in lighting. In
the sequence with a woman, the light changes from bright to
dark to bright, and the target to be tracked is also deformed
due to the occlusion of the car, posing a great challenge in
tracking. Among them, the TLD [10] and CT [33] algorithms
lose the target in the 215th frame. The above experimental
results infer that the feature fusion method has strong robust-
ness to deformation and illumination changes. Besides, the
331st frame of the sequence singer and the 566th frame of
the sequence woman both have the target scale change. As
the proposed algorithm has an added adaptive scale filter, the
algorithm can adapt to the scale change well.

Conclusion

The correlation filtering based target tracking method has
impressive tracking performance and computational effi-
ciency. However, some factors limit the accuracy of tracking,
including the object deformation, boundary effects, scale
variations, and the target occlusion. This paper proposed
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Fig. 8 The success rate score curve of 11 algorithms in the OTB-50 dataset

a robust target tracking algorithm based on spatial regular-
ization and adaptive Updating Model to solve these issues.
First, a feature fusion method based on HOG, color-naming,
and HSV is used to enhance feature responses discrimi-
nation between target and others. Second, a spatial weight
function is introduced to penalize the magnitude of the fil-
ter coefficients, which the spatial regularization weight is
set according to the location information of training sam-
ples and the target space, therefore, a larger detection area
is available to be selected. Then, an ADMM algorithm is
employed to reduce iteration of filter coefficients that cre-
ated by a larger detection area, weaken the boundary effect,
so that keep the efficiency of tracking. Third, an adaptive
scale filter is designed with a proposed scale pool of seven
scales, whichmakes the algorithm adaptable to the scale vari-
ations. Finally, the correlation peak average difference ratio
is applied to estimate the state of occlusion, which can realize
the adaptive updating of the model and improve the stability
of the algorithm. The experiments are conducted on OTB50
dataset, and the result demonstrate that the proposed algo-

rithm improved tracking results compared to state-of-the-art
correlation filtering based target tracking method.

This paper proposed an improved target tracking algo-
rithm based on correlation filtering, aiming at the tracking
failure phenomenon that the KCF [4] algorithm is prone to
in the case of object deformation, boundary effects, scale
variations, and the target occlusion. To improve the stabil-
ity of the target in the case of deformation and illumination
variation, adoption of HOG, color-naming, and HSV feature
fusion, is proposed to enhance feature responses discrimina-
tion between target and others. For overcoming the boundary
effect existing in correlation filtering, a spatial weight func-
tion is introduced that can penalize the magnitude of the
filter coefficients, with the spatial regularization weight set
according to the location information of training samples and
target space. Besides, a larger detection area is adopted, and
the ADMM algorithm is used to reduce iteration complexity,
weaken the boundary effect, and improve the operation effi-
ciency of the algorithm. For enhancing adaptability to scale
variations, the adaptive scale filter is added to the algorithm
with a scale pool containing seven scales. For overcoming
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Fig. 9 Comparison of tracking effects of multiple trackers under occlusion of ten algorithms for three different video sequences

Fig. 10 Tracking effect of multiple trackers under fast-moving and cluttered background

the model pollution caused by target occlusion, the cor-
relation peak average difference ratio is proposed to find
out the occlusion state, to realize the adaptive updating of
the model, and improve the stability of the algorithm. The

OTB-50 dataset tested the proposed algorithm, and the over-
all precision rate and success rate were 0.853 and 0.821,
respectively. The experiment results showed that the track-
ing algorithm presented in this paper was relatively stable
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Fig. 11 Comparison of tracking effects of multiple trackers under deformation and lighting changes

under various conditions, which provided a theoretical and
experimental basis for the design of a high-precision and fast
target tracking algorithmwith great potential for application.
The proposedmethod aims to design an adaptive and efficient
tracking algorithm so as not to compare the efficiency of the
deep-learning-based method. The subsequent study will be
compared with the tracking algorithm based on deep learn-
ing, and the proposed method will be combined with deep
learning and other advanced methods such as fuzzy systems
[7,8] to further improve the efficiency of tracking.
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