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Abstract

Urban water infrastructures are an essential part of urban areas. For their construction and maintenance, major investments
are required to ensure an efficient and reliable function. Vital parts of the urban water infrastructures are water distribution
networks (WDNs), which transport water from the production (sources) to the spatially distributed consumers (sinks). To
minimize the costs and at the same time maximize the resilience of such a system, multi-objective optimization procedures
(e.g., meta-heuristic searches) are performed. Assessing the hydraulic behavior of WDNs in such an optimization procedure is
no trivial task and is computationally demanding. Further, deciding how close to optimal design solutions the current solutions
are, is difficult to assess and often results in an unnecessary extent of experiment. To tackle these challenges, an answer to
the questions is sought: when is an optimization stage achieved from which no further improvements can be expected, and
how can that be assessed? It was found that graph characteristics based on complex network theory (number of dual graph
elements) converge towards a certain threshold with increasing number of generations. Furthermore, a novel method based
on network topology and the demand distribution in WDNSs, specifically based on changes in ‘demand edge betweenness
centrality’, for identifying that threshold is developed and successfully tested. With the proposed novel approach, it is feasible,
prior to the optimization, to determine characteristics that optimal design solutions should fulfill, and thereafter, test them
during the optimization process. Therewith, numerous simulation runs of meta-heuristic search engines can be avoided.

Keywords Optimization - Multi-objective - Dual mapping - Hierarchical intersection continuity negotiation - Demand edge
betweenness centrality

Introduction

Urban water infrastructures are an essential part of urban
areas. For their construction and maintenance, major invest-
ments are required, to ensure an efficient and reliable
function. Vital parts of urban water infrastructures are the
water distribution networks (WDNSs), in which water is
transported from the production (sources) to the spatial dis-
tributed consumers (sinks). The hydraulics of WDNs follow
physical principles (i.e., conservation of mass and energy)
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but determining this hydraulic behavior is not a trivial task;
therefore, WDNSs are categorized as complex networks [1].
A WDN should provide potable water of sufficient
quantity and quality to consumers [2]. Due to the high
costs of construction and maintenance, design has to be
economically viable and within the defined budget. Besides
costs, additional performance metrics, such as resilience,
reliability, leakage, or water quality, are also crucial for
these systems, making the WDN design a multi-objective
optimization problem [2]. In the optimal design process of
WDN:Ss, pipe diameters have to be chosen while at least a min-
imum head needs to be maintained at all nodes. Water pipes
are manufactured in a discrete set of pipe diameters, which
introduces significant difficulties in solving such a problem
[3]. This is due to the discontinuous, highly nonlinear, con-
strained and multi-modal search space [4] introducing NP
(non-deterministic polynomial-time) hard characteristics [5],
which can be at least approximated with e.g., meta-heuristics
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but require expensive numerical simulations [6]. Specifi-
cally, for large-scale problems, finding a trade-off between
exploration and exploitation is important to avoid unneces-
sary experiments. Therefore, different learning strategies [7],
surrogate-assisted evolutionary algorithms [8], or decompo-
sition of the problem formulation [9] can be applied while
ensuring the diversity of the populations. There is mani-
fold literature on the optimal design of WDNs [10—-12]. The
problem formulation in this regard can be quite diverse as the
objective functions can be chosen very differently (e.g., min-
imizing costs, maximizing performance or robustness, etc.).
To assess the performance (i.e., the objective function) of dif-
ferent solutions, the transport processes (i.e., hydraulics) in
WDNs must be assessed with hydraulic solvers. For the simu-
lation of different system states of WDNSs with such hydraulic
solvers, a set of nonlinear equations has to be solved multiple
times for each design candidate [13]. Specifically for large-
scale problems, this procedure requires a significant amount
of computational time [2]. To save computational time, often
when using meta-heuristics for multi-objective optimization,
stopping criteria (which is commonly a heuristic itself), are
used. The stopping criterion for population-based methods
is often the number of generations or the number of fitness
function evaluations. The choice of these values depends
on the complexity of WDNs and the number of decision
variables [14]. Also, convergence criteria can be used,
evaluating, e.g., if the best-ranked individuals do not change
over several generations [15]. However, with increasing
complexity of WDNs also the computational efforts increase
and available computational budgets do not allow to satis-
factorily achieve such a state and such an evaluation might
have significant computational overheads [16]. Further, the
discrete decision space for diameter choices might result in
back and forth change of diameters, making it difficult to
assess convergence. At the start, it remains unclear where
this stopping criterion might be. When looking at the spatial
characteristics of optimal designs (i.e., the sequence of
pipe diameters and diameter changes), specific patterns can
be identified throughout a Pareto front of optimal design
solutions [17] (i.e., diameter changes mostly occur only
when there are demand changes). Better understanding such
characteristics could help to decide whether the optimization
process should be continued or not.

A WDN can be represented as a mathematical graph in
which specific network patterns are reoccurring [18, 19].
From a network perspective, a multi-objective optimization
(e.g., costs versus resilience) is of great interest, providing a
set of Pareto-optimal solutions for decision making. Sitzen-
frei et al. [20] identified graph characteristics of WDNs,
which were optimized with an evolutionary optimization
approach by minimizing the costs while maximizing the
resilience. In Jiang and Claramunt [21], the vertices of the
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dual graph represented named streets, and the dual links rep-
resented street intersections. Rosvall et al. [22] interpreted the
dual characteristics as information space for navigation, i.e.,
how much information is needed to navigate from one point
to another. Porta et al. [23] suggested using a generalization
model to reduce complexity named Intersection Continuity
Negotiation, enabling a continuation of street sections by
determining the geometrical angles between the edges with
the highest continuity. They further investigated the struc-
tural properties of the determined dual graph of the street
network. Masucci et al. [24] investigated the London street
network with a hybrid approach, combining the information
space with geometrical attributes (angels) and road classes
(Hierarchical Intersection Continuity Negotiation—HICN).
Zischg et al. [25] investigated the topological coevolution
of three different urban networks (i.e., water distribution,
drainage, and street network) based on the HICN approach
to create the dual graphs. They showed that angles between
the edges of WDNs do not play a crucial role when inves-
tigating the dual characteristics. They suggested using the
edge diameter as a functional entity for the HICN approach
in WDNgs, as it is a surrogate measure for pipe capacity.

For gaining a deeper insight into the functional properties
of optimal transport networks and also the progress of the
optimization process, a dual graph approach is missing in lit-
erature. While primal graph approach usually represents the
geographic dimension of a spatial network, dual approaches
reduce the complexity of a network by aggregating identi-
cal information like pipe diameters and therefore reducing
the search space for meta-heuristic optimization algorithms.
This study aims to address the research gap of stopping cri-
terion in meta-heuristic optimization by developing a dual
graph approach for describing the network characteristics
during the optimization process. Therefore, the dual charac-
teristics of Pareto-optimal WDNSs for three cases, including
the pathway for optimization from random initialization to
Pareto-optimal solutions, are investigated. Subsequently, the
dual characteristics of these WDNSs are systematically inves-
tigated to identify properties of (partly) optimal WDNs and to
verify whether dual characteristics can be used as an indicator
of how close from optimal solutions are. By that an answer
to the questions is sought: when is a sufficient optimiza-
tion stage achieved and how can that be assessed? Further, a
generic estimation based on demand edge betweenness cen-
trality is identified to give a meaningful measure of whether
an evolutionary algorithm is close to the optimal solution, and
an estimation of the necessary progress in the optimization
process is given.
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Materials and methods

In this section, first, an overview of optimization of WDNs
is given. It is only an overview, as the proposed method
for assessing the progress of the optimization is a generic
approach, which can be used with any kind of meta-heuristic
optimization approaches. Further details on optimization can
be found in recent literature [10, 26, 27]. Subsequently,
the graph measures used in this work are shown. Then as
a significant step in this work, the primal and dual graph
creation are discussed in detail with a step by step descrip-
tion of the proposed approach. Finally, real case studies
used to show the applicability of the proposed approach
are introduced, including the Pareto-fronts of optimal design
solutions (including the different generations).

Design and multi-objective optimization of WDNs

A WDN consists of several different components which
transport drinking water from the origin of its production
(wells, reservoirs, springs, etc.) to the location of its con-
sumption (e.g., domestic, commercial or industrial demand
nodes). For the transport process, elements like pipes, valves
and pumps are used. These transport elements usually cause
the major part of investment and maintenance costs ina WDN
and therefore the optimal design of these is of great rel-
evance [20]. Minimizing costs for the pipe design in this
regard is a very important objective but results in just suffi-
cient performance for the design load. However, the supply
of water needs to be reliable and should be able to cope
also with unexpected and/or critical conditions. Therefore,
objectives like resilience or robustness of WDNs are also con-
sidered in the design, which conflicts the least cost objective.
Therefore, the design task is intrinsically a multi-objective
optimization problem [28] which results in a Pareto front
of optimal designs. The multi-objective design problem of
WDNs is often tackled by meta-heuristic methods [27] which
are cumbersome to solve. This is due to its large number
of decision variables (e.g., number of pipes) and discrete
decision space (available discrete classes for pipe diame-
ters), which is especially the case for large complex WDNs.
Many researchers focused on the “end-of-run” performance
of meta-heuristics (quality of the final Pareto front), con-
sidering the multi-objective optimization as a black box
model. However less attention was given to the evolutions
of the solutions during the optimization process [29]. This
work aims to explore the evolution of the solutions in the
optimization process and to find a metric assisting the pro-
cess. Therefore, in this work, for the pipe design (diameter
choices) the state-of-the-art methodology GALAXY (Genet-
ically Adaptive Leaping Algorithm for approXimation and

diversitY) is used, which is based on multi-objective evolu-
tionary algorithms [26] such as the NSGA-II approach [30].
The designs obtained from GALAXY are subsequently ana-
lyzed with different customized graph analysis (see chapter
Graph measures for WDNs). Note that for the presented
methodology based on complex network theory, any kind
of evolutionary algorithm can be used without changing the
presented generic approach.

In GALAXY, a random initial population for the pipe
designs is generated within the variable domains (avail-
able discrete pipe diameters) and subsequent, the objective
functions are evaluated. Subsequently, individuals in the pop-
ulation are ranked using a non-dominated sorting procedure
[30]. Based on the best ranked individuals (designs) an off-
spring generation is created with search operators. With a
replacement strategy it is determined which elements of the
designs are passed on to the next generation. This procedure
is usually repeated until the predefined number of generations
is obtained. Because of the discrete structure of the decision
variables space (restricted to integers), it is important that
search operators can cope with a “leaping” in search space
[26]. Therefore, different search operators are implemented,
which work simultaneously to ensure a good balance between
exploration and exploitation. In GALAXY as search oper-
ators, Turbulence Factor, Differential Evolution, Simulated
Binary Crossover for Integers, Uniform Mutation, and Dither
Creeping are used as these ensure a wide range of applicabil-
ity for the optimization of WDNSs [26]. A hybrid replacement
strategy is used in the replacement process, specifically the
Pareto-dominance [30] in combination with the e-dominance
concept [31].

Two conflicting objectives, i.e., minimizing costs and
maximizing resilience, are used for optimization resulting
in a Pareto front of design solutions. The total costs are cal-
culated based on the unit pipe costs as a function of discrete
pipe diameters and pipe lengths [20].

For a reliable supply, water demands at demand nodes
have to be ensured, resulting in minimal head requirement
(the supplied demand is a function of the available head [32]).
Therefore, to determine the available heads in WDNSs, the
governing equations of the transport network (conservation
of mass and energy) are solved. For this purpose, the state-
of-the-art hydraulic solver is Epanet2 is used in this study
[33]. A reliable supply can be described with the network
resilience. The network resilience (I;) in this work is deter-
mined according to Prasad and Park [34] as a single metric for
each design solution, calculated between — oo (poor) and 1
(best). Therein, the output from the system (counter in Eq. 1),
is divided by sum over the inputs to the system minus the
minimum required output (denominator in Eq. 1). The out-
put is determined by the sum over the number of nodes #N of
the product of nodal surplus head (H; — H pin), uniformity of
pipe connections to a node (C;) and nodal demands (Q;). The
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sum over the inputs is determined by the sum over the num-
ber of reservoirs #S, reservoir flows (Qy) and heads (Hy) and
pump powers P;/y and the minimum required input equals
to sum of nodal demands Q; times minimal head (Hwmin). I+
is determined by Eq. (1) as follow:

oo
[ZZil Qi - Hi+ 31T, Pi/J/] - 2?21 Q; - Huin

The uniformity C; of a node j to which npj pipes are con-
nected with the diameters d; is determined with:

i

=i max@) @

J

Graph measures for WDNs

A graph is a mathematical representation of a network, con-
sisting of a set of vertices (nodes) which are interconnected
via edges (pipes). WDNs can be represented in a simplified
way by graphs. The advantage of using graphs instead of
e.g., hydraulic analysing is that graph analyses require much
less computational efforts (which comes with some loss of
accuracy) [2]. Therefore, graph measures can be useful for
different tasks in WDN5s [35, 36]. In this work, the graph mea-
sures called demand edge betweenness centrality (dgpc) and
mean/average node degree (nd) are applied. The node degree
of a network represents the number of edges connected to a
node [37]. The average node degree nd can be calculated
with the total number of edges #E and the total number of
nodes #N:
J 2 -#E 3
nd = —mr 3)
dgpc is a customized graph measure defined for WDNs
based on edge betweenness centrality EBC [38]. EBC(k) val-
ues for an edge k measure how often that edge is part of a
shortest path o;; between all node pairs i and j [20]. That mea-
sure can be tailored considering the complexity of WDNss,
e.g., for source nodes i, the water intakes (e.g., tanks, reser-
voirs, or wells), and for target nodes j, the demand nodes D
are used. Further, instead of counting the number of shortest
paths passing through an edge between i and j, the demand
Q; of the target nodes j is summed up resulting in the Eq. (4)
as follow:

EBC(k) = Z o;, j (k) - Q; with EBC(k) in the limits of
i,jeD

0) 0; )

jeb
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The EBC(k) values of the edges can then be grouped
according to design flows of different diameters (assuming
a flow velocity of e.g., 0.5 m/s, applying continuity equation
and rounding to the next available larger discrete diameter)
[20]. The number of groups indicates how many diameter
changes are necessary based on the demand distribution,
denoted dggc. The dggc values could also be used for the
design itself; however, such an approach results in a small
portion of the solutions of the entire Pareto front [39].

Primal graph representation

Besides a representation in a geographical information sys-
tem, a common format for the graph of a WDN is the
input for the hydraulic model. There are rarely topological
errors in hydraulic models due to the functional (hydraulic)
verification. The state-of-the-art platform for the hydraulic
modelling is Epanet 2 [33]. In this work, an interface from
Epanet 2 to Matlab is used, which was developed by Sitzen-
frei, Oberascher [17]. The interface also provides simulated
parameters (flows, head loss, flow directions, water quality,
etc.) as additional graph properties, which can be used for
graph weights, attributes or directions.

Dual graph representation

To reduce the complexity of a primal graph, generalization
models can be used, which aggregate elements with iden-
tical characteristics. In an optimal WDNSs, often identical
diameters are clustered [17]. To use this characteristic in
meta-heuristic optimization algorithms, in this work, a dual
graph creation procedure specifically tailored for WDNs is
developed in Matlab. As suggested by Zischg et al. [25], the
edge diameter dy as a functional entity is used as a gener-
alization model as a surrogate measure for capacity driving
the costs and the performance. The procedure uses the pri-
mal graph of a WDN (including also hydraulic properties) as
input, outlined as follows:

1. The procedure starts with a random edge e, with a diam-
eter d;, chosen from a set of edges from the primal graph.
The status of all other edges is set to “not found”.

2. Subgraphs are created, containing only edges with diam-
eters equal to the current dj of interest and edges with a
status “not found”.

3. From the start edge ek, a breadth-first search [40] is
performed on the subgraphs identifying all edges con-
nected to e (and therefore have also the same diameter
dy). Alternatively, a connected component analysis could
have also been performed, but the breadth-first search was
implemented to have a generic approach, also for other
generalization models.
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4. All identified edges from step 3 and their start and end
nodes are generalized and integrated into a new dual
node. The status of the found edges is subsequently set
to “found” in the primal graph.

5. The next start edge ey is randomly chosen from the
edges of the primal graph with the status “not found”
and the associated diameter dj, is determined.

6. Steps2to 5 are repeated until all edges’ status is “found”,
and therefore, the set of all dual nodes is created.

7. Primal nodes which are part of multiple dual nodes are
identified (e.g., orange marked in Fig. 1); these are then
the dual edges connecting these dual nodes.

8. A dual graph with a set of dual nodes and dual edges is
created.

In Fig. 1, a toy example of the proposed dual graph cre-
ation from the primal WDN graph for two different design
solutions (a) and (d) is shown. It can be seen how a differ-
ence in the diameter in pipe 4 leads to different dual graph
configurations (Fig. 1c, f).

The dual graphs of different design solutions from the
Pareto front and the optimization pathway are subsequently
analyzed regarding the number of dual nodes and average
node degrees nd. The number of dual nodes is analyzed
for different generations but in one generation, there is a
multitude of design solutions (equal to the population size).
Further, there are several hundred thousand generations for
each case study (see description of case studies). Therefore,
for a clearly arranged systematic analysis, a subset of gen-
erations is analyzed (e.g., Ist, 10th, 100th 1000th, ...) and
then statistical values of an entire generation are used (e.g.,
median values, 25% and 75% percentiles).

Real world case studies

WDNss are crucial for human well-being and also the func-
tioning of modern society. Therefore, they belong to critical
infrastructures which are specifically highly protected [41].
Consequently, the real spatial layout of the investigated
WDN cannot be shown here, respectively, it needs to be
anonymized. Instead of showing the graphs in the Euclidean
space, an anonymized graph drawing by force-directed
placement [42] is used, which aims to make edge lengths
uniform while minimizing the edge crossings. However, the
hydraulics of the real WDNs are fully preserved by this pro-
cedure and all following results are based on the hydraulics
of the real WDNSs. The first graph (see Fig. 2a) is a WDN
of a real case study with 242 vertices and 268 edges with
a mean node degree nd of 2.21. It has 118 demand nodes,
with a total demand of 22.5 L/s. The total network length is
14.4 km and the average edge length is 53.96 m. It has one
source which supplies the entire WDN fully gravity-driven.
Itis assumed, that the spatial demand distribution has a major
impact on the characteristics of the optimized WDNSs. There-
fore, to investigate how these demand variations would affect
the characteristics of the dual graphs, an additional scenario
is considered, wherein the aforementioned WDN is assigned
with only ten demand nodes with the same total demand of
22.5 L/s. The ten demand nodes are distributed manually to
spatially cover the entire supply area.

The graph of the large investigated real WDN has 3558
vertices and 4021 edges with a mean node degree of 2.26.
The network length is 211 km and the average edge length
is 52.68 m. It has one source node, which supplies the entire
WDN, with a total demand of 1131.78 L/s.

For the multi-objective optimization of the small real
WDN, 300,000 generations and for the large one, 500,000 in
the evolutionary algorithm were created and assessed. Due
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to the huge search space, it is difficult to determine an opti-
mal population size. Based on numerical experiments and as
a good balance between required computational time and a
wide range of possible solutions [20] for population size, 100
individuals are used in each generation. To gain more con-
fidence in the results of the evolutionary optimization, for
the small case study with 118 demand nodes, the experiment
was repeated 10 times with random initial populations result-
ing in a total of 380 million simulation runs of the hydraulic
solver. Out of all generations, 47 for the small case study and
49 for the large case are investigated in more detail (see also
Fig. 3).
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Subsequently, the different design solutions of each real
WDN are dual mapped with the edge diameter as the gener-
alization model. In Fig. 3, the solutions (i.e., Pareto fronts of
the design solutions) of these generations are investigated
in more detail, from the initialization of the evolutionary
algorithms (generation 1) to the (final) Pareto front of solu-
tions (generations of 300,000 and 500,000 for the small and
large case studies, respectively). Each dot in Fig. 3 shows
one design solution of a WDN with its according costs (mil-
lion €) on the y-axis, and the network resilience /; (—) on
the x-axis. The colors of the nodes are according to their
generation (100 individuals in each generation). Note that to
determine the network resilience for each solution, detailed
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hydraulic simulations are required, solving a large set of non-
linear equations using newton iteration while determining the
nodal heads and pipe flows based on conservation of energy
and mass. With increasing resilience, also the cost increase.
A detailed description of the optimization process can be
found in Sitzenfrei et al. [20].

Results and discussions

In a first step, the dual characteristics of specific design solu-
tions of the Pareto fronts are investigated to better outline
the process of dual mapping of optimal design solutions. For
that, in Fig. 4a, the primal graph of one single design solution
of the large WDN is shown. This dual graph is part of the
500,000th (final) generation and has in total 878 dual nodes
and 1326 dual edges. The resilience value /; of that solution
is 0.785 and the costs are 5.85 million € (see also Fig. 3).
The line width of the edges corresponds to the real diameters,
and the colors of the edges and the vertices correspond to the
order of dual nodes found.

Figure 4b shows the dual graph of the same WDN with
force-directed element placement and marker sizes according
to the node degrees. The mean node degree in this dual graph
is 3.02 with a maximum node degree of 64. The colours of
the vertices are according to the order of dual nodes found.
The used colors in Fig. 4b have the same order as in Fig. 4a.
However, the spatial allocation between Fig. 4a, b is difficult
to determine.

To approximately preserve the spatial location of the com-
ponents and to better understand how the generalization
model reduced the complexity of the primal graph (e.g., for
detailed analysis or discussions), the spatial location is now
considered for plotting the dual graph. Therefore, in Fig. 4c,
the median Euclidean coordinates of the nodes in the primal
graph, being part of a dual node, are used as new coordinates
for the spatial layout of the dual graph. It can be seen that the
node with the highest degree indeed connects many nodes
from many regions of the network. This demonstrates that
the edges integrated into this dual node can be viewed as a
connector (connecting and transporting flows to many parts
of the network), whose existence is of great importance for
the functioning for the entire system. That dual node has the
minimum available diameter (76.2 mm) of the design process
for the generalization. More than 74% (2987 edges) of the
pipes have that diameter in the primal network, 1017 of which
are integrated into that dual node with a total pipe length of
58.48 km. The sum of total head loss in that dual node is
342.41 m (of in total 1625 m in the entire network), and the
median flow in these edges is 1.04 L/s (maximum 1886.7 L/s
in the entire network). This means that these edges with low
diameter are responsible for 21% of the head losses, while
only 0.05% of the maximum flow is transported.

As a first indicator of the differences in dual characteris-
tics throughout the different generations, a dual graph of a
design solution from an early generation is now exemplary
investigated in Fig. 4d. The dual graph is again plotted with
force-directed element placement and marker sizes accord-
ing to node degree. The mean node degree in this dual graph is
3.18, which is almost the same as the network extracted from
the 500,000th generation but with a maximum node degree of
25. This implies that the design solution taken from the ear-
lier stages of optimization yielded much smaller maximum
node degree. Similarly, the colour is based on the colors of
the edges and the vertices is according to the order of dual
nodes. In comparison to Fig. 4b, one can observe a much
finely resolved structure, with lesser edges generalized into a
dual node. This, indeed, indicates a heterogeneous formation
of diameter distribution in the early stages of optimization,
lessening the integration of identical edges into dual nodes.

To now gain a complete picture of the dual graph char-
acteristics over the different generations and the populations
within them, statistical analysis of the properties of all design
solutions are investigated. Therefore, in the following, statis-
tical evaluations of the entire multitude of investigated dual
graphs are shown. By that we sought to answer the questions:
how the dual characteristics change during the optimization
process (i.e., with increasing generations) and are there some
useful parameters that can describe how close a Pareto front
is from an optimal solution?

Therefore, in Fig. 5, the basic graph characteristics of
in total 14,300 (47 + 47 + 49 generations with a popula-
tion of 100 each) dual graphs are investigated. For the small
case study (Fig. 5a), the number of dual nodes and edges
continuously decreases with increasing the number of gener-
ations. While the average number of dual nodes for the first
(randomly initialized) generation is around 216, it gets sub-
stantially reduced to 20, reaching the 300,000th generation.
Notably, all dual mapped design solutions have an almost
constant relationship between the number of dual nodes and
the number of dual edges. A linear correlation results in a
slope of the regression line of k = 1.54 with a coefficient equal
to R = 0.9917. Although, for the more optimized solutions,
this linear regression tends to overestimate the number of
dual edges, while with the solutions with more randomness,
the number of dual edges in comparison to the dual nodes
is underestimated. A generation-wise linear fit produces rel-
atively constant k = 1.48 for generations above 200, and
k~1.6 for the first generations.

Comparing these characteristics with those of the other
case studies, a similar behavior can also be observed for the
mean dual node degree for all the solutions within all the
generations for the small case study (Fig. 5d). For the ran-
dom initialization, the median node degree is 3.19 (almost
no variation). With progressing optimization, the mean node
degree sharply declines at the beginning, whereas it starts to
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Fig. 4 a Primal graph colors
according to the dual nodes;

b dual graph of a design solution
of the 500,000th generation with
marker sizes according to nodal
degree; ¢ dual graph with (mean)
Euclidean coordinates for the
dual graphs; d dual graph of a
design solution from 100th
generation with marker sizes
according to nodal degree

(c) Dual graph with primal Euclidean layout and colors
according to the dual node id

rise/recover from generation 30 to 100. Within this region,
the search algorithm in GALAXY appeared to have certain
problems preserving the entire range of design solutions with
respect to resilience (see also Fig. 6). These results could be
of interest for further enhancing the capabilities of search
operators.

For the small case study with a smaller number of demand
nodes (Fig. 5b), the linear correlation analysis results in a
slope of the regression line of k = 1.48 and R> = 0.9848.
A generation-wise linear fit produces relatively constant k
= 1.50 for generations above 200 and k~1.6 for the first
generations.

A similar pattern can be observed for the large case study
(Fig. 5¢). The number of average dual nodes is decreasing
from the initial population with an average of 3360 to 831 in
the final generation. Analogous to the both small case studies,
there exists an almost a linear correlation between the number
of dual nodes and the number of dual edges for the large case
study with a slope of the regression line of 1.58 and R> =
0.992 (see Fig. 5c). However, again a slight nonlinear trend
can be observed with less dual edges for more optimized
solutions (higher number of generations). A generation-wise

@ Springer

(a) Primal graph with colors according to the dual node id

(b) Dual graph with node sizes according to node degree
500,000" generation

.
= .
’ b 'd i’ . \.
(] s - X .
& ¥ N
b 3 i’gl
% B, R
: . ]
. &
5
= 3
L ri‘:
7 Mow
W ¢ -8 v b
#22 =2 < e
L b -
Ry | £
;:.. .é:. : node degree
L ] LI
& <% ANy { ® 64 (max)
.‘.F ol . e 3 (mean)

- ;ﬁg’ -1 (min)

(d) Dual graph with node sizes according to node degree
100" generation

node degree

® 64 (max)

e 3 (mean)
1 (min)

node degree
e 25 (max)
e 3 (mean)

1 (min)

linear fit produces relatively constant k = 1.35 for generations
above 60,000 and k=1.6 for the generations before.

For the mean dual node degrees of the design solutions of
the large case study (Fig. 5f), the behavior until the 100th gen-
eration shows a similar pattern compared to both small case
studies (i.e., a sharp decline in the first generations, and then a
quick recovery). However, thereafter a plateau is formed, last-
ing approximately until generation 10,000. One could now
hypothesize that this plateau is also present for the small case
study, but with much less extent (only until generation 300).
After the plateau period, also the median dual node degree
for the large case study decreases to 2.97. However, this drop
is not as significant as for both small case studies. As a result,
our study reveals that all case studies observed a sharp drop
in the dual node degrees after the first generations followed
by a plateau zone during the last stages of optimization (see
also the interquartile ranges, specifically, the formation of a
large interval shown in Fig. Se. This explains that the mean
degrees might be remaining constant in the upper territories).
This implication indicates that the mean dual node degrees
tend to remain constant after around the 1000 generations.

InFig. 5a-c, the approximately linear relationship between
dual nodes and dual edges was overserved. However, it has
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Fig.5 On the top row: plot of number of dual nodes (#dual nodes)
against the number of dual edges (#dual edges) for one run of the small
case study with 118 demand nodes (a), small case study with 10 demand
nodes (b) and large case study (c). The colors of the dots indicate the

been observed that lower generations (dark blue dots) tend
to be on the upper limit of dual elements, while the more
progressed solutions (e.g., dark red dots) tend to be at the
minimum number of dual elements. Therefore, the number
of dual elements in dependence of the generations, specifi-
cally of the dual nodes, is now investigated in detail in the
following to see if this characteristic can be used as indicators
for the progress of the optimization.

To systematically analyze the dual characteristics in
dependency of the generations, in Fig. 6a—c, the number
of dual nodes (y-axis) against the number of generations
(x-axis) for three case studies throughout the optimization
process is plotted. For each generation, the entire popula-
tion (all 100 solutions) is shown. The colors of the nodes
are according to the generations. For statistical insight, in
addition, the median value (Qsgp), the 25% (Q25), and 75%
(Q75) percentiles are plotted to account for the uncertainties
around the number of dual nodes. For the interpretation of
the progress of the optimization, the ranges of the resilience
values are also important. E.g., at the random initialization of

generations in the optimization process. On the lower row: the mean
dual node degrees (y-axis) are plotted against the number of genera-
tions (x-axis) for different case studies (d)—(f)

the optimization process a very small range of the resilience
values is present (see also Fig. 3, dark blue markers). There-
fore, in Fig. 6d—f, the median (Qsp), the 25% (Q»5), and the
75% (Q75) percentiles of the resilience ranges for the dif-
ferent generations are plotted. A narrow range of resilience
values for the initialization process can be observed for the
first generation for the small case studies (Fig. 6a, b), while
for the large case study, negative values are obtained for the
initial generation (technically not feasible solutions, and not
fulfilling the pressure constraints).

When having a closer look at Fig. 6a, one can observe
that a formation pattern is almost analogous to the patterns
of dual node degree in all generations; however, the num-
ber of dual nodes largely wanes at the tail of optimization
despite some fluctuations in between. For the random ini-
tialization, the number of dual nodes is a little less than the
number of decision variables (edges). This means that occa-
sionally, two or more adjacent edges were found to have the
same diameter and therefore, integrated into a dual node.
Subsequently, there is a continuous decline in the number of
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Fig. 6 Number of dual nodes for different generations (colors) a small case study with 118 demand nodes; b small case study with 10 demand
nodes; ¢ large case study; d—f distribution of resilience values in the generations for different cases

dual nodes until generation 30, and the resilience value range
of the solutions covers higher values. In this first period of
the optimization process, the resilience of the solutions is
continuously increasing, while low resilience solutions have
not been found yet. For the 30th generation of the small
case study, also the interquartile range of the resilience val-
ues of the design solutions is very small and between 0.81
and 0.98 (for example, from the 2000th generation on it is
between 0.18 and 0.93) (see Fig. 6d). This pinpoints again
that the search operators of the used evolutionary algorithm
have certain troubles preserving/ensuring a wide range of
technically feasible solutions during that stage of the opti-
mization process. However, after the 30th generation, also
the low resilient solutions are exploited, achieving a wide
range of resilience values. Interestingly, the median number
of dual nodes in Fig. 6a drops from 230 for the initial genera-
tion to approximately a constant value of 20 after generation
10,000. Furthermore, the resilience range in Fig. 6d has also
its full extent and is not changing anymore. When having a
closer look at Pareto fronts as well in Fig. 3a, one can notice
that beyond generation 10,000, there is hardly any progress
in the optimization process anymore. Therefore, the number
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minimal number of dual nodes could be an interesting indica-
tor to assess the progress of the optimization process. While
such an indicator could be calculated during the optimization
itself, it would be even more beneficial to tell the approxi-
mate minimal number of dual nodes at the beginning of the
process (i.e., based on the topology and the demand distri-
bution). Based on the demand edge betweenness centrality,
EBC(k), one could develop such an indicator. As described
in the “Methods” section, with dggc it can be estimated, how
many diameter changes are necessary with a given demand
distribution. Therefore, in the following, the dgpc values are
evaluated and compared with the minimal numbers of dual
nodes.

The red straight lines in Fig. 6a—c indicate the number of
flow classes in the dgpc values (calculated based on Eq. 4).
For the small case study, the dgpc is 20 which is very close
to the median number of dual nodes in the design solutions
from the higher generations. This means after the dgpc value
is reached, it is just a back and forth changing of diameters
without any further progress in the optimization process. This
is also supported by Fig. 3, where no significant changes from
that generation further on can be observed.
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The indicator dgpc is based on the demand edge between-
ness centrality and reflects the demand distribution within the
WDN. To prove that the identified indicator works also for a
different demand distribution, the small case study but with
only 10 demand points is now investigated regarding min-
imal number of dual nodes and dgpc (Fig. 6b). In general,
almost similar behavior can be observed for the small case
study with only 10 demand points (Fig. 6b). Notably, the
number of dgpc decreases to 12 while having less demand
nodes. The median number of dual nodes during the middle
generations (i.e., after 10,000th generations) converges again
towards dgpc. This gives a strong indication that dgpc gives
an estimation of the expected minimal number of dual nodes
during the evolutionary optimization.

As a next step, the correlation between dgpc and the min-
imal number of dual nodes is investigated for the highly
complex large case study. In principle, the same behavior
can also be observed for the large case study (Fig. 6¢). At the
beginning of the optimization process (until the sixth gen-
eration), the resilience values are negative (technically not
feasible solutions with pressure violations). After exploiting
the high resilient solutions until the 40th generation, there is
a rise in the number of dual nodes again while augment-
ing the resilience range of the design solutions (Fig. 6f).
After a plateau of the mean number of dual nodes until the
10,000th generation, there is similarly a continuous decline.
Most interestingly again, the minimal number of dual nodes
converges towards dgpc of 831, meeting each other between
the 400,000th and 500,000th generations. In combination
with the results from the two scenarios of the small case
studies, it strongly indicates that from that point on there
are no further changes expected regarding the mean number
of dual nodes. Therefore, this territory can be regarded as a
measure from which the final stage of the optimization pro-
cess is achieved. Note that for the 500,000th generations, the
optimization with GALAXY already took 35 weeks of com-
putation time, indicating that no further changes are expected,
and therefore, one can save a significant amount of further
computation time.

Any evolutionary optimization process starts with some
random initialization of the population. This implies that for
different random starting points, the optimization could take
different solutions paths. To gain better confidence in the
obtained results, the experiments and evaluations are now
repeated 10 times for the small case study with 118 demand
nodes to see whether the conclusion that dggc is a good
indicator for the expected minimal number of dual nodes in
the optimization process still holds.

In Fig. 7a, ten Pareto fronts of the final generation
(300,000th) of the independent runs of GALAXY are shown.
From a visual comparison, hardly any differences in the qual-
ity of the Pareto-fronts can be identified. This indicates that

no further improvements can be expected with the given evo-
lutionary algorithm and the chosen parameters. Note that
GALAXY was conceptualized to optimize WDNs with only
a minimum number of parameters which are the population
size and the number of generations [26]. From additional
numerical tests with a higher number of population sizes
(up to 1000), no changes in the quality of the final gener-
ation were observed. Nevertheless, a significant additional
computational burden was required. However, due to clar-
ity of this manuscript, these results are not shown here, as
they do not shed new light on the matter. In Fig. 7b, the
median number of dual nodes during the different gener-
ations is investigated and compared to the dgpc value. The
behavior of the ten simulation runs fully supports the conclu-
sion that the median number of dual nodes reaches a minimal
value, and after that no further improvements in the optimiza-
tion can be expected. Again, most interestingly, dgpc gives,
before the optimization starts, a target value for the minimal
number of dual nodes. For completeness, in Fig. 7c, again
the median resilience values of the different generations are
shown (without the 25% and 75% percentile for better clar-
ity). It can also be concluded from Fig. 6 that the resilience
values do not change anymore beyond a certain generation
(in this case approximately 10,000).

From the analysis shown in Figs. 6 and 7, it is inferred
that 10,000 generations would be enough for the small case
study to achieve optimal solutions. Although one could not
assess the 10,000 at the beginning, with dgpc representing
the topology and the demand distribution, one has an estimate
of the median of the minimal number of dual nodes before
the optimization starts. Thus, in the optimization process,
one can observe the number of dual nodes in a generation
and decide whether more generations should be run with
the evolutionary optimization engine. As the Pareto-front of
that case study should have similar patterns under other evo-
lutionary algorithms, the proposed approach of estimating
dgpc and comparing the number of dual nodes of the design
solutions is also applicable to another evolutionary optimiza-
tion of WDNSs.

Summary and conclusions

Often it seems that evolutionary algorithms for optimization
can produce better results but with far more computational
demands. However, how much time is needed to gain an
optimal solution is difficult to answer.

In this work, for three different real case studies, the
dual characteristics of 100 Pareto-optimal WDNS, includ-
ing the pathway for optimization from random initialization
to Pareto-optimal solutions are investigated (in total 14,300
design solutions). The optimization was performed with a
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multi-objective design approach, running up to 500,000 gen-
erations with a population size of 100 individuals for each
case study. Two questions are investigated: (1) what are the
dual graph characteristics of optimal WDNSs, and (2) when
is a sufficient optimization stage achieved, and how can that
be assessed?

To identify the differences of optimal and non-optimal
design solutions for WDNSs, a dual graph approach that inte-
grates the diameter as a generalization model was developed.
Creating 14,300 dual graphs, the dual characteristics are
systematically investigated to identify properties of optimal
WDNs and verify whether dual characteristics can be used
as an indicator of how close to optimal solutions the current
solutions are.

It was found that the closer to optimal solutions, the
less the number of dual nodes in the dual graphs. The
minimum possible number of dual nodes is driven by the
demand distribution of the WDNSs. It was found that the flow
classes determined with demand edge betweenness central-
ity (dgBc), give a good indicator for the minimal achievable
mean dual node degree in the optimization process. There-
fore, dual representation of the primal graph can be used as
an indicator to assess if the evolutionary optimization process
can still provide better results.

Therefore, the number of dual nodes with the mini-
mum achievable value according to the characteristics of
the demand distribution (dggc) can be seen as an indica-
tor of how far the optimization process proceeded and can
be implemented to evolutionary optimization of WDNs to
improve the procedure.

The proposed method does not require substantial addi-
tional computational burden and could be implemented to
any meta-heuristic search engine used for optimization of
water distribution networks. However, when introducing
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other objectives to the multi-objective optimization, which
are less dependent on the network topology and the demand
distribution, the indicator dgpc might be less effective, and
therefore, further research is required. The dual mapping
approach might also be of interest for investigating the effec-
tiveness of the search operators during the optimization
approach. In this work, the range of solutions was quite nar-
row for some generations at the beginning of the optimization
process. In this regard, future research could focus on sys-
tematically investigating the efficiency of search operators
with the proposed dual approach.
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