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Abstract
Online group streaming feature selection, as an essential online processing method, can deal with dynamic feature selection
tasks by considering the original group structure information of the features. Due to the fuzziness and uncertainty of the
feature stream, some existing methods are unstable and yield low predictive accuracy. To address these issues, this paper
presents a novel online group streaming feature selection method (FNE-OGSFS) using fuzzy neighborhood entropy-based
uncertainty measures. First, a separability measure integrating the dependency degree with the coincidence degree is proposed
and introduced into the fuzzy neighborhood rough sets model to define a new fuzzy neighborhood entropy. Second, inspired by
both algebra and information views, some fuzzy neighborhood entropy-based uncertainty measures are investigated and some
properties are derived. Furthermore, the optimal features in the group are selected to flow into the feature space according
to the significance of features, and the features with interactions are left. Then, all selected features are re-evaluated by the
Lasso model to discard the redundant features. Finally, an online group streaming feature selection algorithm is designed.
Experimental results compared with eight representative methods on thirteen datasets show that FNE-OGSFS can achieve
better comprehensive performance.

Keywords Streaming feature selection · Streaming groups · Fuzzy neighborhood rough sets · Coincidence degree · Fuzzy
neighborhood entropy · Uncertainty measures

Introduction

Feature selection, as an important data preprocessing tech-
nique, plays a key role in knowledge discovery, pattern
recognition, and machine learning [1–5]. It aims to select
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the optimal subset to improve classification accuracy and
reduce computational complexity. Traditional feature selec-
tion methods are batch methods, assuming that the feature
space is fixed [6]. However, the complete feature space is
not available in real-world situations, such as high-resolution
planetary image analysis during Mars rover operations [7],
where obtaining the entire feature set in this scenario means
using image data covering the entire surface of Mars, which
is clearly not feasible. Therefore, dynamic feature selection
has attracted the continuous attention of scholars in recent
years [8–12].

Related work

Dynamic feature selection can be divided into feature selec-
tion with feature streams and data streams [13–18]. Online
feature selection with a feature stream assumes that features
flow into the feature space in batches over time, which can be
further segmented into individual streaming feature selection
and group streaming feature selection based on the structural
information of the features [19–22].
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Online individual streaming feature selection is charac-
terized by features arriving in the feature space one by one
[23–28]. Perkins et al. [29] first implemented feature selec-
tion in an onlinemanner using a fast gradient-based heuristic.
Wu et al. [30] proposed a streaming feature selection frame-
work consisting of both online correlation analysis and online
redundancy analysis. Zhou et al. [31] considered the interac-
tions between features and efficiently selected features with
interactions. Eskandari et al. [32] first proposed a newstream-
ing feature selection method based on rough sets theory and
improved it in [33]. Lin et al. [34] introduced fuzzy mutual
information in multilabel learning to evaluate the quality of
features for streaming feature selection scenarios. You et al.
[35] proposed a causal feature selection algorithm for online
streaming feature selection scenarios. The above methods
can only handle the scenarios where features arrive one by
one but ignore the original group structure of the features
[36]. For example, in the fields of drug localization [37] and
image analysis [38], where features mostly arrive in the fea-
ture space as groups.

Online group streaming feature selection can consider the
structural information of the features, and thus achieve bet-
ter classification results [39,40]. Li et al. [40] used entropy
and mutual information to perform online group streaming
feature selection. Wang et al. [41] proposed a framework
for online feature selection using prior knowledge of group
structure information, including intra-group feature selec-
tion and inter-group feature selection. Yu et al. [42] extended
the scalable and accurate online feature selection approach
to handle the group feature selection problem in the sparse
case. Liu et al. [43] proposed a new framework based on
group structure analysis for online multilabel group stream-
ing feature selection. Zhou et al. [44] designed a new online
group streaming feature selection algorithm focused on fea-
ture interaction based on mutual information. Unfortunately,
the information present in the real world contains many sub-
jective concepts, such as pretty, young, and moral, these
concepts have no clear boundaries and thus create ambiguity
and uncertainty [45–50]. Existing streaming feature selec-
tion methods cannot deal well with tasks in the context of
fuzziness and uncertainty.

The classification task learns a classification model, i.e.,
a classifier, from the existing training samples [51–53].
When test data arrive, predictions can be made based on
the classifier to map the new data items to one of the
classes in the given category [52]. Recently, feature selec-
tion based on rough sets and fuzzy sets from algebra and
information views has been frequently reported to mea-
sure uncertainty in classification tasks [54–56]. Wang et
al. [57] proposed a fuzzy neighborhood rough sets model
(FNRS) using parameterized fuzzy neighborhood informa-
tion granules that can effectively prevent the effect of noise.
Shreevastava et al. [58] proposed a new intuitionistic fuzzy

neighborhood rough sets model for heterogeneous datasets,
which combined intuitionistic fuzzy sets and neighborhood
rough sets. An et al. [53] proposed a relative fuzzy rough
set model and designed a classifier based on the maximum
positive domain for the problem of large differences in the
class density of the data distribution. The above studies dis-
cussed feature selection from an algebraic view, where the
significance of features can only state the consequence of fea-
tures contained in the feature subset [55,59]. Sang et al. [60]
proposed a fuzzy dominant neighborhood rough sets model
for possible noisy data in biased-ordered information sys-
tems. Xu et al. [61] redefined fuzzy neighborhood relations
and introduced them into conditional entropy, proposing
a new fuzzy neighborhood conditional entropy. Zhang et
al. [62] proposed active incremental feature selection using
the information entropy of introduced instances based on
fuzzy rough sets. Nevertheless, the feature significance of
these information view-based references merely interprets
the influence of uncertainty classification on features [54,62].
Sun et al. [63] combined the fuzzy neighborhood rough
sets with the neighborhood multigranulation rough sets and
proposed a fuzzy neighborhood multigranulation rough sets
model. Xu et al. [64] fused the self-information measure
into the fuzzy neighborhood in the upper and lower approx-
imations and proposed a fuzzy neighborhood joint entropy
based on fuzzy neighborhood self-information. Xu et al. [65]
defined multilabel fuzzy neighborhood conditional entropy
and approximation accuracy to solve the classification prob-
lem under a multilabel decision system. It is confirmed
that the combination of algebra and information views can
make the measurement mechanism more comprehensive
[63,65].

Fuzzy rough sets theory and its applications are also
widely used to solve some practical problems [66–72]. Xu
et al. [66] proposed a fuzzy rough uncertainty measure
model for tumor diagnosis and microarray gene selection.
Liu et al. [68] proposed a co-evolutionary model for crime
inference based on fuzzy rough sets. These reported stud-
ies evaluate features by the consistency of conditional and
decision features in information granularity, ignoring the
separability of decision information granularity for differ-
ent conditional features. Nonetheless, the separability of
conditional features is closely related to their performance
in classification tasks [73,74]. Hu et al. [73] defined the
aggregation degree of intraclass objects and the dispersion
degree of between-class objects to measure the signifi-
cance of features. The separability-based evaluation function
has a profound impact on the improvement of accuracy
and time efficiency. However, these fuzzy rough sets-based
approaches are only applicable to traditional feature selection
and cannot deal with feature selection in dynamic environ-
ments.
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Our work

Motivated by this, to effectively deal with the streaming
feature selection task in fuzzy and uncertainty contexts,
this paper proposes some fuzzy neighborhood entropy-based
uncertainty measures and investigates a novel online group
streaming feature selection method, named FNE-OGSFS.
The main innovation points are as follows:

– To better evaluate the classification quality of features
in terms of separability, we define a new separability
degree (SD) by integrating the coincidence degree and
the dependency degree for fuzzy neighborhood rough
sets and fuse it with FNRS to define a new fuzzy
neighborhood entropy. Then, we propose the concepts
of fuzzy neighborhood joint entropy, fuzzy neighbor-
hood conditional entropy and fuzzyneighborhoodmutual
information. The related properties are explored and
proven.

– To better discuss the measure of online streaming fea-
ture selection from both algebra and information views,
we propose fuzzy neighborhood symmetric uncertainty.
Then, we present a series of uncertainty measures such
as the significance, fuzzy neighborhood interaction gain
and contrast ratio. The related theorems are derived
and proven. Furthermore, we construct an online group
streaming decision system to retain features with strong
approximation ability when features dynamically flow
into the feature spacewhile removing redundant features.

– Based on this, we design a new online group streaming
feature selection algorithm, named FNE-OGSFS. First,
the significance is used for intra-group feature selection.
Second, online interaction analysis is performed on fea-
ture groups flowing into the feature space based on the
fuzzy neighborhood interaction gain and contrast ratio.
Finally, redundant features are removed using the Lasso
model. Experimental results on thirteen different types
of real-world datasets confirmed that FNE-OGSFS can
effectively select the optimal feature subset.

The remainder of this paper is organized as
follows. “Preliminaries” reviews the related
knowledge of FNRS and the coincidence degree.
“Fuzzy neighborhood entropy-based uncertainty measures”
presents the separability degree and some fuzzy
neighborhood entropy-based uncertainty measures.
“Online group streaming feature selection approach” devel-
ops anovel online group streaming feature selection approach.
“Experimental results” provides the experimental analysis on
thirteen datasets. “Conclusion and future work” concludes
the paper with an outlook on the future.

Preliminaries

The FNRS is an effective model for feature selection and
knowledge discovery. In this section, we review some basic
concepts of fuzzy neighborhood rough sets. In addition, we
introduce some basic knowledge related to the coincidence
degree to facilitate the subsequent discussions.

Fuzzy neighborhood rough sets

Let DS = 〈U ,C, D〉 be a decision system, where U =
{x1, x2, . . . , xn} is a nonempty finite set called the theo-
retical domain, C is the set of conditional features of the
sample, and D is the set of decision features of the sam-
ple. U/D = {D1, D2, · · · , Dl} means D divides U into l
equivalence classes.

Let A ⊆ C be a subset of conditional features on U ,
and a fuzzy binary relation RA can be induced by A. Then,
RA is called a fuzzy similarity relation when it satisfies both
reflexivity and symmetry [57]:

(1) Reflexivity: RA (x, x) = 1, ∀x ∈ U .
(2) Symmetry: RA (x, y) = RA (y, x), ∀x, y ∈ U .

Let a ∈ A and Ra be the fuzzy similarity relation obtained
by a. Then, RA can be expressed as RA = ⋂

∀a∈A Ra .

Definition 1 Given DS = 〈U ,C, D〉, let the fuzzy neighbor-
hood radius parameter be δ (0 < δ ≤ 1), which is used to
describe the similarity of samples, and for any x, y ∈ U , a ∈
C , the fuzzy neighborhood similarity relation between sam-
ples x and y with respect to feature a is denoted as

Ra (x, y) =
{
0, Δ > δ

1 − Δ, Δ ≤ δ
, (1)

where Δ denotes distance and equals to |f (a, x)− f (a, y)|.
Definition 2 Given DS = 〈U ,C, D〉, the fuzzy neighbor-
hood similarity matrix of samples x and y with respect
to feature a is [x]δa (y) = Ra (x, y), and for any A ⊆ C ,
[x]δA (y) = min∀a∈A([x]δa (y)) , then theparameterized fuzzy
neighborhood information granule of x with respect to A is
expressed as

δA (x) =
{
0, [x]δA (y) < 1 − δ

[x]δA (y) , [x]δA (y) ≥ 1 − δ
(2)

Definition 3 Given DS = 〈U ,C, D〉, A ⊆ C , and U/D =
{D1, D2, · · · , Dl}, the fuzzy decision derived from D is
denoted as FD = {

FDT
1 , FDT

2 , · · · , FDT
l

}
, where FDj ={

FDj (x1) , FDj (x2) , . . . , FDj (xn)
}
is the fuzzy equiva-

lence class of sample decisions. FDj (x) is the degree of
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membership and denoted by

FDj (x) =
∣
∣δA (x) ∩ Dj

∣
∣

|δA (x)| , j = 1, 2, . . . , l, (3)

where |·| represents the cardinality.

Definition 4 Let A, B be two fuzzy sets on U . Then, the
inclusion degree of A on B is expressed as

Inc (A, B) = |A ⊆ B|
|U | , (4)

where |A ⊆ B| denotes the number of samples whose mem-
bership degree on A is not greater than that on B.

Definition 5 Given DS = 〈U ,C, D〉, let β be a variable
precision parameter, A ⊆ C and X ⊆ U . Then, the fuzzy
neighborhood upper and lower approximations of X with
respect to A are denoted, respectively, by

FNβ
A (X) = {x ∈ U |Inc (δA (x) , X) ≥ β} , (5)

FN δ
A (X) = {x ∈ U |Inc (δA (x) , X) ≥ δ} . (6)

Definition 6 Given DS = 〈U ,C, D〉, A ⊆ C , the fuzzy
decision generated by D is FD={

FDT
1 , FDT

2 , · · · , FDT
l

}
.

Then, the fuzzy neighborhood positive region of D with
respect to A is denoted as

POSδ
A (D) =

l⋃

j=1

FN δ
A

(
FDj

)
. (7)

Definition 7 Given DS = 〈U ,C, D〉, A ⊆ C , the fuzzy
neighborhood dependency degree of D in relation to A is
expressed as

Depδ
A (D) =

∣
∣POSδ

A (D)
∣
∣

|U | . (8)

Coincidence degree

The purpose of feature selection is to retain the features with
high separability and strong approximation ability and to
remove the trivial features [73]. If the coincidence degree
of the original data from different categories is high and the
coincidence degree of the selected data is low, then the impor-
tance of the retained features is high.

Definition 8 Given DS = 〈U ,C, D〉, A ⊆ C , a ∈ C ,
U/D = {D1, D2, . . . , Dl}, Di , Dj ∈ U/D, then the coinci-

dence degree of a in regard to Di and Dj is defined as

Coin
(
a|Di , Dj

)=
∣
∣
∣
[
ma

Di
, Ma

Di

]
∩

[
ma

Dj
, Ma

Dj

]∣
∣
∣+ϑ

∣
∣
∣
[
ma

Di
, Ma

Di

]
∪

[
ma

Dj
, Ma

Dj

]∣
∣
∣+ϑ

, (9)

where ma
Di

=minx∈Di f (x, a),and Ma
Di

=maxx∈Di f (x, a).

When
∣
∣
∣
[
ma

Di
, Ma

Di

]
∪

[
ma

Dj
, Ma

Dj

]∣
∣
∣ = 0 or |

[
ma

Di
, Ma

Di

]

∩
[
ma

Dj
, Ma

Dj

]
= 0, ϑ is a very small positive constant, and

in other cases, ϑ = 0.

Definition 9 Let d be the number of Di �= Dj ; then, the
coincidence degree of D with respect to a is expressed as

CD (a) = 1

d

∑

Di �=Dj

Coin
(
a|Di , Dj

)
. (10)

CD (a) represents the coincidencedegreeof samples between
different categories and evaluates the classification ability of
feature a in terms of separability. In the process of feature
selection, we need to select the feature that can decrease the
coincidence degree.

Fuzzy neighborhood entropy-based
uncertainty measures

To select features with high separability and strong approxi-
mation ability, this section defines a new separabilitymeasure
and a new fuzzy neighborhood entropy. The feature selec-
tion method combining algebraic view and information
view can achieve better classification results, and from this
perspective, an uncertainty measure based on fuzzy neigh-
borhood entropy is constructed and some related properties
are derived.

Definition 10 Given DS = 〈U ,C, D〉, a ∈ C , the separa-
bility degree of D with respect to a is expressed as

SDδ
a (D) = (

1 − Depδ
a (D)

) ∗ CD (a) . (11)

Let A ⊆ C and A = {A1, A2, . . . , Ar }; then, the separability
degree of D in regard to A is denoted by

SDδ
A (D) = 1

r

r∑

i=1

SDδ
Ai

(D) . (12)

Property 1 The smaller the value of SDδ
A (D) is, the more

important feature A is.
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Proof Obviously, SDδ
A (D) is only related to two parts:

Depδ
A (D) and CD (A). From the properties of FNRS and

Definition 10, it can be obtained that the larger the value of
Depδ

A (D) is, themore important feature A is, and the smaller
the value of SDδ

A (D) is. Moreover, the nature of the coin-
cidence degree shows that we need to choose the features
that can reduce the overlap. In brief, the smaller the value of
SDδ

A (D) is, the higher the separability of A and the more
important feature A is.

Property 2 0 < SDδ
A (D) ≤ 1.

Proof It follows from Definition 7 that 0 ≤ Depδ
a (D) ≤ 1;

thus, we can see that 0 ≤ (
1 − Depδ

a (D)
) ≤ 1. By Def-

inition 8, we have 0 < Coin
(
a|Di , Dj

) ≤ 1; thus, 0 <

CD (a) ≤ 1. Hence, we have 0 < SDδ
a (D) ≤ 1 from Defi-

nition 10; furthermore, 0 < SDδ
A (D) ≤ 1.

Definition 11 Given DS = 〈U ,C, D〉, U = {x1, x2,. . ., xn},
and A ⊆ C , the fuzzy neighborhood entropy of A is defined
as

FNEδ (A) = − 1

|U |
n∑

k=1

log2
|δA (xk)| ∗ SDδ

A (D)

|U | . (13)

Definition 12 Given DS = 〈U ,C, D〉, A, B ⊆ C , the fuzzy
neighborhood joint entropy of A and B is denoted by

FNEδ (A, B) = − 1

|U |
×

n∑

k=1

|δA (xk) ∩ δB (xk)| ∗ SDδ
A∪B (D)

|U | .

(14)

Definition 13 Given DS = 〈U ,C, D〉, A, B ⊆ C , the fuzzy
neighborhood conditional entropy of A with respect to B is
denoted as

FNEδ (A|B) = − 1

|U |
×

n∑

k=1

log2
|δA (xk) ∩ δB (xk)| ∗ SDδ

A∪B (D)

|δB (xk)| ∗ SDδ
B (D)

.

(15)

Definition 14 Given DS = 〈U ,C, D〉, A, B ⊆ C , the fuzzy
neighborhood mutual information of A and B is represented
as

FNMIδ (A; B)

= − 1

|U | ×
n∑

k=1

log2
|δA (xk)| |δB (xk)|∗SDδ

A (D)∗SDδ
B (D)

|U |∗|δA (xk)∩δB (xk)|∗SDδ
A∪B (D)

.

(16)

Property 3 (1) FNMIδ (A; B)=FNMIδ (B; A).
(2) FNMIδ (A; B)=FNEδ (A)+FNEδ (B)−FNEδ (A, B).
(3) FNMIδ (A; B)=FNEδ (A)−FNEδ (A|B)=FNEδ (B)−

FNEδ (B|A).

Proof (1)

FNMIδ (A; B)

= − 1

|U |
n∑

k=1

log2
|δA (xk)| |δB (xk)| ∗ SDδ

A (D) ∗ SDδ
B (D)

|U | ∗ |δA (xk) ∩ δB (xk)| ∗ SDδ
A∪B (D)

= − 1

|U |
n∑

k=1

log2
|δB (xk)| |δA (xk)| ∗ SDδ

B (D) ∗ SDδ
A (D)

|U | ∗ |δB (xk) ∩ δA (xk)| ∗ SDδ
B∪A (D)

= FNMIδ (B; A) .

(2)

FNMIδ (A; B)

= − 1

|U |
n∑

k=1

log2
|δA (xk)| |δB (xk)| ∗ SDδ

A (D) ∗ SDδ
B (D)

|U | ∗ |δA (xk) ∩ δB (xk)| ∗ SDδ
A∪B (D)

=
(

− 1

|U |
n∑

k=1

log2
|δA (xk)| ∗ SDδ

A (D)

|U |

)

+
(

− 1

|U |
n∑

k=1

log2
|δB (xk)| ∗ SDδ

B (D)

|U |

)

−
(

− 1

|U |
n∑

k=1

log2
|δA (xk) ∩ δB (xk)| ∗ SDδ

A∪B (D)

|U |

)

= FNEδ (A) + FNEδ (B) − FNEδ (A, B) .

(3)

FNMIδ (A; B)

= − 1

|U |
n∑

k=1

log2
|δA (xk)| |δB (xk)| ∗ SDδ

A (D) ∗ SDδ
B (D)

|U | ∗ |δA (xk) ∩ δB (xk)| ∗ SDδ
A∪B (D)

=
(

− 1

|U |
n∑

k=1

log2
|δA (xk)| ∗ SDδ

A (D)

|U |

)

−
(

− 1

|U |
n∑

k=1

log2
|δA (xk) ∩ δB (xk)| ∗ SDδ

A∪B (D)

|δB (xk)| ∗ SDδ
B (D)

)

= FNEδ (A) − FNEδ (A|B) .

Similarly, FNMIδ (A; B)=FNEδ (B)−FNEδ (B|A).

Definition 15 Given DS = 〈U ,C, D〉, A, B ⊆ C , the fuzzy
neighborhood symmetrical uncertainty of A and B is repre-
sented as

FNSUδ (A; B) = 2FNMIδ (A; B)

FNE (A) + FNE (B)
. (17)

In particular, let FNSUδ (A; D) = FNMIδ
(A; D) /FNE (A, D) when B = D.
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Remark 1 Fuzzy neighborhood symmetrical uncertainty as
a measure of uncertainty can better measure the signif-
icance of features. From Definition 15, we can see that
SDδ

A (D) denotes the separability degree from an algebraic
view, and FNMIδ (A; B) represents the fuzzy neighbor-
hood mutual information from an information view. Hence,
FNSUδ (A; B) can measure the uncertainty from both alge-
bra and information views.

Online group streaming feature selection
approach

In this section, we first give a formalization of the problem of
online group flow feature selection. Then, a new online group
streaming feature selection algorithm is proposed based on
the uncertainty measure proposed in the previous section,
which includes three parts: intra-group feature selection,
online interaction analysis, and online redundancy analysis.
Finally, we perform a time complexity analysis of the pro-
posed algorithm.

Problem formalization

Let OGDS = (U ,G, D, h, t) be an online group streaming
decision system, U = {x1, x2, . . . , xn} be the set of sam-
ples, G = {G1,G2, ..,Gw} is the set of stream features,
Gi = {

f1, f2, . . . , fmt

}T is a set of features in G containing
mt features, and a new set of features Gt is obtained with
unknown feature space at each stamp t . D is the set of deci-
sion features, h is the feature-to-class mapping function, and
t is the time stamp. The problem of online group stream-
ing feature selection is to select an optimal feature subset S
in the continuous inflow feature groups when the algorithm
terminates.

Our new algorithm

TheFNE-OGSFScanbedivided into three parts: online intra-
group selection and online interaction analysis, and online
redundancy analysis.

Online intra-group selection

Definition 16 Given OGDS = (U ,G, D, h, t), Gt is the
feature group arriving at time t , A = {A1, A2, · · · , Ar },
A′ ⊆ A ⊆ Gt , if FNSUδ

(
A′; D) = FNSUδ (A; D), and

there exists FNSUδ

(
A′; D)

> FNSUδ

(
A′ − Ai ; D

)
for any

Ai ⊆ A′, then A′ is a reduct of A with respect to D.

Definition 17 Given that OGDS = (U ,G, D, h, t), Gt

is the feature group arriving at time t , Ai ⊆ A, A =
{A1, A2,· · · , Ar}⊆Gt , the significance of feature subset Ai

in regard to D is expressed as

Sig (Ai , A; D) = FNSUδ (A; D) − FNSUδ (A − Ai ; D) .

(18)

Definition 18 Given OGDS = (U ,G, D, h, t), Ai ⊆ A, if
Sig (Ai , A; D) > 0, then Ai in A is necessary; otherwise,
Ai is unnecessary. If each Ai in A is necessary, then A is
independent.

Definition 19 Given OGDS = (U ,G, D, h, t), Gt is the
feature group arriving at time t , Ai ⊆ A, and A =
{A1, A2,· · · , Ar} ⊆ Gt , if Sig (Ai ,Gt ; D) > 0, then Ai is
a core of Gt .

According to the above theory, a new intra-group streaming
feature selection method is demonstrated in Algorithm 1.

Algorithm1FNE − OGSFSintra
Require: OGDS = (U ,G, D, h, t) with a new streaming group of

features Gt .
Ensure: The selected feature subset S′

t .

1: Initialize S′
t = {}.

2: for each feature fi in Gt do
3: Compute Sig ( fi ,Gt ; D) =

FNSUδ (Gt ; D) − FNSUδ (Gt − fi ; D)

4: if Sig ( fi ,Gt ; D) > 0 then
5: Let S′

t = S′
t ∪ { fi }

6: end if
7: end for
8: return S′

t

Let the feature group arriving at stamp t be Gt . In Step 3,
the significance of each feature in Gt is calculated according
to Formula (18), and if the value is greater than 0, it means the
feature is important. Then, it will be selected to the feature
subset S′

t in Step 5; otherwise, it will be discarded. If all
features in Gt are traversed, the algorithm will terminate and
return the selected feature subset S′

t .

Online interaction analysis

Definition 20 Given OGDS = (U ,G, D, h, t), U = x1, x2,
. . . , xn , Gt is the feature group arriving at time t , A, B ⊆
Gt , then the fuzzy neighborhood interaction gain of B with
respect to A is denoted as

FNIGδ (A, B; D) = FNSUδ (A, B; D)

− FNSUδ (A; D) − FNSUδ (B; D) .

(19)

Theorem 1 If FNIGδ (A, B; D) > 0, then B is the interac-
tion feature of A.
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Proof Since FNIGδ (A, B; D) > 0, we have that
FNSUδ (A, B; D) > FNSUδ (A; D) + FNSUδ (B; D). It is
indicated that the information provided by A and B in one
piece is more than the sum of the information provided by
A and B alone, so A and B interact, and then B is called the
interaction feature of A.

Theorem 2 If FNIGδ (A, B; D) ≤ 0, then B is an unneces-
sary feature of A.

Proof Since FNIGδ (A, B; D) ≤ 0 ,we can obtain that
FNSUδ (A, B; D) ≤ FNSUδ (A; D)+FNSUδ (B; D). Thus,
the information provided by A and B in one piece is no more
than the sum of the information provided by A and B alone.
Hence, B is an unnecessary feature of A.

If the newly arrived features in the group are interac-
tion features, further redundancy analysis with the already
selected features is needed.

Definition 21 Given OGDS = (U ,G, D, h, t), U = x1, x2,
. . . , xn , Gt = { f1, f2, . . . , fm} for the feature group arriv-
ing at time t , A ⊆ Gt , A = {A1, A2, · · · , Ar }, then the
fuzzy neighborhood contrast ratio of A j with respect to Ai

is expressed as

FNCR
(
Ai , A j ; D

)=FNSUδ

(
A j ; D

)−FNSUδ (Ai ; D) ,

(20)

where Ai , A j ∈ A and i �= j .

Theorem 3 If FNCR
(
Ai , A j ; D

) ≤ 0, then A j is the redun-
dant feature of Ai .

Proof Since FNCR
(
Ai , A j ; D

) ≤ 0, fromDefinition 21, we
can have FNSUδ

(
A j ; D

) ≤ FNSUδ (Ai ; D). It is demon-
strated that for two candidate features Ai and A j , Ai can
provide more information that is beneficial for classification;
then, Ai ismore relevant to D. Therefore, A j is the redundant
feature of Ai .

Theorem 4 If FNCR
(
Ai , A j ; D

)
> 0, then A j is a relevant

feature and Ai is a redundant feature.

Proof Because FNCR
(
Ai , A j ; D

)
> 0 , we can have

FNSUδ

(
A j ; D

)
> FNSUδ (Ai ; D). Thus, A j can provide

more information that is beneficial for classification; there-
fore, A j is more relevant in regard to D, A j is a relevant
feature, and Ai is the redundant feature.

Next, all selected features are re-evaluated by the sparse
linear regressionmodel Lasso [75], and the featureswith sim-
ilar labels are eliminated based on global group information.

Online redundancy analysis

Given OGDS = (U ,G, D, h, t), U = {x1, x2, . . . , xn}, let
the features that were selected in the above link be S =
{ f1, f2, . . . , fM }, let X ∈ RM×n be the dataset matrix and
let ρ̂ ∈ RM be the projection vector. Then, the decision class
vector ŷ ∈ Rn is denoted as

ŷ = XT ρ̂. (21)

Lasso chooses the best ρ̂ by minimizing the following
objective function:

minρ̂ ‖ y − XT ρ̂‖2 + γ ‖ ρ̂‖1, (22)

where ‖ ·‖1 indicates the L1 norm of the vector, ‖ ·‖2 indi-
cates the L2 norm of the vector, and γ is the parameter that
regulates the amount of regularization applied to the esti-
mator, whose value is often determined by cross-validation.
Lasso can effectively control the number of selected features
by setting a part of ρ̂ to zero to select features corresponding
to nonzero coefficients and adding variable constraints based
on the least square method.

Based on all the above investigations, the FNE-OGSFS
algorithm is proposed, and the corresponding pseudocode is
shown in Algorithm 2. The code is available at https://github.
com/SunY-H/OGSFS.

Let the set of features that have been selected at stamp t be
St−1 and the set of features selected within the group be S′

t .
The fuzzy neighborhood interaction gain of each feature in S′

t
relative to St−1 is calculated in Step 3 according to Formula
(19)when S′

t flows into the feature space. Based onTheorems
1 and 2, the feature is unnecessary if the interaction gain is
not greater than zero; otherwise, the feature is an interaction
and needs to be further analyzed for redundancy. In Step
11, the fuzzy neighborhood contrast ratio of each feature in
St−1 with respect to the feature is calculated depending on
Formula (20). Based on Theorems 3 and 4, the feature is
selected into feature subset S if the contrast ratio is greater
than zero,while the corresponding redundant features in St−1

are discarded; otherwise, the feature is discarded. If no new
feature group flows into the feature space, the FNE-OGSFS
algorithm terminates and returns the selected feature subset
S after the online redundancy analysis.

Time complexity

For the FNE-OGSFS algorithm, the sample space is U =
{x1, x2, . . . , xn}, the set of features arriving at time t is
Gt = {

f1, f2, . . . , fmt

}T , the set of selected features is St−1,
and the set of selected features within the group is S′

t . Each
feature in Gt is traversed to calculate its significance in the
intra-group feature selection phase,where the computation of
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Algorithm2FNE − OGSFS
Require: OGDS = (U ,G, D, h, t) with fuzzy neighborhood radius

δ, group size G.
Ensure: An optimal feature subset S.
1: Initialize S = {}.
2: repeat
3: Gt ← get a new streaming group of features
4: /* online intra-group selection */
5: S′

t = FNE − OGSFSintra (Gt )

6: /* online interaction analysis */
7: for each feature fi in S′

t do
8: Compute FN IGδ (St−1, fi ; D) =

FNSUδ (St−1, fi ; D) − FNSUδ (St−1; D)

−FNSUδ ( fi ; D)

9: if FN IGδ (St−1, fi ; D) > 0 then
10: for each feature fk in St−1 do
11: Compute FNCR ( fi , fk; D) =

FNSUδ ( fk; D) − FNSUδ ( f ; D)

12: if FNCR ( fi , fk; D) ≤ 0 then
13: Break;
14: else
15: Let S = S ∪ { fi }; S = S − { fk}
16: end if
17: end for
18: end if
19: end for
20: until no more group arrive
21: /* online redundancy analysis */
22: S ← find the global optimal subset by Lasso algorithm
23: return the optimal feature subset S

the parameterized fuzzy neighborhood information granule
has themost important impact on the complexity and the time
complexity is approximated by O (mtn). The time complex-
ity of the inter-group feature selection phase increases with
the size of the selected feature subset St−1. Let the num-
ber of features in St−1 be |St−1| and the number of features
selected within the group be

∣
∣S′

t

∣
∣; then, the worst-case time

complexity is O
(|St−1| ∗ ∣

∣S′
t

∣
∣ ∗ n2

)
. In addition, the time

complexity of the Lasso algorithm is O (n). Therefore, the
worst-case time complexity of the FNE-OGSFS algorithm is
O

(|St−1| ∗ ∣
∣S′

t

∣
∣ ∗ n2

)
.

Experimental results

The desired effect of our algorithm is to efficiently select a
smaller subset of features and obtain a higher classification
accuracy. In this section, we conduct a series of experiments
based on some existing algorithms and datasets. To provide
detailed information regarding the experiments, this section
first describes the experimental preparation and then shows
the effect of different parameters on the classification per-
formance. By comparing FNE-OGSFS with some popular
algorithms, we validate the effectiveness of the proposed
algorithms. Finally, we conduct statistical tests on the exper-
imental results.

Table 1 Description of the experimental datasets

No. Datasets Samples Features Classes

1 Sonar 208 60 2

2 Wpbc 198 34 2

3 Ionosphere 351 33 2

4 Wdbc 569 31 2

5 COLON 62 2000 2

6 DLBCL 77 7129 2

7 LEUKEMIA 72 7129 2

8 LYMPHOMA 62 4026 3

9 SRBCT 83 2308 4

10 Lung Cancer 203 12600 5

11 Ovarian Cancer 253 15154 2

12 MADELON 2600 500 2

13 ARCENE 100 10000 2

Experiment setup

The evaluation framework for feature selection is outlined
in Fig. 1. The details of each stage of the experiment are
depicted below.

First, the dataset is divided and preprocessed. To ver-
ify the feasibility and stability of the developed algorithm,
the FNE-OGSFS method is used on thirteen public datasets
in our experiments, including four UCI datasets,1 seven
DNAmicroarray datasets2 and two NIPS 2003 datasets.3 All
datasets in detail are listed in Table 1. For the missing values
in a dataset, such as theLYMPHOMAdataset, the conditional
mean completer is used [16]. The 10-fold cross-validation
approach is adopted for evaluating the classification perfor-
mance under different classifiers.

Second, the feature selection methods are selected. In
this subsection, FNE-OGSFS is compared with eight state-
of-the-art feature selection methods, including two online
group streaming feature selection methods (OGSFS-FI [44],
Group-SAOLA [42]), three online individual streaming fea-
ture selection methods (Alpha-investing [25], SFS-FI [31],
OFS-A3M [26]) and three FNRS-based method (FNRS [57],
FNCE [67], FNPME-FS [63]). Note that the FNRS-based
methods cannot deal with the online feature selection task,
and some parameters contained in the above comparison
methods need to be specified in advance; here, we refer to the
parameter value or value range corresponding to the original
thesis.

Finally, the classifier and evaluation metrics are deter-
mined. Four classical classifiers, including support vector

1 http://archive.ics.uci.edu/ml/index.php.
2 http://csse.szu.edu.cn/staff/zhuzx/.
3 http://clopinet.com/isabelle/Projects/NIPS2003/.
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Dataset

Training 
set

Testing 
set

Feature 
selectors

FNE-OGSFS

OGSFS-FI
Group-SAOLA

FNRS
FNCE

FNPME-FS

Alpha-investing
OFS-A3M

SFS-FI

Classifiers
KNN SVM NB CART

Prediction 
accuracy

Number of 
selected 
features

Running      
time

Statistical
significance

test

Fig. 1 The evaluation framework for the algorithms

machine (SVM), naive Bayes (NB), K-nearest neighbor
(KNN, k = 3) and classification and regression tree (CART),
are used to evaluate the classification performance of the
selected features. The parameters of the classifier are set to
the default of MATLAB except for changing the data dis-
tribution in the NB classifier to the kernel distribution. We
take the predictive accuracy, number of selected features and
running time as evaluation metrics of the comparative exper-
iment. Furthermore, the Friedman test and the corresponding
post-hoc tests are performed to systematically investigate the
statistical performance of the FNE-OGSFS method and its
rivals in terms of predictive accuracy.

It should be noted that the comparison experiments are
based on the same design approach. All experiments are
performed in MATLAB R2016a and run in a hardware envi-
ronment with an Intel Core i5-3470 CPU at 3.20 GHz and
4.0 GB RAM under Windows 10.

The parameter analysis of the FNE-OGSFS

There are two parameters and G in the FNE-OGSFS algo-
rithm. The parameter is used to adjust the size of the fuzzy
neighborhood, and the parameter G is applied to control the
size of the group. We set the value of from 0.1 to 1 with an
interval of 0.05 [60]. Since the dataset does not have a pri-
ori group structure information, the experiment obtains the
information on the group structure through the artificially
specified group size to improve the time efficiency. The val-
ues of G are set to 5, 10, 20, 30, and 60 for low-dimensional
datasets and 50, 100, 200, 400, and 800 for high-dimensional
datasets [44]. In this subsection, we focus on the effect of
different parameters on the predictive accuracy, number of
selected features and running time.

In terms of predictive accuracy, the variation in predic-
tive accuracy with parameters for thirteen datasets on SVM
is shown in Figs. 2 and 3, where four datasets in Fig.
2 are low-dimensional datasets and nine datasets in Fig.
3 are high-dimensional datasets. The experimental results

obtained using KNN, NB, and CART are roughly consistent
with SVM. Figure 2 indicates that the different parame-
ters have a certain impact on the classification performance
of low-dimensional datasets. In detail, the parameter has
a deeper influence on some datasets, such as the Sonar
and Ionosphere datasets, where the predictive accuracies are
generally higher when is less than 0.5. The classification per-
formance of theWdbc andWpbc datasets obviously depends
more on the parameter G, which can achieve higher predic-
tive accuracies when G is larger, and the influence of is
not significant. As seen in Fig. 3, the predictive accuracy on
most of the high-dimensional datasets has a significant trend
changewith parameter changes. TheDLBCL, LYMPHOMA
and Lung Cancer datasets can achieve better predictive accu-
racies when bothG and are larger. The predictive accuracies
of the LEUKEMIA, Ovarian Cancer, ARCENE andMADE-
LON datasets are more influenced by parameter G; when
parameter is constant, the predictive accuracy improves sig-
nificantly with increasing G. The applicability of parameter
varies greatly for different datasets, e.g., dataset COLON is
more suitable for smaller , and dataset SRBCT is more suit-
able for larger . Obviously, all datasets can achieve higher
predictive accuracy in most regions.

In terms of running time and number of selected fea-
tures, due to space limitation, three different types of datasets
(Wpbc, LEUKEMIA, and ARCENE) are selected as repre-
sentatives in this subsection to test the experimental effects
under different parameters, and the results are shown in
Figs. 4 and 5, respectively. Figure 4 shows that the run-
ning time increases significantly only when is small in the
low-dimensional dataset. The running time and parameter
G are closely related in the high-dimensional dataset. This
is because as the group size increases, more complex matrix
operations occur in the calculation of the fuzzy neighborhood
information granule, which in turn consumesmore time. Fig-
ure 5 indicates that these datasets show better results in terms
of compactness (i.e., fewer features are selected in feature
selection). Different datasets have different preferences for
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(a) Sonar (b) Wpbc

(c) Ionosphere (d) Wdbc

Fig. 2 The predictive accuracy varying with different values of δ and G on four low-dimensional datasets

the parameter δ. Fewer features are selected when G is small
because fewer relevant features are considered calculating
the fuzzy neighborhood information granule; hence, more
features are discarded in the intra-group feature selection.

Overall, the experimental result demonstrates the effec-
tiveness of FNE-OGSFS in selecting the optimal feature
subsets for different types of datasets. It should be noted that
the parameters corresponding to the best predictive accu-
racy are different for the thirteen datasets. Therefore, the
parameters need to be determined in advance before feature
selection for the datasets to achieve the maximum balance
among higher accuracy, smaller running time, and greater
compactness.

Comparison with other algorithms

In this subsection, the performance of FNE-OGSFSand its
rivals in terms of the predictive accuracy, number of selected
features and running time are analyzed.

Tables 2, 3, 4 and 5 show the predictive accuracies of the
KNN, SVM,NB, andCARTclassifiers. The last two rows list

the win/tie/lose (abbreviated as W/T/L) counts and the aver-
age predictive accuracies of the algorithms on all datasets,
with bold font indicating the highest predictive accuracy.
Tables 6 and 7 show the number of selected features and
running times of the nine algorithms, respectively. Specifi-
cally, we discuss the following.

To more intuitively confirm the algorithm effectiveness,
we plotted spider web graphs to depict the average predic-
tive accuracy on each classifier, as shown in Fig. 6, where the
red line represents the predictive accuracy of our proposed
algorithm on each dataset. Tables 2, 3, 4 and 5 and Fig. 6
show that FNE-OGSFS performs significantly better than
the other comparison algorithms in terms of overall classifi-
cation performance. The average predictive accuracy reaches
the maximum on all classifiers, and the win counts achieve
the highest among all comparison algorithms. By intra-group
feature selection, our proposed algorithm select features with
high significance. During the online interaction analysis,
FNE-OGSFS leave the features with interaction. The exper-
imental results show that this strategy is effective and the
selected features can achieve high prediction accuracy. Com-
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(a) COLON (b) DLBCL (c) LEUKEMIA

(d) LYMPHOMA (e) SRBCT (f) Lung Cancer

(g) Ovarian Cancer (h) ARCENE (i) MADELON

Fig. 3 Predictive accuracy varying with different values of δ and G on nine high-dimensional datasets

(a) Wdbc (b) LEUKEMIA (c) MADELON

Fig. 4 Running time varying with different values of δ and G on three representative datasets
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(a) Wdbc (b) LEUKEMIA (c) MADELON

Fig. 5 Number of selected features varying with different values of δ and G on three representative datasets
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(b) SVM
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(c) NB
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Fig. 6 Spider web diagram showing the predictive accuracy of thirteen datasets on four classifiers

pared with online streaming feature selection methods, the
FNE-OGSFSmethodperforms significantly better ongenetic
datasets. Because the algorithm can handle the fuzziness and
uncertainty of genetic datasets well by using the uncertainty
measures based on fuzzy neighborhood symmetric uncer-
tainty. Compared with the FNRS-based feature selection
methods, our algorithm has a significant advantage because
our algorithm incorporates the coincidencedegree that allows
the selection of highly separability features, which is benefi-
cial for classification.

Compared with the number of selected features, we find
that the proposed algorithm can achieve feature reduction.
In the last part of FNE-OGSFS, namely, online redundancy
analysis, redundant features can be effectively eliminated,
which is helpful in selecting fewer features. AlthoughGroup-
SAOLA and SFS-FI select fewer features, they are far less
accurate than our proposed algorithm and other comparison
algorithms. The features removed in the redundancy analysis

phase of our algorithm also do not degrade the classification
performance.

By comparing the time used by the algorithms, FNE-
OGSFS can achieve high efficiency when dealing with
low-dimensional datasets. However, its performance is poor
when dealing with high-dimensional datasets such as the
Lung Cancer and Ovarian Cancer datasets because the pro-
cess of computing fuzzy neighborhood granules consumes
considerable time. This situation is more evident in all
three comparison algorithms based on FNRS. Our algorithm
requires re-evaluation of the selected features and thus runs
slower. However, since we evaluate the interactivity and
redundancy of the selected features, we select more favor-
able and fewer features for classification, which performs
better in terms of compactness and accuracy.

In conclusion, FNE-OGSFS provides the best overall
performance on four classical classifiers. Although FNE-
OGSFS has a slightly longer running time, it achieves the
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highest average prediction accuracy and effectively removes
redundant features. It has been verified that FNE-OGSFS is
superior to the other compared algorithms on different types
of datasets.

Statistical significance analysis

To further explore the generalization ability of the FNE-
OGSFS algorithm systematically, the Friedman test and
Nemenyi post-hoc test are performed in this subsection to
assess the statistical significance of the algorithm [76]. The
average predictive accuracies of each algorithm on the thir-
teen datasets shown in Tables 4, 5, 6 and 7 are ranked from
lowest to highest before using the Friedman test, and the
rankings are divided equally when the performance is the
same. The Friedman statistic is described as

χ2
F = 12n

h (h + 1)

⎛

⎝
h∑

j=1

R2
j − h(h + 1)2

4

⎞

⎠ , (23)

FF = (n − 1) χ2
F

n (h − 1) − χ2
F

, (24)

where n and h are the number of datasets and algorithms,
respectively, and R j ( j = 1, 2, . . . , h) denotes the average
ranking of the j th algorithm over all datasets. The variable
χ2
F obeys the χ2 distribution with h − 1 degrees of freedom,

and the variable FF obeys the F distribution with h − 1
and (h − 1) (n − 1) degrees of freedom. To further obtain
the difference between the algorithms, the critical difference
(CD) of the mean rankings in the Nemenyi test is calculated
by

CDα = qα

√
h (h + 1)

6n
, (25)

where α represents the significance level of the Nemenyi
test and qα represents the critical value corresponding to the
number of comparison algorithms at a particular significance
level.

The average rankings of predictive accuracy of a particu-
lar algorithm on all datasets were acquired according to the
statistical tests provided in [76]. For the predictive accuracy
on thirteen datasets in Tables 2, 3, 4 and 5, the Friedman
tests were achieved by the comparison of FNE-OGSFS with
the other algorithms. The null hypothesis of the Friedman
test is established when all algorithms are equal in metrics of
predictive accuracy. Table 8 describes the average ranking of
the nine algorithms and the values of χ2

F and FF on the four
classifiers.

The FF distribution has 8 and 96 degrees of freedomwhen
n = 13 and h = 9, respectively. By checking the table, we
can obtain the value of χ2

F (8) in the χ2
F distribution as 13.36 Ta
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Fig. 7 The test of Nemenyi on four classifiers

and F (8, 96) in the F distribution as 1.74 when the sig-
nificance level is = 0.1. From the results in Table 8, we
can see that the values of χ2

F and FF on four classifiers are
greater than their values on χ2

F (8) and F (8, 96). That is,
all null hypotheses are rejected, which demonstrates that the
performances of these algorithms are significantly different.
Further post-hoc tests are performed next to obtain the differ-
ence between the algorithms. The critical value q0.1 is 2.855
when h = 9 and then the critical range CD0.1 is 3.0663. To
more intuitively compare the differences of the algorithms,
a graph is introduced to connect the methods that do not dif-
fer significantly from each other, in which the critical values
among all algorithms can be clearly illustrated. Fig. 7 shows
the comparison of FNE-OGSFS with the other algorithms
on four classifiers, where the critical value and its range are
shown above the axis, the coordinate axis plots the average
ranking values for each algorithm, and the average ranking
of the left-hand side is the lowest. The horizontal lines are
used to connect the algorithms with no significant difference,
which indicates that any two algorithms with a difference in
average ranking less than the value of CD are connected by
the red line.

As shown in Fig. 7, the significant difference among the
nine algorithms are obvious. FNE-OGSFS performs signif-
icantly better than the other algorithms on four classifiers.
In some cases, the significance of the algorithms on differ-
ent classifiers is slightly different, e.g., Group-SAOLA has
the lowest average ranking on NB and CART classifiers, but
not on the other classifiers. FNE-OGSFS has the same group
as FNPME-FS and OGSFS-FI, which means the differences
among the three algorithms are not obvious. However, the
difference in their average rankings is very close to the crit-
ical value on most classifiers, so it can still be concluded
that FNE-OGSFS excels against the two compared methods.
In summary, FNE-OGSFS outperforms the other eight com-
pared algorithms overall.

Conclusion and future work

In this paper, we proposed a novel online group stream-
ing feature selection method, named FNE-OGSFS. First,
a new separability measure was investigated, and some
fuzzy neighborhood entropy-based uncertainty measures
were expanded, inspired by both algebra and information
views. Second, intra-group feature selection was performed
according to the significance of features. Then, interactive
feature selection was devised in an online manner for fea-
tures that flow into the feature space. Finally, the Lasso
model was applied to online redundancy analysis. Compared
to some state-of-the-art online streaming feature selection
methods and traditional feature selection methods based
on FNRS, FNE-OGSFS demonstrated better comprehensive
performance.

In futurework,wewill further optimize themethod, focus-
ing on how to select the best parameters automatically and
improve the computational efficiency of the algorithm and
achieve an optimal balance on high-dimensional datasets.
Moreover, research on incremental feature selectionwith fea-
ture streams and data streams based on fuzzy neighborhood
rough sets will receive more attention.
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