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Abstract
The number of solutions obtained is too large to provide a set of solutions with good performance in the nearby area of
the true Pareto front when problem-specific preferences are unavailable. Therefore, this paper proposes a knee point-driven
many-objective pigeon-inspired optimization algorithm (KnMAPIO). An environmental selection strategy based on knee-
oriented dominance is proposed to improve selection pressure and population diversity. In addition, a new velocity updating
equation with Gaussian distribution, Cauchy distribution and Levy distribution is proposed in this paper to provide new search
directions and reduce the possibility of falling into local optima. Two types of experiments are carried out in this paper: one is
to compare the proposed method with four other algorithms on the knee-oriented benchmark PMOPs to verify the algorithm’s
performance in detecting the knee points and the knee region; another is to compare the proposed method with eight other
state-of-the-art algorithms on the classic benchmark DTLZ andWFG. The results of both experiments verify the effectiveness
of the proposed algorithm and the ability to approximate to the true Pareto front.

Keywords Knee point · Knee-oriented dominance · Many-objective optimization · Pigeon-inspired algorithm · Preference

Introduction

Multi-objective optimization problems (MOPs) that have
multiple conflicting objectives are widely used in real-world
applications in the areas of production management, eco-
nomic planning, engineering design, and system control
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[1–3]. To solve these MOPs, researchers have proposed a
number of multi-objective swarm intelligence optimizations
and multi-objective evolutionary algorithms (MOEAs). As
the complexity of an MOP increased, the concept of many-
objective optimization problems (MaOPs), which have more
than three objectives, is put forward.

Over the past few years, research on MOEAs for solving
MaOPs has made significant advances. Some of this research
is based on the Pareto-dominance relationship, such as the
NSGA-III [4] and SPEA2 [5], which have good performance
in low-dimensional search spaces. Some of this research is
based on performance indicators, such as HypE [6], assign-
ing corresponding fitness value to each solution according
to the hypervolume indicator value. Some algorithms are
based on a decomposition approach, such as MOEA/D [7]
and MOEA/DD [8], decomposing the multi-objective opti-
mization problems into multiple optimization subproblems
and solving them separately. Others are based on a prefer-
ence approach, such as in [9, 10]. Although MOEAs have
been widely studied, their insufficient performance in solv-
ingMaOPs has prompted researchers to devote their attention
to the field of swarm intelligence algorithms [11].

Swarm intelligence algorithms are optimization algo-
rithms that simulate the intelligent behavior of certain insects
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and animals in nature, and that display superior performance
in solving complex problems. Swarm intelligence optimiza-
tion algorithms include the classical ant colony algorithm
(ACO) [12, 13], particle swarm algorithm (PSO) [14, 15],
cuckoo search algorithm (CS) [16], bat algorithm (BA) [17,
18], and the pigeon-inspired algorithm (PIO) [19], the last
of which is studied in this paper. In addition, several hybrid
bio-inspired optimization approaches have been proposed,
such as in the literature [20–22].

The PIO algorithm, which simulates the spontaneous
homing behavior of pigeons, was proposed by Duan et al.
[23] in 2014, to solve complex problems, such as the air
robot path planning problem.

The PIO algorithm has been the subject of much research
due to its advantages, such as its simple principle, its
robustness and its requiring few parameters to be adjusted.
Researchers have turned to the multi-objective pigeon-
inspired optimization (MPIO) algorithm to improve the
algorithm’s performance in solving complex problems and
to apply it in a variety of fields [24–26]. However, with the
advent of MaOPs, the performance of MPIO algorithms was
deemed insufficient, leading to the proposal of the many-
objective pigeon-inspired algorithm (MAPIO), taking into
consideration four, six, eight, and ten objectives [27].

Although some measures have been taken to improve the
performance of the Pareto-dominance mechanism, the selec-
tion of individuals and the convergence are not guaranteed,
and the limitations of non-dominance solutions produced by
MAPIO become more prominent in MaOPs. Therefore, this
paper proposes the knee point-drivenmany-objective pigeon-
inspired optimization algorithm (KnMAPIO). Theknee point
is one of the Pareto optima solutions, where a slight improve-
ment of one objective will lead to serious degradation of at
least one other objective [28] in multi-objective optimiza-
tion problem. It provides a set of solutions closer to the true
Pareto front for individual selection when problem-specific
preferences are unavailable [29].

The two main contributions of this article are as follows:
(1) A novel many-objective pigeon-inspired optimization

algorithm based on knee point is proposed. An environmen-
tal selection strategy based on knee-oriented dominance is
proposed for the individual selection, and the selection pres-
sure and the diversity of the population are improved through
full use of extreme points and boundary points. The proposed
algorithm provides a new scheme for the swarm intelligence
algorithm to solve high-dimensional problems.

(2) Also a new velocity updating equation has been
proposed with Gaussian distribution [30, 31], Cauchy dis-
tribution [32], and Levy distribution [33] to reduce the
possibility of falling into local optimality. With the change
in the iteration stage, the distribution strategies used were
adjusted to improve the search performance of the algorithm.

The rest of this paper is organized as follows. In the next
section, the related work of the pigeon-inspired optimiza-
tion algorithm and knee-oriented algorithms is described.
The details of the proposed KnMAPIO algorithm are given
in “The proposed algorithm for many-objective optimiza-
tion”. In the next section, the performance of the proposed
KnMAPIO algorithm and four other algorithms is tested on
the knee-oriented benchmark PMOPs, and the comparison
results of the eight algorithms on the WFG and DTLZ test
functions are discussed. The conclusions and directions for
future work are summarized in the last section.

Related work

The PIO algorithm [23] simulates the behavior of pigeons’
spontaneous homing. It is composed of two independent
loops. In thefirst loop, themap and compass operator are used
to search the target space globally, and in the secend loop,
the landmark operator is used to search the solution space
locally. Many scholars have modified the PIO and applied
it to different fields [34, 35]. Li et al. [36] proposed a novel
pigeon-inspired optimization algorithm with edge potential
function and simulated annealing for the task of detecting
targets in unmanned aerial vehicles (UAVs). Duan et al. [37]
proposed a collaborative controlmethodwith a predation and
escape pigeon-inspired algorithm for UAVs, which uses the
inner and outer ring controller to solve the problem of tight
formation cooperative control. Hai et al. [38] introduced a
double strategic evolutionary game into PIO to improve the
coordination and the search efficiency.

As the scale of the problem increases, the MPIO is pro-
posed accordingly. Qiu et al. [39] proposed a variant of PIO,
called multi-objective PIO, which is used in the parame-
ter design of brushless direct current motors, and it uses
the Pareto sorting scheme [40] and consolidation operator
to enhance the selection pressure of the individuals. Liang
et al. [41] proposed an MPIO algorithm with self-organizing
multimodal properties and improved the space division of
the solution set by the special crowding distance, which
makes solving multimodal problems more efficiently. Duan
et al. [42] proposed a novel MPIO with a limit cycle-based
mutant mechanism to produce new solutions and search
directions, and it has good performance in terms of the diver-
sity and accuracy of solutions. Shang et al. [43] proposed a
multi-objective pigeon-inspired optimization algorithm for
community detection with objective functions of negative
ratio association and ratio cut and adjusted the representation
and update of pigeons to an adaptive process by introducing
genetic operators.

With the emergence of MaOPs, the existing MPIO algo-
rithm proved unable to provide sufficient selection pressure
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and solving accuracy. Cui et al. [27] proposed a pigeon-
inspired optimization algorithm for many-objective opti-
mization problems (MAPIO), which uses the BFE approach
[15] and the external archive approach [15] to improve the
selection capacity of the individuals.

However, the performance of MAPIO proved insufficient
when user or problem-specific preferences were not avail-
able. To solve this problem, this paper introduces a knee
point mechanism to supply Pareto dominance, and proposes
a novel many-objective pigeon-inspired optimization algo-
rithm based on knee point. In many-objective optimization
problems, the knee points are a subset of the Pareto optimal
solutions, in which the improvement of one objective will
result in serious degradation of at least one other objective
[44]. Therefore, the solutions in the knee area of the Pareto
front are selected preferentially. Zhang et al. [29] proposed
an adaptive strategy to identify knee points in a small neigh-
borhood for solving MaOPs. Their research proved that a
large hypervolume will be obtained if the knee solutions
are selected preferentially in many-objective optimization
problems. This means that the convergence and the diversity
of the algorithm are guaranteed by locating the local knee
point of the non-dominant front. Yue et al. [45] proposed a
knee point-driven multi-objective particle swarm optimiza-
tion algorithm. Their research indicated that the knee point
mechanism can select the local and global optimal particles
effectively, and the proposed algorithm was used to solve
sparse reconstruction in compressed sensing. Zou et al. [46]
proposed a new prediction strategy with center point and
knee points to solve dynamic MOPs, and the location and
distribution of the Pareto front after environmental change
can be predicted accurately by introducing the knee set into
the predicted population. Yu et al. [47] put forward a priori
knee identification multi-objective evolutionary algorithm
with α-dominance, which can speed up the convergence rate
and reduce misleading search processes by eliminating the
dominance-resistant solutions (DRSs) in the search for knee
solutions. Yu et al. [48] proposed a new MOEA for locating
the knee point area by using two local dominance rela-
tionships, α-dominance and knee-oriented dominance. The
α-dominance guided the search of different potential knee
regions and eliminated DRSs. The knee-oriented dominance
provided the precise identification of the concave knee region
and identified as many knee points as possible. In this paper,
according to the knee-oriented dominance strategy, the final
solution set is obtained by selecting the non-dominant indi-
viduals in the critical layer.

Inspired by these studies, we introduce the environ-
ment selection based on knee-oriented dominance into the
many-objective pigeon-inspired algorithm and modify the
individual velocity update equation to improve the conver-
gence of the proposed algorithm.

The proposed algorithm for many-objective
optimization

In this section, the proposed KnMAPIO algorithm is
described in detail. First, the general framework of KnMA-
PIO is presented. Next, the knee point-driven environment
selection, the novel velocity update equation, and the archive
update are introduced. Finally, the computational complexity
of the proposed algorithm is discussed.

The general framework of the proposed algorithm

The general framework of the proposed KnMAPIO is pre-
sented in Algorithm 1. First, the initialization process of the
population is performed, where population P is randomly
initialized, and the external archive set A is set to null. For
each individual pi in the population P , the position Xi is ran-
domly initialized, the velocity Vi is set to 0, and the fitness
value of each individual pi is calculated. At the same time,
the local center point Pcenter of the population is calculated.
Then, as shown in lines 8–9, the non-dominated individu-
als in population P are placed as the elite individuals in the
external archive set A, and the corresponding fitness values
are calculated. Next, the main evolutionary process is carried
out. The position Xi and the velocity Vi of individual pi are
updated by formula (3) and formula (4) in “Novel velocity
update equation”. In so doing, a new population is obtained,
and the fitness values of all individuals in the new popu-
lation are calculated. Next, the local best individual pbesti
and local center points Pcenter of the population are obtained
through the individual dominance relationship and the corre-
sponding formula. In line 20, the knee-oriented dominance
environment selection strategy is implemented for the par-
ent population (P , Pcenter , Pbest , Archive, R) to generate
good performance solutions.Next, a new swarm S is obtained
by executing two evolutionary strategies—simulated binary
crossover (SBX) and polynomial-based mutation (PM) on
external archive A. The elite individuals are retained in the
archive A again through the update mechanism in “Archive
update”. This entire evolutionary process is repeated until the
maximum iteration is reached. Finally, the final population
P and the external archive A are obtained.

The knee point-driven environmental selection

In this section, the proposed knee point-driven environmen-
tal selection strategy is introduced. More specifically, this
solution adopts the knee-oriented dominance strategy in the
critical layer of Pareto dominance. Figure 1 depicts the
process of the environmental selection with knee-oriented
dominance. The entire solution space is divided into two
separate subspaces, S1 and S2, and the reference vectors in
the subspaces are R1 and R2, respectively. L1, L2, and L3
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are the stratifications of individuals in the population after
the Pareto dominance sorting. The aim of this strategy is to
select the individuals in the critical layer L3 into offspring.
Assume that A, B, C , and D are the knee points on layer
L3 (for the definition of knee point, refer to “Knee point”),
knee point A dominates knee point B in subspace S1, while
knee point C and knee point D do not dominate each other
in subspace S2 according to the knee-oriented dominance

described in “Knee-oriented dominance relationship”. Thus,
knee points A, C , and D as non-dominant individuals are
selected into the offspring. A new population is generated by
the entire above-mentioned evolutionary process. The strat-
egy also avoids premature convergence and improves the
insufficient selection pressure caused by Pareto dominance
strategy. Algorithms 2 and 3 in Sect. 3.2.3 introduce the pro-
cedure of environment selection in detail.
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Fig. 2 Example of the knee point

Knee point

The knee point is one point in the convex hull of individual
minima far from the hyperplane [48]. Figure 2 illustrates the
knee point in the Pareto front. A andC are the extreme points,
and they construct the hyperplane S. d is the maximum dis-
tance from point K (the knee points) on the Pareto front to
the hyperplane S.

Knee-oriented dominance relationship

Pareto dominance: For any two different solutions x , y ∈ S,
it holds that xdominates y, denoted by x ≺ y, if and only if

∀i ∈ {1, 2, . . . , m}, fi (x) ≤ fi (y) ∧ ∃
j ∈ {1, 2, . . . , m} f j (x) < f j (y). (1)

With the increase in the number of objectives, the Pareto
dominance mechanism will gradually lose its effect and all
the solutionswill become non-dominant to each other. At this
time, the selection pressure of the algorithmwill drop sharply.
The knee points in knee-oriented dominance are considered
as the points with better properties. The knee points and their
surrounding points were taken as the first selection criterion
for individuals, and the distance between the point and the
hyperplane formed by the extreme point was used to mea-
sure the performance of individuals, which was converted
into angle information. The appropriate dominance relation-
ship can improve the selection pressure in the potential knee
point region. As a result, the knee-oriented dominance rela-
tionship proposed in [48] is used in the environment selection
of KnMAPIO. The dominance relationship is defined in for-
mula 1.

Suppose there are two solutions M and N in the region
of the convex hull of individual minima, and Mdominates
Nwhen the following conditions are met:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(M , N ) �
〈−−−→
NidM ,

−−→
MN

〉

− τ

(

max{δi (M)}+
i�1.....m

min{δi (M)}
i�1.....m

)

δi (M) � arctan

⎛

⎝

√
∑m

j�1, j 
�i

(
f j (M) − f j (Nid)

)2

| fi (M) − max fi (E) − ε|

⎞

⎠,

(2)

where μ(M , N ) < 0 means that solution Mknee-

oriented dominates solution N .
〈−−−→
NidM ,

−−→
MN

〉
represents

the acute angle between the two vectors
−−−→
NidM and−−→

MN . τcontrols the size of the knee region, and τ ∈
[1/2, 1]2. max{δi (M)}+i�1.....m min{δi (M)}i�1.....m means
that the region size is dominated by solution Mwith the help
of extreme points. δi (M) is an acute angle determined by the
i thobjective value of solution M . fi (M) is the i thobjective
fitness value of individual M . εis a positive constant to guar-
antee that the denominator is not 0. Nid is the ideal point and
can be calculated as follows:

f j (Nid) � min f j (E) − ε, (3)

where E � {Ei |i � 1, 2, ...m } is the set of extreme points,
and εis a positive constant.

An example of the knee-oriented dominance relation-
ship can be seen in Fig. 3. M and N are two individuals,
Nid is the ideal point, φ is the acute angle between the
two vectors

−−−→
NidM and

−−→
MN , and δ2 � max{δi (M)}i�1.....m

and δ3 � min{δi (M)}i�1.....m represent that the solution M
knee-oriented dominates solution N when φ is smaller than
τ(δ2 + δ3). In addition, the dominance regions of individuals
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Fig. 3 Example of the knee-oriented dominance relationship

in a two-dimensional space can be seen in Fig. 4, where indi-
vidual M dominates individual N , and shadows and dashed
lines represent the corresponding dominance region of dif-
ferent individuals.

Processs of environmental selection

The process of knee point-driven environmental selection is
shown in Algorithm 2 . First, the offspring P is initialized

Fig. 4 Dominance region of individuals M and N

as an empty set, and the parent population Q is sorted as
L1, L2, · · · Ll according to the Pareto domination relation-
ship. The individuals in all layers L1, L2, · · · Ll−1 before
the critical layer Ll are placed into offspring P according to
the layer number in ascending order. Next, only a portion of
the individuals in the critical layer Ll can be selected into
the offspring P according to the knee-oriented dominance
selection strategy (refer to Algorithm 3), and the number of
individuals in this part is n − |P|, where n is the size of the
output offspring.
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Algorithm 3 introduces the knee-oriented dominance
selection strategy used in Algorithm 2 in detail. First, the ini-
tialization procedure is performed. Next, the solution space
is divided into different subspaces �i , and each subspace
is initialized to empty. Next, the solutions in the critical
layer are associated with the reference vector Rr in the near-
est subspace according to the grouping function, where C1,
C2 · · ·Ck stand for C1 subspace, C2 subspace, and Ck sub-
space. In lines 5–8, the individuals in subspaceCi are ordered
according to the knee-oriented dominance relationship, and
the front number is assigned to each individual. In line 7,
the solutions in different subpopulations are recombined in a
set u. Next, several sub-layers are grouped according to the
knee-oriented dominance front number. The selection proce-
dure in lines 10–14 is similar to the non-dominated sorting
process in NSGA-II [40]. All solutions in the critical layer
are sorted in ascending order according to the front number,
and the solutions with the same front number are sorted in
descending order by the crowding distance.

Novel velocity update equation

In this section, a novel velocity update equation is introduced,
and Gaussian distribution [30, 31], Cauchy distribution [32],
and Levy distribution [33] are used to improve search ability.
Specifically, the Cauchy distribution tends to global search
in the early iteration. The Levy distribution is used to update
the individuals of the population in the late iteration, so that
a few individuals can carry out local search and others can

carry out global search to reduce the possibility of falling
into local optimum to a certain extent. The introduction of
Gaussian distribution improves the centralized search abil-
ity, which improves the convergence speed of the algorithm.
These distributions are used at different stages to affect the
updating of velocity, in order to provide new search direc-
tions and reduce the possibility of the algorithm falling into
the local optimal.

The proposed update equation is as follows:

Vi (tnow) � e−Rtnow · Vi (tnow − 1)

+ r1 · Cauchy · tr · (
1 − logtnowT

)

· (
Xglo − Xi (tnow)

)

+ r3 · Levy · tr · logtnowT ·(Xcen − Xi (tnow))

+ r5 · G · (
Xglo − Xcen

)
, (4)

Xi (tnow) � Xi (tnow − 1) + Vi (tnow), (5)

where tnow represents the current iteration number, T repre-
sents the maximum iteration number, R denotes the map and
compass operator, and tr is the migration factor to ensure a
smooth transition between map and compass operator and
landmark operator. Cauchy, Levy, and G represent the
Cauchy distribution, Levy distribution, and Gaussian distri-
bution, respectively.

The search combinedwith the Levy distribution has a rela-
tively high probability of large stride in the process of random
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walk, thereby ensuring that the walk is not limited to a small
local area, which can increase the diversity of the population
and expand the search range. This provides a high probability
of other search directions in the later iterations of the popu-
lation. Gaussian distribution can search for large probability
and small range variation in individual local area. Therefore,
Gaussian distribution is introduced into the search process
to improve the local search ability of the algorithm, and the
velocity updating strategy of this part also affects the entire
algorithm iteration process. Cauchy distribution has thicker
and longer tails, the offspring generated in the algorithm will
be more dispersed, and the diversity of offspring population
will be better, which is more suitable for global optimization.
Therefore, we introduce Cauchy distribution into the search
process to improve the global search ability of the algorithm
in the early iteration process.

Xglo is the position information about the global best in
all individuals. The meaning of Xcen is the center position
information of some individuals in the current iteration, and
it can be calculated according to the formula (6).

Xcen �
∑nx1

j�1 S
X
1 j

nx1
SX
1 n

X
1 , (6)

where
∑nx1

j�1 S
X
1 j represents the sum of all solutions of indi-

viduals in the non-dominated set SX
1 , and nX

1 is the number
of the solutions in the set SX

1 .
The r1, r3 and r5 represent three learning factors and are

defined as follows:

ri �
{
0, 0 < rand() ≤ 1

M
1, 1

M < rand() ≤ 1
, (7)

where rand() is a random number between [0,1], and M
presents the number of objectives. The part ri located in for-
mula (4) will not influence the Vi (tnow) if ri is 0. With the
change of parameter M , Vi (tnow) will update dynamically
when ri is 1.

Archive update

Simulated binary crossover (SBX) [49] and polynomial-
based mutation (PM) [49] as another search pattern are used
to provide an additional search direction in the process of
the archive update, and then, the new solutions S are pro-
duced. In KnMAPIO, the archive update strategy [15, 50]
is also adopted to retain the elite solutions. Meanwhile,
elite individuals are selected and eventually retained in the
external archive by using the BFE method [15], which not
only ensures the convergence of the population but also

guarantees the diversity. These two methods can guide the
solutions approximate to the true PF. By comparing the
Pareto-dominance relationships between S and the external
archive A, archive A is updated until it reaches the terminal
condition.

Computational complexity

The computational complexity of the proposed algorithm
is mainly derived from the knee point-driven environment
selection and the archive update. The knee point-driven envi-
ronment selection includes non-dominance sorting and the
knee-oriented dominance sorting. The computational com-
plexity of the non-dominance sorting is O

(
N 2M

)
when the

population size is N and the objective vector dimension isM .
The knee-oriented dominance sorting is applied to the critical
layer of non-dominance sorting. For any two solutions, the
computational complexity is O(M) when the angle of two
solutions is calculated. The worst case is that all the solutions
are at the same layer, and the computational complexity of
knee-oriented dominance sorting is O

(
N 2M

)
at this time.

The computational complexity of the crowding distance is
O(M × N log N ), which is the same as that of NSGA-II
[40].

The computational complexity of the archive update is
mainly obtained by comparing the individuals in the pop-
ulation with the elite individuals in the archive set. Since
the archive size is usually selected in proportion to the size
of the population, the complexity is O

(
N 2M

)
in the worst

case. Overall, the computational complexity of the proposed
KnMAPIO is O

(
N 2M

)
.

Experimental results

The proposed algorithm KnMAPIO and other four algo-
rithms were tested on the knee−oriented benchmark PMOPs
to verify the performance of detecting the knee points
and the knee regions. KnMAPIO was also compared with
five state−of−the−artmany−objective algorithms and three
algorithms for the last 3 years on standard benchmarksDTLZ
and WFG to measure the degree to wihch the solutions
obtained by these algorithms dominate the true Pareto Front.
The experimental results were analyzed numerically, a pro-
cess that has been applied in many other fields [51–53].

All the comparative experiments in this paper were run on
PlatEMO proposed by Tian et al. [54] in MATLAB 2016b,
using the Intel Xeon Gold 5222CPU@ 3.80 GHz and 64 GB
RAM. The operating system used in this paper is 64−bit
Microsoft 10 and based on the × 64 processor.
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Table 1 Parameter setting for the
PMOPs test functions Test function Number of

objectives (M)
Number of
decision
variables (N )

Parameters in
k(x)(A, B, s, p, l)

Number of
convex knees

PMOP 1 3,5,8,10 m + 9 (4, 1, -1, 1) [A/2]m−1

PMOP 2,3,8,11,12 3,5,8,10 m + 9 (4, 1, 2, 1) [A/2]m−1

PMOP 5 3,5,8,10 m + 9 (1, 1, 2, 1, 12) [2 ∗ A]m−1

PMOP 6,9 3,5,8,10 m + 9 (2,1,2,1) [A − 1]m−1

PMOP 13 3,5,8,10 m + 9 (2,1,-2,1) ∞
PMOP 14 3,5,8,10 m + 9 (2,1,-1,1) ∞

Verification of the performance of KnMAPIO
to identify knee points

Benchmark problems and experimental settings

PMOPs are a classic test suite with complex knee
regions for assessing the accurate identification
capability of the knee point [55]. The PMOPs
PMOP1−PMOP3, PMOP5−PMOP6, PMOP8−PMOP9,
and PMOP11−PMOP14 were selected as the test exam-
ples to measure the performance of the algorithm. All the
parameters in these test problems are listed in Table 1. M
denotes the number of objectives, which is set as 3, 5, 8,
and 10 in this experiment, and the corresponding population
number is 105, 126, 156, and 275, respectively. N represents
the number of decision variables. k(x) is the function of
knee regions, and (A, B, s, p, l) is a set of parameters
controlling the shape and the number of knee regions. The
algorithms were run 30 times independently for each test
function.

In this experiment, five algorithms including KnEA [29],
LA-MOEA [47], LBD-MOEA [48], MAPIO [27], and the
proposed KnMAPIO were compared to verify the perfor-
mance in identifying knee points. All parameters were set
as recommended in the original papers. Among them, the
rate of knee points was 0.5 in KnEA [29]. In LA-MOEA,
the parameter about the localized α-dominance was set to
α � 0.75 [34]. In LBD-MOEA, the (H1, H2) was set to (1,
5), (1, 3), (1, 2), and (1, 3) for the generation of the reference
vector with 3, 5, 8, and 10 objectives, and for other param-
eters, refer to [48]. For KnMAPIO, the setting of parameter
τ in knee-oriented dominance was similar to that of LBD-
MOEA. For a fair comparison, we set the same parameters
as MAPIO [23], including the transition factor tr as 1, and
the map and compass factor R as 0.3.

Performance measures

To measure the performance of the proposed algorithm
KnMAPIO and other algorithms on benchmark PMOPs,

two indicators were used: knee-driven generational distance
(KGD) [55] and knee- driven inverted generational distance
(KIGD) [55].

(1) KGD
KGD indicates the proximity of the solutions to the

reference points in the Pareto Front knee region, which
can evaluate the convergence performance of the proposed
algorithm. The smaller the KGD value, the better is the con-
vergence performance. KGD can be calculated as follows:

KGD � 1

|Q|
|Q|∑

i�1

d(vi , R), (8)

where Q is the approximation solution set obtained by the
algorithm, R represents a reference points set that is dis-
tributed in the knee region uniformly, and d(vi , R) denotes
the Euclidean distance between point vi belongs to approx-
imation solution set Q and the closest reference point in set
R.

(2) KIGD
KIGD indicates the extent to which the solution obtained

by the algorithm covers the knee region. The smaller the
KIGD value, the better is the diversity performance. This
means that the solutions obtained by the algorithm can cover
the knee region extensively. KIGD can be calculated by the
formula (9):

K IGD � 1

|R|
|R|∑

i�1

d(vi , Q), (9)

where Q is the approximation solution set obtained by the
algorithm. R represents a reference points set that is uni-
formly distributed in the knee region, and d(vi , Q) denotes
the Euclidean distance between point vi belongs to approx-
imation solution set R and the closest reference point in set
Q.

123



4286 Complex & Intelligent Systems (2022) 8:4277–4299

Ta
bl
e
2
T
he

K
G
D
va
lu
e
of

fiv
e
al
go
ri
th
m
s
fo
r
di
ff
er
en
to

bj
ec
tiv

es
in

th
e
PM

O
P
te
st
pr
ob
le
m
s

Pr
ob
le
m

M
D

K
nE

A
L
A
_M

O
E
A

L
B
D
_M

O
E
A

M
A
PI
O

K
nM

A
PI
O

PM
O
P1

3
12

1.
84
69
e−

3
(2
.4
4e

−4
)
�

1.
43
22
e−

3
(1
.3
5e

−4
)
+

1.
40
16
e−

3
(1
.1
9e

−4
)
+

1.
99
81
e−

3
(3
.3
6e

−4
)
�

1.
92
13
e−

3
(2
.0
6e

−4
)

5
14

2.
23
93
e−

2
(2
.7
9e

−3
)
+

1.
63
26
e−

2
(1
.3
8e

−3
)
+

1.
69
90
e−

2
(1
.3
3e

−3
)
+

4.
42
79
e−

2
(7
.9
5e

−3
)
−

3.
36
08
e−

2
(3
.5
9e

−3
)

8
17

7.
74
01
e−

2
(2
.0
0e

−2
)
+

5.
37
10
e−

2
(4
.1
6e

−3
)
+

5.
58
73
e−

2
(4
.3
0e

−3
)
+

1.
84
05
e−

1
(4
.1
4e

−2
)
�

1.
83
34
e−

1
(1
.7
8e

−2
)

10
19

9.
64
44
e−

2
(6
.0
9e

−2
)
+

6.
15
21
e−

2
(5
.4
7e

−3
)
+

6.
23
54
e−

2
(6
.7
6e

−3
)
+

1.
65
43
e−

1
(8
.1
1e

−2
)
+

2.
30
85
e−

1
(3
.9
6e

−2
)

PM
O
P2

3
12

1.
95
65
e −

3
(2
.9
0e

−3
)
−

3.
16
85
e−

3
(9
.4
4e

−4
)
−

2.
98
04
e−

3
(8
.0
7e

−4
)
−

7.
05
34
e−

4
(4
.9
1e

−5
)
+

7.
64
79
e−

4
(3
.3
3e

−5
)

5
14

1.
88
91
e−

2
(9
.1
7e

−3
)
−

5.
73
50
e−

3
(5
.8
1e

−4
)
−

6.
14
27
e−

3
(7
.6
1e

−4
)
−

1.
10
61
e−

1
(4
.7
3e

−1
)
−

5.
21
27
e−

3
(1
.3
5e

−4
)

8
17

2.
88
14
e+

0
(1
.2
6e
+
0)

−
1.
28
64
e−

2
(2
.0
2e

−3
)
−

1.
24
21
e−

2
(2
.6
9e

−3
)
�

1.
15
15
e−

2
(1
.6
2e

−3
)
�

1.
17
69
e−

2
(9
.6
4e

−4
)

10
19

3.
21
56
e+

0
(2
.1
2e
+
0)

−
2.
08
47
e−

2
(9
.1
8e

−3
)
−

1.
89
09
e−

2
(5
.6
8e

−3
)
−

1.
34
02
e−

2
(1
.7
7e

−3
)
�

1.
24
15
e−

2
(1
.8
1e

−3
)

PM
O
P3

3
12

9.
36
79
e−

2
(1
.3
9e

−1
)
−

1.
45
63
e−

2
(1
.4
9e

−2
)
−

1.
31
53
e−

2
(1
.0
7e

−2
)
−

2.
85
56
e−

3
(5
.0
7e

−3
)
−

2.
06
14
e−

3
(2
.3
6e

−3
)

5
14

3.
04
32
e+

0
(1
.0
7e
+
0)

−
1.
55
11
e−

2
(1
.0
5e

−2
)
−

1.
62
46
e−

2
(8
.4
4e

−3
)
−

6.
30
91
e−

2
(2
.5
8e

−1
)
−

6.
31
05
e−

3
(1
.4
1e

−3
)

8
17

7.
10
34
e+

0
(1
.9
0e
+
0)

−
1.
34
08
e−

2
(7
.5
8e

−3
)
�

1.
24
94
e−

2
(4
.7
8e

−3
)
�

1.
39
03
e+

0
(2
.9
6e
+
0)

−
1.
16
17
e−

2
(3
.3
1e

−3
)

10
19

5.
04
61
e+

0
(2
.7
1e
+
0)

−
1.
01
55
e−

1
(4
.5
2e

−2
)
−

1.
03
63
e−

1
(4
.9
8e

−2
)
−

1.
33
61
e+

0
(2
.1
0e
+
0)

−
7.
00
70
e−

2
(1
.3
0e

−1
)

PM
O
P5

3
12

3.
30
07
e+

0
(8
.5
8e
+
0)

�
7.
21
12
e−

1
(9
.6
0e

−1
)
�

1.
03
58
e+

0
(8
.9
2e

−1
)
�

3.
80
80
e+

3
(1
.4
1e
+
4)

�
1.
16
29
e+

0
(1
.9
0e
+
0)

5
14

1.
33
26
e+

1
(2
.2
8e
+
1)

−
9.
36
91
e−

1
(5
.2
1e

−1
)
�

9.
21
24
e−

1
(9
.9
4e

−1
)
�

1.
75
50
e+

4
(3
.4
7e
+
4)

�
1.
26
84
e+

0
(2
.0
9e
+
0)

8
17

1.
42
01
e+

3
(1
.4
3e
+
3)

−
2.
11
25
e+

0
(1
.9
3e
+
0)

−
1.
50
23
e+

0
(1
.2
3e
+
0)

�
1.
62
64
e+

4
(5
.0
2e
+
4)

−
9.
19
05
e−

1
(4
.4
6e

−2
)

10
19

3.
20
18
e+

4
(9
.1
3e
+
4)

−
2.
20
11
e+

1
(1
.1
5e
+
1)

−
2.
44
39
e+

1
(1
.1
0e
+
1)

−
5.
86
93
e+

4
(6
.7
2e
+
4)

−
1.
78
80
e+

0
(3
.4
4e
+0

)

PM
O
P6

3
12

1.
32
13
e−

1
(1
.8
2e

−1
)
−

2.
32
07
e−

2
(4
.6
4e

−2
)
�

4.
30
35
e−

3
(1
.2
1e

−2
)
�

1.
30
16
e−

3
(2
.7
3e

−4
)
�

1.
50
43
e−

3
(2
.9
7e

−4
)

5
14

3.
52
10
e+

0
(2
.3
5e
+
0)

−
1.
14
92
e−

1
(1
.3
8e

−1
)
−

5.
95
28
e−

2
(7
.5
2e

−2
)
−

5.
59
49
e−

1
(2
.4
6e
+
0)

−
1.
00
83
e−

2
(8
.7
0e

−4
)

8
17

5.
58
65
e+

2
(2
.0
8e
+
2)

−
1.
08
50
e+

0
(1
.3
1e
+
0)

−
5.
90
12
e−

1
(4
.6
9e

−1
)
�

3.
77
60
e+

1
(5
.9
3e
+
1)

�
3.
64
19
e−

1
(8
.0
6e

−2
)

10
19

8.
28
70
e+

3
(8
.0
1e
+
3)

−
2.
36
91
e+

2
(3
.4
8e
+2

)
+

2.
78
26
e+

2
(3
.9
4e
+
2)

+
1.
80
33
e+

3
(1
.9
5e
+
3)

�
1.
66
98
e+

3
(1
.2
3e
+
3)

PM
O
P8

3
12

2.
78
07
e−

3
(3
.4
4e

−3
)
−

1.
15
18
e−

3
(1
.5
7e

−4
)
−

1.
13
38
e−

3
(2
.1
8e

−4
)
−

5.
62
64
e−

4
(4
.5
7e

−5
)
�

5.
89
72
e−

4
(2
.9
1e

−5
)

5
14

2.
69
41
e−

2
(7
.7
7e

−3
)
−

3.
19
81
e−

3
(3
.5
6e

−4
)
+

3.
21
31
e−

3
(3
.4
9e

−4
)
+

3.
09
57
e−

3
(4
.6
5e

−4
)
+

3.
67
20
e−

3
(1
.3
6e

−4
)

8
17

1.
94
09
e−

1
(4
.4
0e

−2
)
−

3.
27
94
e−

3
(7
.5
6e

−4
)
+

3.
11
64
e−

3
(4
.2
3e

−4
)
+

6.
39
88
e−

3
(1
.2
8e

−3
)
+

8.
36
14
e−

3
(3
.5
7e

−4
)

10
19

1.
47
87
e−

1
(2
.4
5e

−2
)
−

2.
10
42
e−

2
(8
.7
2e

−3
)
−

2.
04
19
e−

2
(7
.1
4e

−3
)
−

1.
25
30
e−

2
(6
.1
3e

−3
)
�

9.
62
05
e−

3
(1
.5
9e

−3
)

PM
O
P9

3
12

1.
91
94
e−

2
(8
.4
3e

−3
)
−

1.
36
88
e−

2
(8
.5
3e

−3
)
−

1.
15
80
e−

2
(6
.5
0e

−3
)
−

4.
58
41
e−

2
(6
.1
6e

−2
)
−

9.
96
30
e−

4
(7
.8
0e

−4
)

5
14

2.
88
07
e−

1
(7
.5
8e

−2
)
−

1.
51
71
e−

2
(8
.8
3e

−3
)
−

1.
69
58
e−

2
(7
.9
4e

−3
)
−

2.
46
22
e−

2
(2
.6
8e

−2
)
−

7.
39
74
e−

3
(5
.2
6e

−3
)

123



Complex & Intelligent Systems (2022) 8:4277–4299 4287

Ta
bl
e
2
(c
on
tin

ue
d)

Pr
ob
le
m

M
D

K
nE

A
L
A
_M

O
E
A

L
B
D
_M

O
E
A

M
A
PI
O

K
nM

A
PI
O

8
17

9.
57
97
e−

1
(2
.5
0e

−1
)
−

2.
63
75
e−

2
(9
.7
7e

−3
)
+

2.
80
23
e−

2
(1
.6
6e

−2
)
+

8.
78
55
e−

2
(1
.3
5e

−1
)
−

6.
18
33
e−

2
(3
.9
7e

−2
)

10
19

1.
51
76
e+

0
(2
.8
9e

−1
)
−

8.
30
21
e−

2
(3
.7
2e

−2
)
+

7.
67
61
e−

2
(2
.5
7e

−2
)
+

2.
80
71
e−

1
(2
.8
1e

−1
)
+

5.
32
58
e−

1
(3
.0
3e

−1
)

PM
O
P1

1
3

12
4.
02
25
e−

3
(4
.9
2e

−3
)
−

6.
64
03
e−

3
(6
.8
9e

−3
)
−

1.
26
64
e−

2
(1
.3
3e

−2
)
−

7.
35
91
e−

4
(2
.4
6e

−4
)
�

8.
13
30
e−

4
(5
.0
6e

−5
)

5
14

6.
80
24
e−

2
(3
.3
7e

−2
)
−

1.
31
09
e−

1
(1
.0
3e

−1
)
−

2.
82
82
e−

1
(3
.1
1e

−1
)
−

1.
12
23
e−

2
(2
.3
5e

−3
)
+

1.
30
67
e−

2
(4
.6
5e

−4
)

8
17

9.
02
47
e+

0
(3
.3
9e
+
0)

−
3.
53
81
e−

1
(1
.6
8e

−1
)
−

3.
50
49
e−

1
(1
.5
0e

−1
)
−

4.
53
20
e−

2
(6
.8
3e

−3
)
�

4.
46
66
e−

2
(1
.3
1e

−3
)

10
19

8.
32
57
e+

0
(4
.6
7e
+
0)

−
8.
78
00
e−

1
(4
.7
6e

−1
)
−

7.
06
04
e−

1
(3
.5
9e

−1
)
−

7.
53
71
e−

2
(1
.7
6e

−2
)
−

5.
03
04
e−

2
(3
.5
0e

−3
)

PM
O
P1

2
3

12
1.
71
02
e−

2
(2
.8
9e

−2
)
−

1.
91
03
e−

4
(1
.0
3e

−4
)
�

7.
78
03
e−

4
(1
.9
4e

−3
)
�

1.
36
22
e−

4
(4
.2
0e

−5
)
�

1.
72
67
e−

4
(6
.9
3e

−5
)

5
14

4.
83
86
e−

1
(1
.1
3e

−1
)
−

3.
21
92
e−

3
(6
.6
1e

−3
)
�

2.
53
59
e−

3
(4
.6
6e

−3
)
−

1.
15
88
e−

1
(3
.8
0e

−1
)
�

3.
59
54
e−

4
(1
.3
5e

−4
)

8
17

4.
72
59
e−

1
(1
.9
3e

−1
)
−

2.
87
34
e−

4
(1
.3
7e

−4
)
+

3.
60
82
e−

4
(1
.8
5e

−4
)
+

3.
69
56
e−

1
(5
.3
4e

−1
)
�

1.
36
24
e−

3
(3
.1
3e

−3
)

10
19

1.
70
12
e−

1
(1
.9
3e

−1
)
−

1.
33
72
e−

3
(4
.9
0e

−4
)
+

1.
39
64
e−

3
(4
.7
9e

−4
)
+

1.
24
53
e−

1
(2
.7
3e

−1
)
�

4.
17
43
e−

2
(4
.1
3e

−2
)

PM
O
P1

3
3

12
4.
25
88
e−

2
(2
.7
2e

−2
)
−

2.
35
06
e−

2
(1
.2
3e

−2
)
−

2.
70
68
e−

2
(1
.8
3e

−2
)
−

4.
98
23
e−

2
(1
.0
6e

−1
)
−

1.
70
25
e−

3
(3
.1
9e

−4
)

5
14

1.
38
74
e+

0
(4
.5
7e

−1
)
−

3.
04
77
e−

1
(2
.0
6e

− 1
)
−

2.
93
64
e−

1
(2
.2
1e

−1
)
−

4.
38
72
e−

1
(5
.2
7e

−1
)
−

9.
79
55
e−

2
(9
.7
0e

−3
)

8
17

4.
47
65
e+

1
(3
.1
4e
+
1)

−
1.
99
12
e+

0
(1
.9
3e
+0

)
+

2.
16
35
e+

0
(1
.4
5e
+
0)

+
2.
58
93
e+

1
(1
.8
9e
+
1)

−
1.
03
05
e+

1
(1
.0
3e
+
1)

10
19

1.
04
12
e+

2
(1
.6
1e
+
2)

+
1.
00
88
e+

1
(4
.9
6e
+
0)

+
8.
92
63
e+

0
(5
.6
6e
+0

)
+

8.
74
74
e+

1
(6
.4
2e
+
1)

+
2.
31
84
e+

2
(1
.3
8e
+
2)

PM
O
P1

4
3

12
2.
65
51
e−

2
(6
.5
5e

−2
)
−

3.
49
55
e−

2
(5
.0
1e

−2
)
−

1.
77
31
e−

2
(2
.1
2e

−2
)
−

1.
04
37
e−

3
(3
.7
7e

−4
)
�

1.
01
94
e−

3
(2
.8
4e

−4
)

5
14

2.
28
93
e+

0
(1
.5
1e
+
0)

−
1.
80
49
e−

1
(1
.4
6e

−1
)
−

1.
62
38
e−

1
(1
.9
2e

−1
)
−

1.
43
98
e+

0
(6
.3
1e
+
0)

−
2.
43
40
e−

2
(3
.1
1e

−3
)

8
17

4.
27
72
e+

1
(2
.4
8e
+
1)

−
2.
19
39
e−

1
(1
.1
1e

−1
)
+

1.
97
90
e−

1
(1
.6
4e

−1
)
+

6.
88
81
e+

1
(5
.9
0e
+
1)

−
4.
13
84
e−

1
(7
.8
1e

−2
)

10
19

4.
61
06
e+

1
(5
.4
5e
+
1)

�
9.
50
97
e−

1
(6
.2
8e

−1
)
+

8.
85
81
e−

1
(4
.0
1e

−1
)
+

1.
21
08
e+

2
(1
.2
8e
+
2)

�
2.
49
70
e+

1
(2
.3
1e
+
1)

±
/�

4/
37
/3

15
/2
3/
6

15
/2
1/
8

7/
18
/1
9

123



4288 Complex & Intelligent Systems (2022) 8:4277–4299

Ta
bl
e
3
T
he

K
IG

D
va
lu
e
of

fiv
e
al
go
ri
th
m
s
fo
r
di
ff
er
en
to

bj
ec
tiv

es
in

th
e
PM

O
P
te
st
pr
ob
le
m
s

Pr
ob
le
m

M
D

K
nE

A
L
A
_M

O
E
A

L
B
D
_M

O
E
A

M
A
PI
O

K
nM

A
PI
O

PM
O
P1

3
12

2.
68
53
e−

1
(1
.1
8e

−1
)
�

5.
95
05
e−

1
(1
.2
6e

−1
)
−

5.
42
60
e−

1
(2
.3
4e

−2
)
−

6.
04
34
e−

1
(1
.8
3e

−1
)
−

2.
72
54
e−

1
(6
.5
8e

−2
)

5
14

1.
01
57
e+

0
(3
.2
3e

−1
)
�

1.
11
16
e+

0
(7
.9
3e

−2
)
−

1.
21
59
e+

0
(1
.9
0e

−1
)
−

1.
88
58
e+

0
(5
.1
1e

−1
)
−

1.
00
83
e+

0
(2
.0
1e

−1
)

8
17

2.
68
83
e+

0
(5
.5
7e

−1
)
�

2.
02
52
e+

0
(2
.4
7e

−1
)
+

2.
08
05
e+

0
(2
.4
7e

−1
)
+

3.
82
10
e+

0
(1
.0
5e
+
0)

−
2.
51
59
e+

0
(5
.9
8e

−1
)

10
19

3.
32
27
e+

0
(8
.4
3e

−1
)
�

2.
40
65
e+

0
(5
.8
2e

−1
)
+

2.
43
33
e+

0
(6
.8
6e

−1
)
+

3.
89
54
e+

0
(1
.4
9e
+
0)

−
3.
15
98
e+

0
(5
.7
0e

−1
)

PM
O
P2

3
12

8.
23
61
e−

2
(3
.2
7e

−2
)
−

1.
96
43
e−

1
(3
.9
1e

−2
)
−

1.
89
18
e−

1
(2
.8
9e

−2
)
−

1.
22
18
e−

1
(8
.6
3e

−2
)
−

5.
11
44
e−

2
(2
.7
7e

−3
)

5
14

2.
14
64
e−

1
(3
.6
6e

−2
)
−

2.
51
61
e−

1
(1
.9
5e

−2
)
−

2.
66
96
e−

1
(9
.8
4e

−3
)
−

2.
75
17
e−

1
(6
.3
8e

−2
)
−

1.
26
01
e−

1
(3
.8
3e

−3
)

8
17

1.
04
08
e+

0
(5
.9
5e

−1
)
−

2.
95
26
e−

1
(1
.5
7e

−2
)
−

2.
87
23
e−

1
(2
.7
2e

−2
)
−

2.
58
02
e−

1
(4
.5
3e

−2
)
−

1.
71
12
e−

1
(8
.8
6e

−3
)

10
19

4.
26
02
e+

0
(1
.3
6e
+
1)

−
2.
53
68
e−

1
(6
.4
2e

−2
)
−

2.
34
00
e−

1
(3
.1
9e

−2
)
−

2.
40
22
e−

1
(3
.9
4e

−2
)
−

1.
68
52
e−

1
(1
.8
2e

−2
)

PM
O
P3

3
12

2.
52
74
e−

1
(1
.0
5e

−1
)
+

5.
85
48
e−

1
(1
.8
5e

−1
)
−

5.
82
68
e−

1
(1
.4
8e

−1
)
−

8.
72
64
e−

1
(4
.0
8e

−1
)
−

3.
69
11
e−

1
(9
.8
6e

−2
)

5
14

3.
77
03
e+

0
(1
.7
7e
+
0)

−
4.
10
51
e−

1
(7
.5
2e

−2
)
�

4.
15
13
e−

1
(5
.6
0e

−2
)
�

7.
14
53
e−

1
(3
.2
5e

−1
)
−

4.
55
18
e−

1
(1
.3
8e

−1
)

8
17

5.
26
70
e+

0
(2
.4
6e
+
0)

−
8.
01
83
e−

1
(1
.0
5e

−1
)
−

7.
65
25
e−

1
(1
.2
2e

−1
)
−

9.
36
74
e−

1
(2
.5
1e

−1
)
−

6.
38
08
e−

1
(1
.9
2e

−1
)

10
19

2.
21
39
e+

0
(6
.9
2e

−1
)
−

7.
32
72
e−

1
(1
.7
0e

−1
)
−

7.
51
30
e−

1
(1
.5
8e

−1
)
−

9.
25
50
e−

1
(3
.8
0e

−1
)
−

4.
68
71
e−

1
(1
.5
2e

−1
)

PM
O
P5

3
12

2.
81
70
e+

0
(2
.1
3e
+0

)
+

3.
33
24
e+

0
(4
.1
9e
+
0)

+
4.
77
27
e+

0
(3
.7
5e
+
0)

+
4.
26
99
e+

0
(2
.2
9e
+
0)

�
9.
59
69
e+

0
(1
.4
9e
+
1)

5
14

1.
48
29
e+

1
(1
.1
1e
+
1)

−
4.
32
23
e+

0
(2
.1
2e
+0

)
+

4.
67
77
e+

0
(4
.0
5e
+
0)

+
7.
04
38
e+

0
(3
.4
5e
+
0)

�
1.
01
08
e+

1
(1
.5
6e
+
1)

8
17

3.
38
53
e+

2
(3
.2
5e
+
2)

−
1.
56
57
e+

1
(1
.8
5e
+
1)

−
8.
51
84
e+

0
(7
.5
0e
+
0)

�
3.
93
76
e+

1
(4
.4
2e
+
1)

−
7.
46
89
e+

0
(4
.6
3e

−1
)

10
19

6.
83
45
e+

2
(1
.1
2e
+
3)

−
8.
80
91
e+

1
(4
.8
5e
+
1)

−
1.
02
08
e+

2
(5
.6
6e
+
1)

−
9.
34
03
e+

1
(1
.1
9e
+
2)

−
1.
08
32
e+

1
(1
.1
4e
+0

)

PM
O
P6

3
12

1.
76
01
e−

1
(1
.6
0e

−1
)
+

5.
45
68
e−

1
(1
.4
7e

−1
)
−

4.
63
91
e−

1
(1
.2
0e

−1
)
−

6.
29
70
e−

1
(1
.4
9e

−1
)
−

2.
70
46
e−

1
(5
.5
6e

−2
)

5
14

4.
38
31
e+

0
(3
.4
7e
+
0)

−
7.
63
08
e−

1
(2
.7
5e

−1
)
+

7.
38
38
e−

1
(9
.2
1e

−2
)
+

1.
10
36
e+

0
(4
.6
7e

−1
)
−

8.
80
21
e−

1
(1
.2
1e

−1
)

8
17

7.
51
55
e+

1
(3
.3
7e
+
1)

−
1.
78
53
e+

1
(1
.7
3e
+0

)
+

1.
84
90
e+

1
(1
.5
9e
+
0)

+
2.
15
58
e+

1
(1
.7
7e
+
0)

�
2.
10
15
e+

1
(2
.2
1e
+
0)

10
19

2.
51
78
e+

3
(6
.1
4e
+
2)

−
4.
46
65
e+

3
(8
.8
2e
+
1)

−
4.
47
23
e+

3
(9
.9
2e
+
1)

−
4.
65
34
e+

3
(1
.2
6e
+
2)

−
1.
97
94
e+

3
(3
.0
5e
+2

)

PM
O
P8

3
12

7.
04
25
e−

2
(1
.1
3e

−2
)
−

1.
40
75
e−

1
(1
.5
8e

−2
)
−

1.
41
91
e−

1
(1
.3
5e

−2
)
−

8.
29
30
e−

2
(4
.1
0e

−2
)
−

4.
87
45
e−

2
(3
.2
1e

−3
)

5
14

1.
34
41
e−

1
(4
.0
9e

−2
)
−

1.
08
92
e−

1
(1
.0
8e

−2
)
−

1.
13
11
e−

1
(1
.2
1e

−2
)
−

1.
21
63
e−

1
(2
.0
7e

−2
)
−

8.
25
75
e−

2
(4
.8
8e

−3
)

8
17

8.
84
52
e−

1
(2
.1
8e

−1
)
−

9.
09
89
e−

2
(7
.8
0e

−3
)
+

8.
99
56
e−

2
(8
.2
9e

−3
)
+

1.
06
20
e−

1
(9
.7
3e

−3
)
�

1.
04
02
e−

1
(6
.5
6e

−3
)

10
19

7.
60
39
e−

1
(1
.5
0e

−1
)
−

2.
41
50
e−

1
(9
.7
5e

−2
)
−

2.
42
83
e−

1
(7
.8
5e

−2
)
−

1.
44
06
e−

1
(4
.7
9e

−2
)
−

9.
21
46
e−

2
(7
.8
8e

−3
)

PM
O
P9

3
12

1.
39
06
e −

1
(4
.5
0e

−2
)
+

2.
07
02
e−

1
(1
.6
1e

−2
)
−

2.
27
17
e−

1
(3
.6
9e

−2
)
−

2.
20
26
e−

1
(8
.4
5e

−2
)
−

1.
69
04
e−

1
(3
.3
7e

−2
)

5
14

5.
81
32
e−

1
(1
.7
1e

−1
)
−

3.
13
23
e−

1
(3
.1
4e

−2
)
+

3.
07
94
e−

1
(3
.1
5e

−2
)
+

3.
69
16
e−

1
(1
.0
7e

−1
)
�

3.
89
89
e−

1
(7
.0
1e

−2
)

123



Complex & Intelligent Systems (2022) 8:4277–4299 4289

Ta
bl
e
3
(c
on
tin

ue
d)

Pr
ob
le
m

M
D

K
nE

A
L
A
_M

O
E
A

L
B
D
_M

O
E
A

M
A
PI
O

K
nM

A
PI
O

8
17

1.
97
17
e+

0
(5
.3
1e

−1
)
−

1.
25
28
e+

0
(1
.5
6e

−1
)
−

1.
19
00
e+

0
(1
.2
8e

−1
)
−

1.
23
11
e+

0
(4
.3
8e

−1
)
�

1.
03
81
e+

0
(1
.9
1e

−1
)

10
19

2.
76
66
e+

0
(7
.7
7e

−1
)
�

2.
13
24
e+

0
(8
.8
3e

−1
)
+

2.
20
90
e+

0
(8
.5
8e

−1
)
+

2.
50
09
e+

0
(8
.3
0e

−1
)
�

3.
03
83
e+

0
(8
.2
1e

−1
)

PM
O
P1

1
3

12
1.
39
08
e−

1
(8
.7
7e

−2
)
−

4.
33
39
e−

1
(2
.2
7e

−1
)
−

4.
34
79
e−

1
(1
.6
3e

−1
)
−

2.
80
26
e−

1
(1
.9
7e

−1
)
−

7.
78
11
e−

2
(5
.7
2e

−3
)

5
14

5.
25
47
e−

1
(1
.0
4e

−1
)
−

1.
12
96
e+

0
(3
.8
5e

−1
)
−

1.
41
37
e+

0
(5
.6
2e

−1
)
−

5.
14
16
e−

1
(1
.3
8e

−1
)
−

3.
13
33
e−

1
(8
.1
9e

−3
)

8
17

3.
96
18
e+

0
(9
.5
2e

−1
)
−

2.
56
80
e+

0
(6
.8
6e

−1
)
−

2.
29
41
e+

0
(6
.2
7e

−1
)
−

7.
88
53
e−

1
(1
.3
7e

−1
)
−

5.
40
73
e−

1
(1
.9
3e

−2
)

10
19

4.
75
37
e+

0
(2
.2
0e
+
0)

−
3.
07
03
e+

0
(1
.0
1e
+
0)

−
3.
07
07
e+

0
(1
.0
7e
+
0)

−
1.
09
75
e+

0
(2
.1
8e

−1
)
−

5.
75
39
e−

1
(4
.8
2e

−2
)

PM
O
P1

2
3

12
2.
42
02
e−

2
(3
.0
5e

−2
)
+

7.
53
34
e−

2
(1
.2
5e

−2
)
−

7.
14
18
e−

2
(9
.8
5e

−3
)
−

6.
69
45
e−

2
(2
.2
4e

−2
)
−

3.
98
92
e−

2
(6
.9
1e

−3
)

5
14

1.
99
01
e−

1
(6
.5
5e

−2
)
−

2.
29
20
e−

2
(6
.1
6e

−3
)
�

2.
30
61
e−

2
(4
.5
6e

−3
)
−

4.
43
71
e−

2
(2
.6
5e

−2
)
−

1.
91
86
e−

2
(4
.6
5e

−3
)

8
17

1.
11
59
e−

1
(3
.9
3e

−2
)
−

1.
44
85
e−

2
(2
.0
7e

−3
)
�

1.
35
76
e−

2
(1
.7
1e

−3
)
�

1.
84
97
e−

2
(2
.1
8e

−2
)
�

1.
40
13
e−

2
(3
.2
4e

−3
)

10
19

3.
72
49
e−

2
(1
.5
8e

−2
)
−

1.
07
71
e−

2
(2
.3
1e

−3
)
�

1.
00
78
e−

2
(2
.0
2e

−3
)
�

2.
51
90
e−

2
(9
.6
9e

−3
)
−

1.
41
29
e−

2
(9
.1
3e

−3
)

PM
O
P1

3
3

12
3.
06
82
e−

1
(1
.4
1e

−1
)
+

5.
79
92
e−

1
(6
.5
2e

−2
)
−

6.
07
88
e−

1
(8
.6
9e

−2
)
−

5.
69
96
e−

1
(1
.1
9e

−1
)
−

4.
12
10
e−

1
(1
.2
9e

−1
)

5
14

3.
08
14
e+

0
(9
.1
5e

−1
)
−

2.
11
49
e+

0
(2
.8
1e

−1
)
�

2.
09
65
e+

0
(3
.4
9e

−1
)
�

2.
73
25
e+

0
(9
.7
1e

−1
)
�

2.
16
06
e+

0
(3
.6
1e

−1
)

8
17

2.
86
72
e+

1
(9
.6
3e
+
0)

�
2.
31
96
e+

1
(1
.9
7e
+
0)

�
2.
20
53
e+

1
(2
.0
6e
+0

)
�

2.
49
60
e+

1
(6
.1
5e
+
0)

�
2.
45
59
e+

1
(7
.4
2e
+
0)

10
19

8.
91
53
e+

1
(3
.4
3e
+
1)

+
7.
42
62
e+

1
(1
.8
7e
+
1)

+
7.
35
43
e+

1
(1
.5
3e
+1

)
+

9.
64
21
e+

1
(1
.4
8e
+
1)

+
1.
15
15
e+

2
(3
.0
9e
+
1)

PM
O
P1

4
3

12
1.
79
42
e−

1
(3
.1
2e

−1
)
+

4.
19
54
e−

1
(9
.9
6e

−2
)
−

4.
02
60
e−

1
(6
.5
1e

−2
)
−

3.
69
61
e−

1
(9
.2
0e

−2
)
−

2.
64
77
e−

1
(7
.9
9e

−2
)

5
14

2.
55
83
e+

0
(1
.7
5e
+
0)

−
5.
27
32
e−

1
(1
.6
4e

−1
)
+

4.
90
98
e−

1
(1
.2
8e

−1
)
+

7.
54
03
e−

1
(5
.4
7e

−1
)
�

5.
52
55
e−

1
(6
.7
8e

−2
)

8
17

1.
24
53
e+

1
(6
.4
8e
+
0)

−
1.
58
43
e+

0
(3
.4
6e

−1
)
�

1.
37
26
e+

0
(2
.9
4e

−1
)
+

1.
82
90
e+

0
(7
.6
0e

−1
)
�

1.
48
63
e+

0
(1
.9
5e

−1
)

10
19

2.
15
00
e+

1
(1
.4
9e
+
1)

−
5.
71
48
e+

0
(1
.2
3e
+
0)

−
5.
97
20
e+

0
(1
.4
5e
+
0)

−
4.
62
15
e+

0
(3
.4
1e
+
0)

−
2.
22
20
e+

0
(7
.3
7e

−1
)

±
/�

8/
30
/6

11
/2
6/
7

12
/2
6/
6

1/
31
/1
2

123



4290 Complex & Intelligent Systems (2022) 8:4277–4299

Experimental results and analysis

In this section, Tables 2 and 3 show the comparison results
on KnEA [29], LA-MOEA [47], LBD-MOEA [48], MAPIO
[27], and the proposed KnMAPIO. Table 2 presents the KGD
values of five algorithms on the PMOP test suite, allowing
for an evaluation of the convergence performance of the algo-
rithms. Table 3 presents the KIGD values of five algorithms,
allowing for an evaluation of the diversity performance of
algorithms. In these tables, the highlight values represent the
best results, and ‘ + ,’ ‘−’, and ‘ � ’ denote the results from
other algorithms that are respectively higher than, lower than,
or equal to the results from the proposed KnMAPIO.

FromTable 2, the number of best results—0, 9, 7, 8, 20—is
produced by KnEA, LA_MOEA, LBD_MOEA, MAPIO,
and KnMAPIO, respectively. As observed from the last row
of Table 2, compared with KnEA, KnMAPIO has a signif-
icant advantage on the 37 test functions. The performance
of LA_MOEA is similar to that of LBD_MOEA, in which
15 items are better than the proposed KnMAPIO. However,
LA_MOEA has 21 items that are worse than KnMAPIO,
and LBD_MOEA has 23 items that are worse than the pro-
posed algorithm. In the comparison results with MAPIO,
seven items of MAPIO are better than KnMAPIO, while 18
items are worse than the proposed algorithm. These com-
parisons show that our algorithm has certain advantage in
KGD.

From the different PMOP problems presented in Table
2, it can be seen that the proposed algorithm has good
performance on PMOP 2, 3, 5, 6, 9, 11, 13, 14 test func-
tions, indicating the superior performance of the proposed
algorithm in solving these problems, such as the concave
basic shape, multimodal, and non-separable problems. For
PMOP3, our algorithm achieves the good preference in all
four objectives. For PMOP1, although the proposed algo-
rithm is not optimal in each objective, it also preforms better
than some algorithms in some objectives. Further research
will be carried out in solving linear problems, fundamental
problems and shape problems in the future. In the compari-
son results with MAPIO, the proposed algorithm has a slight
advantage. This is because the proposed algorithm not only
uses BFE strategy but also uses knee point-driven environ-
ment selection to increase the probability of knee region
identification.

As shown in Table 3, KnMAPIO obtained 20 of the best
results, LBD_MOEA obtained 10 of the KnEA obtained
eight, LA_MOEA obtained six, and MAPIO failed to obtain
any. As observed from the last row of Table 3, compared
with KnEA, KnMAPIO has a significant advantage on 30
test functions. The performance of LA_MOEA is similar to
that of LBD_MOEA, in which 26 items are worse than the
proposed KnMAPIO, while the performance of MAPIO has
31 items worse than KnMAPIO. These comparison results

Table 4 Parameter setting for the DTLZ and WFG test functions

Test function Number of
decision
variables (n)

Parameters Maxgen

DTLZ 1 M − 1 + k k � 5 700

DTLZ 2 M − 1 + k k � 10 250

DTLZ 3 M − 1 + k k � 10 1000

DTLZ 4-DTLZ 6 M − 1 + k k � 10 250

DTLZ 7 M − 1 + k k � 20 250

WFG 1 k + l k � M − 1,
l � 20

1000

WFG 2 k + l k � M − 1,
l � 20

700

WFG3–WFG9 k + l k � M − 1,
l � 20

250

show that the proposed algorithm has significant advantages
in performance.

From different PMOP problems in Table 3, the proposed
algorithm has superior performance on PMOP 2, 3, 5, 8, and
11 test functions. For PMOP2 and PMOP11, our algorithm
achieves the good performance in all four objectives, indi-
cating its robust diversity in solving the problems with the
characteristics of concave, basic, shape and complex PoF.
However, our algorithm does not perform satisfactorily in
solving the PMOP13 problem. The comparison results make
it obvious that the knee-driven environment selection strat-
egy can significantly improve the identifying effect of the
proposed algorithm. Overall, Tables 2 and Table 3 show that
the proposed algorithm has excellent overall performance,
which is attributed to the improvement of individual selection
pressure by the knee point-driven environmental selection.

Overall, Tables 2 and 3 show that the proposed algorithm
has excellent overall performance, which is attributed to the
improvement of individual selection pressure by the knee
point-driven environmental selection.

Approximation degree of KnMAPIO to the true
Pareto front

Benchmark problems and experimental settings

DTLZ [56] and WFG [57] are standard benchmarks for
assessing the capability of the many-objective optimiza-
tion algorithm, and these functions have obvious attributes
for solving linear, multi-modal, disconnected, mixed con-
vex/concave, and deceptive problems. DTLZ1-DTLZ7 were
selected as the test examples for DTLZ problems, and
WFG1–WFG9 were chosen for the WFG problems. The set-
tings of parameters for the DTLZ and WFG are shown in
Table 4. The population size in the DTLZ and WFG test
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suites are 120, 132, 156, and 275 with the number of objec-
tives at four, six, eight, and ten. The algorithms were run 30
times independently for each test function.

The proposed algorithmwas tested on the standard bench-
marks DTLZ and WFG with five other state-of-the-art
algorithms: NSGA-III [4], GrEA [58], MOEA/D [7], RVEA
[59], and VaEA [60]. The proposed algorithm was also com-
paredwith three algorithms for the last 3 years on the standard
benchmark DTLZ and WFG test functions to verify the per-
formance of our proposed algorithm, including CSEA [61],
hpaEA [62], andMaPSO-MC [63]. CSEA [61] was proposed
in 2019 by Pan et al., who used an artificial neural network to
predict the dominance relationship between candidate solu-
tions and reference solutions instead of approximating the
objective values separately. In 2020, Tian et al. proposed
hpaEA [62], which was first algorithm to differentiate the
non-dominated solutions by exhibiting tendencies toward the
Pareto-optimal front as prominent solutions and using the
hyperplane formed by their neighboring solutions. MaPSO-
MC [63]was proposed byHu et al. in 2021 to solve the hybrid
recommendation model by using a generation-based fit-
ness evaluation strategy coupled with diversity enhancement
(GBFE–DE) and ISDE+to evaluate individual performance.

All parameters were set as recommended in the original
papers. Simulated binary crossover [4] and polynomialmuta-
tion [4] were used in some algorithms [59–61] to produce
offspring, the distribution indices of crossover and mutation
were set to nc � 20, and nm � 20. The probabilities of
crossover and mutation were set to pc � 1.0 and pm � 1/D,
where D represents the number of decision variables. For
GrEA, the setting of the parameter div was taken from [58],
which denotes the number of divisions in each dimension.
The parameters about the range of neighborhood inMOEA/D
were set to N/10 for all test problems. Other relevant param-
eters were set by referring to [7]. In [59], the change rate of
the penalty function α was set to 2, and the frequency of ref-
erence vector adaptation was set to fr � 0.1. For CSEA, the
setting of maximum epochs for training the FNN T was 500,
the hidden neurons H was 10, and the number of parameters
for reference solutions was 6. The number of prominent solu-
tions K in hpaEA [62]was set to 6, and other parameterswere
set to the same as NSGA-III. In [63], the setting of learning
parameters c1, c2, c3 belonged to [1.5, 2.5], and the number
of parameters of generation influence θ in MaPSO-MC was
2.

Performance measures

To measure the approximation degree of the algorithm to the
true Pareto front, the coverage [7] was used in this experi-
ment. C-metric indicates the dominant relationship between
the solution set and the Pareto front, which can measure the
coverage performance of a solution set. The C-metric can be

calculated as follows:

C(Pop, PF) � |{u ∈ PF |∃v ∈ Pop : v dominanceu}|
|PF | ,

(10)

where the PF is the Pareto front, and Pop represents the
objective values of all the individuals in the population. The
numerator is the number of solutions in PF that are domi-
nated by at least one solution in Pop, and the denominator
represents the total number of solutions in PF .

Experimental results and analysis

In this section, Tables 5 and 6 show the comparison results
on GrEA [58], MOEA/D [7], NSGA-III [4], RVEA [59],
VaEA [60], CSEA [61], hpaEA [62], MaPSO-MC [63], and
the proposed KnMAPIO, and the performance of the cov-
erage is demonstrated in the DTLZ test functions. Tables 7
and 8 show the comparison results of the algorithms on the
WFG test functions, and the performance of the coverage
is demonstrated in these test functions. In these tables, the
highlighted numbers represent the best results, and ‘ + ,’ ‘-,’
‘ � ’ denote the results from the other algorithms that are
respectively higher than, lower than, or equal to the results
from the proposed KnMAPIO.

As canbe seen fromTable 5, the number of best results—5,
5, 1, 0, 0, and 14—is produced by GrEA, MOEA/D, NSGA-
III, RVEA,VaEA, and the proposedKnMAPIO, respectively.
In the six, eight, and ten objectives of DTLZ4, our algorithm
achieves the same result as MOEA/D. Looking at the last
row in Table 5, compared with RVEA, KnMAPIO has a sig-
nificant advantage on 28 test functions. NSGA-III has only
3 items better than the proposed algorithm, GrEA and VaEA
have four items better, and MOEA/D has six items better
than the KnMAPIO. As can be seen from Table 6, the num-
ber of best results—5, 1, 4, and 18—is produced by CSEA,
hpaEA, MaPSO-MC, and the proposed KnMAPIO, respec-
tively. Looking at the last row of Table 6, KnMAPIO has 11
items better than CSEA, while hpaEA has only 1 item better
thanKnMAPIO, andMaPSO-MChas 3 items better. KnMA-
PIO has 16 items better thanMaPSO-MC and has significant
advantages over the other three algorithms on DTLZ 5 and
DTLZ 6.

Table 5 shows that the proposed algorithm has good per-
formance on DTLZ 2, 5, and 6 test functions, and it again
proves the superior performance of the proposed algorithm
in solving concave and multimodal functions. However, the
table also shows that KnMAPIO does not perform well on
DTLZ7, because of the multiple modal characteristics of the
test functions and the difficulty in obtaining the convergence
solutions. Table 6 shows that the performance of the proposed
algorithm is better than that of the other three algorithms. The
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Table 6 The coverage value of four algorithms for the last 3 years on the DTLZ test problems

Problem M D CSEA hpaEA MaPSO−MC KnMAPIO

DTLZ1 4 8 2.0738e−1 (8.19e−2) � 5.6677e−1 (9.87e−2) � 1.9483e−1 (4.16e−2) + 3.5385e−1 (1.55e−1)

6 10 1.2194e−1 (9.48e−2) + 2.6597e−1 (5.13e−2) + 2.2651e−1 (8.42e−2) + 4.3182e−1 (1.13e−1)

8 12 1.3484e−1 (9.03e−2) + 3.4003e−1 (4.40e−2) � 6.0640e−1 (2.34e−1) � 2.7949e−1 (7.91e−2)

10 14 1.2299e−1 (8.45e−2) � 3.2379e−1 (5.84e−2) − 7.3257e−1 (6.57e−2) − 1.0691e−1 (1.88e−2)

DTLZ2 4 13 4.3457e−2 (4.55e−3) � 2.3866e−1 (4.99e−2) − 2.1864e−2 (1.14e−2) � 3.3333e−2 (8.33e−3)

6 15 1.4294e−2 (2.44e−3) � 1.4643e−1 (2.05e−2) − 0.0000e+0 (0.00e+0) � 9.0909e−3 (8.30e−3)

8 17 6.9210e−3 (2.48e−3) � 3.3982e−1 (4.71e−2) − 2.5641e−2 (1.76e−2) � 6.4103e−3 (6.41e−3)

10 19 6.2743e−3 (3.62e−3) � 4.9282e−1 (1.03e−1) − 6.6406e−2 (5.61e−3) − 1.7455e−2 (1.13e−2)

DTLZ3 4 13 1.6000e−1 (1.02e−1) � 1.1421e−1 (1.21e−1) � 1.1682e−1 (6.00e−2) + 2.3337e−1 (5.68e−2)

6 15 7.7102e−2 (2.25e−2) � 6.5152e−2 (6.78e−3) � 2.0237e−2 (1.50e−2) � 1.3333e−1 (7.64e−2)

8 17 3.0030e−2 (1.76e−2) � 1.6785e−1 (2.52e−2) � 3.7703e−1 (1.09e−1) − 8.0769e−2 (6.50e−2)

10 19 3.6201e−2 (2.04e−2) � 2.7883e−1 (7.72e−2) − 4.6611e−1 (9.24e−2) − 2.0364e−2 (1.38e−2)

DTLZ4 4 13 4.0185e−2 (6.46e−3) � 7.6634e−2 (7.43e−2) � 1.8333e−2 (2.24e−2) � 1.5000e−2 (2.07e−2)

6 15 4.5612e−3 (3.49e−3) − 1.8417e−2 (1.95e−2) − 0.0000e+0 (0.00e+0) � 0.0000e+0 (0.00e+0)

8 17 8.9403e−4 (8.68e−4) − 7.8836e−3 (7.69e−3) � 0.0000e+0 (0.00e+0) � 0.0000e+0 (0.00e+0)

10 19 1.2099e−4 (1.49e−4) � 0.0000e+0 (0.00e+0) � 0.0000e+0 (0.00e+0) � 0.0000e+0 (0.00e+0)

DTLZ5 4 13 1.5942e−1 (3.69e−2) � 3.0333e−1 (4.51e−2) − 4.1731e−1 (3.99e−2) − 1.8667e−1 (3.75e−2)

6 15 1.4225e−1 (3.11e−2) − 3.5606e−1 (4.25e−2) − 4.2605e−1 (6.48e−2) − 2.1212e−2 (6.34e−3)

8 17 1.3577e−1 (3.13e−2) − 3.1923e−1 (2.85e−2) − 2.6525e−1 (1.11e−1) − 8.9744e−3 (5.73e−3)

10 19 1.3757e−1 (2.50e−2) − 3.4473e−1 (3.81e−2) − 3.4531e−1 (1.16e−1) − 4.3636e−3 (1.63e−3)

DTLZ6 4 13 2.1035e−1 (2.81e−2) − 4.3833e−1 (1.85e−1) − 3.2251e−1 (8.11e−2) − 4.3333e−2 (4.10e−2)

6 15 2.8056e−1 (3.47e−2) − 7.5748e−1 (2.16e−2) − 5.5960e−1 (1.25e−1) − 1.0606e−2 (4.15e−3)

8 17 1.5116e−1 (1.84e−2) − 7.6537e−1 (4.40e−2) − 5.6244e−1 (1.60e−1) − 6.4103e−3 (0.00e+0)

10 19 1.3233e−1 (2.91e−2) − 8.3200e−1 (2.92e−2) − 7.0163e−1 (7.34e−2) − 3.6364e−3 (0.00e+0)

DTLZ7 4 23 4.1363e−1 (6.31e−2) − 9.8833e−1 (1.83e−2) − 9.6988e−1 (4.70e−2) − 1.2000e−1 (3.89e−2)

6 25 2.6336e−1 (6.63e−2) � 9.9394e−1 (9.88e−3) − 9.7871e−1 (4.26e−2) − 2.3485e−1 (1.16e−1)

8 27 2.4612e−1 (5.60e−2) − 1.0000e+0 (0.00e+0) − 9.7183e−1 (5.55e−2) − 1.0256e−1 (2.94e−2)

10 29 4.4943e−1 (1.51e−1) � 1.0000e+0 (0.00e+0) − 1.0000e+0 (0.00e+0) − 4.4873e−1 (8.48e−2)

± / � 2/11/15 1/19/8 3/16/9

coverage values of some functions are 0.00e+0 in this table,
indicating that no solutions in PF are dominated by the solu-
tions in the final population. The coverage values of VaEA on
DTLZ 7 are all 1.0000e+0, which indicates that all solutions
in PF are dominated by some solutions in the final population.

Table 7 reveals the comparison results of KnMAPIO with
five advanced algorithms on WFG test functions, with four
to ten objectives using the indicator of coverage. The num-
ber of best results—9, 4, 0, 0, 0, and 19—is produced by
GrEA, MOEA/D, NSGA-III, RVEA, VaEA, and the pro-
posed KnMAPIO, respectively.

Our algorithm achieves the same result as other algorithms
in all objectives of WFG1, and the coverage values are all
1.0000e+0, which indicates that represents all solutions in
PF are dominated by some solutions in the population. It also
shows that these algorithms have the same performance in

solving the bias functions. Compared with NSGA-III, RVEA
and VaEA, KnMAPIO has an obvious advantage over the 36
test functions. Among the comparison results, GrEAhas only
seven items better than KnMAPIO, but 20 items worse than
KnMAPIO. MOEA/D has 5 items better than KnMAPIO,
but almost two thirds of the items are worse than the pro-
posed algorithm. Table 7 shows that the proposed algorithm
has good performance on WFG 4, 5, 6, and 9 test functions,
especially onWFG 5. The good performance of the proposed
algorithm on WFG 5 indicates the best coverage on the con-
cave–basic–shape functions.

Table 8 reveals the comparison results of KnMAPIO with
three advanced algorithms onWFG test functions with –four
to ten objectives using the indicator of coverage. The number
of best results—4, 1, 14, and 17—was respectively pro-
duced by CSEA, hpaEA, MaPSO-MC, and the proposed
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Table 8 The coverage value of four algorithms for the last 3 years on the WFG test problems

Problem M D CSEA hpaEA MaPSO-MC KnMAPIO

WFG1 4 13 1.0000e+0 (0.00e+0) � 1.0000e+0 (0.00e+0) � 1.0000e+0 (0.00e+0) � 1.0000e+0 (0.00e+0)

6 15 1.0000e+0 (0.00e+0) � 1.0000e+0 (0.00e+0) � 1.0000e+0 (0.00e+0) � 1.0000e+0 (0.00e+0)

8 17 1.0000e+0 (0.00e+0) � 1.0000e+0 (0.00e+0) � 1.0000e+0 (0.00e+0) � 1.0000e+0 (0.00e+0)

10 19 1.0000e+0 (0.00e+0) � 1.0000e+0 (0.00e+0) � 1.0000e+0 (0.00e+0) � 1.0000e+0 (0.00e+0)

WFG2 4 13 7.9324e−1 (9.24e−2) + 9.3517e−1 (4.13e−2) � 5.9935e−1 (2.09e−1) + 9.6141e−1 (3.50e−2)

6 15 3.8777e−1 (1.90e−1) - 4.9106e−1 (1.18e−1) - 8.8876e−2 (4.53e−2) � 1.0303e−1 (1.17e−1)

8 17 1.1402e−1 (4.52e−2) - 1.6848e−1 (6.10e−2) - 4.0831e−3 (6.14e−3) � 1.1538e−2 (1.60e−2)

10 19 1.6548e−1 (1.03e−1) + 4.4655e−1 (5.25e−2) � 4.3490e−2 (2.57e−2) + 3.9055e−1 (1.30e−1)

WFG3 4 13 8.7882e−2 (3.44e−2) � 2.4833e−1 (2.66e−2) - 4.1569e−1 (8.80e−2) - 7.8333e−2 (1.73e−2)

6 15 1.3177e−1 (7.58e−2) - 1.3030e−1 (9.88e−3) - 2.9846e−1 (5.95e−2) - 1.8182e−2 (6.78e−3)

8 17 7.3760e−2 (2.48e−2) - 6.9231e−2 (3.64e−2) - 3.4138e−1 (1.17e−1) - 8.9744e−3 (7.31e−3)

10 19 5.8935e−2 (3.18e−2) - 5.0909e−2 (1.23e−2) - 7.0664e−2 (3.82e−2) - 1.3091e−2 (7.54e−3)

WFG4 4 13 7.9583e−1 (2.39e−2) - 9.7651e−1 (1.16e−2) - 1.6537e−1 (5.07e−2) + 6.6000e−1 (6.70e−2)

6 15 3.4200e−1 (6.39e−2) - 3.4739e−1 (7.20e−2) - 1.4041e−1 (4.03e−2) + 2.3030e−1 (4.72e−2)

8 17 8.1938e−2 (1.02e−2) + 9.1026e−2 (4.09e−2) + 7.7381e−2 (2.13e−2) + 1.3974e−1 (1.39e−2)

10 19 3.8910e−2 (9.01e−3) + 2.0364e−2 (1.35e−2) + 6.8109e−2 (2.21e−2) + 1.2218e−1 (2.43e−2)

WFG5 4 13 8.0637e−1 (1.64e−2) - 9.8632e−1 (5.51e−3) - 7.9901e−1 (5.26e−2) - 7.1667e−1 (5.03e−2)

6 15 4.4579e−1 (3.09e−2) - 5.1614e−1 (7.01e−2) - 2.8720e−1 (3.12e−2) - 1.5455e−1 (2.05e−2)

8 17 2.7664e−1 (2.88e−2) - 2.5960e−1 (5.32e−2) - 1.3378e−1 (2.73e−2) - 6.6667e−2 (9.72e−3)

10 19 1.6444e−1 (3.20e−2) - 1.1055e−1 (1.51e−2) - 8.8968e−2 (2.37e−2) - 3.7818e−2 (7.54e−3)

WFG6 4 13 9.9621e−1 (7.27e−3) � 1.0000e+0 (0.00e+0) � 9.8457e−1 (2.15e−2) � 9.9667e−1 (7.45e−3)

6 15 6.3115e−1 (7.14e−2) � 8.2101e−1 (4.09e−2) - 3.2693e−1 (6.52e−2) + 5.7121e−1 (2.76e−2)

8 17 2.6822e−1 (3.38e−2) � 4.3341e−1 (9.76e−2) - 2.9338e−1 (6.54e−2) � 2.7308e−1 (4.29e−2)

10 19 1.7479e−1 (4.73e−2) - 2.2764e−1 (5.20e−2) - 2.1954e−1 (4.41e−2) - 1.0764e−1 (1.83e−2)

WFG7 4 13 7.0001e−1 (2.78e−2) - 9.4556e−1 (3.67e−2) - 1.1432e−1 (2.58e−2) + 3.7000e−1 (3.61e−2)

6 15 3.0822e−1 (2.74e−2) - 5.0667e−1 (3.09e−2) - 9.6447e−2 (2.91e−2) + 1.6818e−1 (3.00e−2)

8 17 9.0444e−2 (1.62e−2) � 2.1282e−1 (4.91e−2) - 1.0548e−1 (2.95e−2) � 1.2564e−1 (3.41e−2)

10 19 3.5486e−2 (6.21e−3) + 7.2000e−2 (2.47e−2) + 5.4875e−2 (2.00e−2) + 1.4691e−1 (1.11e−2)

WFG8 4 13 9.8938e−1 (4.95e−3) � 9.9708e−1 (6.53e−3) � 8.8770e−1 (2.27e−2) + 9.9333e−1 (6.97e−3)

6 15 8.1679e−1 (1.41e−1) - 8.1250e−1 (3.22e−2) - 5.5898e−1 (2.22e−2) � 5.4091e−1 (5.07e−2)

8 17 4.0045e−1 (8.99e−2) � 5.6923e−1 (7.26e−2) - 3.9748e−1 (6.40e−2) � 4.1795e−1 (3.75e−2)

10 19 1.4196e−1 (5.10e−2) + 3.7745e−1 (6.53e−2) � 2.8114e−1 (4.52e−2) � 3.3964e−1 (3.87e−2)

WFG9 4 13 1.0000e+0 (0.00e+0) - 9.3195e−1 (5.65e−2) � 5.9301e−1 (8.81e−2) � 6.4667e−1 (2.14e−1)

6 15 6.3146e−1 (1.88e−1) - 6.7048e−1 (6.09e−2) - 2.3974e−1 (2.80e−2) � 1.9242e−1 (5.45e−2)

8 17 4.5997e−1 (5.55e−2) - 3.5734e−1 (8.59e−2) - 2.3556e−1 (1.66e−1) - 6.2821e−2 (2.10e−2)

10 19 2.0897e−1 (1.41e−1) - 1.2145e−1 (2.94e−2) - 1.0091e−1 (2.41e−2) - 2.7636e−2 (7.97e−3)

± / � 6/19/11 3/23/10 11/11/14

KnMAPIO. Our algorithm achieves the same result as other
algorithms in all objectives of WFG1 and the coverage val-
ues are all 1.0000e+0. KnMAPIO has 19 items better than
CSEA and 23 items better than hpaEa, with only three items
worse. KnMAPIO has similar performance to MaPSO-MC
on the WFG test problem. Although MaPSO-MC performs
better onWFG 2 andWFG 4, the KnMAPIO hasmuch better
performance on WFG 3, WFG 5, and WFG 9.

The results in the tables show that the proposed algorithm
has superior performance to that of the other algorithms,
which can be attributed to the knee-oriented dominance
and the distribution-based individual update strategy. These
strategies also improve the selection pressure of the solution
set toward the true PF.

In addition, the performance of using only one distribu-
tion, twodistributions, and three distributions in our proposed
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algorithmwas compared on DTLZ test functions. The exper-
imental results are shown in Table 9. MAPIO algorithm does
not uses the velocity position update formula proposed by
us. MAPIOC is the algorithm only uses the Cauchy distri-
bution. MAPIOG algorithm uses the Gaussian distribution
only. MAPIOLC is the algorithm uses Levy and Cauchy
distributions simultaneously, andMAPIOGC algorithm uses
Gaussian and Cauchy distributions at the same time.

The Coverage value of algorithms for different objectives
in the DTLZ test problems has shown in Table 9. KnMAPIO
has 13 best results, MAPIOC has 3 best results. MAPIOG,
MAPIOLC, and MAPIOGC have only 2 best results. As can
be seen from the last row, MAPIO has nine results worse
than our algorithm, but zero result better than KnMAPIO.
MAPIOC has only one item better than the proposedmethod,
but five items worse than ours. MAPIOLC and MAPIOGC
have neither result better than ours, but worse in three.
Although the proposed algorithm is slightly inadequate in
some test problems, its overall performance is better than
other comparison algorithms. The performance of the algo-
rithm using only one distribution is slightly worse than the
performance of the algorithm using two distributions, and
the performance of the algorithm using two distributions is
worse than the performance of the algorithm combining the
three distributions. So the strategy we proposed is effective.

Conclusion

This paper proposes a knee point-driven many-objective
pigeon-inspired algorithm (KnMAPIO) to solve the prob-
lem of selection of individuals in the case of non-decision
maker preference. The proposed algorithm uses an environ-
mental selection strategy based on knee-oriented dominance
to enhance the selection pressure of the individuals, and the
diversity of the population and the identification ability of the
knee point region have been promoted through the full use
of extreme points, boundary points, and knee sorting mech-
anisms. Next, a new velocity update equation with Gaussian
distribution, Cauchy distribution, and Levy distribution is
proposed, and the use of these three distributions at the appro-
priate stage effectively improves the search performance. In
most test problems, our algorithm has excellent performance
in identifying knee points and their regions in comparison
experiments with four other algorithms on the knee-oriented
benchmark PMOPs. In addition, comparedwith five state-of-
the-art many-objective algorithms and three algorithms for
the last 3 years on the standard benchmark DTLZ and WFG
suites, our algorithm shows significantly better performance.

In future work, we will apply the proposed KnMAPIO
algorithm to solve practical engineering problems without
decision-maker preference and provide a set of efficient solu-
tions.
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