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Abstract
Outlier or anomaly detection is the process through which datum/data with different properties from the rest of the data is/are
identified. Their importance lies in their use in various domains such as fraud detection, network intrusion detection, and spam
filtering. In this paper, we introduce a new outlier detection algorithm based on an ensemble method and distance-based data
filtering with an iterative approach to detect outliers in unlabeled data. The ensemble method is used to cluster the unlabeled
data and to filter out potential isolated outliers from the same by iteratively using a cluster membership threshold until the
Dunn index score for clustering is maximized. The distance-based data filtering, on the other hand, removes the potential
outlier clusters from the post-clustered data based on a distance threshold using the Euclidean distance measure of each data
point from the majority cluster as the filtering factor. The performance of our algorithm is evaluated by applying it to 10
real-world machine learning datasets. Finally, we compare the results of our algorithm to various supervised and unsupervised
outlier detection algorithms using Precision@n and F-score evaluation metrics.

Keywords Outlier detection · Unsupervised learning · Iterative approach · Ensemble method · Distance-based filtering ·
Dunn index

Introduction

Outliers or anomalies are data objects which show different
behavior to the rest of the data in a particular dataset. Out-
liers are generally caused due to errors that occurred during
data entry, data measurement, data sampling, data process-
ing along with natural and experimental errors, and many
more. Outlier detection is an important application domain

B Samir Malakar
malakarsamir@gmail.com

Bodhan Chakraborty
bodhanchakraborty@gmail.com

Agneet Chaterjee
agneet257@gmail.com

Ram Sarkar
ramjucse@gmail.com

1 Institute of Radiophysics and Electronics, University of
Calcutta, Kolkata, India

2 Department of Computer Science and Engineering, Jadavpur
University, Kolkata, India

3 Department of Computer Science, Asutosh College, Kolkata,
India

of machine learning and such algorithms are commonly used
in fraud detection [1], network industry damage detection [2],
healthcare analysis [3], surveillance [4], security [4], intru-
sion detection [5] and many more.

Detection of outliers is a challenging task as it involves
the proper modeling of actual data and outliers. Differ-
ent flavors of data possess unique challenges. The outlier
hypothesis in one domain might not be applicable in another
disparate problem. Sometimes, the difference between actual
data objects and outliers is minimal, and hence classifying
certain abnormalities in data as outliers is quite challenging.
The variations on which data objects are classified as out-
liers vary with the domain of applications [1]. For example,
small variations in observed data are neglected in the case of
a stock market analysis or fraud detection but in the case of
medicinal domains like healthcare such variations cannot be
ignored.

The field of outlier detection has been researched exten-
sively in past and various algorithms have been developed to
deal with the problem of outlier detection. Such algorithms
are generally classified into three commoncategories namely,
supervised method [6], unsupervised method [6], and semi-
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supervised method [4] with each having its own advantages
and disadvantages.

In the supervised method of outlier detection, samples in
a dataset are labeled and data is classified into two classes:
normal and outlier. Data in the training set are labeled as
either normal or as an outlier.A classificationmodel is trained
on the training set, and then this model is experimented on
the test set (unlabeled data) to predict the outliers. Thus
supervised outlier detection methods deal with binary classi-
fication problems. Such methods can be further sub-divided
into statistical methods [7], decision tree based [8], proxim-
ity based approaches [9], etc. The work done in this domain
comprises the application of particle swarm optimization
algorithms to detect intrusions such as PROBE, R2L, U2R,
and DoS. This method was applied for the detection of fraud-
ulent credit cards. In the other work [9], a DBSCAN based
outlier detection technique is applied, in combination with
Luhn’s and Bayes’ theorem to develop a probability metric
that estimates the validity of the credit card.

In cases where labeled data are not available, researchers
use unsupervised outlier detection techniques to predict the
outliers. In the unsupervised outlier detection approach, the
data are assumed to be following a certain pattern that is nor-
mal data objects form clusters with high cluster density (i.e.,
low intra-cluster distance) and high inter-cluster distance.
Outliers are detected based on their affinity of belonging to
a data cluster. Unsupervised outlier detection methods have
been used in various domains such as intrusion detection [10]
and sensor networks [11] etc. Zhang et al. [10] develop a ran-
dom forest based algorithm to identify anomalous patterns
in network data. They specifically look at identifying data
points that deviate significantly in the same network service
and points which belong to other network services. On the
other hand, in thework [11], the authors primarily focused on
creating an aggregate tree by disseminating beacon informa-
tion from a sink node and recursively calculating the outlier
score for each descending child node.

Semi-supervised learning falls in between supervised and
unsupervised methods. The semi-supervised method uses
a small amount of labeled data with a very large amount
of unlabeled data. In the semi-supervised method of out-
lier detection, the similar data are first clustered using an
unsupervised learning algorithm and then the unlabeled data
are labeled based on the existing labeled data into normal
and outlier classes. A few of the semi-supervised techniques
are followed in the works [12, 13]. Dasgupta and Majumder
[12] described a nature inspired censoring process of recep-
tors and apply it to multidimensional personnel data. It is a
two-step process wherein given a set of self-strings S and
a matching threshold r, the algorithm’s first phase finds the
total number of unmatched strings for the defined self (S);
the second phase selects some of them to build a varied group
of detectors for monitoring data patterns.

As elucidated above, both supervised and semi-supervised
based outlier detections, depend upon labeling of data, which
can be very expensive in certain domains. Furthermore, only
unsupervised approaches can classify unknown data into the
right bucket of classifiers or not. Our work aims to propose
a generic algorithm, which can coherently perform outlier
detection on a myriad of data points. This is the major reason
for prevailing with unsupervised learning techniques as the
underpinning for our research.

Conventional clustering algorithms are insufficient for
outlier detection as none of these clustering algorithms pro-
vides high accuracy in detecting the actual outliers. Current
works in this domain have a multitude of shortcomings [14]
that need to be alleviated. To be specific, numerous outlier
detection methods (e.g., [15, 16]) require different parame-
ters that are mostly manually tuned. These parameters, if not
tuned optimally, are very sensitive to the end outcome.On the
contrary, the method we propose here needs only an initial
number of clusters and the threshold value as manual param-
eters. Furthermore, unlike our method, deep learning based
outlier detections require a huge number of training samples
and have a high time complexity which might not be feasible
in terms of real-world data. Furthermore,many existing algo-
rithms do not discount for sparsely arranged or differentiate
between the subtle boundaries between two groups. Noting
this and the differentiation between noise and outliers, our
method intelligently reconsiders all possible candidates, and
makes an informed decision. Finally, developing a general-
ized outlier detection has always been challenging, however,
through our application, we go on to validate our results,
irrespective of the domains.

Hence, the use of an ensemble method that combines the
results obtained from multiple clustering algorithms instead
of relying on a single algorithm proves to be a better solution
for outlier detection purposes. Furthermore, a distance-based
data filteringmethod has been used as the final layer to further
increase the outlier detecting capabilities of the ensemble.
Three commonly used clustering techniques: K-means, K-
means++, and Fuzzy C-means have been used as the base for
our algorithm. All the datasets used in our experiment have
been pre-processed, cleaned, and normalized. The ensemble
method is used to cluster the unlabeled data and to detect
potential isolated outliers based on the cumulative degree of
belongingness generated by combining the degree of belong-
ingness scores obtained from each clustering method. An
iterative process is designed to maximize the value of the
Dunn index (commonly used evaluation metric for cluster-
ing methods) which gives us the optimum point. In each step
of the iteration, the possible outliers are eliminated from the
dataset and the inliers which had been labeled as an out-
lier in the previous iteration are added to the new dataset
based on a cluster membership threshold value. The resultant
post-clustered dataset is screened based on a distance-based
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threshold relative to the center of themajority cluster and fur-
ther possible outlier points are eliminated. The top N outlier
points are chosen based on distance from the majority cluster
center. The results have been computed and compared with
other outlier detection algorithms for 10 popular machine
learning datasets of different sizes and dimensionalities. The
contributions of our work are as follows:

• An iterative weighted ensemble of two hard clustering
algorithms and one soft clustering algorithm is explored,
eliminating bias and introducing agility in terms of a robust
search space.

• A Dunn index based thresholding criterion is developed,
which ensures that the outlier search is always progressive.

• An intelligent learning step is proposed where previously
deemed outliers are also put in contention of being inliers,
which removes probabilistic bias present initially and
eliminates class imbalance in terms of the number of out-
liers.

• The results are quantified on 10 openly available datasets
and are compared against 12 state-of-the-art algorithms
with good results.

Related work

Several solutions have been proposed in the field of outlier
detection spanning multiple domains. It has been helpful in
intrusion detection, fraud detection, time-series monitoring,
and many more. Zhang et al. [10] use the Random Forest
algorithm to detect anomalies by building patterns of network
intrusion over traffic data. Similarly, fraud detection is dealt
with in the work [17], where the authors develop a replicator
neural network and apply it to discover oddities across clus-
ters. The work mentioned in [18] tackles several problems
which are prevalent in outlier detection of both univariate
and multivariate financial time series. It looks at calculating
the projections with maximal kurtosis under a finite mix-
ture model which enables separation of outliers from the
bulk of the data. Zhang et al. [19] introduce a new factor,
Local-Distance-based Outlier Factor (LDOF) which calcu-
lates the degrees of outlier-ness of an object in real-world
datasets. LDOF is calculated based on the relative location
of an object to its neighbors and the false-detection probabil-
ities. The algorithm [20] calculates outliers at a nearly linear
time when the dimensionality of the dataset is high. It tracks
the nearest neighbors of a point and removes the point from a
potential outlier list, using a certain threshold value. At every
iteration, the threshold value increases with the pruning effi-
ciency. However, the major disadvantage of this algorithm
is that when there are not many outliers in the system, the
running time of the algorithm becomes quadratic. To solve
this, a two-step algorithm is developed in [21], which tries

to solve the bottleneck of high-dimensional data by perform-
ing a pre-processing step that allows for fast determination
of approximate nearest neighbors. K-means is initially used
by Jiang et al. [22] to solve the problem of outlier detection
by following a two-phase approach, where they first modify
the heuristic of K-means to separate out data points into a
new cluster, which are far away from each other, followed
by generating a Minimal Spanning Tree (MST) to delete the
longest (farthest) edge.

More recently, K-means coupled with a Genetic Algo-
rithm (GA) has been used to solve the said problem. For
example, in [23], GA has been used in outlier detection of
sparsely populated datasets, where it is used to insert large
amounts of relevant data in sparse regions which is then used
by the K-means algorithm to solve the interpolation prob-
lem. Similarly, Triangle Area-based nearest neighbors are
introduced in [24] which works on top of the centroids gen-
erated by the K-means algorithm, uses triangular area on
each centroid to generate several sets of data, and then uses
the k-nearest neighbor (k-NN) algorithm for further analy-
sis. The problem of deriving K, the number of clusters, is
done away in [25] where the authors generate a series of
local proximity graphs based on a uniform sampling strat-
egy, followed by performing Markovian random walks to
detect anomalies across these graphs. Similarly, algorithms
have been developed which are built on top of K-means++
and Fuzzy C-means. Feng et al. [26] develop an approxi-
mation algorithm for general metric space which uses the
K-means++ to sample points from the space and then use
them to select centers from them, whereas Fuzzy C-means
has been used in [27] to generate clustering extreme classes
(highest positive and negative), which are then trained by a
Support Vector Machine (SVM) to produce the final classifi-
cation results. The aboveworksmostly suffer fromsensitivity
to the initial centroid formation and may not be useful on
large scale data.

Ensemble techniques have also beenworked upon to solve
the problem of outlier detection. For example, Aggarwal
in [28] talks about the categorization of outlier ensemble
algorithms into sequential or independent ensembles and
model-centered or data-centered ensembles; which enables
in identifying the metrics behind the ensemble approach.
K-means has been used as an ensemble in [29], where
the algorithm is used multiple times in tandem to obtain
a weighted graph structure equivalent to the averaged co-
membership matrix. Neural networks coupled with data and
edge sampling have also been used in [30] as an ensemble
outlier detection approach, achieved by randomly varying
the connectivity architecture of the auto-encoder, obtaining
significantly better performance. Most ensemble methods
suffer from the problem of either normalization or combi-
nation. Given a set of outlier patterns, the problem arises in
comparing the different results, since each component of the
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ensemble might represent its results in a different reference.
Similarly, given a normalized set of outlier scores, the tech-
nique of combining them together also becomes challenging.
For example, if an ensemble has the application of a fuzzy-
based and a hard clustering algorithm, combining them so
that they can be mapped onto the same proportion is often a
tricky problem.

Present work

Our proposed algorithm focuses on the detection of outliers
that may be isolated, clustered, or a combination of both. To
differentiate between those outliers, we divide our algorithm
into two stages. The first stage uses the clustering ensemble
which iteratively clusters aswell as removes the potential iso-
lated outliers if any from the unlabeled data based on a preset
cluster membership threshold value. The second stage uses
the distance-based data filtering following a preset distance
threshold to filter out the potential outlier clusters if any from
the filtered results (post-clustered data) we obtained from the
first stage of our algorithm. In this section, we first explain
all prerequisites of the proposed method, and then finally we
describe the proposed technique.

Clustering algorithms used

As previously mentioned, we use three conventional cluster-
ing algorithms: K-means, K-means++, Fuzzy C-means out
of which two are hard clustering algorithms and the other
follows the soft clustering paradigm. The degree of belong-
ingness scores is not generated by hard clustering algorithms
as data objects can only belong to a single cluster (class).
Hence, we generate the degree of belongingness scores using
the formula described in section “Degree of belongingness
score generation for clustering algorithms”. In the case of the
soft clustering algorithm, the data objects belong to multiple
clusters (classes) with varying degrees of belongingness (i.e.,
the fuzzymembership values) of the object belonging to each
cluster and thus manual generation of the degree of belong-
ingness scores are not required. Below we describe the three
algorithms which form our clustering based ensemble.

K-means

K-means [31, 32] is a hard clustering algorithm. It uses an
iterative process that partitions data into K non-overlapping
clusters whose centroids are chosen randomly at an initial
step from the dataset. The K-means algorithm tends to maxi-
mize the inter-cluster distance and minimize the intra-cluster
distance. A data point is assigned to a cluster that has its
centroid at a minimum distance from that data point. The
iterations are performed till the algorithm converges (i.e.,

objective function reaches a satisfactory value). The steps of
the K-means algorithm are given below:

1. Specify the number of clusters K for a d-dimensional
dataset.

2. Initialize centroids by first shuffling the given dataset and
then randomly selecting K points for the cluster centroids
from the shuffled dataset without replacement.

3. Keep iterating until the algorithm converges.

3.1 Assign each data object xi to the cluster whose
centroid c j is at a minimum distance, di j � min(‖xi − c j‖

)
from the data object xi , where j �

1, 2, 3, 4, . . . , K . ||*|| is a norm function.
3.2 Let the number of initial data objects in the j th

cluster be Ni with its centroid denoted by c j . Then
update the cluster centers using the formula:

c j � 1

N j

∑
xiμi j . (1)

In Eq. (1), μi j � 1 if xi belongs to the j th cluster else
μi j � 0.

K-means++

LikeK-means,K-means++ [33] is also a hard clustering algo-
rithm. It is the modified version of the K-means algorithm
which has faster convergence than the conventional K-means
algorithm and provides a better clustering of unlabeled data
with high inter-cluster distances. It uses a different initial
cluster centroid assignment method. The very first cluster
centroid is chosen at random from the dataset. Then the
remaining (K − 1) cluster centroids are selected based on
the principle that a data point from the dataset whose mini-
mum distance to the already selected cluster centroids is the
largest is chosen as the new cluster centroid.

Fuzzy C-means

Fuzzy C-means [34] is a soft clustering algorithm. Fuzzy C-
means allows data to belong to more than one cluster. It is
based on the minimization of the objective function,

Jm �
N∑

i�1

C∑

j�1

μm
i j xi − c2j , 1 ≤ m < ∞. (2)

Here in Eq. (2), m is any real number greater than 1, μi j

is the degree of membership of xi in the cluster j , xi is
the i th datum of d-dimensional dataset, cj is the centroid
of the j th cluster in d-dimensional space. N is the number of
objects in the dataset and C is the number of cluster centers
and ||*|| is the norm function. Fuzzy partitioning is carried
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out through an iterative optimization of the objective func-
tion (see Eq. (2)), with the updated membership value (say,
μi j ) and the cluster centers (say, c j ) defined in Eqs. (3) and
(4), respectively:

μi j � 1

∑C
k�1

( ‖xi−c j‖
‖xi−ck‖

) 2
m−1

, (3)

c j �
∑N

i�1 μm
i j .xi

∑N
i�1 μm

i j

. (4)

This iteration will stop when maxi j
{∣∣
∣μk+1

i j − μk
i j

∣∣
∣
}

< ε,

where ε is an iteration termination criterion between 0 and
1, and k is the iteration count. This procedure converges to a
local minimum of the objective function Jm .

The algorithm can be described by the following steps:

1. Initialize U � [
μi j

]
matrix, U 0 for k � 0.

2. At kth-step: calculate the centroid vectors Ck � [
c j

]
,

where c j is defined using Eq. (4).
3. Update Uk to Uk+1, where each element μi j in the U

matrix is defined using Eq. (3).
4. If ‖Uk+1−Uk‖< ε then terminate the process otherwise

continue the process to (k + 1)th step.

Degree of belongingness score generation
for clustering algorithms

The degree of belongingness is the scoring scheme we use
to assign cluster membership to unlabeled data objects. The
hard clustering algorithms in use assign the data objects to
a single cluster hence the degree of belongingness is not
generated by those algorithms. In the case of soft clustering
algorithms, the fuzzy membership values (which are equiv-
alent to the degree of belongingness scores) form an integral
part of the algorithm and are crucial for the clustering of
unlabeled data. For soft clustering algorithms, a data object
belongs to a cluster for which it holds the highest member-
ship value. So, the degree of belongingness scores for a soft
clustering algorithm can be represented by its membership
values. The degree of belongingness scores for the hard clus-
tering algorithms is defined using the formula:

Pi j � 1.0 −
( ‖xi − c j‖∑

k‖xi − ck‖
)

. (5)

Here, j � 1, 2, . . . , K and Pi j represents the degree of
belongingness of data object xi of belonging to j th cluster
with centroid c j . From Eq. (5) we observe that degree of
belongingness score Pi j can have a maximum value of 1.0
and a minimum value of 0.0. So, we set the scores accord-
ing to the Euclidean distance of a data point from a cluster

centroid. Thus, according to the ratio
‖xi−c j‖∑
k‖xi−ck‖ for larger

‖xi − c j‖ values the overall value will be smaller and hence
Pi j will have a smaller degree of belongingness score for
larger distance.

The degree of belongingness scores (equivalent to the
fuzzy membership values) for the soft clustering algorithms
are generated using the formula:

Pi j � μi j � 1

∑C
k�1

( ‖xi−c j‖
‖xi−ck‖

) 2
m−1

. (6)

In Eq. (6), j � 1, 2, . . . , K and Pi j represents the degree
of belongingness of data object xi of belonging to j th cluster
with centroid c j and 1 < m < ∞ (m represents the amount
of fuzziness in our dataset).

Weightedmethod of generating the cumulative
degree of belongingness scores

In “Degree of belongingness score generation for clustering
algorithms” section, we discuss how the degree of belong-
ingness can be generated for the hard clustering algorithms.
To combine the degree of belongingness scores we gener-
ated for each clustering technique in the ensemble, we use
a weighted technique which we represent using the formula
provided in Eq. (7):

Pi j �
∏

y Pi j (y)∑
j
∏

y Pi j (y)
. (7)

In Eq. (7), y � 1, 2, . . . ,m and j � 1, 2, . . . , K . Pi j is
generated for an ensemble of m clustering techniques which
is in our case is 3. Pi j is the combined degree of belonging-
ness of the data object xi of belonging to j th cluster with
centroid c j .

The data object xi is assigned to a cluster for which it
has the maximum Pi j . Hence, we classify the point xi as an
outlier if:

max{Pi j } < Pth. (8)

In Eq. (8), Pth is the cluster membership threshold. Only
those data objects with a combined degree of belongingness
scores greater than the clustermembership threshold are con-
sidered as inliers by our clustering based ensemble method.

Dunn indexmaximization for convergence
of iteration

Different clustering validity indices are used to measure the
quality of a clustering algorithm. Dunn index [35, 36] scores
are one of the widely used clustering validity indices. It is an
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internal evaluation scheme. The higher Dunn index indicates
greater compactness within clusters and higher inter-cluster
separation. Dunn index values are maximized over an itera-
tive process to locate the optimum point (the best quality of
clustering). Dunn index values are calculated for each itera-
tive step using Eq. (9):

DunntK � mini≤i< j≤K {d(
ci , c j

)}
maxl≤p≤K�p

. (9)

In Eq. (9), t is the iterative step count, δ
(
ci , c j

)
is the

inter-cluster distance measure between cluster centroids ci
and c j and �p is the intra-cluster distance measure for the
pth cluster.

In our algorithm, we use an iterative process to maximize
the Dunn index values (maximize the quality of cluster for-
mation). In an iterative step, a selective number of data points
with a degree of belongingness less than the threshold level
(Pth) are eliminated from the dataset. Then in the next step,
the ensemble of the clustering techniques is again applied to
the resultant dataset and the degree of belongingness scores
for both the previously eliminated data as well as data points
in the current dataset are computed. Precisely, we have not
considered any data point as an absolute outlier point at any
step of the iteration. We consider a data point as an outlier at
the end of the iterative process. Based on the new degree of
belongingness scores, we perform three operations:

1. Some of the previously eliminated data points which
have been labeled as outliers in the t th iteration is again
included in the dataset at (t + 1)th iteration based on
the assumption that Pot+1i j > Pth i.e., if the data point

satisfies the condition to be inlier. Here Pot+1i j is the
updated degree of belongingness scores for the previ-
ously eliminated data point in the (t + 1)th iterative step,
for i � 1, 2, . . . , M (where M is the number of previ-
ously eliminated data points), j � 1, 2, . . . , K (where
K is the number of clusters).

2. Data points from the new dataset are eliminated and
labeled as outliers in the (t + 1)-th iteration based on the
assumption that Pnt+1i j < Pth. Here Pnt+1i j is the updated
degree of belongingness scores for the new data points in
the (t + 1)-th iterative step, for i � 1, 2, . . . , N

′
(where

N
′
is the number of data objects in the new dataset),

j � 1, 2, . . . , K (K is the number of clusters).
3. We update the currentDunn Index value (i.e., Dunn Index

for the (t + 1)th iterative step) and continue with the next
iterative step if Dunnt+1K > DunntK where, DunntK is the
Dunn Index for the t th iterative step, else we terminate
the iteration.

The resultant Dunn index value after the termination of
the iterative process is the maximized Dunn index value (i.e.,

Fig. 1 Pictorial description of the proposed method (iterative ensem-
ble method with distance-based data filtering). The circles with black
colored dashed lines show the elimination process of outliers based on
a cluster membership threshold (Pth), in which the points outside the
dashed circles are eliminated. The concentric blue circles show the pro-
cess of elimination of outliers in outlier clusters based on a distance
threshold (dth) from the majority cluster center

Dunn index that provides the best quality of clustering)which
provides the optimal point of operation of our algorithm.
The data points which are eliminated in the final step of the
iterative process are labeled as actual outliers.

Distance-based filteringmodel

Outliers though small in number when compared with the
number of actual data points in thedatasetmay share common
traits with other outliers and may form clusters of their own.
Let us assume that the outliers form the number of clusters
with relatively smaller cluster densities than that of actual
ones, but with large inter-cluster distance and small intra-
cluster distance. In this scenario, we cannot eliminate those
clusters using the iterative ensemble of clustering techniques
due to the small intra-cluster distance between outlier points
and hencewith the degree of belongingness (Pi j ) greater than
that of the fixed threshold (Pth). To eliminate those clusters,
we use a distance-based filtering model which performs the
following operations on the post-clustered dataset formed
using the iterative ensemble method:

1. Fix a threshold distance (dth) for the filter.
2. Determine the majority cluster (the cluster with the high-

est cluster density value) of the post-clustered dataset for
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Fig. 2 Overview of our proposed method (iterative ensemble method with distance-based data filtering) for outlier detection

each of the clustering techniques (K-means, K-means++,
and Fuzzy C-means) used in the ensemble.

3. For each of the three clustering techniques compute the
distance of each object xi in the dataset from the cen-
troid of themajority clusterCk(centroid for kth clustering
method). Label the object xi as an outlier if min

k
‖xi −

Ck‖> dth where i � 1, 2, . . . , N ′′ and N ′′ represents the
size of the post-clustered dataset and k � 1, 2, 3 denotes
the number of clustering techniques used in the ensem-
ble. To be specific, for each of the clustering techniques,
if an object xi is labeled as an outlier, then the point is
labeled as an actual outlier despite its belongingness in a
formed cluster by present ensemble-based clustering.

Iterative ensemblemethod with distance-based
data filtering

In the previous sections, we discussed in detail the differ-
ent basics and working principles of our algorithm. In this
section, we combine the various steps mentioned in the pre-
vious sections and present the overall algorithm. A pictorial
description of the proposed method has been shown in Fig. 1
while in Fig. 2, the methodology of the proposed method is
shown using a flowchart.

Given a dataset X � {x1, x2, . . . , xn}, the number of clus-
ters (say, K), and fixing a cluster membership and distance
threshold as Pth and dth respectively. The steps of the algo-
rithm are as follows:
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1. Compute clusters for the given dataset using each of the
mentioned three clustering techniques.

2. Determine the cluster centroids and degree of belonging-
ness of each of the data point xi in the dataset for each of
the clustering techniques used. For hard clustering algo-
rithms (i.e., K-means and K-means++) assign the degree
of belongingness scores to data points based on the for-
mula defined in Eq. (5). For the soft clustering algorithm
use the fuzzymembership values as the degree of belong-
ingness scores for the data points based on the formula
defined in Eq. (6).

3. Start the iterative process and compute DunntK where
t � 0 for the initially computed clusters.

4. Generate the cumulative degree of belongingness score
for the cluster ensemble using the formula defined in
Eq. (7). Eliminate points from the given dataset and label
them as possible outliers using Eq. (8) based on the max-
imum cumulative degree of belongingness score of each
data point xi of X.

5. Compute the clusters and centers for each of the clus-
tering techniques for post elimination. Find the updated
Dunn index value (DunntK ) for updated clusters in the t th
iterative step.

6. In (t + 1)th iterative step, check if any of the data points
in the updated dataset have a degree of belongingness
Pnt+1i j < Pth for which those points are eliminated from
the dataset. Also, check if any of the previously elimi-
nated possible outliers have a degree of belongingness
Pot+1i j > Pth (i.e., satisfies the condition to be inlier) for
which those points are included in the updated dataset.

7. Check if updated Dunn Index value (i.e., Dunn Index for
the (t + 1)th iterative step) is greater than original Dunn
Index value (i.e., Dunn Index for the t-th iterative step)
Dunnt+1K − DunntK > 0. If true then continue with the
next iteration step else we terminate the iteration process

8. After termination of the iteration determines the final
majority clusters for each of the 3 clustering techniques.
Based on the distance threshold dth select points xi
from the dataset for which min

k
‖xi − Ck‖> dth where

k � 1, 2, 3 (number of clustering techniques used), Ck

is the majority cluster centroid for the kth clustering
method. If a point xi is labeled as an outlier by all three of
the clusteringmethods, then select that point as an outlier
and add that point to the list of previously labeled outliers
(outliers labeled using the ensemble).

Results and discussion

To assess the performance of our proposed algorithm, we
evaluate it on 10 machine learning datasets with different
sizes and dimensions and each having a varying number of

outliers. Our results have been compared to those obtained
from12other outlier detection algorithmswhichdemonstrate
that our proposed method shows superior or comparable per-
formance on most of the datasets to those existing outlier
detection algorithms. In this section, first, we describe dif-
ferent requirements for the experiment and then mention the
obtained results.

Database description

The datasets on which our proposed method has been eval-
uated are shown in Table 1. From Table 1, we observe that
the Pima dataset has the largest number of samples (510) and
the Parkinson dataset is the smallest sized dataset (50). The
Ionosphere dataset has the largest dimension (32), whereas
the Glass dataset has the smallest dimension (7). In terms of
outlier count Ionosphere, the dataset has the largest number
of outliers at 126 (i.e., 35.90% of the entire dataset) with the
Pima dataset is having the smallest outlier count at 10 (1.96%
of the entire dataset).

Evaluationmetrics

We evaluate the performance of our algorithm based on the
evaluation metrics described below.

F-score: The F-score [37, 38], also called the F1-score or the
F-measure reflects upon a test’s accuracy. It is defined as the
harmonic mean of the precision and recall values. This score
is calculated according to:

(10)

F-score �
(
recall−1 + precision−1

2

)−1

� 2 ×
(
precision · recall
precision + recall

)
.

With both precision and recall considered for the calcu-
lation of the F1-score, it is useful in providing a realistic
measure of a test’s performance by balancing both precision
and recall. A F-score value ranges from 0 to 1.

Precision@n (P@n): For a classification system P@n [39,
40] is the proportion of relevant output at the top-n selected
outputs. For example, if our algorithm returns N number of
ranked data points as outliers and out of those N points if
we use only the top-n ranked data points as outlier points of
which r points are true outliers then we calculate P@n of
that algorithm as:

P@n � r

n
. (11)
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Table 1 The datasets used to evaluate the proposed outlier detection method and their properties

Dataset # samples Dimension # outliers % of outliers

Glass 214 7 9 4.21

Lymphography 148 18 6 4.05

Ionosphere 351 32 126 35.90

WBC 223 9 10 4.48

WDBC 367 30 10 2.72

Heart disease 153 13 3 1.96

Hepatitis 70 19 3 4.29

Pima 510 8 10 1.96

Parkinson 50 22 2 4.00

Stamps 315 9 6 1.90

Table 2 Results for the present iterative ensemble method with distance-based filtering. Here, the optimal parameter values are mentioned that we
obtain after several experiments

Dataset F-score Best parameters

K dth Pth

Glass 0.66667 3 0.66 0.88

Lymphography 0.92308 2 0.63 0.74

Ionosphere 0.81928 7 0.72 0.95

WBC 0.66667 2 0.36 0.80

WDBC 0.52174 2 0.39 0.80

Heart disease 0.28572 15 0.59 0.88

Hepatitis 0.50000 12 0.87 0.94

Pima 0.15151 14 0.70 0.84

Parkinson 0.80000 10 0.69 0.98

Stamps 0.37500 6 0.49 0.70

Fig. 3 Variation of F-score with
the parameter value (Pth) for the
present iterative ensemble
method

Results on the database

Results have been calculated for the mentioned 10 different
datasets. We conduct multiple experiments by setting differ-
ent parameters, i.e., by setting different cluster membership
thresholds (Pth) and varying distance threshold (dth) and the

number of clusters (K ) over a wide range of values. The
parameter values for which we obtain the maximum F-score
are considered as the best parameter values (see Table 2).
Figure 3 shows the variation of the F-score with the cluster
membership threshold (Pth) parameter values for the present
clustering ensemble method. In Table 2, the mentioned score
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Fig. 4 Performance of our
proposed ensemble method in
comparison with K-means,
K-means++, and Fuzzy
C-means clustering algorithms.
The comparisons are made in
terms of a F-score and b P@n
for all datasets used here. In b,
the missing bars indicate zero
scores

is obtained using the best parameter values shown therein.
P@n scores corresponding to the maximum F-score are
considered in the results shown below. Using the parame-
ter values (mentioned in Table 2), we compute the results
in terms of F-score and P@n of the proposed algorithm
and compare these results with those obtained using only
K-means, K-means++, and Fuzzy C-means exclusively in
place of the clustering ensemble. The comparative results
are shown in Fig. 4. The results of this figure suggest that
the present clustering ensemble method performs reasonably
better as compared to K-means, K-means++, and Fuzzy C-
means individually.

Dunn Index variation for convergence of iteration

In this subsection, we show the Dunn index variation with
each step of the iterative process until the convergence crite-
rion is satisfied (i.e., till the Dunn index gets maximized, see
section “Dunn index maximization for convergence of iter-
ation”) for all of the algorithms (i.e., clustering ensemble,
K-mean, K-means++, and Fuzzy C-means). The results for
which are shown in Fig. 5.

123



Complex & Intelligent Systems (2022) 8:3215–3230 3225

Fig. 5 Dunn index variation for all of the algorithms: a clustering ensemble, b K-means, c K-means++, and d Fuzzy C-means

Table 3 Performances in terms of P@n score of different base clustering algorithms and the alternative ensemble methods constructed with varying
these base clustering algorithms

Method Datasets

Glass Lymphography Ionosphere WBC WDBC Heart Disease Hepatitis Pima Parkinson Stamps

Base clustering models

KM 0.11 1.00 0.90 0.70 0.70 0.00 0.00 0.20 0.50 0.00

KM++ 0.11 0.83 0.90 0.80 0.60 0.00 0.00 0.20 0.50 0.00

FCM 0.78 1.00 0.95 0.70 0.60 0.33 0.33 0.30 0.50 0.20

SOM 0.11 1.00 0.50 0.60 0.20 0.67 0.00 0.00 1.00 0.00

SL 0.11 1.00 0.58 1.00 0.67 0.00 0.00 0.30 0.50 0.00

Iterative ensemble with distance-based data filtering-based clustering techniques

Method 1 0.44 1.00 0.50 0.50 0.60 0.67 0.33 0.10 0.50 0.00

Method 2 0.44 0.22 0.76 0.30 0.30 0.33 0.33 0.30 1.00 0.17

Method 3 0.44 0.21 0.74 0.10 0.20 0.33 0.33 0.29 1.00 0.50

Method 4 0.80 1.00 0.91 0.25 0.33 0.50 0.33 0.50 0.50 0.33

Proposed method 0.78 1.00 0.93 0.70 0.60 0.33 0.67 0.30 0.50 0.50

In this table, KM, KM++ , FCM, SOM, and SL stand for the algorithms: K-means, K-means++ , Fuzzy C-means, Self-Organizing Map, and
Single-Linkage algorithms, respectively. Boldface numbers indicate the best scores (in each category)

Performance of alternative ensemble-based outlier
detection algorithms

In our proposed work, we have used three clustering algo-
rithms: K-means, K-means++, and Fuzzy C-means. How-
ever, to test the performance of the proposed iterative
ensemble with distance-based data filtering approach with

varying base clustering algorithms we have performed more
experiments. For this, we have considered two more cluster-
ing techniques namely, Self-Organizing Map (SOM) [41],
and Single-Linkage (SL) [42]. We have constructed 4 new
iterative ensemble methods with distance-based data filter-
ing approach with the help of the K-means, Fuzzy C-means,
SOM, and SL clustering algorithms. The 4 different methods
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Table 4 Performances in terms of F-score of different base clustering algorithms and the alternative ensemble methods constructed with varying
these base clustering algorithms

Method Datasets

Glass Lymphography Ionosphere WBC WDBC Heart disease Hepatitis Pima Parkinson Stamps

Base clustering models

KM 0.42 0.86 0.71 0.65 0.62 0.17 0.19 0.12 0.57 0.22

KM++ 0.22 0.80 0.71 0.70 0.53 0.16 0.19 0.12 0.57 0.22

FCM 0.57 0.92 0.76 0.67 0.57 0.29 0.40 0.15 0.80 0.17

SOM 0.14 1.00 0.53 0.73 0.24 0.12 0.17 0.11 0.67 0.22

SL 0.16 1.00 0.63 0.75 0.63 0.10 0.29 0.09 0.50 0.20

Iterative ensemble with distance-based data filtering-based clustering techniques

Method 1 0.62 1.00 0.53 0.56 0.60 0.57 0.40 0.13 0.67 0.15

Method 2 0.62 0.62 0.84 0.35 0.14 0.40 0.50 0.30 0.80 0.40

Method 3 0.67 0.60 0.85 0.15 0.22 0.50 0.67 0.24 1.00 0.40

Method 4 0.62 0.62 0.86 0.14 0.25 0.40 0.57 0.31 0.80 0.46

Proposed method 0.67 0.92 0.82 0.67 0.52 0.29 0.50 0.15 0.80 0.38

In this table, KM, KM++, FCM, SOM, and SL stand for the algorithms: K-means, K-means++, Fuzzy C-means, Self-Organizing Map, and
Single-Linkage, respectively. Boldface numbers indicate the best scores (in each category)

comprising4different clustering ensembles areMethod1 (K-
means, SOM, andSL),Method 2 (K-means, SOM, andFuzzy
C-means), Method 3 (K-means, SL, and Fuzzy C-means),
and Method 4 (SL, SOM, and Fuzzy C-means) have been
built. The performances of the 4 alternative methods along
with the proposed one (K-means, K-means++, and Fuzzy
C-means) are shown in Table 3 (for P@n) and Table 4 (for
F-score). These tables also include the performances of K-
means, K-means++, Fuzzy C-means, SOM, and SL. From
the results it is clear that the performance of the proposed
approach is better in most of the cases.

Comparison with other outlier detection algorithms

We compare the performance of our proposed algorithm
(iterative ensemble method with distance-based data fil-
tering) with 12 other existing outlier detection algorithms
(viz., kth-Nearest Neighbor (kNN), kNN-weight (kNNW),
Local Outlier Factor (LOF), Simplified LOF, Local Out-
lier Probabilities (LoOP), Local Distance-based Outlier
Factor (LDOF), Outlier Detection using Indegree Number
(ODIN), Fast Angle-Based Outlier Detection (FastABOD),
Kernel Density Estimation Outlier Score (KDEOS), Local-
Density Factor (LDF), Influenced Outlierness (INFLO) and
Connectivity-based Outlier Factor (COF)) the results. The
score mentioned for the comparative methods is the experi-
mental outcome of the work mentioned in [43]. The metrics
P@n and F-score are only used for the comparative pur-
pose as they are popularly used comparative metrics used for
comparing outlier detection algorithms. These comparative
results are shown in Fig. 6.

As indicative of the results shown in Fig. 6a, we observe
that our proposed method outperforms the 12 other outlier
detection algorithms on the Glass dataset and our proposed
method also registers the highest P@n score and F-score.
On the Lymphography dataset (see Fig. 6b for performance
results) our proposed method performs comparably to the
12 other outlier detection algorithms. Our proposed method
registers the highest P@n score along with a comparable F-
score andgives better overall performance thanLoOP,LDOF,
ODIN, Fast ABOD, KDEOS, and INFLO algorithms. Fol-
lowing a similar trend to the previous results our proposed
method registers the highest P@n score on the Ionosphere
dataset (see Fig. 6c for performance results) and also shows
comparable F-score performance. So, we infer that our pro-
posed method outperforms all of the 12 outlier detection
algorithms on the Ionosphere dataset. Only the KNN and
KNNW algorithms (both are supervised outlier detection
algorithms) show performance comparable to our proposed
method on the Ionosphere dataset.

Figure 6d suggests that our proposed method gives bet-
ter overall performance than the LoOP, LDOF, ODIN, and
KDEOS algorithms on the WBC dataset but lags when com-
pared to KNN and LDF algorithms both of which registered
the highest F-score. Similar to what we observed before, our
proposed method outperforms the KDEOS algorithm on the
WDBC dataset and shows performance comparable to the
LDF, ODIN, and FastABOD algorithms as evidenced by the
results shown in Fig. 6e. The LOF algorithm registers the
highest F-score on the WDBC dataset but is outperformed
by the LDF algorithm on the P@n results. The performance
results on the Heart Disease dataset are shown in Fig. 6f. We
observe that the highest P@n scores are registered by our
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Fig. 6 Performance comparison of the proposed method with state-of-the-art techniques on the 10 datasets used in this work. The missing bars (in
f and h) indicate zero scores
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proposed method as well as by LDF and COF algorithms but
our method falls behind in the F-score results registering the
third highest score (behind COF and LDF algorithms) but
in overall performance, our proposed method gives superior
results to the rest of the 10 outlier detection algorithms. The
results on the Hepatitis dataset shown in Fig. 6g again show
that our proposed method shows comparable performance
to the other algorithms. Our proposed method registers the
highest P@n score along with the LDF, LOF, and COF algo-
rithms.

Also, our proposed method registers the second highest
F-score behind the 3 previously mentioned algorithms but
shows greater overall performance than the rest of the 12 out-
lier detection algorithmson theHepatitis dataset.On thePima
dataset (see Fig. 6h for performance results) our proposed
method registers the highest P@n score and a compara-
ble F-score. Only the FastABOD and KDEOS algorithms
show similar performance to our method with FastABOD
registering the highest F-score with KDEOS following in at
a close second with our method falling in at third. So, we
infer that our proposed method shows superior performance
than the rest of the 10 outlier detection algorithms on the
Pima dataset. Comparison results on the Parkinson dataset
shown in Fig. 6i show that the LDF algorithm has the best
P@n and F-score performance and all the other algorithms
(including our proposed method) show exactly similar per-
formance. Finally, in Fig. 6j,we show the performance results
of the algorithms on the Stamps dataset. As we see from the
comparison results that our proposed method again regis-
ters the highest P@n score with F-score comparable to what
we observe for the other outlier detection algorithms. Only
the COF algorithm shows performance comparable to our
proposed method and registers the highest F-score. But all
the other outlier detection algorithms fall behind in both the
P@n score and F-score performance. Hence, our proposed
method shows better overall performance than all the 12 other
outlier detection algorithms on the Stamps dataset.

So, the comparison results indicate that our proposed algo-
rithm shows good performancewhen compared to the said 12
existing outlier detection algorithms (both classification and
clustering based) for all of the 10 machine learning datasets
from our database. For some of the datasets, our algorithm
gives outright better results than all the 12 algorithmswhereas
on other datasets it gives results comparable to those algo-
rithms. We also infer that irrespective of the outlier type
(isolated or clustered) present in the dataset our proposed
algorithm has reasonable outlier detection accuracy as evi-
denced from the comparison results shown above.

Conclusion

In this paper, we propose an algorithm that consists of an
iterative clustering ensemble of K-means, K-means++, and
Fuzzy C-means clustering algorithms and a distance-based
filteringmethod for outlier detection fromunlabeled datasets.
We observe that using a clustering ensemble, we obtain
results comparable or better than those obtained using indi-
vidual clustering techniques (i.e., K-means, K-means++, and
Fuzzy C-means) in place of the ensemble. Using an ensem-
ble of clustering techniques, we can compensate for the
erroneous results that we obtain from any of the individual
clustering algorithms. The distance-based filter is effective in
removing those outliers that remain undetected by our itera-
tive clustering ensemble. Our results that we have obtained
by experimenting on 10 datasets from various application
domains infer that the proposed algorithm performs superior
to some of the pre-established outlier detection algorithms
(both classification and clustering based) on certain datasets.
The performance of the proposed algorithm varies depend-
ing on the threshold values (clustermembership threshold Pth
and distance threshold dth) chosen. In the future, an intelli-
gent evaluation method can be designed to set the values of
Pth and dth for better estimation of the outlier data points.
A larger clustering ensemble can be used which will com-
bine results from multiple pre-established clustering outlier
detection algorithms used for detecting outliers. In place of
the distance-based data filtering scheme, a weighted method
of data filtering can be used for the detection of possible
outlier clusters which remain undetected by the clustering
ensemble.

Funding The authors declare that they have not received any funds from
any source to conduct this research.

Availability of data andmaterial Not applicable in our case.

Code availability Not applicable in our case.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

123



Complex & Intelligent Systems (2022) 8:3215–3230 3229

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. BorahA, Nath B (2019) Rare patternmining: challenges and future
perspectives. Complex Intell Syst 5:1–23

2. Dhieb N, Ghazzai H, Besbes H, Massoud Y (2019) A very deep
transfer learning model for vehicle damage detection and local-
ization. In: 2019 31st international conference on microelectronics
(ICM). IEEE, pp 158–161

3. Sarkar BK (2017) Big data for secure healthcare system: a concep-
tual design. Complex Intell Syst 3:133–151

4. Shambharkar V, Sahare V (2016) Survey on outlier detection for
support vector machine. Int J Data Min Tech Appl 5:11–14

5. Shah V, Aggarwal AK, Chaubey N (2017) Performance improve-
ment of intrusion detection with fusion of multiple sensors.
Complex Intell Syst 3:33–39

6. Carreño A, Inza I, Lozano JA (2020) Analyzing rare event,
anomaly, novelty and outlier detection terms under the supervised
classification framework. Artif Intell Rev 53:3575–3594

7. Tian W, Liu J (2009) Intrusion detection quantitative analysis with
support vector regression and particle swarm optimization algo-
rithm. In: 2009 international conference on wireless networks and
information systems. IEEE, pp 133–136

8. Save P, Tiwarekar P, Jain KN, Mahyavanshi N (2017) A novel idea
for credit card fraud detection using decision tree. Int J Comput
Appl 161:6–9

9. Aggarwal CC (2017) Proximity-based outlier detection. Outlier
analysis. Springer, Berlin, pp 111–147

10. Zhang J, Zulkernine M (2006) Anomaly based network intrusion
detection with unsupervised outlier detection. In: IEEE interna-
tional conference on communications

11. Zhang K, Shi S, Gao H, Li J (2007) Unsupervised outlier detection
in sensor networks using aggregation tree. In: International con-
ference on advanced data mining and applications. Springer, pp
158–169

12. Dasgupta D, Majumdar NS (2002) Anomaly detection in multidi-
mensional data using negative selection algorithm. In: Proceedings
of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat.
No. 02TH8600). IEEE, pp 1039–1044

13. Markou M, Singh S (2003) Novelty detection: a review—part 1:
statistical approaches. Signal Process 83:2481–2497

14. Saha A, Chatterjee A, Ghosh S et al (2021) An ensemble approach
to outlier detection using some conventional clustering algorithms.
Multimed Tools Appl 80:35145–35169. https://doi.org/10.1007/
s11042-020-09628-5

15. Hautamäki V, Cherednichenko S, Kärkkäinen I, et al (2005)
Improving K-means by outlier removal. In: Scandinavian confer-
ence on image analysis. Springer, pp 978–987

16. He Z, Xu X, Deng S (2003) Discovering cluster-based local out-
liers. Pattern Recognit Lett 24:1641–1650

17. Hawkins S, He H, Williams G, Baxter R (2002) Outlier detection
using replicator neural networks. In: Kambayashi Y, Winiwarter
W, Arikawa M (eds) Data warehousing and knowledge dis-
covery. DaWaK 2002. Lecture Notes in Computer Science, vol
2454. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-
46145-0_17

18. Loperfido N (2019) Kurtosis-based projection pursuit for outlier
detection in financial time series. Eur J Financ. https://doi.org/10.
1080/1351847X.2019.1647864

19. Zhang K, Hutter M, Jin H (2009) A new local distance-based
outlier detection approach for scattered real-world data. In: Theer-
amunkong T, Kijsirikul B, Cercone N, Ho TB (eds) Advances

in knowledge discovery and data mining. PAKDD 2009. Lecture
Notes inComputer Science, vol 5476. Springer, Berlin,Heidelberg.
https://doi.org/10.1007/978-3-642-01307-2_84

20. Bay S, Schwabacher M (2003) Mining distance-based outliers in
near linear timewith randomization and a simple pruning rule. Proc
ACM SIGKDD Int Conf Knowl Discov Data Min. https://doi.org/
10.1145/956750.956758

21. Ghoting A, Parthasarathy S, Otey ME Fast mining of distance-
based outliers in high-dimensional datasets. In: Proceedings of
the 2006 SIAM international conference on data mining. pp 609–
613

22. Jiang M-F, Tseng S, Su CM (2001) Two-phase clustering process
for outliers detection. Pattern Recognit Lett 22:691–700. https://
doi.org/10.1016/S0167-8655(00)00131-8

23. ChenW, Tian Z, Zhang L (2020) Interpolation-based outlier detec-
tion for sparse, high dimensional data. J PhysConf Ser 1437:12059.
https://doi.org/10.1088/1742-6596/1437/1/012059

24. Tsai C-F, Lin C-Y (2010) A triangle area based nearest neigh-
bors approach to intrusion detection. Pattern Recognit 43:222–229.
https://doi.org/10.1016/j.patcog.2009.05.017

25. Wang C, Liu Z, Gao H, Fu Y (2019) Applying anomaly pattern
score for outlier detection. IEEE Access. https://doi.org/10.1109/
ACCESS.2019.2895094

26. Feng Q, Zhang Z, Huang Z, Xu J, Wang J (2019) Improved algo-
rithms for clustering with outliers. In: Proc. 30th International
symposium on algorithms and computation (ISAAC 2019)

27. Yang X, Zhang G, Lu J (2011) A kernel Fuzzy C-means clustering-
based fuzzy support vector machine algorithm for classifica-
tion problems with outliers or noises. Fuzzy Syst IEEE Trans
19:105–115. https://doi.org/10.1109/TFUZZ.2010.2087382

28. Aggarwal C (2012) Outlier ensembles: position paper. SIGKDD
Explor 14:49–58

29. Kim E-Y, Kim S-Y, Ashlock D, Nam D (2009) MULTI-K: accu-
rate classification of microarray subtypes using ensemble K-means
clustering. BMC Bioinform 10:260. https://doi.org/10.1186/1471-
2105-10-260

30. Chen J et al (2017) Outlier detection with autoencoder ensembles.
In: Proceedings of the 2017 SIAM international conference on data
mining. Society for Industrial and Applied Mathematics

31. Hartigan JA (1979) A K-means clustering algorithm: Algorithm
AS 136. Appl. Stat. 28:126–130

32. Lloyd S (1982) Least squares quantization in PCM’s. IEEE
Trans Inf Theory 28:129–136. https://doi.org/10.1109/TIT.1982.
1056489

33. Arthur D, Vassilvitskii S (2007) K-means++: the advantages of
careful seeding. In: Proc. of the annu. ACM-SIAM Symp. on dis-
crete algorithms. pp 1027–1035

34. Bezdek J, Ehrlich R, Full W (1984) FCM—the Fuzzy C-means
clustering-algorithm. Comput Geosci 10:191–203. https://doi.org/
10.1016/0098-3004(84)90020-7

35. Dunn JC (2008) Well-separated clusters and optimal fuzzy
partitions. Cybern Syst 4:95–104. https://doi.org/10.1080/
01969727408546059

36. Dunn J (1973) A fuzzy relative of the ISODATA process and its use
in detecting compactwell-separated clusters. Cybern Syst 3:32–57.
https://doi.org/10.1080/01969727308546046

37. Pal R, Yadav S, Karnwal R (2020) EEWC: energy-efficien
tweighted clustering method based on genetic algorithm for
HWSNs. Complex Intell Syst 6(2):391–400

38. Malakar S, Sharma P, Singh PK et al (2017) A holistic approach
for handwritten Hindi word recognition. Int J Comput Vis Image
Process 7:59–78. https://doi.org/10.4018/IJCVIP.2017010104

39. Järvelin K, Kekäläinen J (2017) IR evaluation methods for retriev-
ing highly relevant documents. ACM SIGIR Forum 51:243–250.
https://doi.org/10.1145/3130348.3130374

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11042-020-09628-5
https://doi.org/10.1007/3-540-46145-0_17
https://doi.org/10.1080/1351847X.2019.1647864
https://doi.org/10.1007/978-3-642-01307-2_84
https://doi.org/10.1145/956750.956758
https://doi.org/10.1016/S0167-8655(00)00131-8
https://doi.org/10.1088/1742-6596/1437/1/012059
https://doi.org/10.1016/j.patcog.2009.05.017
https://doi.org/10.1109/ACCESS.2019.2895094
https://doi.org/10.1109/TFUZZ.2010.2087382
https://doi.org/10.1186/1471-2105-10-260
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/0098-3004(84)90020-7
https://doi.org/10.1080/01969727408546059
https://doi.org/10.1080/01969727308546046
https://doi.org/10.4018/IJCVIP.2017010104
https://doi.org/10.1145/3130348.3130374


3230 Complex & Intelligent Systems (2022) 8:3215–3230

40. Manning C, Raghavan P, Schütze H (2010) Introduction to infor-
mation retrieval. Nat Lang Eng 16(1):100–103

41. Kohonen T (1990) The self-organizing map. Proc IEEE
78:1464–1480

42. Seifoddini HK (1989) Single linkage versus average linkage clus-
tering in machine cells formation applications. Comput Ind Eng
16:419–426

43. Campos G, Zimek A, Sander J et al (2016) On the evaluation of
unsupervised outlier detection: measures, datasets, and an empiri-
cal study.DataMinKnowlDiscov. https://doi.org/10.1007/s10618-
015-0444-8

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s10618-015-0444-8

	An iterative approach to unsupervised outlier detection using ensemble method and distance-based data filtering
	Abstract
	Introduction
	Related work
	Present work
	Clustering algorithms used
	K-means
	K-means++
	Fuzzy C-means

	Degree of belongingness score generation for clustering algorithms
	Weighted method of generating the cumulative degree of belongingness scores
	Dunn index maximization for convergence of iteration
	Distance-based filtering model
	Iterative ensemble method with distance-based data filtering

	Results and discussion
	Database description
	Evaluation metrics
	Results on the database
	Dunn Index variation for convergence of iteration
	Performance of alternative ensemble-based outlier detection algorithms
	Comparison with other outlier detection algorithms

	Conclusion
	References




