
Complex & Intelligent Systems (2022) 8:1737–1761
https://doi.org/10.1007/s40747-021-00634-0

ORIG INAL ART ICLE

Hierarchical clustering for multiple nominal data streams with
evolving behaviour

Jerry W. Sangma1 ·Mekhla Sarkar2 · Vipin Pal1 · Amit Agrawal3 · Yogita1

Received: 11 June 2021 / Accepted: 17 December 2021 / Published online: 7 January 2022
© The Author(s) 2022

Abstract
Over the decade, a number of attempts have been made towards data stream clustering, but most of the works fall under
clustering by example approach. There are a number of applications where clustering by variable approach is required which
involves clustering of multiple data streams as opposed to clustering data examples in a data stream. Furthermore, a fewworks
have been presented for clustering multiple data streams and these are applicable to numeric data streams only. Hence, this
research gap has motivated current research work. In the present work, a hierarchical clustering technique has been proposed
to cluster multiple data streams where data are nominal. To address the concept changes in the data streams splitting and
merging of the clusters in the hierarchical structure are performed. The decision to split or merge is based on the entropy
measure, representing the cluster’s degree of disparity. The performance of the proposed technique has been analysed and
compared to Agglomerative Nesting clustering technique on synthetic as well as a real-world dataset in terms of Dunn
Index, Modified Hubert Γ statistic, Cophenetic Correlation Coefficient, and Purity. The proposed technique outperforms
Agglomerative Nesting clustering technique for concept evolving data streams. Furthermore, the effect of concept evolution
on clustering structure and average entropy has been visualised for detailed analysis and understanding.

Keywords Data streams · Hierarchical clustering · Concept evolution · Nominal data

Introduction

Nowadays, data are generated continuously from different
sources, such as sensors, web-browsing activities, network
routers, etc. These continuously flowing data happen to be
of very large volume and the patterns prevailing in it keep
on changing with time. These patterns actually represent
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the behaviour of the underlying source from where the data
are being generated. This form of data where new patterns
keep on evolving and the size of data is ever increasing
has been termed as a data stream. Application of traditional
data-mining techniques which have been designed with an
assumption that entire data are available for processing at
a time and whose behaviour is static results in poor perfor-
mance on data streams. Therefore, designing data-mining
techniques for data streams is the need of the hour.

Clustering is a data-mining technique which groups the
data objects into different groups in such a way that intra-
group similarity between objects is maximised and inter-
group similarity is minimised. In the context of data streams,
the clustering problem can be formulated as per the two dif-
ferent approaches. In the first approach, the data examples
of a single data stream are clustered into different groups;
whereas, as per the second approach, different data streams in
itself are clustered into different groups. The first approach is
referred to as clustering by example and the second approach
is referred to as clustering by variable. Overall, it can be said
that in case of clustering by example themain focus is on pro-
filing the relationship between different data instances of a
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Fig. 1 Clustering by example approach

Fig. 2 Clustering by variable approach

single data stream; whereas, in the case of clustering by vari-
able, the main focus is on profiling the relationship between
multiple data streams. Clustering by variable approach has its
own set of applications in a real-world scenario. For example,
providing targeted ads for a group of customers based on their
product purchase and browsing histories, grouping the users
based on their preferred genres of music and providing simi-
lar music suggestions, grouping the web-users based on their
web-browsing behaviours for promotional advertisement,
endorsement advertisement, bandwagon advertisement, etc.

The clustering by example and clustering by variable
approaches are diagrammatically shown in Figs. 1 and 2,
respectively. In the abovefigures,Oi, j ={ai,1, ai,2, . . . , ai,n}
is a data object containing n attributes which arrived at j th

time instant in the i th data stream. In Fig. 1, two clusters has
been created using clustering by example approach, where
cluster 1 = {O1, j−2, O4, j+1} and cluster 2 = {O2, j−1, O3, j ,
O5, j+2}. In case of clustering by example approach, each of
the data streams maintain its individuality in terms of clus-
ters, and in an application, there may be only one relevant
data stream, or there may be many more. In case of cluster-
ing by variable approach, it can be seen from Fig. 2 that two
clusters have been formed by grouping the m data streams
(Si ’s), such that cluster 1 = {S1, . . ., Sm} and cluster 2 = {S2,
. . ., Sm−1}.

On surveying the literature, it has been found that most
of the existing works have addressed the problem of clus-
tering by example [1–4,7,8,10,16,17,19,21,23,25,27,30,33]
and a few attempts have been made towards the problem
of clustering by variable [5,6,9,11,22,28,29]. Furthermore,
these works are mainly suitable for numeric data streams.
However, in several applications, other types of data have
also come in the form of data streams such as nominal, text,
web-data, etc. In the case of data with nominal attributes,
there is no ordering betweennominal attributes’ values.How-
ever, for the sake of using the clustering approaches proposed
for numeric attributes, conversion of nominal attributes to
numeric attributes introduces unnecessary orderings between
the values of numeric attributes representing the values
of nominal attributes. Hence, after converting to numeric
attributes, the operation performed on nominal attributes is
not meaningful and leads to misleading results.

In totality, based on the literature survey, no work has
been presented for clustering multiple nominal data streams.
Therefore, there is a scope and need to work on clustering
techniques for multiple data streams in case of nominal and
other types of data.

In the present work, a hierarchical clustering by vari-
able technique for multiple nominal data streams has been
proposed. It is an integrative technique in the sense that
it employs cosine distance for measuring the dissimilarity
between data streams and the entropy for computing the
degree of disparity within a cluster. The extent to which the
data observations in a cluster show disorderedness or ran-
domness signifies the cluster’s disparity with higher values
indicating higher disorderedness or randomness. To dealwith
the continuously flowing nature of the data streams, the pro-
posed technique processes the data incrementally where the
increment interval is equal to the size of the sliding window.
Furthermore, it adapts the hierarchical structure of clusters by
splitting and/or merging the clusters to incorporate the evolv-
ing behaviour of data streams where new concepts keep on
coming and old may fade out.

The performance of the proposed technique has been anal-
ysed on synthetic datasets as well as a real-world dataset
and compared to Agglomerative Nesting (AGNES) cluster-
ing technique in terms of four clustering validationmeasures,
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viz., Dunn Index (DI) [24], Modified Hubert Γ statistic
(MHΓ ) [24], Cophenetic Correlation Coefficient (CPCC)
[14], and Purity [31].

The main contributions of the proposed work have been
given below:

– A method has been proposed for clustering multiple
nominal data streams using a hierarchical clustering by
variable approach.

– The proposed method is able to handle the concept drifts
in the data streams through the merge/split operations of
the nodes in the hierarchical clustering structure.

The remainder of the paper is organised as follows. In
the section “Literature review”, literature review has been
discussed. In the section “Problem formulation and prelimi-
naries”, the problem formulation and preliminaries has been
given followed by the presentation of the proposed method
in the section “Proposed technique”. In the section “Datasets
and performance measures”, the datasets and performance
measures has been presented. In the section “Experimental
results and analysis”, experimental results has been dis-
cussed. Finally, in “Conclusion”, concluding remarks has
been made.

Literature review

Over the years, many techniques for clustering data streams
have been proposed. Among those proposed techniques, the
discussion relating to clustering by variable techniques has
been discussed in this section, which is the focus of the cur-
rent work.

Dai et al. [11] have presented a clustering on demand
(COD) framework which worked in two phases. The online
phase stored statistics for the incoming data observations
in terms of sliding windows, whereas in the offline phase,
stored statisticswere used for generating clusters. The advan-
tage of COD framework is in its ability to process the data
observations from multiple data streams in a single pass and
off loading the actual clustering process to the the offline
phase, thus staying true to the constraints in the data stream
scenario. Balzanella et al. [5] have proposed a graph-based
technique for clustering multiple data streams which col-
lects data observations from the data streams in terms of
sliding window and creates summaries out of it. It maintains
an undirected graph whose adjacency matrix stores the sim-
ilarity between the data streams and is updated on every new
window of data by applying Dynamic Clustering Algorithm
[12] on it. The final clustering structure of the data streams is
obtained by applying a partition based clustering technique
on the summaries stored online.

Ling et al. have proposed a spectral component-based
clustering technique for clustering multiple data streams
called SPE-cluster [9]. Here, the data from the data streams
are taken in sequential non-overlapping sliding windows
where in each window, the data sequences of the respective
data streams are represented as the sumof the spectral compo-
nents. This technique addresses the lag-correlation between
the data streams while computing the similarity between the
data streams which is ignored in other data stream cluster-
ing techniques using Euclidean distance. This technique also
works in an online–offline phase. In the online phase, it cal-
culates the spectral components of the data streams, while
the offline phase employs dynamic k-means for clustering
the most recent sliding window. In [29], the author has pro-
posed a Kendall correlation-based clustering technique for
multiple data streams. Here, the sliding window technique
is used to gather data observations from the incoming data
streams. For clustering the data streams, it uses a modified
k-means algorithm which can adjust the number of clusters
to reflect the evolving changes in the data streams.

Bones et al. [6] proposed a data stream clustering tech-
nique which clusters similar data streams based on the
correlation of the attribute values. It uses a sliding window
technique, and for each window, a fractal value is calculated
in a fractal dimension, which is a reduced dimension of the
original dimension of the data streams. This fractal value
represents the correlation of the attribute values from the
original dimension and is found to cluster the data streams
better. Laurinec and Lucka [22] have proposed ClipStream.
This technique consisted of two phases, online (data abstrac-
tion) and offline phases. In the data abstraction phase, the
data from the data streams are processed window wise and
a reduced feature vector called FeaClip is constructed from
the original feature space, thus representing a clipped ver-
sion of the data streams. The clipped representation of the
data streams captured two behaviours of a data stream: global
statistics of the data stream and local behaviour of the data
stream. In the offline phase, clustering is performed using
the k-medoid clustering technique. Since offline clustering
is time-consuming, the change detection module of the Clip-
Stream executes when the data streams evolve.

Online Divisive-Agglomerative Clustering (ODAC) [28]
was proposed by Rodrigues et. al. It is a hierarchical cluster-
ing approach formultiple data streams and creates a hierarchy
of tree nodes. In this technique, each node of the hierarchical
tree comprises of data streams, where the leave nodes repre-
sent the clusters. For handling concept evolution, the nodes
of the hierarchical tree are split and/or merged. The decision
for either splitting or merging is done based on the diameter
of the cluster and Hoeffding bound [20]. This method is suit-
able only for numerical data streams as it is dependent upon
Pearson’s correlation coefficient [26] which is used as the
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similarity measure and the entire clustering process is based
on this measure.

It can be observed that over approximately 15 years,
very few works have been presented under the clustering by
variable category. Those mainly fit numerical data streams.
Moreover, nominal values do not have any exact order and
are not quantitative [18]. Therefore, converting nominal val-
ues to numeric values does not make sense. Any effort to
perform mathematical operations on nominal attributes after
converting them to numerical attributes will not be meaning-
ful. For example, a nominal attribute colour will have values
red, green, blue, etc. Assigning numerical values to these
values, for example, red=1, green=2, and blue=3, will not
make any sense, since the values for colours are not quan-
titative. Hence, finding mean, median, or any other statistic
on such numerical representations of the nominal values will
not be meaningful. In this present work, we have proposed a
hierarchical clustering technique for multiple nominal data
streams. The main difference between ODAC [28] and the
clustering technique proposed in the present work lies in the
similarity measure used and its computation and the type of
data that each method can handle. The technique proposed in
the current paper is targeted atmultiple nominal data streams.
In contrast, ODAC [28] is focused explicitly on numerical
data streams and is not suitable for nominal data streams.

Problem formulation and preliminaries

In this section, the problem of clustering by variable for
multiple data streams has been introduced. Furthermore, the
processes for calculating the dissimilarity measures between
the data streams and the entropy values for the clusters have
been discussed.Also, the notations used throughout the paper
have been described.

Problem formulation

A data stream consists of data observations produced at dif-
ferent time instances. Let DS = {S1, S2, . . . , Si , . . . , Sm}
represent the set of data streams where Si is the i th data
stream in the set DSwhich comprises in totalm data streams.
Each Si = {oi,1, oi,2, . . ., oi, j , . . ., oi,∞} where oi, j is a data
observation observed in the j th time instance(t j ) belonging
to the i th data stream (Si ). The clustering of multiple data
streams using clustering by variable approach aims to group
together those data streams which are producing similar
observations over the time. However, additional challenges
need to be addressed in clustering data streams, such as the
continuous arrival of data in the data streams. Hence, in the
proposedwork, a snapshot of the data streams’ data is taken to
handle this ever-increasing size. A data snapshot is extracted
using a sliding window technique, as shown in Fig. 3, and

Fig. 3 Example of a sliding window (Wk̄ ) with window size(w) equal
to 5 operating on data streams S1 to Sm through time t j−2 to time t j+2

processed. In Fig. 3,Wk̄ is the k̄th sliding window containing
examples in the time frame t j−w+1 to t j fromm data streams
where w is the size of the sliding window. Furthermore,
there may be concept evolution as new data observations
keep on adding to the data streams which requires update in
the clustering structure generated using previous slidingwin-
dow’s data. In the proposedwork, the update in the clustering
structure has been considered by allowing merge and/or split
operations on clusters (for detail, refer “Merge sub-module”
and “Split sub-module”).

Hierarchical clustering requires no prior information on
the number of clusters and maintains a hierarchical tree of
clusters at different levels. Each node in the hierarchical
tree represents a cluster. Except for the leaf nodes, all other
clusters are a combination of their child clusters. The hierar-
chical tree can be cut at any level to obtain a set of clusters.
Agglomerative and divisive are the two strategies for generat-
ing hierarchical clustering. The first one follows a bottom–up
approach by starting with single data observation and then
iteratively merging them to form larger clusters. The second
one follows a top–down strategy by starting with a single
cluster comprising all the data observations and then iter-
atively splitting them into smaller clusters. The merge and
split operations are final in the case of traditional hierarchi-
cal clustering.

In the context of clusteringmultiple data streams, the hier-
archical clustering structure needs to be updated over time.
Updation becomes necessary due to the evolution of newcon-
cepts in streaming data which may involve the combination
of both split and merge operations based on some clusters
parameters.
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Table 1 Selected data streams

Si oi,1 oi,2 oi,3 · · · oi,w

S j o j,1 o j,2 o j,3 · · · o j,w

In the present work, a hierarchical clustering technique
for multiple nominal data streams has been proposed. The
proposed technique integrates both agglomerative and divi-
sive strategies for updating the hierarchical structure on the
arrival of a window of new data observations based on the
sliding window technique. Furthermore, it employs cluster
entropy as a parameter for deciding whether to split/merge
or not to split/merge the clusters. Under the proposed tech-
nique, the cluster results can be viewed and analysed at any
time, depending on the user’s requirement.

Notations

This section describes the notations used throughout the
paper.

– Let DS = {Si , 1 ≤ i ≤ m} where
– DS is the set of data streams.
– Si is the i th data stream in the set DS.
– m is the number of data streams in the set DS.

– Let N = {Ci , 1 ≤ i ≤| N |} where
– N is the set of nodes in the hierarchical tree.
– Ci is the i th node in the set N .
– Cl

i is the i th leaf node in the hierarchical tree and C
l
i

ε N .
– | N | is the number of nodes in the set N .
– | K | is the number of leaf nodes in the set | N |.

– | Cl
i | is the number of data streams in the leaf node Cl

i .
– C p

i is the immediate parent node ofCl
i in the hierarchical

tree and C p
i ε N .

– Dr is the latest data snapshot.
– w is the size of the sliding window.
– dinit is the number of initial sliding windows.
– Ei = {ei , 1 ≤ i ≤| N |} where

– ei is the entropy for an i th node(Ci ) in the hierarchical
tree.

Computation of dissimilarity between data streams

In the proposed technique, the dissimilarity between any two
data stream is calculated by applying cosine distance over a
data snapshot extracted corresponding to a sliding window
as discussed below.

Table 2 Frequency matrix for the selected data streams

o1 o2 o3 · · · ow̄

Si fi,1 fi,2 fi,3 · · · fi,w̄

S j f j,1 f j,2 f j,3 · · · f j,w̄

Step 1: A data snapshot is extracted from the data streams.
Next, two data streams are selected whose distance is to
be calculated (say Si and S j ), as shown in Table 1.
Step 2: Next, a frequency matrix (F) for Si and S j is
created, as shown in Table 2.
In the above frequency matrix (F), as shown in Table 2,
fik and f jk are the frequency of occurrence of the value
ok in Si and S j respectively, and 1 ≤ k ≤ w̄, where w̄ is
the number of unique values occurring in Si and S j .
Step 3: Finally, the cosine distance is calculated as given
in Eq. (1)

cosine(Si , S j ) =
∑

fi,k X f j,k
√∑

f 2Si X
√∑

f 2S j

. (1)

Computing entropy of clusters

For calculating the entropy of a cluster, the following steps
are followed.

– Step 1: Let a cluster Ci comprise of a number of
data streams where each data stream comprises b data
instances. Let us say all those data observations are stored
in a matrix Ai where the dimension of Ai is (a × b).

– Step 2: Next, the unique values in Ai are extracted and
stored in a vector Ui whose size is equal to the number
of unique values appearing in Ai .

– Step 3: For each unique value stored in Ui , its corre-
sponding count of occurrence in Ai is taken and stored
in a vector Ū i of size | Ui |.

– Step 4: Finally, the entropy (ei ) for the i th cluster (Ci ) is
calculated as shown in Eq. (2)

ei = −
|Ū i |∑

k=1

⎛

⎝
Ū i
k

∑|Ū i |
j=1 Ū

i
j

log
Ū i
k

∑|Ū i |
j=1 Ū

i
j

⎞

⎠ . (2)

For a node containing only a single data stream, the
entropy value is set to zero. However, the entropy value for
a node containing two or more than two streams can range
from zero to log | Ui |.
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Table 3 Example of an i th data snapshot (Di )

user1 bbc cnn netflix youtube

user2 youtube cnn cnn google

user3 medium udemy google hulu

user4 hbo IEEE google steam

user5 springer IEEE twitter google

Proposed technique

The overall working of the proposed method is shown
in Fig. 4 with the help of a flowchart and explained in
the subsequent sections. It comprises three main modules,
viz., initialisation module, accommodation sub-module, and
update module. These modules are highlighted in Fig. 4
with the help of dotted lines. The initialisation module exe-
cutes only once for creating the initial hierarchical clustering
structure, whereas the accommodation and update modules
keep on repeating as the new data snapshots keep on arriving.
FromFig. 4, it can be seen that the proposedmethod first exe-
cutes the sub-modules in the initialisation module, followed
by the sub-modules in the update module. In the initialisa-
tion module, the proposed method acquires the initial data
snapshot from the data streams. This initial data snapshot is
then used to create an initial hierarchical clustering structure,
after which the entropies for the nodes of the resulting initial
hierarchical clustering structure are calculated. The proposed
method then executes the update module, where the next data
snapshot is incorporated into the existing hierarchical clus-
tering structure. Again, the entropies are re-calculated for the
nodes of the hierarchical tree using the newly acquired data
snapshot. The hierarchical clustering structure is then tested
for modification when the changes in the node entropies are
significant. The changes to the hierarchical clustering struc-
ture are done through the merge/split operations. The above
process for the update module is then re-iterated for the sub-
sequent data snapshots.

Data snapshot

A data snapshot from the data streams is obtained using the
sliding window technique. The sliding window technique
extracts data fromm data streams by obtainingw data objects
from each of the m data streams. In the proposed work, w is
understood as the size of the sliding window. Hence, a data
snapshot is a matrix of size (m × w) containing data objects
belonging tom data streams. An example of an i th data snap-
shot (Di ) is shown in Table 3. Each row in Di represents a
user generating a data stream of values. The generated values
are that of the websites visited by the respective users. The
size of Di is (5×4), where the number of users is five and the
number of visited websites is four by each user, respectively.

The data stream processing in the proposed work has
been done data snapshot wise. It helps in handling the ever-
increasing size of the data streams as it is not possible tomake
the entire data streams available in one go for processing.

Initialisationmodule: initialisation of the
hierarchical clustering structure

The main essence of the initialisation step is to capture the
clustering structure prevailing over some initial data snap-
shots, so that it can be used as a foundation structure and can
be updated when more data keep on streaming. For creating
the initial hierarchical clustering structure, the data corre-
sponding to dinit number of initial data snapshots have been
used.Hence, in totaldinit×w, the number of data observations
from each of the m data streams is used for constructing the
initial hierarchical clustering structure. The creation of the
hierarchical tree structure using the data of dinit data snap-
shots is as given below:

– Step 1: For the construction of the hierarchical cluster-
ing structure, Agglomerative Nesting (AGNES) has been
used along with the average linkage method as a measure
for merging clusters and cosine distance as a dissimilar-
ity measure. In the hierarchical clustering structure, each
node represents a cluster consisting of one or more data
streams.

– Step 2: Furthermore, the entropy corresponding to each
of the node in the hierarchical clustering structure is com-
puted as discussed in the section “Computing entropy of
clusters”.

– Step 3: Next, the entropy corresponding to each level of
the hierarchical tree is calculated. The entropy of a level is
defined as the average of the entropies of nodes available
at a particular level as given in Eq. 3

Ēq = 1

| q |
|q|∑

j

eij . (3)

In the above equation, Ēq represents the average entropy
of nodes at the qth level of the hierarchical tree. eij repre-
sents the entropy of an i th node (Ci ) belonging to the qth
level of the hierarchical tree and | q | represents the total
number of nodes (Ci ) at the qth level of the hierarchical
tree.

– Step 4: The hierarchical tree is cut with the help of an
elbow method depending upon the change in the entropy
value from one level to another. Let us say there is a
maximum decrement in entropy value from qth − 1 to
qth level, then a cut is marked below the qth level, and
the nodes at the qth level are considered as leaf nodes.
This step is performed to prune out that part of the hierar-
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Fig. 4 Working of the proposed technique

chical tree where the changes in the entropy level of the
hierarchical tree are only marginal.

– Step 5: The hierarchical clustering structure after being
cut is then used as a base hierarchical clustering structure
for processing later incoming data snapshots as discussed
in the next section.

Updatemodule: updating the initial hierarchical
clustering structure

In the case of data streams, concept evolution may occur
over time. The clustering structure as per the concept evo-
lution is updated through merge and split operations. After
the initial hierarchical clustering structure has been created
as explained in the initialisation module (refer to the sec-
tion “Initialisation module: initialisation of the hierarchical
clustering structure”), the update module processes the next
incoming data snapshots one after another. The update mod-
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ule mainly intends to update the clustering structure with
incoming data snapshots, so that the concept evolving nature
of data streams can be reflected in clustering. The update
module comprises three sub-modules, viz., accommodation
sub-module, merge sub-module, and split sub-module. The
functioning of these three sub-modules has been discussed
next.

Accommodation sub-module

This sub-module on receiving the new data snapshot let say
i th data snapshot (Di ), assigns the data instances from the
respective data streams of Di to the leaf nodes (clusters)
where the corresponding data stream lies and discards the
data instances of the Di−1 data snapshot from the leaf nodes
(clusters), but it keeps the entropy value eii−1 of each nodeCi

corresponding to Di−1 data snapshot for further processing.

Merge sub-module

The merge operation in the proposed method handles two
cases, i.e., merge case-I and merge case-II. In merge case-
I, the clusters containing a single data stream are merged,
and in merge case-II, the clusters containing at least two
data streams aremerged. Themerging operation is performed
based on the difference in the entropy of the parent and child
node. However, in the case of a cluster having a single data
stream, the entropy of a cluster happens to be zero. In this
scenario, it is not logical to decide on the merge operation
depending upon the difference in the entropy of the parent
and child node. Hence, to address this exceptional scenario,
the split case-I is used.As per the proposed frameworkmerge
case-I is tested first followed by the second case(merge case-
II).

– Merge case-I: For all the leaf nodes(clusters) containing
a single data stream (Cl

s), the steps below are executed:

– Step-1: Calculate average entropy for the entire hier-
archical clustering structure denoted by ξr . ξr is
defined as the average of the summation of entropies
of all the nodes in the hierarchical tree denoted for
the r th data snapshot(Dr ), as shown in Eq. (4)

ξr (original hierarchical tree) =
|N |∑

i=1

eir . (4)

– Step-2: Using the average linkage method, calculate
the distance between Cl

s and other leaf nodes (Cl
i )

to identify the target leaf node (say Cl
target) which is

closest to Cl
s in terms of distance.

– Step-3: On finding Cl
target, the sibling and interme-

diate nodes to Cl
s and Cl

target are iteratively merged
starting from the bottom of the hierarchical tree until
bothCl

s andC
l
target get merged into a common imme-

diate parent node, as shown in Fig. 5.
– Step-4: The average entropy of the modified hierar-
chical clustering structure denoted by ξ́r (generated
by step-3) is calculated and compared with the aver-
age entropy of the original (unmodified) hierarchical
clustering structure represented by ξr for the r th data
snapshot (Dr ), as shown in Eq. (5). If Eq. (5) is
satisfied, then the modified hierarchical clustering
structure is used for further processing; otherwise,
themodification in the original hierarchical clustering
structure is considered null and void and the original
hierarchical clustering structure is used for further
processing

ξ́r < ξr . (5)

– Merge case-II: It focuses on all those leaf nodes that
comprise more than one data stream. The steps for this
operation drafted below are executed for all such leaf
nodes.

– Step-1: Calculate entropy for the leaf nodeCl
i . Let the

entropy ofCl
i for the r th data snapshot be represented

by ėir . Let C
p
i be the immediate parent node of the

leaf node Cl
i . Let the entropy of C

p
i for the (r − 1)th

data snapshot be represented by ëir−1.
– Step-2: If the entropy of the leaf node (ėir ) is higher

than its immediate parent node’s entropy (ëir−1) by a
factor greater than equal to ε, as shown inEq. (6), then
the leaf node and its sibling nodes are merged into its
immediate parent node, as shown in Fig. 6. Follow-
ing the merging process of Cl

i and its sibling nodes
into their immediate parent node C p

i , the immediate
parent node C p

i becomes the new leaf node

(ėir − ëir−1) ≥ ε. (6)

Step-2 is based on the fact that if Eq. (6) is satisfied,
then it implies that the data streams inCl

i are having a
high variation to one another as compared to the data
streams in C p

i due to the data instances in the r th

data snapshot (Dr ) as compared to the data instances
in the (r − 1)th data snapshot (Dr−1). High entropy
of the leaf node (Cl

i ) in comparison to its immediate
parent node (C p

i ) represents a distorted hierarchical
clustering structure requiring a merge operation for
rectification.Moreover, in step-2, the ε represents the
threshold to decide whether to merge, or to not merge
the leaf node (Cl

i ) and its sibling node to their parent
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Fig. 5 Example of merge case-I

Fig. 6 Example of merge case-II

node (C p
i ). The value of ε has been decided based

on Hoeffding bound as discussed in [28] and further
explained in the section “Threshold (ε)”.

Split sub-module

The split operation is executed for the r th data snapshot Dr

once the merge operation is completed for the same data
snapshot (Dr ). The split operation in the proposed method
handles two cases, i.e., split case-I and split case-II. Split
case-I is used for splitting only when the hierarchical clus-
tering structure contains a single node following the single
or multiple merge operations. Split case-II is executed in
all other scenarios. The split case-I captures the exceptional
scenario where the complete restructuring of the hierarchical
clustering structure is required due to changes in underlying
concepts.

– Split case-I: For splitting a hierarchical clustering struc-
ture containing only a single cluster (say Cl

s), the follow-
ing steps are taken:

– Step-1: Calculate entropy for the single cluster (Cl
s)

and let its entropy be represented by ėsr .
– Step-2: Next, the two most dissimilar data streams in
Cl
s in terms of cosine distance is found. Let the two

most dissimilar data streams be denoted by Sa and
Sb, respectively.

– Step-3: Create two child nodes for Cl
s . In one of the

two newly created child nodes Sa is added, whereas
in the other child node, Sb is added.

– Step-4: For each data stream (say Si ) inCl
s , excluding

Sa and Sb, the cosine distance between Si and Sa , and
Si and Sb is calculated. Si is then added to the child
node containing Sa if its cosine distance to Sa is the
least, else Si is added to the leaf node containing Sb.

– Step-5: Calculate average entropy for the entire hier-
archical clustering structure obtained after step-4
which is defined as the average of the summation of
entropies of all nodes in the hierarchical tree denoted
by ξr for the r th data snapshot (Dr ), as shown in
Eq. (7)

ξr = 1

| N |
|N |∑

i=1

eir . (7)

– Step-6: Check the difference between the average
entropies of the hierarchical clustering structure
containing only a single cluster and the modified
hierarchical clustering structure obtained after step-
4 represented by esr and ξr , respectively. If Eq. (8)
is satisfied, then the modified hierarchical clustering
structure is used for further processing; otherwise,
themodification in the original hierarchical clustering
structure is considered null and void and the original
hierarchical clustering structure is used for further
processing

(ξr − ėsr ) ≤ ε. (8)

– Split case-II: For splitting a hierarchical clustering struc-
ture containing two or more clusters, the following steps
are taken:

– Step-1: Calculate entropy for the leaf node Cl
i . Let

the entropy of Cl
i for the r th data snapshot be repre-

sented by ėir and ėir−1 represents the entropy for the
leaf node Cl

i for the (r − 1)th data snapshot which
is already calculated and stored as discussed in the
section “Accommodation sub-module” and does not
require to be calculated again.

– Step-2: If ėir is greater than equal to ėir−1 by a factor
of ε, as shown in Eq. (9), then the leaf node(Cl

i ) is
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Fig. 7 Example of a node split

splitted, as shown in Fig. 7

(ėir − ėir−1) ≥ ε. (9)

The steps for splitting Cl
i have been detailed below:

Step-2a: First, the two most dissimilar data
streams in Cl

i in terms of cosine distance are
found. Let the two most dissimilar data streams
be denoted by Sa and Sb, respectively.
Step-2b: Next, two child nodes for Cl

i are cre-
ated. In one of the two newly created child nodes,
Sa is added, whereas in the other child node, Sb
is added.
Step-2c: For each data stream (say Si ) in Cl

i ,
excluding Sa and Sb, the cosine distance between
Si and Sa , and Si and Sb is calculated. Si is then
added to the child node containing Sa if its cosine
distance to Sa is the least, else Si is added to the
leaf node containing Sb.

The splitting of a leaf node (Cl
i ) on satisfying Eq.

(9) as described in step-2 above implies that the data
streams inCl

i is having a high variation to one another
due to the data observations in the r th data snapshot
(Dr ) as compared to the instance when Cl

i had data
observations from the (r−1)th data snapshot (Dr−1).
High entropy of the leaf node (Cl

i ) due to the r th
data snapshot (Dr ) indicates incompatibility between
the data streams in Cl

i and hence requiring a split
operation for rectification.

Threshold (�)

The threshold (ε) used in Eqs. (6), (8), and (9) is set using
the Hoeffding bound [20]. Hoeffding bound is a statistical
boundwhich states that after observing x observations from a
randomvariable v having a range R, the actualmeanwill be at
least (v̄−ε) where v̄ is themean calculated from the observed
x observations and this can be stated with (1-δ) confidence.
The advantage of the Hoeffding bound lies in the fact that it
is unaffected by the distribution generating the observations
and has been highly referenced for parameter setting [13,15,
28,32]. The equation for calculating the Hoeffding bound is

as given in Eq. (10)

ε =
√

R2 ln (1/δ)

2x
, (10)

where

– δ is the margin of error and 0 < δ ≤ 1.
– ε is the threshold decided by the Hoeffding bound.

In the proposed technique, entropy of a cluster represents
whether the data instances within the cluster are in confor-
mity to one another. Higher conformity leads to a lower
cluster entropy, whereas lower conformity leads to a higher
cluster entropy. A high cluster entropy satisfying the condi-
tions as discussed in the section “Merge sub-module” and
the section “Split sub-module” calls for restructuring of the
clustering structure through merge and split operations. The
parameters for the calculation of the threshold (ε) as given
in Eq. (10) for deciding on merging or splitting of a cluster
in case of the proposed technique is as follows:

– Merge: For merging a cluster (sayCl
i ) whose parent node

is (say C p
i ), the difference between the entropies of Cl

i
and C p

i for the r th and (r − 1)th data snapshot, i.e., ėir
and ëir , is considered as the random variable (v) where
range (R) is as given in Eq. (11)

R
′ = max{ëir−1, ė

i
r }

R = [−R
′
,+R

′ ]. (11)

– Split: For splitting a cluster (say Cl
i ), the difference

between the entropies ofCl
i for the (r − 1)th and r th data

snapshot, i.e., ėir−1 and ėir , is considered as the random
variable (v) where range (R) is as given in Eq. (12)

R
′ = max{ėir−1, ė

i
r }

R = [−R
′
,+R

′ ]. (12)

For both the above cases, the size of the data snapshot is
taken as the number of data observations (x).

Algorithm for the proposed technique

The algorithm for the proposed technique has been given
under Algorithm 1, while the algorithm for the construction
of the initial hierarchical clustering structure has been given
under Algorithm 2.
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Algorithm 1: proposed technique

In line 2 of Algorithm1, the MAIN procedure calls the
INITIALISE procedure in Algorithm 2. The INITIALISE pro-
cedure creates the initial hierarchical clustering structure
(“Initialisationmodule: initialisation of the hierarchical clus-
tering structure”). The INITIALISE procedure returns tree,
leaves, and Ei , which are the initial hierarchical clustering
structure, the leaf nodes in the tree and the set containing
the entropy of each node in the tree, respectively. Next,
lines 3–25 are repeated where newer data snapshots are pro-
cessed, and necessary actions are taken to handle the concept
changes. In lines 4–5 of Algorithm 1, the proposed method
acquires the next data snapshot (Di ) from the data streams. It
places the data instances in Di into the respective nodes of the
tree (refer to the section “Accommodation sub-module”). In
line 7, the entropy is calculated for the tree′s nodes for Di

by calling on the getEntropy() method (refer to “Computing
entropy of clusters”) which returns Ei . In line 6, the entropy
calculated for Di−1 is stored in Ei−1.

The algorithm in line 10 merges each cluster (refer to
merge case-I of the section “Merge Sub-Module”) and
returns a new set of leaf nodes (leaves) and a modified clus-
tering structure (tree) on satisfying the condition specified in
line 9. In lines 13–18, the clusters containing twoormore data
streams are tested for merging. In line 14, the threshold (ε)
for merging cluster Cl is calculated by calling on the calcu-
lateThreshold()method (refer to the section “Threshold (ε)”
). For the clusters with more than one data stream satisfying
the condition in line 15, the doMerge() procedure is executed
(refer to merge case-II of “Merge sub-module”). Similarly,
the nodes in the hierarchical tree are tested for splitting. On
satisfying the condition in line 21, the proposedmethod splits
the clusters as detailed in the section “Split sub-module”.
When the hierarchical clustering structure contains only the
root node as a cluster (leaf node), split case-I (refer to split
case-I of “Split sub-module”) is executed, else split case-II
(refer to split case-II of “Split sub-module”) is performed.
The threshold (ε) is calculated using the calculateThresh-
old() procedure (refer to the section “Threshold (ε)”). Lines
4–24 are repeated for the entire length of the data streams.

Algorithm 2: initialisation of the hierarchical clustering
structure

The procedure INITIALISE under Algorithm 2 takes the
size of the initial data snapshot to be used to construct a
hierarchical clustering structure as discussed in the section
“Initialisation module: initialisation of the hierarchical clus-
tering structure”. In Algorithm 2, line 2 is responsible for
acquiring the initial data snapshot followed by the construc-
tion of the hierarchical clustering structure in line 3. In line 4,
the entropy for eachnodeof the hierarchical tree is calculated.

Algorithm 1 Proposed technique
1: procedure main(w)
2: tree, leaves, Ei = INITIALISE(w · dinit )
3: while TRUE do
4: Di = getNextDataSnapshot(w)
5: accommodateData(tree, Di )
6: Ei−1 = Ei
7: Ei = getEntropy(tree)
8: for each Cl in leaves do
9: if checkSingleStream(Cl ) == T RUE then
10: leaves, tree = doMerge(tree, leaves)
11: end if
12: end for
13: for each Cl in leaves do
14: ε = calculateThreshold(tree, Cl )
15: if (ECl

i - EC p

i ) ≥ ε then
16: leaves, tree = doMerge(tree, leaves)
17: end if
18: end for
19: for each Cl in leaves do
20: ε = calculateThreshold(tree, Cl )
21: if (ECl

i - ECl

i−1) ≥ ε then
22: leaves, tree = doSplit(tree, leaves)
23: end if
24: end for
25: end while
26: end procedure

In Line 5, the hierarchical tree is cut at a level as decided in
step-4 of the section “Initialisation module: initialisation of
the hierarchical clustering structure”. The INITIALISE pro-
cedure, in line 6, returns the hierarchical structure (tree), the
leaf nodes (leaves) in the tree, and the set containing the
entropy for each node in the tree (Ei ).

Algorithm 2 Initialisation of the hierarchical clustering
structure
1: procedure initialise(si ze)
2: Di = getNextDataSnapshot(si ze)
3: tree = createHierarchicalTree(Di )
4: Ei = getEntropy(tree)
5: tree, leaves = cutTree(tree, Ei )
6: return tree, leaves, Ei
7: end procedure

Time and space complexity

The time and space complexity for the proposed technique
has been discussed in the following two sub-sections.

Time complexity

The proposed method consists of twomodules: the initialisa-
tionmodule and the updatemodule. The initialisationmodule
is performed only once with a limited number of data snap-
shots, irrespective of the size of the data streams. Therefore,
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the computational time of this step has not been included in
the further analysis as it can be understood as a constant fac-
tor. The update module works on a single data snapshot at a
time in an incrementalmanner. Thus, after processing the cur-
rent data snapshot, it discards it by just keeping the summary
statistics of the data snapshot. Therefore, the computation of
time complexity of the update module is as follows:

– The entropy of all the nodes in the hierarchical tree is
computed. In the worst-case scenario, computation for
the entropy of a node is (mw log mw), where m is the
number of data streams and w is the size of the data win-
dow. In a hierarchical tree, at max, there can be (2m − 1)
number of nodes, so the computational time complexity
is given as ((2m−1)×(mw logmw)), i.e., (m2w logmw).
Therefore, the term (m2w logmw) can be represented as
a constant �.

– The doMerge() operation in line 10 of Algorithm 1 takes
a total ofm2 computational time, and since this operation
is executed for all the leaf nodes in the hierarchical clus-
tering structure; hence, lines 8–12 uses a computational
time complexity of ((2m − 1) m2), i.e., m3. Lines 13–
18 calculates the threshold and performs the doMerge()
operation (merge case-II) for each leaf node. Both the
calculateThreshold() method and doMerge() method is
of the orderm each. Hence, lines 13–18 takes ((2m−1)×
m× m), i.e., m3 computational time. Similarly, lines 19–
24 which performs the split operations takes (mw log
mw) computational time.

Overall, the time complexity for lines 4–24 is ((m2w log
mw) + m3 + m3 + (mw log mw)). As the value of m and
w is constant irrespective of the size of the data streams, the
term ((m2w log mw) + m3 + m3 + (mw log mw)) can be
represented as a constant �. Let us say the length of the data
stream is h, and then, the time complexity for processing it
will be ((h/mw)×�), which can be represented as O(h).

Space complexity

At any point in time, the proposed technique holds the sum-
mary statistics of Di−1 data snapshot and the data objects
of the data snapshot Di , which amounts to the size of mw

each, i.e., 2mw. The proposed technique also maintains a
representation of the hierarchical clustering structure, which
takes (2m−1) space. For making decisions during the merge
and split operations, the entropy information is stored for the
current and previous clustering structure constructed using
Di and Di−1, which requires ((2m − 1)+(2m − 1)) space
each. Overall, the total space required by the proposed tech-
nique is (2mw + (2m−1)+(2m−1)+(2m−1)), i.e., (2mw +
3(2m − 1)) or (mw +m). Since the value of m and w is con-
stant irrespective of the data streams’ size, the term (mw+m)

can be represented as a constant φ. Hence, the space com-
plexity for the proposed technique can be represented in a
big-oh notation as O(φ).

Datasets and performancemeasures

In this section, the synthetic and real-world datasets used
for the performance analysis of the proposed technique have
been presented. Furthermore, the different performancemea-
sures used to validate the proposed technique’s performance
have also been discussed.

Datasets

For the performance analysis of the proposed work, two syn-
thetic datasets and one real-world dataset that represents the
browsing habits of different students have been taken. The
characteristics of these three datasets have been discussed
next.

Synthetic stationary dataset

This dataset is stationary in nature and there is no concept
evolution in it. It aims to analyse the performance of the pro-
posed technique in such a scenario where overall data pattern
is not changing over time. This dataset further comprises of
four sub-datasets, as shown in Table 5, viz., synthetic sta-
tionary 2C dataset, synthetic stationary 3C dataset, synthetic
stationary 5C dataset, and synthetic stationary 7C dataset,
where XC specifies the X number of clusters in the dataset.
For generating data for a data stream falling under a specific
cluster, the uniform distribution U as given in Eq. 13 can
be used. In Eq. 13, the uniform distribution U is executed h
times to generate a data stream (say Si ) of length h

Si = h × (U (a, b)), (13)

where

– a, b : integers, b ≥ a and n = b − a + 1.
– n : number of discrete values.
– h : length of the data stream.

So for creating data streams belonging to different clus-
ters, different values for the parameters a and b of U have
been taken. The same value for the parameter h can be taken
to generate same length data streams. These parameters val-
ues are presented in Table 4.

For generating 20 two cluster data streams, each data
stream either chooses one of the following parameters as
given in rows(1–2) of Table 4, and are placed into respec-
tive clusters: {(S1, S2, S3, S4, S5, S11, S12, S13, S14, S15),
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Table 4 Parameter values for uniform distribution (U ) for generating
data streams belonging to different clusters

Cluster number Parameter a Parameter b

1 1 10

2 11 20

3 21 30

4 31 40

5 41 50

6 51 60

7 61 70

(S6, S7, S8, S9, S10, S16, S17, S18, S19, S20)}. Similarly, for
20 three cluster data streams, rows(1–3) of Table 4 are used
and the streams are placed accordingly: {(S0, S1, S2),(S3, S4,
S10), (S11, S12, S13, S14, S5, S6, S7, S8, S9, S15, S16, S17, S18,
S19)}. For 20 five cluster data streams, rows(1–5) of Table
4 are used leading to the following configuration: {(S0, S1,
S2),(S3, S4, S10), (S11, S12, S13), (S14, S5, S6), (S7, S8, S9,
S15, S16, S17, S18, S19)}. Finally, for 20 seven cluster data
streams, rows(1–7) of Table 4 are used and the assignment
of the data streams are as follows: {(S0, S1, S2), (S3, 4, S10),
(S11, S12, S13), (S14, S5, S6), (S7, S8, S9), (S15, S16, S17),
(S18, 19)}.

Synthetic concept evolving dataset

This dataset has been generated in such a way that new con-
cepts keep on evolving in it and older may fade out over
time. It aims to test the performance of the proposed tech-
nique under the concept evolving scenario. This dataset also
comprises of 20 data streams and each data stream contains
100,000 data observations. In this dataset, after an interval of
every 25,000 points, a concept evolution has been introduced
as given in Table 6 and the data corresponding to each of the
cluster have been generated using a uniform distribution as
discussed in the Section “Synthetic stationary dataset”

For a proper representation of the effect of concept
evolution on the performance of the proposed technique,
synthetic concept evolving dataset has been organised into
four sub-datasets, viz., synthetic concept evolvingH1dataset,
synthetic concept evolving H2 dataset, synthetic concept

Table 6 Synthetic concept evolving dataset

Data instances Number of Remark
range clusters

1–25,000 3 Here, each cluster represents a
concept (pattern). It can be seen
that from 1 to 25,000, the number
of concepts is 3 which has been
increased to 5 from
25,001–50,000. Again, the
number of concepts is decreased
to 2 from 50,001–75,000 and
further increased to 7 from
75,001–100,000

25,001–50,000 5

50,001–75,000 2

75,001–100,000 7

evolving H3 dataset, and synthetic concept evolving H4
dataset. The synthetic concept evolvingH1dataset comprises
data instances from 1 to 25,000 from the entire synthetic
concept evolving H4 dataset. Similarly, synthetic concept
evolving H2 dataset and synthetic concept evolving H3
dataset consists of data instances from 1 to 50,000 and 1 to
75,000, respectively, from the entire synthetic concept evolv-
ing H4 dataset. These variations introduced in the dataset
is made to reflect concept evolution which may occur in a
real-world scenario. The above information is also given in
Table 7.

Web browsing dataset

The real-world dataset represents the browsing behaviour
of 20 students of National Institute of Technology Megha-
laya, India. Here, the data are generated from the browsing
behaviour of each student, where each student corresponds
to a data stream, so it can be said that there are 20 data
streams. Corresponding to each student, 10,000 observations
have been recorded. Initially, from 1st to 35th data snapshot,
the students were grouped into two groups. Furthermore, for
collecting the concept evolution related information, students
were divided into three groups from the 36th to 45th data
snapshot. Each group was then asked to browse some similar
websites and the data from this exercise were recorded. Then

Table 5 Synthetic stationary dataset

Dataset Number of data streams Size of each data stream Number of clusters

Synthetic stationary 2C 20 100,000 2

Synthetic stationary 3C 20 100,000 3

Synthetic stationary 5C 20 100,000 5

Synthetic stationary 7C 20 100,000 7
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Table 7 Minimum and maximum number of concepts in the synthetic concept evolving dataset

Dataset Number of data instances Number of minimum concepts Number of maximum concepts

Synthetic concept evolving H1 25,000 3 3

Synthetic concept evolving H2 50,000 3 5

Synthetic concept evolving H3 75,000 2 5

Synthetic concept evolving H4 100,000 2 7

Table 8 Change in the number of groups of students over different data
snapshots

Data snapshots from Data snapshots to Number of groups

1 35 2

36 45 3

46 65 4

66 82 5

83 100 4

again, students were divided into four groups, five groups,
and again into four groups for further data snapshots, as
shown in Table 8.

The main reason for considering this grouping of students
during collection of data is to collect the labelled data in
terms of the number of concepts (clusters) that has been pre-
vailing over a set of data snapshots. This helps in unbiased
comparison of the proposed technique with AGNES.

Performancemeasures

The performance measures discussed below have been used
to validate the proposed technique against AGNES.

Dunn index [24]: This index is based on the inter-cluster
distance and intra-cluster distance of clusters. It is a ratio
of the minimum distance between clusters to the maximum
intra-cluster distance, as shown in Eq. (14). A high value
of this index indicates good clustering, where the clusters
formed are compact and well separated

DI = min1≤i≤ j≤|K | Δinter(Ci ,C j )

max1≤k≤|K | Δintra(Ck)

Δintra(Ck) =
∑

o∈Ck

cosine(o, C̄k)

Δinter(Ci ,C j ) = 1

| Ci || C j |
∑

oi∈Ci

∑

o j∈C j

cosine(oi , o j ).

(14)

In Eq. (14), Δintra(Ck) represents the inter-cluster dis-
tance of the kth cluster and C̄k represents the centroid of Ck .

Δinter(Ci ,C j ) represents the inter-cluster distance between
two clusters Ci and C j , respectively.

Modified Hubert’s Γ

Statistic [24]: This statistic is based on the proximity
between the data objects in a dataset and the proximity
between the cluster centres. This metric is used to describe
the extent to which the clusters formed fit the data. It is cal-
culated as given in Eq. (15) and a high value of this statistic
indicates good clustering

MHΓ = 1

m

m−1∑

i=1

m∑

j=i+1

(cosine(Si , S j ))(Δinter(C
l
i ,C

l
j )). (15)

Cophenetic correlation coefficient [14]: This metric is used
to measure the correlation coefficient between a distance
matrix obtained from the original data points against the dis-
tance matrix obtained after modelling the same original data
points into a dendrogram-based hierarchical structure. High
values for this metric, as shown in Eq. (16), suggest well-
formed clusters

CPCC = numr

deno
,

numr =
∑

i< j

(cosine(Si , S j ) − μP )

∑

i< j

(Δden(Ci ,C j ) − μden)

deno = √
d1 ∗ d2

d1 = [
∑

i< j

(cosine(Si , S j ) − μP )]2

d2 = [
∑

i< j

(Δden(Ci ,C j ) − μden)]2. (16)

In Eq. (16),Δprox(Si , S j ) represents the distance between
the i th and j th data stream Si and S j , respectively.μP repre-
sents the average pairwise distance between m data streams
and μden represents the average pairwise inter-cluster dis-
tance between K clusters.
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Purity [31]: It represents the degree to which the clusters
formed contain data objects from a single class. The more
each cluster contains data objects from a single class, the
higher is the purity value. Equation (17) shows the process
of purity calculation where L is the set of class labels

Purity = 1

m

|K |∑

i

max(Cl
i ∩ L). (17)

Experimental results and analysis

The performance of the proposed technique has been anal-
ysed and compared to AGNES technique on synthetic as
well as real-world datasets in terms of performancemeasures
which have been presented in the section “Performance mea-
sures”. AGNES is a hierarchical clustering technique, which
has also been used for creating the initial hierarchical struc-
ture in the case of the proposed technique. The proposed
technique also follows the hierarchical clustering by variable
approach; hence,AGNEShas been preferred over other tradi-
tional clustering techniques for the performance comparison.
Indeed,AGNEScannot dealwith data streams, but it has been
used as a baseline technique for analysing the performance
of the proposed technique. The use of traditional clustering
techniques as a baseline technique has also been done in the
literature related to the data streams [3,22,28,33].Most of the
existing data stream clustering technique follows the cluster-
ing by example approach; hence, comparing the proposed
method, which follows a clustering by variable approach to
a method following a clustering by example approach, is
incompatible. Moreover, most of the work has tailored their
processing in the clustering by variable domain depending on
the similarity or dissimilarity measure. Hence, this makes it
hard to apply the computation of dissimilarity between data
streams proposed in the current work in the setting of existing
works.

AGNES technique requires the availability of the entire
dataset at one go for processing, so this condition has been
maintained even for obtaining the results for comparison. As
opposed to this, the proposed technique processes the data
in terms of data chunks which have been obtained from data
streamsusing a slidingwindowoffixed size.Different sliding
window sizes have been tried for experimental analysis and
the results corresponding to a window size of w = 100 have
been presented in this section. For the initialisation of the
clustering structure, Dinit has been set to 20 which means
that initial 20 windows have been used. Furthermore, margin
of error (δ) has been set to 0.05 for the calculation of the
threshold (ε).

Fig. 8 DI score of the proposed technique andAGNESon four synthetic
stationary datasets

Fig. 9 CPCC score of the proposed technique and AGNES on four
synthetic stationary datasets

Fig. 10 MHΓ score of the proposed technique and AGNES on four
synthetic stationary datasets

Results for synthetic stationary datasets

The performance of the proposed technique and AGNES
on synthetic stationary 2C dataset, synthetic stationary 3C
dataset, synthetic stationary 5C dataset, and synthetic sta-
tionary 7C dataset in terms of DI, CPCC, MHΓ , and Purity
is given in Figs. 8, 9, 10, and 11, respectively.

It can be observed from Fig. 8 that the average of the
DI scores obtained by the proposed technique on every win-
dow is comparatively better in comparison to the average DI
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Fig. 11 Purity score of the proposed technique and AGNES on four
synthetic stationary datasets

score obtained by AGNES on all the four synthetic station-
ary datasets, viz., synthetic stationary 2C dataset, synthetic
stationary 3C dataset, synthetic stationary 5C dataset, and
synthetic stationary 7C dataset. The average DI score for
AGNES is calculated by dividing the score achieved by
AGNES by the same number of windows processed by the
proposed technique. The comparatively better performance
of the proposed technique on all the four synthetic stationary
datasets can be attributed to the fact that the hierarchical clus-
tering structure which is incrementally modelled after every
data snapshot can reflect the local changes in the data streams
better than AGNES.

Furthermore, from Fig. 9, it can be seen that the proposed
technique performs almost identical to AGNES in terms of
the CPCC values obtained on all the four synthetic stationary
datasets. However, in Figs. 10 and 11, the performance of
the proposed technique and AGNES is exactly the same on
all the four synthetic stationary datasets.

Overall, it can be said that for a non-concept evolving
data streams, the performance of both the techniques, viz.,
proposed technique and AGNES, is approximately the same,
but the main advantage of the proposed technique is that it
has performed comparatively to AGNES while processing
data in the form of windows instead of asking for availability
of the entire data, which proves its advantage over AGNES
in terms of memory requirements.

Results on synthetic concept evolving datasets

The proposed technique has been evaluated and compared to
AGNES on four synthetic concept evolving datasets, namely,
synthetic concept evolving H1 dataset, synthetic concept
evolving H2 dataset, synthetic concept evolving H3 dataset,
and synthetic concept evolving H4 dataset as described in
Tables 6 and 7 to analyse their performance in presence of
multiple concepts in the data streams.

Themovement of the different data streams fromone clus-
ter to another cluster on evolution of new concepts in the data

streams is shown in Fig. 12 for the synthetic concept evolv-
ing H4 dataset. Altogether there has been three changes in
the concepts in the synthetic concept evolving H4 dataset as
detailed in the section “Synthetic concept evolving dataset”.
Furthermore, the different operations performed by the pro-
posed technique to handle the evolving concepts in the data
streams are shown in Fig. 13a–c.

Initially, the first 20 windows (windows 1–20) were used
by the proposed technique for creating the initial clustering
structure as it has been shown in light colours (light blue,
light green, and light red) in Fig. 12a. There are three clus-
ters at the time of initialisation where cluster 1 comprises of
(S1 − S4) data streams, cluster 2 comprises of (S5 − S8)
data streams, and cluster 3 comprises of (S9 − S20) data
streams, and the corresponding tree structure is also depicted
in Fig. 12b. After the initialisation, fromwindow 21–250, the
initial assignment of the data streams into three clusters does
not change as no concept evolution occurs in windows 21–
250, as shown in Fig. 12a, and the same thing is also shown
in Fig. 12c. However, on the 251st window, a concept change
occurs and the clustering structure changes from three clus-
ter to five cluster due to the split operation, as shown in Fig.
12d and e. Hence, some data streams, i.e., (S15 − S18) and
(S19 − S20) in cluster 3 are assigned into two new clusters,
viz., cluster 4 and cluster 5, respectively. Therefore, after the
split operation on 251st window cluster 1, cluster 2, cluster
3, cluster 4 and cluster 5 comprises of (S1 − S4), (S5 − S8),
(S9 − S14), (S15 − S18) and (S19 − S20) data streams, respec-
tively. This assignment stays the same until 500th window.
Next, concept evolutionhappens in 501st and502ndwindows
and the clustering structure changes from five cluster to two
cluster. The different operations for changing the clustering
structure fromfive cluster to two cluster are shown in Fig. 12f
where node n3 containing six data streams is split into two
clusters named as cluster 3 and cluster 6, as shown in Fig. 12a
and f, each containing three data streams. In Fig. 12g, node
n5 containing four data streams is splitted into two new clus-
ters named cluster 4 and cluster 7, as depicted in Fig. 12g,
containing one data stream and three data streams, respec-
tively. In Fig. 12h, the process of merging of cluster 4 and
cluster 7 takes place after which the clustering structure con-
tains six clusters in total, as shown in Fig. 12i. This process
of merging continues where in Fig. 12j, cluster 4 and cluster
5merges followed by the merging of cluster 3, cluster 6, and
cluster 4, as illustrated in Fig. 12k. Again, all three clusters,
i.e., cluster 1, cluster 2, and cluster 3, merge into its parent
node(denoted as n1) as shown in Fig. 12l to produce a single
cluster as depicted in Fig. 12m. Finally, the parent node (n1)
is split into two clusters: cluster 1 and cluster 2, as shown
in Fig. 12n containing (S1 − S4, S12 − S15) and (S5 − S11,
S16 − S20) data streams, respectively. The same clustering
structure in Fig. 12n is maintained till the 750th window
until a concept evolution is encountered at the 751st win-

123



Complex & Intelligent Systems (2022) 8:1737–1761 1753

Fig. 12 The movement of data streams from one cluster to another on evolution of concepts
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dow. Due to the concept evolution at the 751st window, node
n2 is split into two clusters, as shown in Fig. 12o, followed
by the splitting of node n3 into another two clusters, as illus-
trated in Fig. 12p. Again, node n4 is splitted into two clusters,
as illustrated in Fig. 12q, followed by the splitting of node n5
into yet another two clusters, as illustrated in Fig. 12r. Finally,
node n6 is splitted into two clusters, as depicted in Fig. 12s,
where cluster 1, cluster 2, cluster 3, cluster 4, cluster 5, clus-
ter 6 and cluster 7 contains (S1 − S4), (S5 − S7), (S8 − S9),
(S10 − S11), (S12 − S15), (S16 − S18), and (S19 − S20) data
streams, respectively. The clustering structure obtained after
the split operations on the 751th window remains unchanged
till the last window (i.e., 1000th window). Overall, it can
be observed that different concepts in the synthetic concept
evolving H4 dataset have been accurately captured in the
clustering structure by the proposed technique.

The change in the average entropy of clustering structure
(tree) is shown in Fig. 13a–c, respectively, for first concept
evolution at 251st window, second concept evolution at 501st
window, and third concept evolution at 751st window corre-
sponding to the synthetic concept evolving H4 dataset. It can
be observed from Fig. 13a that the average entropy of clus-
tering structure at the time of 250th window is 3.314, but
on accommodating the data instances of 251st window, the
average entropy increases to 3.797which represents an unsta-
ble clustering structure. This increase in entropy is because
of the new concepts arriving in the data streams due to the
251st window. To capture the new concepts in the clustering
structure, different split operations are performed by the pro-
posed technique which decreases the average entropy of the
clustering structure (tree) to 3.305 (the different split opera-
tions performed are shown in Fig. 12d and e). In Fig. 13b, the
average entropy of clustering structure at the time of 500th
window is 3.306. However, after accommodating the newer
concepts which are spread over 501th and 502th window,
the average entropy of the clustering structure increases to
3.663 representing an unstable clustering structure. There-
fore, to stabilise the clustering structure, multiple split and
merge operations on the data instances corresponding to
501th and 502th window are executed which lowers the aver-
age entropy of the clustering structure to 3.299 (the different
split andmerge operations performed are shown in Fig. 121f–
n). The third and final concept evolution occurs at 751st
windowwhere the average entropy of the clustering structure
increases from3.314on700thwindow to 4.945on accommo-
dating the 751stwindow, as shown inFig. 13c.However, after
the split operations performed by the proposed technique on
the data instances of 751st window, the average entropy of
the clustering structure reduces to 3.219 (the different split
operations performed are shown in Fig. 12o–s).

The DI score, CPCC score, MHΓ score, and Purity score
achieved by the proposed technique are shown in Figs 14,
15, 16, and 17, respectively. The DI score has been plotted

Fig. 13 Change in the average entropy of clustering structure corre-
sponding to different concept evolution

Fig. 14 DI score of the proposed technique

with an interval of 2 windows; similarly, an interval of two
windows has been taken for plotting the CPCC, MHΓ and
Purity scores. It can be observed from Fig. 14 that some fluc-
tuations in the DI score are due to the changes in the values
of the data instances of different data windows. Whereas, the
changes in CPCC andMHΓ are only corresponding to those
windowswhere changes in concepts occur and Purity score is
1 corresponding to all the windows. In totality, it can be said
based on the DI, CPCC, MHΓ , and Purity scores, as shown
in Figs. 14, 15, 16, and 17 that the performance of the
proposed technique is very promising for concept evolving
datasets.

The comparative analysis of the proposed technique and
AGNES on synthetic concept evolving H1, synthetic concept
evolving H2, synthetic concept evolving H3 and synthetic
concept evolving H4 datasets in terms of DI, CPCC, MHΓ ,
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Fig. 15 CPCC score of the proposed technique

Fig. 16 MHΓ score of the proposed technique

Fig. 17 Purity score of the proposed technique

and Purity is shown, respectively, in Figs. 18, 19, 20, and
21. It can be observed from Fig. 18 that the average of the DI
scores obtained by the proposed technique on every window
and the average DI score achieved by AGNES is nearly the
same for synthetic concept evolving H1 dataset due to the
fact that synthetic concept evolving H1 dataset contains data
instances from a single concept. However, the performance
of the proposed technique is far better compared to AGNES
on synthetic concept evolving H2, synthetic concept evolv-
ing H3, and synthetic concept evolving H4 datasets as these
three datasets consist of data instances belonging to multiple
concepts which are correctly captured by the proposed tech-
nique but not by AGNES. Similarly, it can be observed from
Figs. 19 and 20 that the performance of the proposed tech-
nique and AGNES is roughly the same for synthetic concept
evolving H1 dataset, but the performance of the proposed
technique is better than AGNES for synthetic concept evolv-
ingH2, synthetic concept evolvingH3, and synthetic concept
evolving H4 datasets. This type of behaviour of the pro-
posed technique and AGNES in terms of CPCC andMHΓ is
again accounted to the capability of the proposed technique
to address the change in concepts by adjusting the clustering
structure via different split and merge operations, whereas
AGNES is unable to handle it. However, it can be seen from
Fig. 21 that the value of Purity is 1 for both the proposed tech-
nique and AGNES. However, the Purity value for AGNES is
misleading as it is shown inFig. 22 that a very large number of
clusters have been generated by AGNES as compared to the
actual number of clusters. Whereas, in the case of proposed
technique, the number of clusters generated and the actual
number of clusters is the samewhich proves that the proposed

Fig. 18 DI score of the proposed technique and AGNES on four syn-
thetic concept evolving datasets

Fig. 19 CPCC score of the proposed technique and AGNES on four
synthetic concept evolving datasets

Fig. 20 MH score of the proposed technique and AGNES on four syn-
thetic concept evolving datasets

technique accurately captures the concept evolution in the
clustering structure. Overall, the proposed technique’s supe-
rior performance indicates the proposed technique’s ability
to identify and reflect the concept changes in the data streams
through proper updation of the clustering structure. However,
the same cannot be said about AGNES, as it fails in recog-
nising the evolving changes in the data streams.
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Fig. 21 Purity score of the proposed technique and AGNES on four
synthetic concept evolving datasets

Fig. 22 Number of clusters generated by the proposed technique and
AGNES vs. actual number of clusters for synthetic concept evolving
datasets

Performance on web browsing dataset

The proposed technique has also been evaluated and com-
pared to AGNES on web browsing dataset as described in
Table8 to analyse their performance in a real-world scenario.

Themovement of the different data streams fromone clus-
ter to another cluster on evolution of new concepts in the data
streams is shown in Fig. 23 for the web browsing dataset.
Overall, there has been four changes in the concepts in the
web browsing dataset as detailed in the section “Web brows-
ing dataset”. Initially, the first 20 windows (windows 1–20)
were used by the proposed technique for creating the ini-
tial clustering structure as it has been shown in light colours
(light blue, light green, and light red) in Fig. 23a. There are
two clusters at the time of initialisation where cluster 1 com-
prises of (S1 − S10) data streams and cluster 2 comprises of
(S11 − S20) data streams, and the corresponding tree struc-
ture is also depicted in Fig. 23b. After the initialisation, from
window 21–35, the initial assignment of the data streams into
two clusters does not change as no concept evolution occurs
in windows 21–35, as shown in Fig. 23a, and the same thing
is also shown in Fig. 23c. However, on the 36th window, a
concept change occurs and the clustering structure changes
from two cluster to three cluster due to the split operation,
as shown in Fig. 23d. Hence, the data streams (S1 − S10)
in node n2 are assigned to two new clusters, i.e., the data
streams (S1 − S5) and (S6 − S10) are assigned to cluster 1
and cluster 3, respectively. Therefore, after the split operation

on 36st window, cluster 1, cluster 2, and cluster 3 comprises
(S1 − S5), (S11 − S20), and (S6 − S10) data streams, respec-
tively. This assignment stays the same till the 45th window.
Next, concept evolution happens in 46th window and the
clustering structure changes from three cluster to four clus-
ter. The split operation for changing the clustering structure
from three cluster to four cluster is shown in Fig. 23 where
node n3 containing ten data streams is split into two clusters
named as cluster 2 and cluster 4 containing three and seven
data streams, respectively, as shown in Fig. 23a and e. This
new assignment of the data streams also remains the same
till the 65th window. In Fig. 23f, node n4 containing seven
data streams is split into two new clusters, viz., cluster 4 and
cluster 5, as depicted in Fig. 23f, containing three and four
data streams, respectively, on processing the 66th window
where another concept change occurs. The clustering struc-
ture so obtained after the split operation stays unchanged till
the 82nd windowwhere cluster 1, cluster 2, cluster 3, cluster
4, and cluster 5 contains (S1 − S5), (S11 − S13), (S6 − S10),
(S14−S16), and (S17−S20) data streams, respectively. Finally,
on encountering the 83rd window where yet again another
concept change was detected, cluster 4 and cluster 5 were
merged into its parent cluster (node n4 as shown in Fig. 23f)
by the proposed technique to produce a clustering structure
accommodating four clusters, namely, cluster 1, cluster 2,
cluster 3, and cluster 4 containing (S1 − S5), (S11 − S13),
(S6 − S10), and (S14 − S20) data streams, respectively. The
clustering structure obtained after the merge operation on the
83rd window remains unchanged till the last window (i.e.,
100th window) and can be observed from Fig. 23a and g.
Overall, it can be ascertained that different concepts in the
web browsing dataset have been accurately captured in the
clustering structure by the proposed technique.

The DI score, CPCC score, MHΓ score, and Purity score
achievedby theproposed technique are shown inFigs. 24, 25,
26, and 27, respectively. The DI score has been plotted with
an interval of 2 windows; similarly, an interval of two win-
dows has been taken for plotting theCPCC,MHΓ , and Purity
scores. It can be observed from Fig. 24 that some fluctuations
in the DI score are due to the changes in the values of the data
instances of different datawindows.On examining theCPCC
score from Fig. 25, it can be seen that the changes occurring
in the CPCC score correspond to the concept changes in the
46th and 83rd windows, while the changes corresponding to
the concept changes in the 36th and 66th windows are negli-
gible. Whereas, the changes inMHΓ are only corresponding
to thosewindowswhere changes in concepts occur andPurity
score is 1 corresponding to all the windows. Hence, it can be
said based on the DI, CPCC, MHΓ , and Purity scores as
shown in Figs. 24, 25, 26, and 27 that for a dataset repre-
senting a real-world scenario promising performance by the
proposed technique can be observed.
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Fig. 23 The movement of data streams from one cluster to another on evolution of concepts

The comparative analysis of the proposed technique and
AGNES on web browsing dataset in terms of DI, CPCC,
MHΓ , and Purity has been done in fractions of the web
browsing dataset, i.e., for windows 21–35, windows 21–45,
windows 21–65, windows 21–82, and windows 21–100 con-
taining concepts in the range one to five as discussed in the
section “Web browsing dataset” to observe the effect of mul-
tiple concepts on both the techniques as shown, respectively,
in Figs. 28, 29, 30, and 31.

It can be observed from Fig. 28 that the average of the DI
scores obtained by the proposed technique on every window
and the average DI score achieved by AGNES is nearly the
same for windows 21–35 due to the fact that windows 21–35

contain data instances from a single concept. However, the
performance of the proposed technique is far better compared
toAGNESonwindows 21–45,windows 21–65,windows 21–
82, and windows 21–100 as these windows consist of data
instances belonging to multiple concepts which are correctly
captured by the proposed technique but not by AGNES.

Furthermore, it can be observed from Fig. 29 that the per-
formance of the proposed technique and AGNES is roughly
the same for windows 21–35 and windows 21–45. How-
ever, the performance of AGNES drops in comparison to
the proposed technique as the number of concepts starts
increasing further in windows 21–65, windows 21–82, and
windows 21–100. Similarly, in case of MHΓ , the perfor-
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Fig. 24 DI score of the proposed technique

Fig. 25 CPCC score of the proposed technique

Fig. 26 MHΓ score of the proposed technique

Fig. 27 Purity score of the proposed technique

mance of the proposed technique and AGNES is roughly the
same for windows 21–35, but the performance of AGNES
starts decreasing in comparison to the proposed technique
for windows 21–45, windows 21–65, windows 21–82, and
windows 21–100 as can be seen from Fig. 30. Again, this
type of behaviour of the proposed technique and AGNES in
terms of CPCC andMHΓ can be accounted to the capability
of the proposed technique to address the changes in concepts
by adjusting the clustering structure via different split and
merge operations, whereas AGNES falls short in such capa-
bilities of handling it. However, it can be seen from Fig. 31
that the value of Purity is 1 for both the proposed technique
and AGNES. However, the Purity value for AGNES is mis-
leading as it is shown in Fig. 32 that a very large number
of clusters have been generated by AGNES as compared to
the actual number of clusters. Whereas, in case of the pro-
posed technique, the number of clusters generated and the
actual number of clusters are the same which proves that the
proposed technique accurately captures the concept evolu-
tion in the clustering structure. Overall, the performance of
the proposed technique validated using the validity indices
indicates that it can correctly group the students into an opti-
mal number of clusters. Moreover, the clusters produced by
the proposed technique are compact and well separated, as

Fig. 28 DI score of the proposed technique and AGNES onweb brows-
ing dataset

Fig. 29 CPCC score of the proposed technique and AGNES on web
browsing dataset

Fig. 30 MHΓ score of the proposed technique and AGNES on web
browsing dataset

Fig. 31 Purity score of the proposed technique and AGNES on web
browsing dataset

suggested by the scores obtained. However, the same cannot
be implied in the case of AGNES as it could not handle the
concept changes in the data streams. Consequently, AGNES
proceeded with a non-optimal assignment of students into
clusters.
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Fig. 32 Number of clusters generated by the proposed technique and
AGNES vs. actual number of clusters for web browsing dataset

Time comparison

The proposed technique has also been compared to AGNES
based on the computation time required by both the tech-
niques for processing the synthetic stationary datasets, syn-
thetic concept evolving datasets and web browsing dataset,
as shown in Figs. 33, 34, and 35, respectively.

From Fig. 33, it is clearly evident that the processing
time required by the proposed technique on all the syn-
thetic stationary datasets, namely, synthetic stationary 2C
dataset, synthetic stationary 3C dataset, synthetic stationary
5C dataset, and synthetic stationary 7C dataset, is signif-
icantly less as compared to the processing time required
by AGNES for processing the same datasets. Again, from
Fig. 34, it can observed that AGNES requires more process-
ing time compared to the proposed technique as the number
of data instances increases on every consecutive synthetic
concept evolving datasets (i.e., number of data instances in
synthetic concept evolving H1 dataset < number of data
instances in synthetic concept evolving H2 dataset< number
of data instances in synthetic concept evolving H3 dataset <
number of data instances in synthetic concept evolving H4
dataset). Similarly, from Fig. 35, in the case of web brows-
ing dataset as the number of windows (i.e., number of data
instances) increases, so does the processing time required
by AGNES which is very significant in comparison to the
processing time required by the proposed technique. Hence,
from Figs. 33, 34, and 35, it can be said that the pro-
posed technique requires significantly less computation time
compared to AGNES which satisfies the time constraint in
processing the data streams.

Conclusion

In the present paper, a hierarchical clustering technique for
multiple nominal data streams has been presented. It mea-
sures the quality of a cluster by calculating its entropy.
The proposed technique is capable of addressing the con-
cept evolving nature of the data streams by adapting the
clustering structure with the help of merge and split oper-
ations. The experimental analysis has been performed on
two synthetic and a real application dataset, namely synthetic
stationary datasets, synthetic concept evolving datasets, and

Fig. 33 Time taken by the proposed technique andAGNESon synthetic
stationary datasets

Fig. 34 Time taken by the proposed technique andAGNESon synthetic
concept evolving datasets

Fig. 35 Time taken by the proposed technique and AGNES on web
browsing dataset

web browsing dataset in terms of performance measures,
viz., DI, CPCC, MHΓ , and Purity. The proposed technique
has achieved the highest DI score of 25.642, CPCC score of
0.974, MHΓ score of 0.704, and Purity score of 1 for syn-
thetic concept evolving H4 dataset. For the web browsing
dataset, the DI score of 5.678, CPCC score of 0.993, MHΓ

score of 0.723, and Purity score of 1 has been attained by
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the proposed technique. Overall, it can be concluded from
the experimental results that the proposed technique has
performed approximately the same on synthetic stationary
datasets. However, the proposed technique has outperformed
theAGNES technique on synthetic concept evolving datasets
aswell asweb browsing dataset. Furthermore, it can be stated
that the proposed technique requires much less computation
time in comparison to AGNES.
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