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Abstract
In the case of new technology application, the cognitive radio network (CRN) addresses the bandwidth shortfall and the fixed
spectrum problem. The method for CRN routing, however, often encounters issues with regard to road discovery, diversity of
resources and mobility. In this paper, we present a reconfigurable CRN-based cross-layer routing protocol with the purpose of
increasing routing performance and optimizing data transfer in reconfigurable networks. Recently developed spotted hyena
optimizer (SHO) is used for tuning the hyperparameters of machine-learning models. The system produces a distributor built
with a number of tasks, such as load balance, quarter sensing and the development path of machine learning. The proposed
technique is sensitive to traffic and charges, as well as a series of other network metrics and interference (2bps/Hz/W average).
The tests are performed with classic models that demonstrate the residual energy and strength of the resistant scalability and
resource.

Keywords Cognitive radio network · Spectral resource · Cross-layer routing · Machine learning · Network heterogeneity

Introduction

Reconfigurable wireless networks (RWNs) are mainly adap-
tive networking software that is designed to meet the
demands of existing applications and changing network
topology. The RWNs can be reconfigured in all stack lev-
els of the protocol. This reassignment will require a load on
the transportation layer routing protocol to be reconfigured
using heterogeneous networks or to develop the high-quality
service requirement (QoS) [1], to promote high time variable
scenario mobility. Cognitive radio (CR) is a contemporary
communication technology that tends to give secondary or
cognitive television a smart sense of the environment and,
based on the information gained, the parameters for the trans-
mission of spectrum resources are properly altered. It may
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also be viewed as the ability of cognitive radios to feel the
spectra from their environment for the available spectrumand
the channel sets are divided in accordance with transmission
policy [2] for the optimization of channels that discourage
interference with secondary users. The secondary user (SU)
is responsible for detecting the primary user (PU) transmis-
sion range and for preventing interference [3]. The smart
SU also senses the ideal resource and reduces the distortion
during PU transmission.More chances for spectral access are
offered by smart SU. The transferred data in a reliable fashion
utilising a transport layer according to the optimum spectral
sensing, the ideal quality evaluation on available channels
and theoptimumPUdetection [4]. It is additionally supported
by good strategy and transmission speed in the congestion
control [5].

For a network layer protocol to meet all the problems, the
functions of the CRNs need to be improved. The delay and
interferences on relay nodes, resulting in spectrum fluctu-
ations in CRN, are increased by congestion and switching
[6]. A routing protocol must examine these parameters and
create routing protocol architecture to overcome such issues.
The cross-film design is, therefore, important to construct
a design that is energy efficient and routing problems [7].
The network conjunction with the MAC provides a routing
solution that is imperative [8]. Often with dynamic alloca-
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tion and its value, CRNs [9–14] are cross-layered. It often
boosts customised programming, spectrum resources and
power control by improving the optimum routing of the
CRN. Dynamic resource allocation should be considered to
improve the transmission connection with the PUs. In con-
trast, routing methods are commonly selected in an unsaved
way [15], 16].

It is very important to construct a very robust machine-
learning (ML) [17–19] to adapt to the limits of routing on
the CRNs by spectral resource allocations and to adjust the
network to reconfigure. In combination with the limitations
associated with the MAC layer, optimised routing decisions
in CRNs can be launched with the machine-learning models
[20]. Machine-learning may, therefore, be regarded appro-
priate in the construction of a layer-overlay protocol that
provides other levels of information and services [21, 22].
The reconfiguration of the CRN is operated on the basis of
dynamic features of the CRN. This requires the use of theML
approach to work together to reconfigure a CRN by sensing
its environment and selecting better courses. For this study,
it is vital to examine the coherence of the ML method in
the analysis of the whole properties of CRNs. Smart adap-
tations on CRNs, depending on information collected from
the CRN features, are achievable in such a scenario as a
robotic mechanism to expedite the choice. The cross-face
design consideration further optimises the routing perfor-
mance with ML for multi-path/channel selection [23, 24].
The ML engine is thus found to be clever based on full infor-
mation about cross-sectional design on the training of theML
for routing purposes. The formation with full knowledge of
ML makes it possible to forecast optimal pathways in CRNs
in future.

The present study models a CRN-assisted ML routing
aimed at (1) increasing energy efficiency, (2) preserving the
balance, (3) optimising resource use. In this research, the pur-
pose of the CRN controllers is to use the CRN architecture
bymachine-learning optimization to achieve optimum in this
way. An efficient optimising routing technique is provided in
CRN. The use of artificial neural networks [25–27] routing
capability [25, 26, 28–35] allows CRN to identify the right
paths for the actual transfer of information. The ANN rout-
ing addresses certain dynamic limitations of the CRN, where
resources are distributed in conjunction with the network
dynamics without prior information. Consequently, applying
MLon cross-layer design inCRNoffers the best routing deci-
sion for intelligent routing. The following is the outline of the
paper: "Related works" discusses studies relating to differ-
ent cross-sectional CRN routing systems. The problem and
the system model of CRNs are provided in "System model".
"Optimizing the route using machine learning" gives a quick
description of the route optimization machine learning for
CRNs. The suggested CRN routing policy is presented in
"Policy of CRN routing". The suggested cross-layered ML

route is assessed in "Performance evaluation". "Conclusions
and future work" concludes the study with proposed future
guidelines.

Related works

Existing ML routing approaches are discussed in this part
on a number of factors including channel selection, rout-
ing, routing strategies, etc. Also, in this section, the optimal
routing strategy of routing decisions is discussed in several
protocols relating to cross-layered architecture. For cognitive
engine development, Du et al. [9] used CRN reinforcement
learning. It tackles two challenges, including: firstly, it takes
a long time before it is intelligent to interact with the sur-
roundings. Second, the agents improve their performance
by trial and error; however, some of the CRN applications
cannot afford a large amount of latency and power. A learn-
ing approach based on expert demonstrations is adopted to
address the above-mentioned difficulties.

To reduce the misidentification of nodes owing to SU dis-
tant position, a radius adaptable to the Bregman Ball model
is introduced. The process of speed learning from specialist
nodes, multi-teaching deep-Q study is further offered. The
confirmation indicates reduced training time and improves
the quality of transmission compared to standard methods.
Moreover, the new nodes can be more effective than the
experts. Researchers [10] present a layer-wide allocation
approach for the distribution of dynamics in cognitive radio
networks to enhance the quality of expertise evaluated by
mean viewpoint. The solution to the problem of spectrum
shortages is the distribution of funds between SUs and PUs.
The method enables resources for physical and network lay-
ers to be allocated in CR by observing ambient factors. This
will improve the optimum inter-layering approach and usu-
ally enhances the single-gradeMOS scale. This will improve
its own characteristics.

In [11], the cross-layer routing protocol to the CRN is
regarded to be challenging to attain in terms of spectrum
statistics and topology, quasi co-operative latency learning
and energy efficiency increase. A utility function combines
the energy efficiency. Experience replay is employed to
update the assumptions to disrupt the correlations and lower
update variance to continue improving efficiency.

An energy efficient cross-layer routing training approach
was developed in [12]. Firstly, a new idea will be estab-
lished as a dynamic adaptation rate that governs efficient
power transmission through a multi-level transition mecha-
nism to ensure energy efficiency and to condense vast sectors
of activity. In addition, Q-Learning for priority memories is
offered to speed up convergence and reduce storage. This
technology enhances the efficiency of energy and reduces
the latency of routing in a transversal architecture. Simulation
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PU Networks CR Networks

Fig. 1 Architecture of CRN model

results demonstrate that this procedure is more efficient than
conventional algorithms, decreased routing delay and higher
packing ratio [36]. The cross-layer QoS-related restrictions
for cognitive communication were developed by Shah et al.
[13]. The proposed system uses CRN to reduce crowded
strips and noise by boosting the communication capacity of
channels. TheLyapunovShift optimization is seen as an issue
in maximising weighted-services in different traffic classes.
To decrease the restrictions for SDR operations, Kakkavas
et al. [14] have created the resource allocation model in the
CRN. CRN SU resource is allotted according to the frame-
work of Markov random field (MRF).

Systemmodel

The system is modelled as hexagonal, user- and cognitive
radio network as presented in Fig. 1. The system is modelled.
Users are allocated to cognitive radios with the same level of
spectrum.

Consider the Primary User Index (PU), which denotes
index B of PU as, B ∈{1, 2,…, B}. In terms of indices,
cognitive or secondary radios (SU) are specifiedX ∈{1, 2,…,
X} and the cognitive radios are indicated N ∈{1, 2, …, N}.
The BS of main users (BS-PU) and BS of cognitive (BS-
CR) [36] are respectively related to the indexes of uses and
cognitive radios. The spectral allocation architecture of CRN
w.r.t. is shown in Fig. 1:

ξb,k(n) � hb,k(n)Pb,k(n)
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Fig. 2 Layers in artificial neural network

Ek � 1

Pk

N∑

n�1

cb,k(n) log2
(
1 + ξb,k(n)

)
, (5)

E �
K∑
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Ek, (6)

P : max E, (7)

a : Pb,k(n) ≤ cb,k(n)(max Pb), ∀k � K ,∀b � B, (8)

b :
K∑

k�1

N∑

n�1

Pb,k(n)cb,k(n)In,m ≤ Im, (9)

c :
N∑

n�1

cb,k(n) log2
(
ξb,k(n) + 1

) ≥ minCk, (10)

d : cb,k ∈ {0, 1}, ∀n � N , ∀b � B, (11)

e :
N∑

n�1

cb,k(n) � 1, ∀n � N . (12)

Optimizing the route usingmachine learning

The ML is typically essential in optimising the decision
to route using network resources optimally. The machine-
learning to be based on the characteristics of input, and they
tend to reset the whole services to the dynamic resource on
the basis of its adjustment. Intelligent services in CRN are,
therefore, smartly enabled with the increased learning capac-
ity in ML routing algorithms. The ANNs and spotted hyena
optimizer (SHO) often personify the human brain activity
that helps to recognise non-linear relations in any model as
optimally as possible. SHO and ANNs are constructed with
ANNwhich is oftenmeant to calculate the required output(s)
for non-linear inputs. Figure 2 illustrates the one-layer ANN
architecture.
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128 input layers, one hundred and sixty layers of hidden
and one layer of output are constructed into ANN.

Spotted hyena optimizer (SHO)

Social connections are inherently changing environments.
These are influenced by changing relations between the net-
work as well as people who leave/enter the population. The
study related to animal behaviors in the social network was
divided into three stages:

• The first stage included ecological variables that include
resources as well as the rivalry to other species.

• In the second stage, social liking is highly dependent on
quality.

• The 3rd group receives less scientists’ attention, including
social relationships related to species themselves.

Social relationships among animals are what inspire us.
This behavior works and corresponds to detected hyena,
which is known as Crocuta. Hyenas are like carnivores that
are similar to dogs. They live in the African and Asian savan-
nas, grasslands, deserts and woodlands. Spotted hyenas are
complex, clever and very sociable creatures with a terrible
reputation. They are capable of fighting territory as well as
food indefinitely. In spotted hyenas, women are influenced
as well as live in clans. When men are adults, male members
leave their clan to look up and join a clan in different places.
They are the members having low rank of this new family to
receive their portion of supper. A male member who joined
the clan remains for a long period with the same members
(friends). Whereas a woman is always guaranteed a steady
location. An intriguing feature of spotted hyenas is they emit
voice warning that is quite similar to laughter. The mathe-
matical modelling of SHO algorithm is described as follows
[37]:
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∣∣∣
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−→
P k+1 + · · · + −→

P k+N , (20)
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Mostly detected hyenas hunt for stalks according to loca-
tion in a group of spotted hyenas related to vector Ch. To
display SHO’s unpredictable nature, suppose vector B >1
as well as B <1 to illustrate the distance effect as shown in
Eq. (3). This is useful for investigation as well as local opti-
mum prevention. Looking upon the choices of location, a
spotted hyena may determine arbitrarily the weight of stalk
as well as prepare it stiff for spotted hyenas.

Policy of CRN routing

This section improves network routing on a distributed basis
with its network architecture in reconfigurable CRN. A dis-
tributed network model has several CRN controllers that
collect the main features of the CRN on the MAC and on
the network layer. It offers numerous controllers for different
layers. This is combinedwith BS by helping the transmission
of BS to reduce energy and computer resources.

With dense network resources and architecture is
described in Fig. 1. The network answers are forwarded
to the ML-approached controllers, which are used for net-
work layer path selection. The ML controller recasts regular
routing data collected by the network layer. The network
heterogeneity and information are obtained by means of crit-
ically functioning ML protocol. Diverse network metrics or
features are collected in the MAC layer for optimum rout-
ing path selection, channel quality, channel quality, buffer
occupancies, network congestion andwindow size. TheCRN
controller has an ML algorithm which additionally takes the
limitations of computer capability and inadequate memory
into account in connection with the limitations specified in
"System model".

Networkmodeling

The initial CRN network layer settings regularly specify the
pattern of re-sets across network operation. The BS-PU was
initially positioned in the external CRN region. The BS-
controllersCR’s are developed as a processing and capability.
PU and SU are dispersedwith varied heterogeneity levels and
are classified into normal, advanced and superzones with an
upward energy order [36].

Reconfiguring the routing

In this part, CRN is developed to choose the ideal way with
the right collection of CRN inputs on a regular basis. The
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routing reconfiguration is carried out periodically to handle
the sensitive information of the CRN on the study’s cross-
layers. The reconfiguration of this routing system with more
functions means that the overhead of computers is increased
and the data transmission time is reduced severely. In order
for such a difficulty to be addressed, ML-based reconfig-
urable networkmodellingoptimises theCRNreconfiguration
method by reprogramming the periodicity until the index is
stable for ten iterations. The distributed controllers main-
tain this reconfiguration model’s computational threshold
throughout a time t.

The implementation of the reconfigurable CRN consists
of three parts: topology, settlement and transmission phases.
The following paragraph gives the details:

Management of topology

The ML-assisted routing technique allows integration to
choose the best paths for re-configuring devices. This recon-
figures the CRN topology and requires periodic updates
based on topology discovery. The continuous update of the
CRN helps the ML-based mechanism to accurately generate
answers relating to the routing path. Distance to BS, residual
energy, distance between BS-PU and BS-CR [36], the infor-
mation of the era and the frequency of the CRN in licenced
and non-licensed tapes are used for extracting the CRN infor-
mation using a hi messages from the network layers. The BS
controller in PU and SU/CR reacts in an iterative manner to
the message by updating the entire CRN with current infor-
mation relating to the network.

Settling phase

The settlement phase calculates the reconfiguration [36]
in the provided CRN topology of clusters PU and SU. It
also largely calculates the synchronisation of CRN stability
amongst the controllers. The best clustering of cells provides
theML-assisted routing path using sensedCRNdata. In addi-
tion, ML considers the cell heterogeneity to use remaining
CRN resources efficiently. The study purposefully delays up
to ten iterations to achieve a network.

In themaintenance phase, the dispersed controllers collect
data about CRN heterogeneity. The settlement phase then
uses the following equation:

E ′
R

(
cb,k(n)

) �
(
1

B
+

1

M

) f (B,M)∑

i�1

ER
(
cb,k(n)

)
, (22)

min(DFPU) �
BFPU∑

j�1

√
(X − x( j))2 + (Y − Y ( j)). (23)

Controllers employ ML while designing clusters to max-
imise their FPU centrality. The study employs the parameters

of CRN cell values for the calculation of FPU centrality as
previously and then the central grade is explained. To max-
imise the clustering process, the more degree is chosen. To
attain the appropriate position, the FPUs are described as the
indexing rate. The centre position is, therefore, viewed as an
average message ratio between the source PU and each of its
destinations SU and the other FPU (both FPU and non-FPU)
and the following is estimated:

CFPU �
∑

S ��FPU ��D

S − DFPU

S − D
, (24)

CFPU �
⎧
⎨

⎩

P( j)

1−P( j)d×
(
r mod 1

P( j)

) if n ∈ CFPU

0 otherwise.
(25)

The protocol for the machine-learning routing follows the
same reconfiguration procedure throughout the whole CRN
iteration. To optimise formulations for cluster formation,
the CRN analytical cost is assessed using the distributed
controllers. The estimate is performed in accordance with
10th [38] and CRN reconfiguration has the highest cost-
effectiveness. In determining cost-effective settings, themain
consideration is the equal distribution of loads across PUs
[36], with a reduced use of resources and minimum energy.

Performance evaluation

The simulation is carried out with a high-end computing sys-
tem in aMATLAB environment. The study does not take into
account data set but the video streaming data between the
sender and the receiver is communicated [36]. The simula-
tion is conducted using the system model with one BS-PU/2
BS-CR [36]. Several CRs can share their resources with the
PUs in this arrangement [35]. Since, a greater educational
rate component causes local optima to decline. The gullible
method of exploration approaches unity at each iteration at its
exploration pace. More than unitary, routes with premature
convergence will be used improperly. In another scenario,
ANN is not premature and hence, depending on each PU’s
error measurements, the outputs of ANN are measured.

Average network capacity

The average capacity of a network, shown in Figs. 3 and 4,
is estimated in this section. The study deals with two differ-
ent case studies: Box 1—BS-PU, BS-CR[39] mobile fixed
and Box 2—BS-PU for mobile and BS-CR mobile. Figure 1
illustrates the condition in Fig. 3 and case 2 in Fig. 4. In the
fixed BS-CR, i.e. in case 2 higher than in case 1 it is shown.
The average network capacity tends to decline, because the
calculations in the control system are integrated by ANN
with mobile BS-CR due to poor convergence due to mobility
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Cross-layer CRN Q-Learning Reinforcement Learning ANN Layer

Fig. 3 Case-1 network capacity with the use of ML techniques for BS-
PU and mobile BS-CR

Cross-layer CRN Q-Learning Reinforcement Learning ANN Layer

Fig. 4 Case-2 network capacity with the use of ML techniques for BS-
PU and mobile BS-CR

Cross-layer CRN Q-Learning Reinforcement Learning ANN Layer

Fig. 5 Interference for Case-1 network capacity with the use of ML
techniques for BS-PU and mobile BS-CR

and greater mobility. There is thus no premature conver-
gence of any of the solutions and the delivery of packets
between source and destination knots provides optimal path-
ways. Larger interference, like Figs. 5 and 6, occurs with
growing interference than Case 2.

The CRN routing support protocol for machine learning
allows controls with main or secondary users to collaborate
on transferring aircraft for clustering formulation that pre-

Cross-layer CRN Q-Learning Reinforcement Learning ANN Layer

Fig. 6 Interference for Case-2 network capacity with the use of ML
techniques for BS-PU and mobile BS-CR [36]

Cross-layer CRN Q-Learning Reinforcement Learning ANN Layer

Fig. 7 Energy Efficiency for Case-1 network capacity with the use of
ML techniques for BS-PU and mobile BS-CR [36]

pares the way to data packet routing with sensitive CRN
information. Machine learning controllers help to map key
users’ resources to optimise heterogeneity.

For the stationary BS-CR, the BS-CR is static with
other BS-CRs and mobile/state-of-the-art BS-Pus [36]. The
BS-CR also supports the ANN model, which updates the
network’s observed information at each iteration [36].

Energy efficiency

The average energy efficiency in this section is estimated, as
shown in Figs. 6 and 7. Two separate case studies are also
taken into account to assess theCNRhelped byANN routing,
similar to the previous paragraph. The average efficiency is
calculated usingSINRandCase 1findings are shown inFig. 7
and Case 2 is also shown in Fig. 8. In fixed BS-CR, i.e. in
instance 2 greater energy efficiency is attained than in case
1. The ANN assisted routing works better in lower SINR
compared to previous techniques. The separation of three
separate processes and ANN helps the CRN to increase its
performance compared to other approaches.

The energy efficiency is indicated inbothFigs. 9 and10, on
the other hand, with increasing numbers of CRs. The findings
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Cross-layer CRN Q-Learning Reinforcement Learning ANN Layer

Fig. 8 Energy Efficiency for Case-2 network capacity with the use of
ML techniques for BS-PU and mobile BS-CR [36]

Cross-layer CRN Q-Learning Reinforcement Learning ANN Layer

Fig. 9 Energy efficiency for Case-1 network capacity with the use of
ML techniques for BS-PU and mobile BS-CR. w.r.t. to increasing CR
[36]

Cross-layer CRN Q-Learning Reinforcement Learning ANN Layer

Fig. 10 Energy Efficiency for Case-2 network capacity with the use of
ML techniques for BS-PU and mobile BS-CR. w.r.t. to increasing CR
[36]

of the simulation reveal that energy efficiency is reduced due
to growing CRs.More CRs tend to produce high interference
rates, and demand more power and resources to complete
the routing operation between the destination and the source
[36].

Conclusions and future work

In this study, we have built a cross-layer machine learning
process for reconfigurable CRN applications. The distributed
control system monitors the entire environment and creates
the CRN reports for optimal judgement in the selection of
clustermembers, cluster head and the routing path. This ideal
selection allows for the real transfer of data by taking into
account the whole nature of CRNs, including their features.
The use of three-phases with the help of ML also enhances
this selection, with cluster, threshold and CRN reconfigu-
ration dependent on network requirements. Moreover, SHO
algorithm is used to tune the hyperparameters ofANNmodel.
The advantages include the maximum use of a controller
CRN network, allowing optimum data transmission at higher
network level. This cross-cutting method permits coordina-
tion among layers during the routing process with occasional
reconfiguration. The distributed controllers optimise the pro-
cesses during the settlement phase with mutual cooperation
and therefore the routing paths are used. In addition, the
analysis is extended with routing activities in heterogeneous
cooperative CRNs, involving channel imperfection effects.
Further, it would no longer be regarded as a constraint to
update the routing table to include a cloud storage to the
routing procedure.
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