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Abstract
The discriminative correlation filter (DCF)-based tracking methods have achieved remarkable performance in visual tracking.
However, the existing DCF paradigm still suffers from dilemmas such as boundary effect, filter degradation, and aberrance.
To address these problems, we propose a spatio-temporal joint aberrance suppressed regularization (STAR) correlation filter
tracker under a unified framework of response map. Specifically, a dynamic spatio-temporal regularizer is introduced into the
DCF to alleviate the boundary effect and filter degradation, simultaneously. Meanwhile, an aberrance suppressed regularizer
is exploited to reduce the interference of background clutter. The proposed STAR model is effectively optimized using the
alternating direction method of multipliers (ADMM). Finally, comprehensive experiments on TC128, OTB2013, OTB2015
and UAV123 benchmarks demonstrate that the STAR tracker achieves compelling performance compared with the state-of-
the-art (SOTA) trackers.

Keywords Visual tracking · Correlation filter · Spatio-temporal constraint · Aberrance suppression

Introduction

Visual tracking aims to estimate the state of the target in
image sequences, given its initial state. It plays a crucial role
in computer vision-based applications, e.g., vehicle naviga-
tion, video surveillance and robotic perception [2,16,26,31].
In recent years, theDCF-basedmethods have attracted exten-
sive attention due to the high efficiency.However,DCF-based
tracking remains a challenging problem due to many intri-
cate issues, such as boundary effect, filter degradation, and
aberrance.

Boundary effect. The efficiency ofDCF-basedmethods relies
on the periodic assumption at the stage of training and
detection. However, this assumption induces the filters to
be trained and performed on partially unreal samples and
subsequently results in the unexpected boundary effect. The
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boundary effect mainly impedes the performance of the DCF
in two aspects [13]. (i) The inaccurate negative training sam-
ples reduce the discriminative power of the learned filters.
(ii) The detection scores are reliable only around the cen-
ter of the region, while the remaining scores are heavily
influenced by the periodic repetitions of the detection sam-
ples. To address this issue, several competitive DCF-based
trackers utilize the constant spatial regularizer to penalize
the filter coefficients outside the bounding box [13,18,25].
However, these constant spatial constraints are usually fixed
at the stage of tracking, and the diverse information (e.g., the
appearance variation of the target and the confidence of the
tracking results) is not fully utilized. To address this problem,
in this paper, we propose a dynamic spatial regularizer based
on response variation rate, which enables the filter to learn
more reliable filter coefficients.

Filter degradation. Generally, the DCF-basedmethods adopt
the model update mechanism based on fixed rate, which
ignores the variation between different frames [45]. Once
the appearance of the target varies dramatically, the filter
learned from the previous frame cannot adjust to appear-
ance changes, resulting in the filter degradation. To copewith
the filter degradation, several DCF-based trackers adopt the
temporal regularizer into filter training [25,28,45]. Never-
theless, the temporal regularizer is based on the assumption

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00544-1&domain=pdf
http://orcid.org/0000-0001-7273-7499


3766 Complex & Intelligent Systems (2022) 8:3765–3777

that filters between consecutive frames should be coherent.
The filter training may be interfered with severe occlusion,
background clutter, etc., resulting in a corrupted filter and
breaking this assumption. To solve this issue, in this paper,
we propose a dynamic temporal regularizer based on average
peak-to-correlation energy (APCE) [39] to suppress the filter
degradation.

Aberrance. Due to the spatial regularization, the correlation
filter can be learned on larger image regions [13]. Never-
theless, with the expansion of the learning regions, more
background clutter will be introduced, leading to aberrance
at the detection stage, which is manifested as the abrupt vari-
ation in response maps. To reduce the effect of aberrance,
Wang et al. [39] proposed the Large Margin Object Tracking
(LMCF) method, in which the quality of response maps is
verified during the filter learning and used to carry out the
model updating in high confidence. Choi et al. [7] proposed
the Attentional Correlation Filter Network (ACFN) tracker
that integrates multiple correlation filters into a network.
The verified scores which are generated based on response
maps are utilized to select the suitable filter. However, these
trackers deal with the aberrance at the stage of detection,
and thus the tracking performance is decreased inevitably.
Unlike these trackers, in this paper, we integrate an aberrance
suppressed regularizer into the DCF schema to suppress the
aberrance at the stage of filter training.

In this work, we address the above issues simultaneously
under a unified framework of response map by learning
a spatio-temporal joint aberrance suppressed regularization
correlation filter. The main contributions are summarized as
follows.

1. A novel tracking method by learning spatio-temporal
joint aberrance suppressed regularization correlation fil-
ter (STAR) is proposed under a unified framework of
response map.

2. A dynamic spatio-temporal regularizer is introduced to
alleviate the boundary effect and filter degradation, simul-
taneously.

3. An aberrance suppressed strategy is introduced into the
filter learning to minimize the interference by the back-
ground cluster.

4. Extensive evaluations are conducted on four challeng-
ing tracking benchmarks, and the experimental results
demonstrate the competitive performance of the proposed
tracker compared with the state-of-the-art (SOTA) track-
ing methods.

The rest of this paper is organized as follows. In “Related
work”, we present an overview of the prior work most
relevant to the proposed method. In “Proposed method”,
the proposed STAR model is introduced, and the ADMM

algorithm is developed to solve the STAR efficiently. In
“Experimental results”, quantitative and qualitative evalu-
ations of the proposed tracker with the SOTA trackers are
presented. Conclusions are presented in “Conclusion”.

Related work

The visual tracking methods can be classified into genera-
tive tracking methods and discriminative tracking methods
[31,40]. Among the discriminative-based trackers, the DCF
promote the visual tracking to a new level.

Generative tracking

The generative tracking attempts to buildmodels to represent
the appearance of the target and search themost similar candi-
date region with minimal reconstruction error. Comaniciu et
al. [8] proposed themean-shift trackingmethodwith iterative
histogram matching for visual tracking. Adam et al. [1] pro-
posed the fragments-based tracker, which utilizes multiple
image fragments to represent the object. Subsequently, Ross
et al. [35] proposed the subspace-based tracking method to
learn and update the low-dimensional subspace representa-
tion of the target. Although generative tracking has achieved
considerable success in constrained scenarios, they are vul-
nerable to complicated appearance variations of the target.
Therefore, more attention is shifted to discriminative track-
ing, due to it is less susceptible to background clutter during
the tracking process.

Discriminative tracking

The discriminative tracking trains a classifier to discrimi-
nate the target from the background. Grabner et al. [19]
proposed an online boosting tracker by fusing multiple weak
classifiers. Kalal et al. [24] proposed theTracking–Learning–
Detection (TLD) tracker that decomposes the long-term
tracking into three sub-tasks, namely tracking, learning, and
detection. More recently, many deep neural network (DNN)
based trackers under the framework of “end-to-end learn-
ing” and “offline-learning and online-tracking” are proposed.
For example, Bertinetto et al. [4] proposed the Fully Con-
volutional Siamese Networks (SiamFC) tracker that trains
a fully convolutional siamese network by cross-correlating
two inputs of the bilinear layer. Valmadre et al. [37] put for-
ward the CFNet tracker that considers the correlation filter as
a differentiable layer of the deep neural network. In general,
discriminative tracking is relatively more effective than gen-
erative tracking in preventing the negative effects of complex
background clutter or target appearance variations [40].
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DCF-based tracking

Recently, DCF has received considerable attention due to
its efficiency and scalability. Bolme et al. [5] first proposed
the correlation filter tracker, termed minimum output sum of
squared error (MOSSE), to learn a filter between multiple
training image patches and a template of user-specified ideal
correlation response.Henriques et al. [21] proposed the circu-
lant structure of Tracking-by-Detection with Kernels (CSK)
tracker, which exploits the circulant structure of the local
image patch to learn a kernel regularized least squares clas-
sifier.

To further improve the tracking performance, the follow-
up improvements are mainly carried out around two aspects,
namely feature representation and scale estimation. In fea-
ture representation, Danelljan et al. [11] proposed the color
attributes tracker by investigating the color names (CN) [38]
feature in the tracking-by-detection framework. Henriques
et al. [22] proposed the kernelized correlation filters (KCF)
methodbyutilizing thehistogramof orientedgradient (HOG)
[9] feature. In addition, Bertinetto et al. [3] proposed the Sum
of Template And Pixel-wise LEarners (STAPLE) tracker
using the HOG and colour features to improve the tracking
credibility.Moreover, Convolutional Neural Network (CNN)
features have been used to further improve the feature rep-
resentation [12,14,25,45]. In scale estimation, Danelljan et
al. [10] proposed the Discriminative Scale Space Tracking
(DSST)method,which learns a separate scale filter to address
the scale variation. Li et al. [27] proposed the Scale Adap-
tive with Multiple Features (SAMF) tracker by employing
a bilinear interpolation to generate image representations in
multiple scales.

Proposedmethod

Revisit the standard DCF

In the standard DCF [22], x ∈ R
M×N×C denotes the training

sample with M × N feature size and C channels. y ∈ R
M×N

is the corresponding Gaussian-shaped label (desired output).
The filter f ∈ R

M×N×C is trained by regressing the samples,
which is defined as follows,

argmin
f

1

2

∥
∥
∥
∥
∥

C
∑

c=1

xc ∗ fc − y

∥
∥
∥
∥
∥

2

F

+ α

C
∑

c=1

∥
∥fc

∥
∥2
F , (1)

where ∗ stands for the circular convolution operator, and α

is the regularization parameter to prevent overfitting.
In the standard DCF model, there are several problems

need to be further addressed. (i) It suffers from periodic rep-
etitions on boundary positions caused by circulant shifted

training sample. (ii) It does not tackle the problem of fil-
ter degradation, since the model is updated based on fixed
rate. (iii) There is no response mechanism to copy with the
aberrance, and the target will be easily lost when aberrance
occurs.

The proposedmodel STAR

To address the problems mentioned above, we propose a
novel spatio-temporal joint aberrance suppressed regulariza-
tion (STAR) correlation filter for robust visual tracking. The
tracking framework of the proposed STAR model is shown
in Fig. 1. The spatial regularizer, temporal regularizer and
aberrance suppressed regularizer are exploited to the stan-
dard DCF to tackle the boundary effect, filter degradation
and aberrance suppression, simultaneously.

We assume that the learning of the correlation filter f is
conducted for the t-th frame. The filter is learned by mini-
mizing the following objective function,

argmin
f

1

2

∥
∥
∥
∥
∥

C
∑

c=1

xc ∗ fc − y

∥
∥
∥
∥
∥

2

F

+ λ

2
Rs + μ

2
Rt + η

2
Ra, (2)

where
∥
∥
∥

∑C
c=1 x

c ∗ fc − y
∥
∥
∥

2

F
denotes the regression loss

parameterized by f . The Rs, Rt and Ra refer to the spatial,
temporal and aberrance suppressed regularizer, respectively.
The parameters λ,μ and η are the corresponding coefficients
to the regularizers.

Dynamic spatial regularizer

The constant spatial regularizer in the SOTA trackers (e.g.,
SRDCF [13], BACF [18] and STRCF [25]) does not fully
exploit the diversity information of the target. The filter
coefficients will be unreliable, leading to tracking failures,
when the target suffers from interferences, e.g., severe occlu-
sion, background clutter. To solve this problem, we design a
dynamic spatial regularizer based on the response variation
rate.

The response variation rate is defined as � = ∥
∥�1,�2,

. . . ,�MN
∥
∥, and the i-th element �i is defined as,

�i = Ri
t − (Rt−1[ψ�])i
(Rt−1[ψ�])i , (3)

where [ψ�] is the shift operator. It enables the peaks of
response Rt and Rt−1 to coincide with each other to elimi-
nate the motion influence [23]. Considering that the response
variation rate � reveals the confidence level of each pixel in
the search area, we introduce � into the spatial weight w,

w = δ log� + w̃, (4)
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Fig. 1 Tracking framework of
the proposed STAR model

Fig. 2 Visualization of the
dynamic variation of the spatial
regularization weight in the
process of tracking

where δ is a hyperparameter for adjusting the weight of �,
and w̃ is a matrix for initializing spatial regularization weight
w. The dynamic spatial regularizer of STARmodel is defined
as,

Rs =
C

∑

c=1

∥
∥wt � fct

∥
∥2
F , (5)

where � is the Hadamard product. The visualization of the
dynamic variation of the spatial regularization is shown in
Fig. 2. It shows that the dynamic spatial regularizer can
impose different penalties on the spatial position according
to the value of the response variation rate. Specifically, it
imposes a higher penalty on the larger part of the response
variation rate while a lower penalty on the smaller part. Thus,
it achieves more reliable filter coefficients at the detection
state.

Dynamic temporal regularizer

The existing temporal regularizer
∑C

c=1

∥
∥fct − fct−1

∥
∥2
F
is con-

structed using the previous filter ft−1 (e.g., STRCF [25],
LADCF [45] andAutoTrack [28]). The filter learned at frame
t is affected to a large extent by the filter ft−1. However, ft−1

may be corrupted by occlusion or background clutter; thus, it
will break the assumption that the filters between consecutive
frames should be coherent. To tackle this issue, we propose

to learn a dynamic temporal regularizer based onAPCEmea-
sure. The APCE measure is defined as,

APCE = |Rmax − Rmin|2
mean

[
∑

w,h

(

Rw,h − Rmin
)2

] , (6)

where Rmax, Rmin and Rw,h denote the maximum, minimum
and the wth row hth column elements of the response R,
respectively. The visualization of the value of APCE with its
corresponding threshold in a typical tracking sample is shown
in Fig. 3. At the stage of training, the filter may be corrupted
by occlusion, background clutter, etc., then, the responsemap
with interference is generated by the convolution of the cor-
rupted filter and the featuremap. As a consequence, the value
ofAPCEobtained byEq. (6)will drop significantly. This spe-
cialty of APCE can be adopted to judge whether the filter is
corrupted or not. Subsequently, the uncorrupted filter fs is
selected for temporal regularizer instead of ft−1, as follows,

fs =
{

ft−1 if APCEt > ζAPCEhm

ft−i otherwise

s.t., i =

⎧

⎪⎪⎨

⎪⎪⎩

i ∈ N

i > 1

argmin
i

(APCEt−i+1 > ζAPCEhm)

,

(7)
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Fig. 3 Visualization of the
variation of APCE value with its
corresponding threshold in a
typical tracking sample. When
the target encounters motion
blur (Frame 260), out-of-view
(Frame 400) or full occlusion
(Frame 506), the value of APCE
drops significantly, and it is
lower than the threshold
(ζAPCEhm)

where ft−1 and ft−i denote thefilter at the (t−1)-th and (t−i)-
th frame, respectively. ζ is hyperparameter, and APCEhm

stands for the historical mean value of APCE.
The uncorrupted filter fs is selected to construct the

dynamic temporal regularizer for the STAR model as fol-
lows,

Rt =
C

∑

c=1

∥
∥fct − fcs

∥
∥2
F . (8)

Comparedwith the existing temporal regularizationmeth-
ods [25,28,45], the STAR model takes the full advantage
of the video continuity natures by exploiting ‖ft − fs‖2F to
penalize the difference between the current filter ft and the
uncorrupted filter fs. Thus, the proposed STAR gains a more
robust appearance model, and alleviate the filter degradation
effectively.

Aberrance suppressed regularizer

The response map can reveal the confidence degree about the
tracking results to a large extent [39]. The aberrance caused
by background clutter occurs at the detection stage, and it
will result in an abrupt variation in response maps. The aber-
rance can be effectively repressed by restricting the response
variation. As a result, an aberrance suppressed regularizer is
introduced to handle the aberrance at the stage of training.
The aberrance suppressed regularizer is formulated as,

Ra = ‖Rt − Rt−1[ψ�]‖2F , (9)

where all the variables have been explained in the Eq. (3).

Optimization of STAR

After all the regularization defined, optimization of the
Eq. (2) is one of the key to solve the tracking. The Eq. (2) can

be minimized using ADMM [6] to achieve the optimal solu-
tion benefitting from its convexity. Specifically, we introduce
the auxiliary variable g = f and the step size parameter γ to
construct the following augmented Lagrange function,

L = 1
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∥
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∥
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∥
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F + η

2

∥
∥
∥
∥
∥

C
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xct ∗ fct − r

∥
∥
∥
∥
∥

2

F

+
C

∑

c=1

(

fct − gct
)T sct + γ

2

C
∑

c=1

∥
∥fct − gct

∥
∥
2
F , (10)

where r = Rt−1[ψ�], and s refers to the Lagrange multi-
plier. By introducing h = 1

γ
s, Eq. (10) can be reformulated

as,

L = 1

2
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2
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C
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∥
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2
F
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2

C
∑

c=1

∥
∥fct − fcs

∥
∥
2
F + η

2

∥
∥
∥
∥
∥

C
∑

c=1

xct ∗ fct − r

∥
∥
∥
∥
∥

2

F

+ γ

2

C
∑

c=1

∥
∥fct − gct + hct

∥
∥2
F .

(11)

Then, the following subproblems are alternately opti-
mized via ADMM formulation.
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⎧
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gi+1 = argmin
g

λ
2

∑C
c=1

∥
∥wt � gct

∥
∥2
F + γ

2

∑C
c=1

∥
∥fct − gct + hct

∥
∥2
F

hi+1 = hi + f i+1 − gi+1

.

(12)

Subproblem f: For the first subproblem of Eq. (12), it can
be transformed into the frequency domain using Parseval’s
formulation as,

f̂∗ = argmin
f̂

1

2

∥
∥
∥
∥
∥
∥

C
∑

c=1

x̂ct � f̂ct − ŷ

∥
∥
∥
∥
∥
∥

2

F

+ μ

2

C
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∥
∥̂fct − f̂cs

∥
∥2
F

+ η

2

∥
∥
∥
∥
∥
∥

C
∑

c=1

x̂ct � f̂ct − r̂

∥
∥
∥
∥
∥
∥

2

F

+ γ

2

C
∑

c=1

∥
∥̂fct − ĝct + ĥct

∥
∥2
F ,

(13)

where ˆ denotes the discrete Fourier transform (DFT). The
j-th element of the label ŷ relies on the j-th element of the
sample x̂t and the filter f̂t across all C channels. V (f) ∈
R
C is the vector consisting of the j-th element of f along

the channels. Equation (13) can be further decomposed into
M × N subproblems, where each subproblem is defined as,

V j (̂f
∗) = argmin

V j (̂f)

1

2

∥
∥
∥V j (̂xt )

TV j (̂ft ) − ŷ j
∥
∥
∥

2

F

+ μ

2

∥
∥V j (̂ft ) − V j (̂fs )

∥
∥2
F

+ η

2

∥
∥
∥V j (̂xt )

TV j (̂ft ) − r̂ j
∥
∥
∥

2

F
+ γ

2

∥
∥V j (̂ft )

−V j (̂gt ) + V j (̂ht )
∥
∥2
F ,

(14)

where superscript T on a complex vector or matrix indi-
cates conjugate transpose operation. Taking the derivative
of Eq. (14) as zero, the closed-form solution of V j (̂f∗) can
be denoted as,

V j (̂f∗) =
[

(1 + η)V j (̂xt )V j (̂xt )T + (μ + γ )
]−1

q, (15)

where the vector q = V j (̂xt )̂y j + ηV j (̂xt )̂r j + γV j (̂gt ) −
γV j (̂ht )+μV j (̂fs). Since V j (̂xt )V j (̂xt )T is a rank-1 matrix,
Eq. (15) can be further rewritten via the Sherman–Morrsion
formulation [32] as,

V j (̂f)∗ = 1

μ + γ

[

I − V j (̂x)V j (̂x)T
μ+γ
1+η

+ V j (̂x)TV j (̂x)

]

q. (16)

Note that Eq. (16) only contains vector multiply–add oper-
ation, thus it can be computed efficiently. f can be further
obtained by the IDFT of f̂ .

Subproblem g: For the second subproblem of Eq. (12), each
element of g can be computed independently as,

g∗ = γ (f + h)

λ (w � w) + γ I
. (17)

Lagrangian multiplier update: The Lagrange multiplier is
updated as,

hi+1 = hi + f∗(i+1) − g∗(i+1), (18)

where the subscript i represents the i-th iteration. f∗ and g∗
are the solution of subproblem f and g, respectively.

By solving the aforementioned subproblems iteratively,
the optimal filter f∗ of the t-th frame can be obtained and
then used for tracking at (t + 1)-th frame.

Target localization

The response mapRt at the t-th frame in Fourier domain can
be calculated as,

R̂t =
C

∑

c=1

x̂ct � f̂∗ct−1. (19)

After computing the IDFT on R̂ to obtain the response map
Rt , the location can be predicted based on the maximum
value of the response map. The overall tracking algorithm of
the STAR model is summarized in Algorithm 1.

Algorithm 1: Overall tracking algorithm of the STAR
model.
Input: Initial the target state (i.e., position p1 and scale s1) at the

first frame.
Output: Target state at frame t .
Initialize the hyperparameters in STAR.
for t = 1 : end do

Training
1. Extract multi-channel feature map xt .
2. Construct the spatial, temporal and aberrance suppressed
regularizer using Eq. (5), Eq. (8) and Eq. (9), respectively.
3. Optimize the filter model ft at the t-th frame via Eq. (16),
Eq. (17) and Eq. (18) for N iterations.
Detecting
1. Crop multi-scale search regions centered at pt with S
scales based on the bounding box at frame t .
2. Extract multi-channel feature map xt+1.
3. Compute response maps Rr , (r = 1, 2, . . . , S) using
Eq. (19).
4. Estimate the target bounding box with the center position
pt+1 and scale st+1, based on the maximum value of
response maps.

end
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Experimental results

Evaluationmetrics

Quantitative and qualitative experiments are conducted on
four tracking benchmarks, i.e., TC128 [29], OTB2013 [43],
OTB2015 [44] and UAV123 [33]. For these benchmarks,
success rate and precision are utilized under the rule of one
pass evaluation (OPE) [43,44]. The AREAUNDERCURVE
(AUC) in the success rate and the distance precision (DP) at
a threshold of 20 pixels in the precision are adopted as the
evaluation metrics to measure the tracking accuracy. Mean-
while, the speed is measured in frames per second (FPS). For
the sake of fair comparison, the compared trackers are based
on publicly available code or results reported in the original
paper.

Experimental setup

The experiments are conducted on a PC equipped with
i7-9700K CPU and NVIDIA GTX 1080Ti GPU using MAT-
LAB R2017a and MatConvNet toolbox.1 We combine the
output of Conv-3 layer from VGG-M network [36] with
HOG+CN features for target representation. The values of
spatial, temporal and aberrance suppressed regularizer are
set as λ = 1, μ = 10 and η = 0.1, respectively. The
step size parameter γ is initialized to 1 and updated by
γ i+1 = min

(

γmax, ργ i
)

, (where ρ = 10, γmax = 1000).
Other hyper-parameters are set to δ = 0.1 and ζ = 0.7, and
the ADMM iteration is set to N = 3. Tomake a fair compari-
son, the parameters of the STAR tracker are fixed throughout
the experiments.

Quantitative evaluation

Evaluation on TC128

The TC128 benchmark [29] contains 128 challenging color
sequences. We compare the proposed STAR tracker with
some SOTADCF-based trackers, e.g., MCCT [41], LADCF-
HC [45], MCCT-HC [41], STRCF [25], ECO-HC [14],
CFWCR [20], MCPF [46], UDT+ [42], ARCF [23], UDT
[42], AutoTrack [28], STRAPLE_CA [34], ARCF-H [23],
DR2Track [17], BACF [18], TB-BiCF [30], RSST [47] and
fDSST [15]. The success and precision plots of the eval-
uated trackers are depicted in Fig. 4 and the comparative
results of the evaluated trackers in accuracy and speed are
shown in Table 1. It shows that the STAR obtains the scores
of 0.582 and 0.780 in AUC and DP, which outperform all
the compared trackers. Specifically, compared with STRCF
[41] which only adopts spatio-temporal regularization, the

1 https://www.vlfeat.org/matconvnet/.

STAR increases theAUCandDPby 3.4 and 3.6%.Compared
withARCF [42]which only applies the aberrance suppressed
strategy, the STAR gains an increase of 6.3 and 7.7% in AUC
and DP. The performance improvement can be attributed to
the effect of the dynamic spatio-temporal and the aberrance
suppressed regularizer. In addition, the STAR runs at a speed
of 10.6 fps, which is competitive compared with other deep-
based trackers, i.e., RSST (1.5 fps), UDT+ (19.8 fps), MCPF
(0.5 fps), CFWCR (10.2 fps) and MCCT (2.7 fps).

Evaluation on OTB2013 and OTB2015

The OTB2013 and OTB2015 are two popular tracking
benchmarks, which consist of 50 and 100 video sequences,
respectively. We compare the proposed STAR with several
representative trackers, including ECO [14], DeepSTRCF
[25], STRCF [25], LADCF-HC [45], CFWCR [20], MCCT-
HC [41], BACF [18], ECO-HC [14], UDT [42], ARCF [23],
ARCF-H [23], UDT+ [42], AutoTrack [28], STAPLE_CA
[34], TB-BiCF [30], fDSST [15], RSST [47] and DR2Track
[17]. The overall comparison results on OTB2013 [43] and
OTB2015 [44] are presented in Fig. 5.

On theOTB2013benchmark, the proposedSTARarchives
the best AUC (0.688) and the second-best DP (0.892).
Compared with the feature selection-based tracker, i.e.,
LADCF-HC, the STAR improves theAUCandDPby 1.6 and
2.8%, respectively. Compared with UDT, which is trained in
an unsupervisedmanner, theSTAR improves by6.1 and6.6%
in AUC and DP, respectively.

On theOTB2015benchmark, the proposedSTARachieves
the score of 0.672 and 0.875 in AUC and DP, respectively.
Compared with the BACF tracker that uses the constant spa-
tial regularizer, the STAR improves theAUCby 5.7% and the
DP by 5.9%. This is mainly benefited from the dynamic spa-
tial regularizer, which can impose different penalties on the
spatial position based on the value of response variation rate,
and produces more reliable filter coefficients at the tracking
stage.

Evaluation on UAV123

Comparedwith the generic object tracking,UAV-based track-
ing is to locate a certain target from a low-altitude aerial
perspective, which poses new challenges, e.g., rapid changes
in scale and perspective, limited pixels in the target region,
and multiple similar disruptors [48]. The compared track-
ers include CFWCR [20], DeepSTRCF [25], UDT+ [42],
ECO-HC [14], LADCF-HC [45], STRCF [25], UDT [42],
AutoTrack [28], TB-BiCF [30], ARCF [23], RSST [47],
DR2Track [17], BACF [18], MCCT-H [41], ARCF-H [23],
STAPLE_CA [34] and fDSST [15]. The comparative results
are presented in Fig. 6. It shows that the STAR ranks first
and third place in AUC (0.516) and DP (0.723), respectively.
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Fig. 4 Success and precision plots of the evaluated trackers on TC128

Table 1 Comparative results of the evaluated trackers on TC128 in accuracy and speed

Trackers fDSST RSST TB-BiCF BACF DR2Track ARCF-H STAPLE_CA AutoTrack UDT ARCF

AUC 0.432 0.470 0.479 0.486 0.492 0.494 0.506 0.513 0.517 0.519

DP 0.571 0.643 0.651 0.642 0.667 0.668 0.679 0.700 0.687 0.703

FPS 130.0 1.5* 49.2 36.4 55.8 51.4 52.4 34.1 14.9 32.0

Trackers UDT+ MCPF CFWCR ECO-HC STRCF MCCT-H LADCF-HC MCCT Ours

AUC 0.541 0.542 0.542 0.547 0.548 0.551 0.556 0.572 0.582

DP 0.728 0.751 0.740 0.732 0.744 0.742 0.744 0.774 0.780

FPS 19.8* 0.50* 10.2* 60.5 20.6 43.2 21.6 2.7* 10.6*

Note that the number with * indicates the speed of running on the GPU

Compared with other DCF-based trackers, e.g., ECO-HC,
AutoTrack and DR2Track, STAR increases by 2.3, 4.0 and
5.7% in AUC, and 1.5, 3.3, and 6.1% in DP, respectively.
Compared with DeepSTRCF that adopts the spatio-temporal
regularization and multi-features (CNN+HOG+CN), STAR
increases theAUCandDPby0.8 and1.8%, respectively. This
can be attributed to the dynamic spatio-temporal regularizer,
which can effectively alleviate the boundary effect and filter
degradation, and provide a robust appearance model.

Attribute evaluation

To analyze the abilities of handling different challenges,
attribute-based evaluations are performed. There are 12
attributes on UAV123 benchmark, i.e., occlusion (POC), full
occlusion (FOC), fast motion (FM), illumination variation
(IV), aspect ratio change (ARC), similar object (SOB), scale
variation (SV), out-of-view (OV), background clutter (BC),
viewpoint change (VC), camera motion (CM) and low reso-
lution (LR). The success and precision plots of the evaluated

Table 2 Ablation studies of the critical components in STAR on
OTB2013

Trackers AUC DP FPS

Baseline 0.642 0.841 8.27

Baseline + DSR 0.670 0.873 6.82

Baseline + DTR 0.656 0.857 7.68

Baseline + AR 0.663 0.865 7.14

Baseline + DSR + DTR + AR 0.688 0.892 5.55

The best results are shown in bold

trackers under these challenging attributes are presented in
Figs. 7 and 8, respectively. It can be seen that the proposed
STAR achieves the best AUC on several attributes, including
POC (0.444), CM (0.511), ARC (0.454), VC (0.483), OV
(0.436) and FM (0.419). Meanwhile, the proposed tracker
achieves the best DP of 0.667, 0.626 and 0.654 in terms of
OC, OV and FM, respectively.
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Fig. 5 Success and precision plots of the evaluated trackers on OTB2013 and OTB2015

Fig. 6 Success and precision plots of the evaluated trackers on UAV123
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Fig. 7 Success plots of the evaluated trackers under different attributes on UAV123

Fig. 8 Precision plots of the evaluated trackers under different attributes on UAV123
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Fig. 9 Qualitative evaluations of the trackers on 6 image sequences fromOTB2015. (Note, from top to bottom is biker, bird2, box, football, human4
and soccer. The indices of the frames are shown in the top-left of sub-figures)

Ablation studies

Ablation studies on OTB2013 [43] are conducted to demon-
strate the effectiveness of the key components in the proposed
STAR tracker. The key components include the dynamic spa-
tial regularizer (DSR), dynamic temporal regularizer (DTR)
and aberrance suppressed regularizer (AR). We compare
the baseline with four variants, i.e., “Baseline” (the stan-
dard DCF tracker in “Revisit the standard DCF” which
adopts the same feature representation as in STAR), “Base-
line+DSR”, “Baseline+DTR”, “Baseline+AR” and “Base-
line+DSR+DTR+AR” (i.e., the final STAR tracker). The

ablation results are reported in Table 2. It shows that the base-
line tracker achieves the score of 0.642 and 0.841 inAUC and
DP. When the components of “DTR”, “AR” and “DSR” are
introduced into the “Baseline”, they can improve the tracking
performance gradually. Finally, the proposed STAR which
integrates all the key components surpasses the “Baseline”
by 4.6 and 5.1% in AUC and DP, respectively.

Qualitative evaluations

To intuitively exhibit the superiority of the STAR tracker, six
sets of screenshots of the tracking results from OTB2015,
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i.e., biker, bird2, box, football, human4 and soccer(from top
to bottom) are shown in Fig. 9. The target in these sequences
undergoes challenging attributes such as rotation, scale vari-
ation, occlusion, motion blur, and fast motion. The compared
trackers include AutoTrack [23], ARCF [23], CFWCR [20],
ECO [14], LADCF-HC [45], STRCF [25] andTB-BiCF [30].
It shows that the proposed STAR (in red box) achieves much
better tracking precision compared with other SOTA track-
ers. Specifically, in the “biker” sequence in which the target
suffers from fast motion and motion blur, most of the com-
pared trackers fail at frame 70. The attributes of “soccer”
sequences include occlusion and background cluster, caus-
ing most compared trackers to fail at frame 365. In contrast,
the proposed STAR achieves satisfying performance in these
sequences.

Conclusion

In this paper, we propose a novel spatio-temporal joint aber-
rance suppressed regularization (STAR) correlation filter for
robust visual tracking. The STAR tracker takes full advantage
of spatio-temporal information and employs aberrance sup-
pressed strategy. The dynamic spatio-temporal regularizer
can effectively alleviate boundary effect and filter degra-
dation, while the aberrance suppressed strategy reduces
the interference caused by background cluster. Besides, the
STAR tracker is efficiently optimized based on the ADMM
formulation. Comprehensive experiments on four tracking
benchmarks demonstrate the superiority of the proposed
method against the SOTA trackers.
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