
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2022) 8:2791–2808 
https://doi.org/10.1007/s40747-021-00510-x

ORIGINAL ARTICLE

A hybrid ant lion optimization chicken swarm optimization algorithm 
for charger placement problem

Sanchari Deb1 · Xiao‑Zhi Gao2

Received: 22 December 2020 / Accepted: 17 August 2021 / Published online: 6 September 2021 
© The Author(s) 2021

Abstract
Transportation electrification is known to be a viable alternative to deal with the alarming issues of global warming, air pol-
lution, and energy crisis. Public acceptance of Electric Vehicles (EVs) requires the availability of charging infrastructure. 
However, the optimal placement of chargers is indeed a complex problem with multiple design variables, objective functions, 
and constraints. Chargers must be placed with the EV drivers’ convenience and security of the power distribution network 
being taken into account. The solutions to such an emerging optimization problem are mostly based on metaheuristics. This 
work proposes a novel metaheuristic considering the hybridization of Chicken Swarm Optimization (CSO) with Ant Lion 
Optimization (ALO) for effectively and efficiently coping with the charger placement problem. The amalgamation of CSO 
with ALO can enhance the performance of ALO, thereby preventing it from getting stuck in the local optima. Our hybrid algo-
rithm has the strengths from both CSO and ALO, which is tested on the standard benchmark functions as well as the above 
charger placement problem. Simulation results demonstrate that it performs moderately better than the counterpart methods.

Keywords Swarm intelligence · Ant lion optimization · Chicken swarm optimization · Charger · Electric vehicle · 
Optimization · Metaheuristics

Abbreviations
ALO  Ant lion optimization
ACO  Ant colony optimization
BA  Bat algorithm
BSA  Binary lighting search algorithm
DE  Differential evolution
EV  Electric vehicle
CSO  Chicken swarm optimization
CMA-ES  Covariance matrix adaptation evolution 

strategy
GA  Genetic algorithm
PSO  Particle swarm optimization
NFL  No free lunch
RCCRO  Real coded chemical reaction optimization
SPC-PNX  Real parameter genetic algorithm
SAIFI  System average interruption frequency index
SAIDI  System average interruption duration index

TLBO  Teaching learning based optimization
V2G  Vehicle to grid

Introduction

Energy crisis, poor air quality index, and global warming 
have been some of the major concerns during the past dec-
ade. Replacement of the conventional mode of transport 
powered by fuel with Electric Vehicles (EVs) is a feasible 
alternate to handle these issues. Adoption of EVs needs 
the availability of charging facilities. Charging infrastruc-
ture needs to be placed according to the charging needs 
of drivers. Moreover, the addition of EV charger load can 
increase the load of the power grid. Unfortunately, place-
ment of chargers at the weak points of the power network 
and uncoordinated charging may lead to voltage instabil-
ity, spikes in load curve, degradation of reliability indices, 
power losses, and harmonics [1–9]. Thus, the placement of 
EV charger must consider both the convolution of trans-
port and distribution network [10]. The conventional algo-
rithms based on differentiation, such as steepest descent 
and Newton method, have their limitations in coping with 
the charger placement problem, due to the involvement of 
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multiple decision variables, non-linear objective functions, 
and constraints. In addition, the charger placement problem 
involves the non-linearity constraints associated with load 
flow. Most of the existing methods fail to effectively and 
efficiently handling these constraints. Indeed, metaheuris-
tics has been widely used in engineering optimization. Deb 
et al. (2019) presented a comprehensive review and com-
parison of how the metaheuristics performs in attacking the 
placement problem [11]. Aljanad et al. (2018) applied the 
improved Binary lighting Search Algorithm (BSA) for the 
same problem with the Vehicle to Grid (V2G) functionality 
[12]. Awasthi et al. (2017) formulated the charger placement 
problem under the multi-objective framework considering 

the cost as well as operating parameters of power grid as 
objective functions and utilized hybrid Genetic Algorithm 
(GA) and Particle Swarm Optimization (GA PSO) [13]. In 
[14–16], the authors proposed a novel algorithm based on 
the hybridization of Chicken Swarm Optimization (CSO) 
and Teaching Learning Based Optimization (TLBO). Zhang 
et al. (2019) developed a multi-objective PSO with the eco-
nomic factors and service abilities of the charging stations 
being taken into account [17]. Zeb et al. (2020) formulated 
the charger placement problem as a nonlinear stochas-
tic constrained optimization problem and used PSO as an 
appropriate solution [18]. Mohanty et al. (2021) used Jaya 
algorithm with the cost as the objective function [19]. Reddy 

Table 1  Variants of CSO algorithm

References Year Descriptions

[24] 2016 Modification of update mechanism of chicks and development of Markov model for conver-
gence analysis of CSO

[25] 2017 Development of opposition learning based CSO
[26] 2017 Introduction of mutation strategy in update of hens in CSO
[27] 2017 Development of chaotic CSO
[28] 2016 Hybridization of CSO with Bat Algorithm (BA)
[29] 2019 Modified update of rooster, cock, hens, and population update strategy in CSO
[30] 2020 Development of clustering algorithm based CSO
[31] 2020 Introduction of improved search strategy with Levy flight in the hen’s location update in CSO
[32] 2020 Hybridization of CSO with Tabu search
[33] 2020 Modified update of chicks by adding inertia weights in CSO
[34] 2020 Development of quantum inspired CSO
[35] 2020 Modified update of rooster and introduction of novel constraint handling mechanism in CSO

Fig. 1  Flowchart of CSO
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et al. (2020) presented a new PSO for the optimal place-
ment of charging stations in unbalanced radial distribution 
network with the power loss as the objective function [20]. 
Amini et al. (2017) proposed an optimal placement strategy 
for chargers in parking lots using GA [21]. From [11–21], 
it can be noticed that authors have used a large variety of 
metaheuristics for solving the charger placement problem, 
and more efficient metaheuristics are attracting growing 
research interest. This work focuses on developing a novel 
hybrid algorithm considering the amalgamation of CSO with 
ALO. CSO is a metaheuristic mimicking the food searching 
mechanism of chicken in a swarm [22, 23]. It has a good 
utilization rate of population, but sometimes gets stuck in 
local optima. Several variants of CSO, as given in Table 1, 
have been developed to overcome the inherent shortcomings. 
For example, in [24], the authors have modified the update 
mechanism of chicks as the chicks have lowest fitness and 
more prone to get stuck in local optima. Additionally, they 
have analyzed the convergence characteristics of the modi-
fied CSO by a Markov model-based approach. Similarly, 
in [25], Qu et al. proposed an improved version of CSO 
by introducing elite opposition-based learning to promote 
diversity in the population. In [26], Wang et al. introduced 
a mutation strategy in the update mechanism of hens. In 
[27], Ahmed et al. discussed a chaotic map based CSO to 
improve the exploration capacity of basic CSO. The chaotic 
CSO performed better than the basic CSO on feature selec-
tion problem. In [28], Liang et al. hybridized BA with CSO 
and observed that the hybrid algorithm outperformed the 
standalone algorithms on the standard benchmark problems. 
In [29], Fu et al. developed an improved version of CSO 
with modified update equation of rooster, cock, and hen, and 
utilized it for solving the trajectory optimization problem. 
Moreover, in the same work, the authors introduced a novel 
constraint handling mechanism driven by assigning adaptive 
penalties. In [30], Osamy et al. designed a modified version 
of CSO based on clustering and hybridization with GA in 
dealing with the wireless sensor network optimization prob-
lem. In [31], Liang et al. constructed an improved version of 
CSO by introduction of the improved search strategy with 
Levy flight in the hen’s location update in CSO, and used it 
for the path planning of robots. In [32], Niazy et al. hybrid-
ized Tabu search with CSO for the vehicle routing problem. 
In [33], an improved version of CSO was proposed with 
modified update equation of chicks by introducing inertia 
constants and used the improved CSO for handling the load 
scheduling problem. In [34], a quantum inspired CSO was 
discussed, which converged faster than the basic CSO. In 
[35], Deb et al. proposed a variation of CSO with a modified 

update equation of rooster and a novel constraint handling 
mechanism.

The optimization performance of the basic CSO can be 
further improved by the hybridization or modification of 
some of its algorithmic components. The prime motivation 
is the well known No Free Lunch (NFL) theorem [36], which 
states that any single algorithm cannot perform equally well 
on all the optimization problems. Thus, our work targets at 
enhancing the CSO by hybridizing it with ALO, which is a 
metaheuristic technique mimicking the hunting process of 
antlions [37–39]. Numerical simulations demonstrate that 
fine-tuning of the solutions obtained by ALO with CSO can 
significantly reduce the chances of getting stuck in local 
optima, thus leading to an enhanced convergence of the 
hybrid algorithm.

The rest of the paper is organized as follows. Section 2 
and Sect. 3 explain the working principles of the basic CSO 
and ALO, respectively. Section 4 elaborates the hybrid ALO 
CSO. Section 5 demonstrates the performances of this new 
algorithm on the standard benchmark functions. Section 6 
presents how ALO CSO performs on real-world complex 
problems. Section 7 discusses its applications in coping with 
the charger placement problem. Finally, Sect. 8 concludes 
our work with some remarks and conclusions.

CSO

CSO mimics the intelligence of swarm, and is developed 
by Meng et al. in 2014 [22]. It is inspired by the behaviors 
of chicken swarm, where the intelligence of chicken swarm 
is effectively utilized to obtain the optimal solution. The 
CSO imitates the hierarchal order in a chicken swarm and 
the food searching process of the swarm. More precisely, 
the population of chicken in the group is subdivided into 
dominant rooster, hens, and chicks, depending on the fitness 
values of the chickens. Those chickens with the highest fit-
ness value are assigned as roosters, chickens with the least 
fitness value are assigned as chicks, and the chickens with 
the intermediate fitness value are assigned as hens. Estab-
lishment of mother–child relationship in a random manner is 
another salient feature of this algorithm. After every G time 
steps, the hierarchal order and mother–child relationship are 
updated. In addition, CSO utilizes the natal behaviors of 
hens to follow their group mate rooster and chicks to follow 
their mother. As a matter of fact, chickens always try to steal 
the food found by others, which gives rise to a competition 
for food in the group.

The flowchart of CSO is shown in Fig. 1, and the pseudo 
codes are given in Algorithm 1.
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ALO

ALO is a novel metaheuristic algorithm mimicking the hunt-
ing process of antlions. It mathematically models the inter-
action of ants and antlions in nature, in which the random 
walk of ants, building traps, entrapment of ants in traps, 
catching preys, and re-building traps are all considered and 
implemented. The flowchart of ALO is shown in Fig. 2, and 
the pseudo codes are given in Algorithm 2.

Hybrid ALO CSO

As we know that standalone algorithms are sometimes not 
efficient enough to manipulate with the uncertainty of real-
world optimization problems. Hybridization of algorithms 
provides improved solutions to such emerging problems as 
economic load dispatch [47–49], unit commitment [50, 51], 
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hydrothermal scheduling [52, 53], and route planning [54]. 
Additionally, hybrid algorithms possess the merits of multi-
ple individual algorithms, and can avoid their shortcomings. 
Therefore, the hybridization of ALO and CSO is developed 
in our paper. It is expected that the grading mechanism of 
CSO when embedded in ALO will increase the utilization 
rate of population. The refinement of the solutions obtained 
by ALO with CSO can further reduce the chances of getting 
stuck in local optima, thus leading to a faster convergence. 
This hybridization scheme of ALO and CSO is shown in 
Fig. 3.

Performance of on standard benchmark functions

The performance of ALO CSO is first tested on several 
standard benchmark functions including unimodal, multi-
modal as well as composite functions, as given in Table 2. 
The algorithm-specific parameters are the same as in [14, 
39] (Table 3), and the general parameters are set as in [39]. 
Its performance is further compared with that of CSO, ALO, 
TLBO, CSO, and TLBO, as shown in Table 4. From Table 4, 
it is clear that ALO CSO is better than the standalone algo-
rithms, such as CSO, TLBO, and ALO, for all the bench-
mark functions. ALO CSO performs equivalently to CSO 
TLBO for f1 and f2, and better than CSO TLBO for the 
other benchmark functions. Furthermore, Friedman rank test 
is performed in the simulations, and the results are shown 

in Fig. 4. It can be discovered that ALO CSO has obtained 
the best rank. The convergence curves of these algorithms 
for benchmark function f1, f4, f7, f9 are shown in Figs. 5, 
6, 7 and 8, respectively. Particularly, in case of f1 and f4, 
the proposed hybrid algorithm converges faster than ALO, 
because the solutions obtained by ALO can be fine-tuned by 
CSO. Moreover, t test was conducted at a significance level 
of 0.005. For fair comparison all the algorithms are run 20 
times. The goal of performing t test is to compare the aver-
age values of the two data sets and determine if they came 
from the same population. Figures 9, 10, 11, 12, 13, 14, 15, 
16, 17, 18 show the t test results for the objective functions 
in Table 2, from which we find out that there are differences 
in the mean values of objective functions of all the pairs. In 
the aforementioned figures, the x axis represents the corre-
sponding algorithm and the y axis represents the t value. In 
addition, the positive t-value indicates that the mean value 
of the objective function of ALO CSO is much better than 
that of the other algorithms.

Start
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ants and ant lions 
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and ant lions 

Find the best ant lion and 
assume it as elite

t=1

t > tmax

Select an ant lion using 
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Fig. 2  Flowchart of ALO
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Performances of ALO CSO on real‑world 
optimization problems

In this section, ALO CSO is validated on complex optimi-
zation problems, such as economic load dispatch [44–46] 
and speed reducer design [22]. The economic load dispatch 
problem is attacked for 38 generator test system [44] by 
ALO CSO. The general parameter settings are the same as 
in [35]. The performance of ALO CSO algorithm in dealing 
with the economic load dispatch problem is compared with 
that of the other algorithms like RCCRO, CSO TLBO, and 
DE. The results of RCCRO, DE, CSO TLBO, and TLBO 
are taken from [35]. The mean fitness values over 50 inde-
pendent trials obtained by these algorithms are presented 
in Table 5, from which the superiority of ALO CSO over 

TLBO, RRCRO, CSO TLBO, and DE in this case study is 
clearly demonstrated.

The proposed algorithm is also used for handling the 
speed reduced design problem, and its performance is com-
pared with that of CSO, BFA, ABC, and CSO TLBO. The 
setting of general and algorithm-specific parameter are the 
same as in [22]. Table 6 illustrates the superior performance 
of ALO CSO as compared to the aforementioned benchmark 
algorithms in this problem. It should be noted that both the 
economic load dispatch and speed reducer design are high 
dimensional problems. From the results in Tables 5 and 6, 
it can be concluded that our ALO CSO performs compara-
tively well on these two demanding testbeds.

Table 2  Standard benchmark functions

Nature Function Range Dim fmin

Unimodal Sphere
f1(x) =

∑n

i=1
x2
i

− 100, 100 10 0

Schwefel 2.22
f2(x) =

∑n

i=1
��xi�� +

∏n

i=1
�xi�

− 10, 10 10 0

Rosenbrock
f3(x) =

∑n−1

i=1
[100(xi+1 + x2

i
)
2
+ (xi − 1)2

− 30, 30 10 0

Step
f4(x) =

∑n

i=1
(xi + 0.5)2

− 100, 100 10 0

Multimodal Schwefel
f5(x) =

∑n

i=1
−xisin(

√
�xi�)

− 500,  500 10 − 
418.9829 × Dim

Rastrigin
f6(x) =

∑n

i=1
(x2

i
− 10cos2�xi + 10)

− 5.12,  5.12 10 0

Ackley
f7(x) = −20 exp

�
0.2

�
1

n

∑n

i=1
x2
i

�
exp

�
1

n

∑n

i=1
cos2�xi

� − 32, 32 10 0

Griewank
f8(x) =

1

4000

∑n

i=1
x2
i
−
∏n

i=1
cos

�
xi√
i

�
+ 1

− 600, 600 10 0

Composite f9
f1,f2,….f9,f10 Sphere function
[O1,O2,….O9,O10] = [1;1;1;…;1]
[λ1, λ2,….. λ9, λ10] = [5/100, 5/100…..5/100]

− 5, 5 4 0

f10
f1,f2,….f9,f10 Griewank’s Function
[O1,O2,….O9,O10] = [1;1;1;…;1]
[λ1, λ2,….. λ9, λ10] = [ 5/100,5/100…..5/100]

− 5, 5 2 0

Table 3  Algorithm-specific 
parameter settings

Algorithm Parameter

ALO w = 2 when t > 0.1 T, w = 3 when t > 0.5 T, w = 4 when t > 0.75 T, w = 5 
when t > 0.9 T, and w = 6 when t > 0.95 T

t is current iteration, and T is maximum iteration
CSO RN = 0.2PN, HN = 0.5PN, CN = PN-RN-HN, MN = 0.3PN, G = 5
ALO CSO RN = 0.2PN, HN = 0.5PN, CN = PN-RN-HN, MN = 0.3PN, G = 5

w = 2 when t > 0.1 T, w = 3 when t > 0.5 T, w = 4 when t > 0.75 T, w = 5 
when t > 0.9 T, and w = 6 when t > 0.95 T

CSO TLBO RN = 0.3PN, HN = 0.4PN, CN = PN-RN-HN, MN = 0.3PN, G = 3, INV = 5
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Performance of ALO CSO on charger placement 
problem

The performance of the proposed ALO CSO is validated in 
attacking the complex optimal design problem of placing 
chargers. These chargers increase the net load demand of the 
power grid [1]. Thus, the charger placement must take into 
account in the security of the power grid and for convenience 
of the EV drivers. Several formulations of charger placement 
are reported in the existing literature [10]. In this work, the 
ALO CSO algorithm is validated on the single-objective 
formulation of the charger placement problem in [3] with 
the only objective function as the cost.

The position and size of charging stations are considered 
as the decision variables. Symbolically, the decision vari-
ables are given as follows.

• nb, Superimposed nodes of the road and distribution net-
work, where charging stations are placed

• Nfastnb , Number of fast charging stations placed at nb
• Nslownb , Number of slow charging stations placed at nb

The objective function under consideration is the mini-
mization of the cost. Mathematically, the objective function 
is represented as in (1)

where Ci is the investment cost, Co is the operating cost, 
Ct is the travel time cost, and Cp is the cost in terms of net 
penalty paid.

The mathematical representation of Ci , Co , Ct and Cp are 
given by (2) to (10).

where Cfast is the installation cost of fast charging station, 
Cslow is the installation cost of slow charging station, Pfast 
is the capacity of fast charging station, Pslow is the capacity 
of slow charging station, and Celectricity is the per unit cost of 
electricity.

(1)f = min(Ci + Co + Ct + Cp)

(2)Ci = Co = f (Nfastnb,Nslownb)

(3)Ci =
∑

Nfastnb × Cfast +
∑

Nslownb × Cslow

(4)
Co =

(∑
Nfastnb × Pfast +

∑
Nslownb × Pslow

)
× Celectricity

(5)Ct = f (nb)

(6)Ct = dCS × PCS
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where dCS is the distance between the charging station and 
the point of charging demand, and PCS is the cost incurred 
by EV for travelling per km.

(7)Cp = AENSp + VDp

(8)AENSp = CAENS × AENSCS

(9)VDp = VD × CVD

where AENSp is the penalty paid for AENS, VDp is the pen-
alty paid for voltage deviation, CAENS is the penalty for per 
unit of energy not served, AENSCS is the AENS after place-
ment of charging station, VD is the voltage deviation, CVD 
is the penalty paid for per unit of voltage deviation, Vbase is 
the base value of bus voltage, and VCS is the bus voltage after 
the placement of charging station.

(10)VD = ||Vbase − VCS
||

Fig. 4  Friedman ranks of the 
algorithms
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The charging station placement problem is always subject 
to a number of equality as well as inequality constraints. The 
constraints are given in (11) to (14).

(11)0 < Nfastnb ≤ nfastnb

(12)0 < Nslownb ≤ nslownb

The above formulation of the charger placement problem 
is examined on standard superimposed 33 bus distribution 
and 25 node road network. The algorithm-specific and gen-
eral parameter settings are the same as in [35] and given in 

(13)Lnetwork ≤ Lmax

(14)Smin ≤ Si ≤ Smax

Fig. 6  Convergence curve for f4

Fig. 7  Convergence curve for f7
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Table 3. The performance of ALO CSO is compared with 
that of the other benchmark algorithms, e.g., CSO, TLBO, 
CSO TLBO, PSO, DE, and GA. Table 7 demonstrates the 
mean fitness values obtained by these algorithms, where 
the superior performance of ALO CSO is clearly visible. 
Moreover, the convergence curves of all the algorithms for 
the charger placement problem are shown in Fig. 19.

The impact of charger placement on different operating 
parameters of power system, such as power loss, SAIFI, 
and SAIDI are shown in Figs. 20, 21, and 22, respectively. 
It is observed that the operating parameters are within the 
prescribed limit. Furthermore, the impact of G that is an 
algorithm-specific parameter on the performance of ALO 

Fig. 8  Convergence curve for f9

Fig. 9  T test result for f1
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Fig. 10  T test result for f2
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Fig. 11  f test result for f3
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Fig. 12  f test result for f4
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Fig. 13  f test result for f5
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Fig. 14  f test result for f6
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Fig. 15  f test result for f7
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Fig. 16  f test result for f8
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Fig. 17  f test result for f9
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Fig. 18  f test result for f10
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CSO is tested, and the analysis results are given in Table 8, 
in which this algorithm performs the best when G equals 10.

The average execution time of all the algorithms involved 
is given in Table 9. These algorithms are tested using MAT-
LAB 2016a software installed on a computer with the pro-
cessor of Intel i7 CPU. From Table 9, we can discover that 
the execution time of ALO CSO is longer than that of the 
standalone algorithms, due to execution of the two algo-
rithms used.

Conclusions

As we know that public acceptance of EVs needs the avail-
ability of charging infrastructure. This research work pro-
poses a novel ALO CSO algorithm for dealing with the 
optimal charger placement problem. The developed ALO 
CSO is validated on the standard benchmark functions and 
complex real-world problems. Simulation results show and 
verify its competitive performances compared to the stan-
dalone algorithms. Moreover, in the ALO CSO, the chance 
of getting stuck in the local optima is effectively avoided by 
fine-tuning the solutions obtained by ALO with CSO. The 
new algorithm is also examined with the charger placement 
problem, in which it can outperform both the standalone and 
other benchmark algorithms. The ALO CSO is well capable 
of allocating the chargers without compromising with the 
safety and security of the power system. Our future work 
will focus on the further enhancement of this new algorithm, 
such as,

• Development of an adaptive ALO CSO,
• Hybridization of CSO with other metaheuristics tech-

niques,
• Use it to cope with other practical problems, e.g., route 

planning, optimal load flow, and unit commitment.

Table 5  Statistical comparison of ALO CSO with other algorithms in 
handling economic load dispatch problem

Algorithm Mean fitness ($/hr)

TLBO 9,411,938.55723
RCCRO 9,412,404.277425
DE 9,417,237.290970
ICSOTLBO 9,411,938.54700
ALO CSO 9,411,927.24700
GA PSO 9,411,938.2687
ACO PSO 9,411,927.3467

Table 6  Statistical comparison 
of ALO CSO with other 
algorithms in handling speed 
reducer design problem

Algorithm Mean Fitness

CSO 2997.764
BFA 3014.759
ABC 2997.05841
CSO TLBO 2997.0391
ALO CSO 2996.605
GA PSO 2997.0365
ACO PSO 2996.605

Table 7  Statistical comparison 
of ALO CSO with other 
algorithms in handling charger 
placement problem

Algorithm Mean fitness

ALO CSO 1.4968
CSO TLBO 1.5241
CSO 1.5430
TLBO 1.5413
PSO 1.5413
DE 1.5497
GA 1.5584
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Fig. 19  Convergence curve for 
charger placement problem

Fig. 20  Impact of charger place-
ment on power loss in p.u
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Fig. 21  Impact of charger place-
ment on SAIFI
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Fig. 22  Impact of charger place-
ment on SAIDI
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Table 8  Impact of G on the 
performance of ALO CSO

G Mean fitness

5 1.5016
10 1.4968
15 1.5413

Table 9  Comparison of 
computational time of ALO 
CSO with other algorithms in 
handling charger placement 
problem

Algorithm Average 
execution 
time (s)

ALO CSO 17.5
ALO 10.6
CSO 7.87
TLBO 25.56
CSO TLBO 18.63
DE 10.99
PSO 13.8
GA 30.9
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