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Abstract
As an enhanced version of probabilistic hesitant fuzzy sets and dual hesitant fuzzy sets, probabilistic dual hesitant fuzzy sets
(PDHFSs) combine probabilistic information with the membership degree and non-membership degree, which can describe
decisionmaking informationmore reasonably and comprehensively. Based on PDHFSs, this paper investigates the approach to
group decision making (GDM) based on incomplete probabilistic dual hesitant fuzzy preference relations (PDHFPRs). First,
the definitions of order consistency and multiplicative consistency of PDHFPRs are given. Then, for the problem that decision
makers (DMs) cannot provide the reasonable associated probabilities of probabilistic dual hesitant fuzzy elements (PDHFEs),
the calculation method of the associated probability is given by using an optimal programming model. Furthermore, the
consistency level for PDHFPRs is tested according to the weighted consistency index defined by the risk attitude of DMs. In
addition, a convergent iterative algorithm is proposed to enhance the unacceptable consistent PDHFPRs’ consistency level.
Finally, a GDM approach with incomplete PDHFPRs is established to obtain the ranking of the alternatives. The availability
and rationality of the proposed decision making approach are demonstrated by analyzing the impact factors of haze weather.
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Introduction

Group decision making (GDM) determines the most ideal
alternative according to evaluation information expressed by
a group of decision makers (DMs) [1]. Due to the advan-
tages of overcoming the limitations of empirical knowledge
and the cognitive abilities of individual DMs, it has been
widely used [2]. The uncertainty and fuzziness of the deci-
sion making environment make more suitable for DMs to
express evaluation information with fuzzy information than
with clear numbers. Fuzzy sets (FSs) [3] have become useful
tools for expressing uncertainty information in GDM prob-
lems [4–6], and they have been applied in semiconductor
inter-bay handling systems [7], green supply chain manage-
ment [8,9], disease diagnosis [10–12], and many other fields
[13,14]. Thus far, different extensions of FSs have been pro-
posed. Zhu et al. proposed dual hesitant FSs (DHFSs) in
[15]. Using DHFSs, DMs can provide hesitant evaluation
information from the perspective of membership degrees
(MDs) and non-membership degrees (NMDs). Zhu estab-
lished probabilistic hesitant FSs (PHFSs) in [16], where
different MDs in PHFSs have different occurrence possibil-
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ities. However, the occurrence possibilities of membership
and non-membership values are not considered in DHFSs,
and NMDs and their corresponding importance are not con-
sidered in PHFSs. Therefore, DHFSs and PHFSs cannot fully
express the evaluation information.Hao et al. [17] established
probabilistic DHFSs (PDHFSs), which can comprehensively
consider MDs, NMDs and their occurrence possibilities.

However, in GDM problems, it may be more intuitive for
DMs to provide evaluation information by using preference
relation (PR). PR is a judgmentmatrix obtainedbycomparing
the paired alternatives. With the development of FS theory,
fuzzy PR [18] has developed into other extended forms, e.g.,
probabilistic hesitant fuzzy PR [19], intuitionistic fuzzy PR
(IFPR) [20], and hesitant fuzzy PR [21]. Based on PDHFSs,
probabilistic dual hesitant fuzzy PRs (PDHFPRs) is a valu-
able extension of fuzzy PR. In GDM problem, some DMs
think that the possible values of xi prior to x j are 0.4 and
0.5, while the possible values of xi inferior to x j are 0.2 and
0.3, and the importance of these values is different. However,
due to time constraints and limited knowledge of DMs, the
importance of these degrees is sometimes difficult to obtain.
Therefore, there is an urgent need to study probability calcu-
lation method of incomplete PDHFPRs.

The purpose of GDM is to choose the most ideal deci-
sion from a group of alternatives. One of the most common
methods is to build a model based on the consistency of
PRs. Moreover, the consistency of PR is used to measure
the degree of agreement among the preference values pro-
vided by the individual DMs. The lack of consistency of PR
may lead to unreasonable results. To date, the research on
the consistency of PR has been fruitful [21–35]. However,
only Shao and Zhang [37] have focused on the consistency
of PDHFPRs. In addition, Shao and Zhang’s method [37]
has certain limitations, which is manifested in that the con-
sistency index does not consider the risk attitude of DMs, and
the weight of DMs is given subjectively. Thus, it is urgent
to study the consensus of PDHFPRs and use it to solve the
GDM problem.

The above analysis motivate us to further study some
issues related to PDHFPRs, such as how to obtain the proba-
bility information of incomplete PDHFPRs, how to measure
the consistency level of PDHFPRs, and how to use consis-
tency to solve the GDM problem with PDHFPRs.

The rest of the sections are listed as follows: In “Related
work”, the related work is briefly reviewed. In “Preliminar-
ies”, some basic concepts are briefly reviewed. “Probability
calculation method based on the multiplicative consistency
of PDHFPRs” defines multiplicative consistency of PDHF-
PRs and proposes a probability calculation method based
on the multiplicative consistency of PDHFPRs. In “A GDM
approach with incomplete PDHFPRs”, a convergent algo-
rithm to adjust the consistency level for individual PDHFPRs
is built, and a GDM approach with incomplete PDHFPRs is

constructed. In “Illustrative example”, the proposed approach
is used to analyze the impact factors of haze weather. “Con-
clusion and future work” provides some conclusions.

Related work

In this section, we introduce the GDM method based on PR
and review the existing research on probabilistic dual hesitant
fuzzy environment that are most related to our work.

As an effective technique in decision making field, GDM
based on various types of PR is widely concerned, which are
summarized in Table 1. From Table 1, to date, it is rare to
discuss the consistency of PDHFPRs [37].

Furthermore, probabilistic dual hesitant fuzzy environ-
ment has been widely used in GDM, which are listed in
Table 2. Table 2 shows that most of the existing researches
concentrated on GDM based on PDHFSs, and only Shao and
Zhang [37] discussed GDM based on PDHFPRs.

Based on the above discussion, it is meaningful to study
GDM problems based on PDHFPRs. The main contributions
of this paper are summarized as follows:

1. An optimization model based on multiplicative consis-
tency is established to obtain the reasonable associated
probabilities of PDHFEs.

2. For an unacceptable consistent PDHFPR, based on a
linear optimization model, a convergent algorithm is
investigated to improve the consistency level.

3. A GDM approach with incomplete PDHFPRs is con-
structed, and the effectiveness and applicability of the
proposed decision making approach are verified by ana-
lyzing the impact factors of haze weather.

Preliminaries

This section reviews some basic concepts of DHFS, PHFS,
PDHFS, and PDHFPRs:

Definition 1 [15] A DHFS F on a set of alternatives X is
defined by

F = {〈x, hF (x),mF (x)〉|x ∈ X} (1)

hF (x) indicates the possible degrees to the set X of x ,mF (x)
indicates the possible NMDs to the set X of x . In addition,

0 ≤ αi , β j ≤ 0, 0 ≤ α+ + β+ ≤ 1, (2)

for i = 1, 2, . . . , #hF (x), j = 1, 2, . . . , #mF (x), where
αi ∈ hF (x), hF (x) = (α1, α2, . . . , α#hF (x)), α+ =
⋃

αi∈hF (x) max{αi }, β j ∈ mF (x), mF (x) = (β1, β2,
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Table 1 Related work on the
consistency of different PRs

Types of PRs References

Hesitant fuzzy PRs Liao et al. [21], Song et al. [32]

Linguistic PRs Jin et al. [23], Tang et al. [34]

IFPRs Wu et al. [26], Jin et al. [27], Chen and Xu [30]

Intuitionistic linguistic PRs Meng et al. [25]

Intuitionistic multiplicative PRs Zhang [31]

2-tuple linguistic PRs Wu et al. [28]

Probabilistic hesitant fuzzy PRs Li and Wang [24], Jin et al. [29], Zhou et al. [33]

Probabilistic linguistic PRs Liang et al. [22], Gao et al. [35]

Dual hesitant fuzzy PRs Zhao et al. [43]

PDHFPRs Shao and Zhang [37]

Table 2 GDM method in a probabilistic dual hesitant fuzzy environment

Probabilistic dual hesitant fuzzy environment Methods References

PDHFSs Aggregation operators Hao et al. [17]

PDHFSs Combination of AHP and VIKOR method Ren et al. [36]

PDHFPRs Multiobjective programming approaches Shao and Zhang [37]

PDHFSs Bipartite graph theory Garg and Kaur [38]

PDHFSs Bivariate almost stochastic dominance-based PROMETHEE-II method Zhao et al. [39]

PDHFSs The correlation coefficients Garg and Kaur [40]

PDHFSs Maclaurin aggregation operators Garg and Kaur [41]

PDHFSs Distance measures and aggregation operators Garg and Kaur [42]

. . . , β#mF (x)), and β+ = ⋃
βi∈mF (x) max{β j }. #hF (x),

#mF (x) are the cardinal numbers of hF (x) and mF (x),
respectively.

Definition 2 [16] A PHFS H on a set of alternatives X is
defined by

H = {〈x, hx (px )〉|x ∈ X} (3)

where hx ∈ [0, 1] indicates the possible values to the set
X of x , px ∈ [0, 1] is the associated probabilities of hx .
In addition, hx (px ) is called a probabilistic hesitant fuzzy
element and simplified to be expressed by

hx (px ) = γi (pi )|i = 1, 2, . . . , #hx , (4)

where γi ∈ hx , pi ∈ px is the associated probability of γi
and

∑#hx
i=1 pi = 1. #hx is the cardinal number of hx (px ).

Definition 3 [17] A PDHFS B on a set of alternatives X is
defined by

B = {〈x, h(x)|p(x),m(x)|q(x)〉|x ∈ X} (5)

h(x)|p(x) and m(x)|q(x) denote some possible elements,
where h(x) indicates the possible degrees to the set X of x ,
p(x) is the associated probabilities of h(x), m(x) indicates

the possible NMDs to the set X of x , and q(x) denotes the
associated probabilities of m(x). In addition,

0 ≤ ε, δ ≤ 1, 0 ≤ ε+ + δ+ ≤ 1 (6)

0 ≤ pi ≤ 1, 0 ≤ qi ≤ 1,
#h∑

i=1

pi = 1 and
#m∑

i=1

qi = 1, (7)

where ε ∈ h(x), ε+ ∈ h+(x) = ⋃
ε∈h(x) max{ε}, δ ∈ m(x),

δ+ ∈ m+(x) = ⋃
δ∈m(x) max{δ}, pi ∈ p(x) and qi ∈ q(x).

#h and #m are the cardinal numbers of h(x)|p(x) and
m(x)|q(x), respectively.

Remark 1 Hao et al. [17] define b = (h(x)|p(x),m(x)|q(x))
as a PDHFE. For convenience, b = (h(x)|p(x),m(x)|q(x))
is simplified to b = (h|p,m|q).

Remark 2 Particularly, if p = q , then a PDHFS is simplified
to a DHFS. Similarly, if h �= φ, m = φ(q = φ), then a
PDHFS reduces to a PHFS.

Definition 4 [37] A PDHFPR D on a set of alternatives
X = {x1, x2, . . . , xn} is characterized by D = (di j )n×n ,
where di j = (hi j |pi j ,mi j |qi j ) is a PDHFE. hi j and mi j

are the possible degrees to which xi is preferred and non-
preferred to x j , pi j is the associated probabilities of hi j , and
qi j is the associated probabilities of mi j , di j should satisfy
the following requirements:
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1. For i = 1, 2, . . . , n, di j = ({0.5|1}, {0.5|1}).
2. For i �= j , i, j = 1, 2, . . . , n,

(a) If hi j �= φ, mi j �= φ, then

{
hi j,r = m ji,r ,mi j,e = h ji,e,

pi j,r = q ji,r , qi j,e = p ji,e,
(8)

for all r = 1, 2, . . . , #hi j−1, e = 1, 2, . . . , #mi j−1,
where hi j,r ∈ hi j indicates the r th element in
hi j , pi j,r is the associated probability of hi j,r and
∑#hi j

r=1 pi j,r = 1, mi j,e ∈ mi j indicates the eth ele-
ment in mi j , qi j,e is the associated probability of

mi j,e and
∑#mi j

e=1 qi j,e = 1, hi j,r < hi j,r+1 and
mi j,e < mi j,e+1.

(b) If hi j �= Ø(pi j �= Ø), mi j = Ø(qi j = Ø), then

hi j,r + h ji,(#hi j−r+1) = 1,

pi j,r = p ji,(#hi j−r+1), #hi j = #h ji , (9)

for all r = 1, 2, . . . , #hi j − 1,, where hi j,r ∈ hi j
indicates the r th element in hi j , pi j,r is the associated

probability of hi j,r and
∑#hi j

r=1 pi j,r = 1, and hi j,r <

hi j,r+1.
(c) If hi j = Ø(pi j = Ø, mi j �= Ø(qi j �= Ø), then

mi j,e + m ji,(#gi j−e+1)

= 1, qi j,e = q ji,(#gi j−e+1), #mi j = #m ji , (10)

for all e = 1, 2, . . . , #mi j − 1, where mi j,e ∈ mi j

indicates the eth element inmi j , qi j,e is the associated

probability ofmi j,e and
∑#mi j

e=1 qi j,e = 1, andmi j,e <

mi j,e+1.

Example 1 Thedecision informationof alternatives {x1, x2, x3}
is provided by the DM as follows:

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

({0.5|1}, {0.5|1}) ({0.5|p12,1, 0.6|p12,2},
{0.2|q12,1, 0.4|q12,2})

({0.4|p13,1, 0.6|p13,2},
{0.2|q13,1, 0.3|q13,2})

({0.2|q12,1, 0.4|q12,2},
{0.5|p12,1, 0.6|p12,2}) ({0.5|1}, {0.5|1}) ({0.5|p23,1, 0.7|p23,2},

{0.1|q23,1, 0.3|q23,2})
({0.2|q13,1, 0.3|q13,2},
{0.4|p13,1, 0.6|p13,2})

({0.1|q23,1, 0.3|q23,2},
{0.5|p23,1, 0.7|p23,2}) ({0.5|1}, {0.5|1})

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

For i �= j and i, j = 1, 2, 3, there are 0 ≤ pi j,r , qi j,r ≤ 1,
∑2

r=1 pi j,r = 1 and
∑2

r=1 qi j,r = 1.
From Definition 4, D is a PDHFPR.

Probability calculationmethod based on the
multiplicative consistency of PDHFPRs

The limited knowledge of DMs makes it hard for DMs to
provide accurate associated probabilities of PDHFEs through
subjective evaluation. This section proposes probability cal-
culation method based on the multiplicative consistency of
PDHFPRs.

Multiplicative consistency of PDHFPRs

Definition 5 [20] An IFPR on the set X = {x1, x2, . . . , xn}
is defined by A = (ai j )n×n , where ai j = 〈ui j , vi j 〉 is an
intuitionistic fuzzy value (IFV), ui j indicates the degree that
xi is prior to x j , vi j indicates the degree that xi is not prior
to x j and for i, j = 1, 2, . . . , n,

0 ≤ ui j + vi j ≤ 1, ui j = v j i , vi j = u ji , uii = vi i = 0.5.

(11)

Definition 6 [20] Let ai j = 〈ui j , vi j 〉 be an IFV. The score
function of the IFV is defined by

�(ai j ) = ui j − vi j . (12)

Definition 7 [27] An IFPR on the set X = {x1, x2, . . . , xn}
is defined by A = (ai j )n×n , if there is a normalized intu-
itionistic fuzzy weight vector φ = (φ1, φ2, . . . , φn)

T such
that

ai j = 〈ui j , vi j 〉 =
{ 〈0.5, 0.5〉, i = j

〈√φiμ · φ jν,
√

φiν · φ jμ〉, i �= j
(13)

then, A is a multiplicatively consistent IFPR, where φi =
〈φiμ, φiν〉, φiμ, φiν ∈ (0, 1], φiμ + φiν ≤ 1,

∑
j �=i φ jμ ≤

φiν , and
∑

j �=i φ jν ≤ φiμ + n − 2, i, j = 1, 2, . . . , n.

The following introduces the order consistency andmulti-
plicative consistency of PDHFPRs. For complete PDHFPRs,
order consistency provides a quick and effective way to
obtain the order of alternatives.

Definition 8 A PDHFPR D = (di j )n×n on the set X =
{x1, x2, . . . , xn} is an order consistent PDHFPR, if ds j ≥ dt j
for all j = 1, 2, . . . , n, where s, t = 1, 2, . . . , n.
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Definition 9 A PDHFPR on the set X = {x1, x2, . . . , xn} is
representedbyD = (di j )n×n,wheredi j = (hi j |pi j ,mi j |qi j ).
Udi j and Vdi j are denoted by

Udi j =
#hi j∑

r=1

hi j,r · pi j,r , Vdi j =
#mi j∑

e=1

mi j,e · qi j,e, (14)

where hi j,r ∈ hi j indicates the rth element in hi j , pi j,r is the

associated probability of hi j,r and
∑#hi j

r=1 pi j,r = 1, mi j,e ∈
mi j indicates the eth element in mi j , qi j,e is the associated

probability of mi j,e and
∑#mi j

e=1 qi j,e = 1.

Based on Definition 4, for ∀i, j = 1, 2, . . . , n, then
#hi j = #m ji , #mi j = #h ji and Udii = Vdii = 0.5. Fur-
thermore,

Udi j =
#hi j∑

r=1

hi j,r · pi j,r =
#m ji∑

e=1

m ji,r · q ji,r = Vdji ,

Vdji =
#mi j∑

e=1

mi j,e · qi j,e =
#h ji∑

e=1

h ji,e · p ji,e = Udji

Since hi j,r ,mi j,e, pi j,e, qi j,e ∈ [0, 1], then

0 ≤ Udi j =
#hi j∑

r=1

hi j,r · pi j,r ≤ 1, 0 ≤ Vdi j

=
#mi j∑

e=1

hi j,e · pi j,e ≤ 1.

Udi j + Vdi j =
#hi j∑

r=1

hi j,r · pi j,r +
#mi j∑

e=1

hi j,e · pi j,e

≤ max
hi j,r∈hi j

{hi j,r } ·
#hi j∑

r=1

pi j,r

+ max
mi j,e∈mi j

{mi j,e} ·
#mi j∑

e=1

qi j,e ≤ 1.

Thus, ED = 〈Udi j , Vdi j 〉 is an IFPR.
Definition 10 A PDHFPR on the set X = {x1, x2, . . . , xn} is
denoted as D = (di j )n×n,where di j = (hi j |pi j ,mi j |qi j ). If
a normalized weight vector W = (w1, w2, . . . , wn)

T exists
such that

〈Udi j Vdi j 〉 =
〈	hi j∑

r=1

hi j,r · pi j,r
	mi j∑

e=1

hi j,e · pi j,e
〉

=
{ 〈0.5, 0.5〉, i = j,

〈√wiμ · w jν,
√

wiν · w jμ〉, i �= j,
(15)

then PDHFPR D is multiplicative consistent, where wi =
〈wiμ,wiν〉 satisfies wiμ,wiν ∈ (0, 1], wiμ + wiν ≤ 1,
∑

j �=i w jμ ≤ wiν , and
∑

j �=i w jν ≤ wiμ + n − 2, i, j =
1, 2, . . . , n.

Probability calculationmethod

Due to the complexity and uncertainty of the decision
problem, the DMs cannot provide the accurate associated
probabilities of PDHFEs, and it is challenging to give PDHF-
PRswithmultiplicative consistency.At this time, the decision
making result is not rational. When a PDHFPR does not sat-
isfymultiplicative consistency, Eq. (15) does not hold, which
implies that

#hi j∑

r=1

hi j,r · pi j,r �= √
wiμ · w jν or

#mi j∑

e=1

mi j,r · qi j,e �= √
wiν · w jμ (16)

The non-negative deviation variables τi j and ρi j are defined
as follows:

τi j =
∣
∣
∣
∣
∣
∣

#hi j∑

r=1

hi j,r · pi j,r − √
wiμ · w jν

∣
∣
∣
∣
∣
∣

ρi j =
∣
∣
∣
∣
∣
∣

#mi j∑

e=1

mi j,e · qi j,e − √
wiν · w jμ

∣
∣
∣
∣
∣
∣

The smaller the value of the non-negative deviation vari-
ables τi j and ρi j , the higher the level of multiplicative
consistency of PDHFPR D.

From
∑#hi j

r=1 hi j,r · pi j,r = ∑#m ji
r=1 m ji,r · q ji,r and

∑#mi j
e=1 mi j,e · qi j,r = ∑#h ji

e=1 h ji,e · p ji,e, we can obtain

τi j = |∑#hi j
r=1 hi j,r · pi j,r − √

wiμ · w jν | = | ∑#mi j
e=1 m ji,e ·

q ji,e − √
wiν · w jμ| = ρ j i and τi j = ρ j i Thus, we only

need to consider the upper triangular elements of PDHFPR
and can simplify the optimization model as follows:

(M-1)

min J =
n−1∑

i=1

n∑

j=i+1

(τi j + ρi j )

=
n−1∑

i=1

n∑

j=i+1

⎛

⎝

∣
∣
∣
∣
∣
∣

#hi j∑

r=1

hi j,r · pi j,r − √
wiμ · w jν

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

#mi j∑

e=1

mi j,e · qi j,e − √
wiν · w jμ

∣
∣
∣
∣
∣
∣

⎞

⎠
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s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi j,r , qi j,e ∈ [0, 1],
#hi j∑

r=1

pi j,r = 1,

#mi j∑

m=1

qi j,e = 1

wiμ,w jν ∈ (0, 1],
n∑

j=1, j �=i

w jμ ≤ wiν,

wiμ + w jν ≤ 1,
n∑

j=1, j �=i

w jν ≤ wiμ + n − 2

r = 1, 2, . . . , #hi j , e = 1, 2, . . . , #mi j

(17)

Then, there exist four non-negative deviation variables
o−
i j , o

+
i j , ς

−
i j , ς

+
i j satisfying the following conditionso

−
i j ·o+

i j =
0 and ς−

i j · ς+
i j = 0 such that model (M-1) can be expressed

as follows:
(M-2)

min J =
n−1∑

i=1

n∑

j=i+1

(g−
i j · o−

i j + g+
i j · o+

i j + n+
i j · ς+

i j + n−
i j · ς−

i j )

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

#hi j∑

r=1

hi j,r · pi j,r + g−
i j · o−

i j − g+
i j · o+

i j = √
wiμ · w jν

#mi j∑

e=1

mi j,e · qi j,e + n−
i j · ς−

i j − n+
i j · ς+

i j = √
wiν · w jμ

o−
i j , o

+
i j , ς

−
i j , ς

+
i j ≥ 0, o−

i j · o+
i j = 0, ς−

i j · ς+
i j = 0

pi j,r , qi j,e ∈ [0, 1],
#hi j∑

r=1

pi j,r = 1,

#mi j∑

e=1

qi j,e = 1

wiμ,w jν ∈ (0, 1],
n∑

j=1, j �=i

w jμ ≤ wiν,

wiμ + w jν ≤ 1,
n∑

j=1, j �=i

w jν ≤ wiμ + n − 2

i < j, i, j = 1, 2, . . . , n, r = 1, 2, . . . ,

#hi j , j = 1, 2, . . . , #mi j

(18)

Here, g−
i j , g

+
i j , n

−
i j and n+

i j are the weights of non-negative
deviation variables. In this paper, the weights of these devia-
tion variables were chosen to be equal, namely, g−

i j = g+
i j =

n−
i j = n+

i j = 1. Furthermore, a simplifiedmodel is as follows:
(M-3)

min J =
n−1∑

i=1

n∑

j=i+1

(o−
i j + o+

i j + ς+
i j + ς−

i j )

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

#hi j∑

r=1

hi j,r · pi j,r − o+
i j + o−

i j = √
wiμ · w jν ,

#mi j∑

e=1

mi j,e · qi j,e − ς+
i j + ς−

i j = √
wiν · w jμ

o−
i j , o

+
i j , ς

−
i j , ς

+
i j ≥ 0, o−

i j · o+
i j = 0, ς−

i j · ς+
i j = 0

pi j,r , qi j,e ∈ [0, 1],
#hi j∑

r=1

pi j,r = 1,

#mi j∑

m=1

qi j,e = 1

wiμ,w jν ∈ (0, 1],
n∑

j=1, j �=i

w jμ ≤ wiν ,

wiμ + w jν ≤ 1,
n∑

j=1, j �=i

w jν ≤ wiμ + n − 2

i < j, i, j = 1, 2, . . . , n, r = 1, 2, . . . , #hi j , e = 1, 2, . . . , #mi j

(19)

From the above discussion, solving model (M-3) can obtain
the accurate associated probabilities pi j,r and qi j,e(i, j =
1, 2, . . . , n, r = 1, 2, . . . , #hi j , e = 1, 2, . . . , #mi j ) of the

PDHFE; the optimal variables õ+
i j , õ

−
i j , ς̃

+
i j , ς̃

−
i j and the opti-

mal normalized weight vector w∗.
If J̃ = 0, since õ+

i j , õ
−
i j , ς̃

+
i j , ς̃

−
i j ≥ 0 and using the con-

straints of model (M-3), we can get

#hi j∑

r=1

hi j,r · pi j,r =
√

w̃iμ · w̃ jν,

#mi j∑

e=1

mi j,e · qi j,e =
√

w̃iν · w̃ jμ (20)

Thus, D = (di j )n×n is a multiplicative consistent
PDHFPR.

The rationality of the proposedmethod is provenbyExam-
ple 1. First, based on model (M-3), the corresponding model
can be obtained. Using the MATLAB Optimization Toolbox
to solve the corresponding model, the following expression
is obtained:

p12,1 = 0.4778, p12,2 = 0.5222, p13,1 = 0,

p13,2 = 1, p23,1 = 0.5846,

p23,2 = 0.4254, q12,1 = 0.0909,

q12,2 = 0.9091, q13,1 = 0.8322,

q13,2 = 0.1678, q23,1 = 0.1708,

q23,2 = 0.8292, o−
12 = o+

12 = ς−
12 = ς+

12 =
o−
13 = o+

13 = ς−
13 = ς+

13 = o+
23 = ς−

23 = 0,

o−
23 = 0.0714, ς+

23 = 0.0015,

w̃1 = 〈0.4565, 0.4391〉, w̃2 = 〈0.3320, 0.6680〉,
w̃3 = 〈0.1070, 0.7886〉.

Therefore, the complete PDHFPR D in Example 1 is as fol-
lows:
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D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

({0.5|1}, {0.5|1}) ({0.5|0.4778, 0.6|0.5222},
{0.2|0.0909, 0.4|0.9091})

({0.6|1},
{0.2|0.8322, 0.3|0.1678})

({0.2|0.0909, 0.4|0.9091},
{0.5|0.4778, 0.6|0.5222}) ({0.5|1}, {0.5|1}) ({0.5|0.5846, 0.7|0.4154},

{0.1|0.1708, 0.3|0.8292})
({0.2|8322, 0.3|0.1678}{0.6|1},

{0.6|1})
({0.1|0.1708, 0.3|0.8292},
{0.5|0.5846, 0.7|0.4154}) ({0.5|1}, {0.5|1})

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

In addition, �(w̃1) = 0.0174, �(w̃2) = −0.336, �(w̃3) =
−0.6816 are obtained, and the ranking of the alternatives is
x1 � x2 � x3.

According to Definition 8, the complete PDHFPR D sat-
isfies d1 � d2 � d3, for all j = 1, 2, 3. Then, the ranking
is x1 � x2 � x3. Therefore, the feasibility of the probability
calculation approach based on the consistency of PDHFPRs
is verified.

A GDM approach with incomplete PDHFPRs

A convergent method to improve the consistency of
individual PDHFPRs

In the decision making process, PDHFPRs are difficult to
achieve full consistency. Considering the risk attitude of
DMs, the consistency level for PDHFPRs is tested by a
weighted consistency index.

Definition 11 If D = (di j )n×n is a PDHFPR, γ0 ≥ 0 is the
given consistency index threshold. A weighted consistency
index can be denoted by

WCI(D) = λ · OCI(D) + (1 − λ) · PCI(D). (21)

OCI(D) = 2
n·(n−1)

∑n−1
i=1

∑n
j=i+1(o

−
i j + o+

i j + ς+
i j + ς−

i j ) is
the DM’s optimistic consistency index, denoting that attitude
of theDM is optimistic; PCI(D) = max{o−

i j+o+
i j+ς+

i j +ς−
i j }

is the DM’s pessimistic consistency index, denoting that the
DM’s attitude is pessimistic; and 0 ≤ λ ≤ 1 s the weight
coefficient of OCI(D), which represents the risk attitude of
the DM.

If WCD(D) ≤ γ0, the consistency of PDHFPR D =
(di j )n·n is acceptable. For anunacceptable consistent PDHFPR,
the decision result obtained from it is usually unreliable.
Next, a convergent automatic iterative algorithm is used for
adjusting the consistency level, and the corresponding rank-
ing weight vector is calculated to make a decision.

Algorithm 1 Input: The initial PDHFPR D = (di j )n×n ,
the given consistency index threshold γ0, the weight coeffi-
cient λ, the adjusted coefficient θ , and the maximum number
of iterations tmax . Note that di j = (hi j |pi j ,mi j |qi j ) is a
PDHFE, hi j,r ∈ hi j indicates the rth element in hi j , pi j,r is

the associated probability of hi j,r satisfying
#hi j∑

r=1
pi j,r = 1,

mi j,e ∈ mi j indicates the eth element in mi j , and qi j,e is

the associated probability of mi j,e satisfying
#mi j∑

e=1
qi j,e = 1.

Moreover, the associated probabilities pi j,r and qi j,e of
PDHFEs are unknown.

Output: The acceptable consistent PDHFPR D∗ =
(d∗

i j )n×n , the optimal normalized weight vector w∗ , and the
weighted consistency index WCI(D∗).

Step1:LetD(t) = (d(t)
i j )n×n ,whered

(t)
i j = (h(t)

i j |pi j ,m(t)
i j |qi j )

is a PDHFE, and when t = 0, D(0) = D.
Step 2: Model (M-3) is used to obtain the accurate asso-

ciated probabilities pi j,r and qi j,e, (i, j = 1, 2, . . . , n, r =
1, 2, . . . , #hi j , e = 1, 2, . . . , #mi j ) of PDHFEs, the optimal

variables
˜

o(t)+
i j ,

˜

o(t)−
i j ,

˜

ς
(t)+
i j ,

˜

ς
(t)−
i j and the optimal normal-

ized weight vector˜w(t) = (
˜

w
(t)
1 ,

˜

w
(t)
2 , . . . ,

˜

w
(t)
n ).

Step 3: The weighted consistency index WCI(D(t)) is
calculated according to the risk attitude of DMs:

WCI(D(t)) = λ · OCI(D(t)) + (1 − λ) · PCI(D(t)). (22)

Step 4: If WCI(D(t)) ≤ γ0 or t ≥ tmax , turn to Step 6; or
else, proceed to the next step.

Step 5: Use Eq. (23) to determine where DMs need to
modify preference values.

LOC =
{

(z, c)|˜o(t)+
zc + ˜

o(t)−
zc + ˜

ς
(t)+
zc + ˜

ς
(t)−
zc

= max
(i, j)

{˜o(t)+
i j + ˜

o(t)−
i j + ˜

ς
(t)+
i j + ˜

ς
(t)−
i j |i, j ∈ N , i < j}

}

(23)

Let

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(t+1)
i j,r =

⎧
⎪⎪⎨

⎪⎪⎩

min(θ · ˜

h(t)
zc,r + (1 − θ) · h(t)

zc,r ,

1 − max
g(t+1)
zc,r ∈g(t+1)

zc
{m(t+1)

zc,e }), i = z, j = c,

h(t)
i j,r , i, j ∈ N , i < j, i �= z, j �= c,

m(t+1)
i j,e =

⎧
⎪⎪⎨

⎪⎪⎩

min(θ · ˜

m(t)
zc,e + (1 − θ) · m(t)

zc,e,

1 − max
h(t+1)
zc,r ∈h(t+1)

zc
{h(t+1)

zc,r }), i = z, j = c,

m(t)
i j,e, i, j ∈ N , i < j, i �= z, j �= c,

(24)

where
˜

h(t)
zc,r = h(t)

zc,r + ˜

o(t)−
zc − ˜

o(t)+
zc and

˜

m(t)
zc,e = m(t)

zc,e +
˜

ς
(t)−
zc − ˜

ς
(t)+
zc .
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Furthermore, by Definition 4, the lower triangular ele-
ments of PDHFPR D(t+1) can be obtained, and then the
improved PDHFPR D(t+1) = (d(t+1)

i j )n×n can be obtained.
Let t = t + 1 , and return to Step 2.

Step 6:Let D∗ = D(t) andw∗ = ˜w(t), and get the ranking
of the alternatives according to w∗.

Next, Theorem 1 is used to prove that Algorithm 1 is con-
vergent.

Theorem 1 If D = (di j )n×n is a PDHFPR, where di j =
(hi j |pi j ,mi j |qi j ), {D(t)} are PDHFPR sequences in Algo-
rithm 1, WCI(D(t)) is the weighted index of D(t). Then, for
each iteration t,

WCI(D(t+1)) ≤ WCI(D(t)).

Proof According to the Eqs. (23) and (24), we have i �=
z, j �= c,

˜

o(t+1)+
i j = ˜

o(t)+
i j ,

˜

o(t+1)−
i j = ˜

o(t)−
i j ,

˜

ς
(t+1)+
i j =

˜

ς
(t)+
i j , and

˜

ς
(t+1)−
i j = ˜

ς
(t)−
i j .

If
˜

o(t)−
i j > 0,

˜

ς
(t)−
i j > 0, then

˜

o(t)+
i j = 0 and

˜

ς
(t)+
i j = 0.

There are two possible conditions as follows:

(a) If h(t+1)
zc,r = θ · ˜

h(t)
zc,r + (1 − θ) · h(t)

zc,r and m(t+1)
zc,e =

θ ·˜m(t)
zc,e+(1−θ)·m(t)

zc,e, then h
(t+1)
zc,r > h(t)

zc,r andm
(t+1)
zc,e >

m(t)
zc,e. Thus, (

˜

o(t+1)+
zc + ˜

o(t+1)−
zc + ˜

ς
(t+1)+
zc + ˜

ς
(t+1)−
zc ) <

(
˜

o(t)+
zc + ˜

o(t)−
zc + ˜

ς
(t)+
zc + ˜

ς
(t)−
zc ).

(b) If h(t+1)
zc,r = 1 − max

m(t+1)
zc,e ∈m(t+1)

zc
{m(t+1)

zc,e } or

m(t+1)
zc,e = 1 − max

h(t+1)
zc,r ∈h(t+1)

zc

{h(t+1)
zc,r },

then h(t+1)
zc,r ≥ h(t)

zc,r and m(t+1)
zc,e ≥ m(t)

zc,e and

(
˜

o(t+1)+
zc + ˜

o(t+1)−
zc + ˜

ς
(t+1)+
zc + ˜

ς
(t+1)−
zc )

≤ (̃o(t)+
zc + ˜

o(t)−
zc + ˜

ς
(t)+
zc + ˜

ς
(t)−
zc ).

In other cases, the same can be proved. Therefore,

(
˜

o(t+1)+
zc + ˜

o(t+1)−
zc + ˜

ς
(t+1)+
zc + ˜

ς
(t+1)−
zc )

≤ (
˜

o(t)+
zc + ˜

o(t)−
zc + ˜

ς
(t)+
zc + ˜

ς
(t)−
zc ).

We have OCI(D(t+1)) ≤ OCI(D(t)), PCI(D(t+1)) ≤
PCI(D(t)) and

WCI(D(t+1)) ≤ WCI(D(t)).


�

A GDM approach with incomplete PDHFPRs

Faced with complicated decision making problems, the deci-
sion results obtained based on individual PDHFPRs may not
be accurate due to the limitations of the expertise and experi-
ence of a DM, and a group of DMs need to make decisions at
the same time. Because different DMs have various profes-
sional knowledge and experience, it is more reasonable for
different DMs to give different weights. In other words, the
weights of DMs should be proportional to the consistency
level for the corresponding PDHFPR.

Suppose that X = {x1, x2, . . . , xn} is an alternative set,
P = {p1, p2, . . . , pm} represents the set of DMs, and
ψ = {ψ1, ψ2, . . . , ψm} is the weight vector of DMs. The
detailed steps of the GDM approach based on the consis-
tency of PDHFPRs are as follows:

Algorithm 2 Input: A list of PDHFPRs D1, D2, . . . , Dm ,
where the associated probabilities of the corresponding
PDHFEs are unknown, the given consistency index threshold
γ0, the weight coefficient λ, the adjusted coefficient θ and the
maximum number of iterations tmax.

Output: Improved completePDHFPRs D∗
l (l = 1, 2, . . . ,m),

the ranking of xi (i = 1, 2, . . . , n) and the overall priority
weights of alternatives �i .

Step1:Construct PDHFPRseries Dl = (dli j )n×n(1 ≤ l ≤
m) on the condition of the decision information provided by
the DMs, where dli j = (hli j |pli j ,ml

i j |qli j ) is a PDHFE and the
associated probabilities of the PDHFEs are unknown.

Step 2: For l = 1, 2, . . . ,m, Algorithm 1 is used to
obtain the accurate associated probabilities of the PDHFEs
and check the consistency of PDHFPRs Dl = (dli j )n×n .
When WCI(Dl) > γ0, the individual consistency can be
improved using Algorithm 1. Thus, the improved PDHFPRs
D∗
l (1 ≤ l ≤ m) can be constructed, and the associated prob-

abilities pli j,r , q
l
i j,k , the optimal variables õl+i j , õl−i j , ς̃ l+

i j , ς̃ l−
i j

and the individual priority weights of alternatives w̃l =
(w̃l

1, w̃
l
2, . . . , w̃

l
n)

T can be obtained,where w̃l
i = (˜wl

iμ, w̃l
iν).

Step 3: The following formula is used to calculate the
weights ψl(l = 1, 2, . . . ,m) of DMs:

ψ
′
l = 1 − WCI(Dl), ψl = ψ

′
l /

m∑

l=1

ψ
′
l .

Thus, 0 ≤ ψl ≤ 1 and
∑m

l=1 ψl = 1.
Step 4: Calculate the overall priority weights: �i =

∑m
k=1 ψk · �(w̃k

i ), where �(w̃k
i ) =˜wk

iμ − w̃k
iν .

Step 5: Obtain the ranking of xi (i = 1, 2, . . . , n) using
the value of �i .

Assuming that the number of alternatives is n, the number
of DMs participating in GDM ism, the maximum number of
iterations is tmax, and the number of preference values given
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by the kth decision expert in the i th row and j th column of
the decision-making matrix is #dli j . The time complexity of
Algorithm 2 is as follows:

1. The time complexity for the initialization process of the
decision-making matrix is O(m × n2);

2. the time complexity for the calculation process of the
associated probabilities of the PDHFEs is O(m × n2);

3. the time complexity for the testing process of the consis-
tency is O(m × n2);

4. the time complexity for the improving process of the con-
sistency level in the worst case is O(tmax × m × n2);

5. the time complexity for the calculation process of the
weights of DMs is O(m);

6. the time complexity for the calculation process of the
overall priority weights of alternatives is O(n);
Thus, the total time complexity of of Algorithm 2 is
O(tmax × m × n2).

The space complexity of Algorithm 2 is as follows:
The space required to store the basic parameters of Algo-

rithm 2 is constant, the space required to store the initial
preference values given by DMs is (

∑m
l=1

∑n
i
∑n

j (#d
l
i j )) +

2n, the space required to store the calculated probabili-
ties is (

∑m
l=1

∑n
i
∑n

j (#d
l
i j )) − 2n, the space required to

store the optimal variables is m × n2, the space required
to store the optimal normalized weight vector is 2n, the
space required to store the improved preference values is
2 × ∑m

l=1
∑n

i
∑n

j (#d
l
i j ), the space required to store the

weights of DMs is m.
To sum up, the total space complexity of Algorithm 2 is

O(m × n2 + ∑m
l=1

∑n
i
∑n

j (#d
l
i j )).

Illustrative example

Application to analyze the impact factors of haze

Haze is produced from the interaction of human activities
and specific climatic conditions. In recent years, severe haze
weather has occurred inmany regions of China. A large num-
ber of fine particles will inevitably be discharged because
of the social and economic activities of high-density popu-
lations. When the emission of fine particulate pollutants is
increasing and exceeds than the atmospheric circulation and
carrying capacity, its concentration in the air will continue
to increase, resulting in haze. The frequent occurrence of
haze not only seriously affects air quality but is also the main
cause of asthma and other diseases, which seriously affect
people’s health and economic development. Therefore, it is
of practical significance to study the causes of haze weather.

Shanghai has been harmed by haze weather for a long
time. Three related experts P = {p1, p2, p3} use PDHF-

PRs to express their preference for four evaluation factors
of haze weather. The four evaluation factors of haze weather
are PM2.5 (x1), relative humidity (x2),NO2(x3), and PM10
(x4). Let the given consistency index threshold γ0 = 0.2,
the weight coefficient λ = 0.2, and the adjusted coefficient
θ = 0.5. We use Algorithm 2 to explore the four evaluation
factors of haze weather and analyze the leading causes of
haze weather.

Step 1: Based on professional knowledge and experi-
ence, PDHFPRs Dl = (dli j )4×4 = (hli j |pli j ,ml

i j |qli j )4×4(l =
1, 2, 3) are given by experts and are shown in Tables 3, 4
and 5.

Step 2:Using the PDHFPR D1 given by expert P1, the fol-
lowing optimizationmodel is established according tomodel
(M-3):

min J1 = o1−12 + o1+12 + ς1−
12 + ς1+

12 + o1−13 + o1+13 + ς1−
13 + ς1+

13

+ o1−14 + o1+14 + ς1−
14 + ς1+

14 + o1−23 + o1+23 + ς1−
23 + ς1+

23

+ o1−24 + o1+24 + ς1−
24 + ς1+

24 + o1−34 + o1+34 + ς1−
34 + ς1+

34

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0.2 · p112,2 + 0.3 · p112.2 + 0.6 · p112,3)
+o1−12 − o1+12 =

√
w1
1μ · w1

2ν

(0.1 · q112,2 + 0.3 · q112.2) + ς1−
12 − ς1+

12 =
√

w1
1ν · w1

2μ

(0.4 · p113,1 + 0.8 · p113.2) + o1−13 − o1+13 =
√

w1
1μ · w1

3ν,

0.37 + ς1−
13 − ς1+

13 =
√

w1
1ν · w1

3μ

(0.3 · p114,1 + 0.5 · p114.2) + o1−14 − o1+14 =
√

w1
1μ · w1

4ν

(0.14 · q114,1 + 0.24 · q114.1) + ς1−
14 − ς1+

14 =
√

w1
1ν · w1

4μ

0.2 + o1−23 − o1+23 =
√

w1
2μ · w1

3ν,

(0.6 · q123,1 + 0.8 · q123.2) + ς1−
23 − ς1+

23 =
√

w1
2ν · w1

3μ

0.25 + o1−24 − o1+24 =
√

w1
2μ · w1

4ν , 0.2

+ς1−
24 − ς1+

24 =
√

w1
2ν · w1

4μ

(0.2 · p134,1 + 0.6 · p134.2 + 0.7 · p134,3)
+o1−34 − o1+34 =

√
w1
3μ · w1

4ν

(0.1 · q134,2 + 0.2 · q134.2) + ς1−
34 − ς1+

34 =
√

w1
3ν · w1

4μ

p112,2 + p112.2 + p112,3 = 1, q112,2 + q112,2 = 1,

p112,2 + p112,3 = 1, q114,1 + q114,2 = 1,

p114,1 + p114.2 = 1, q123,1 + q123,2 = 1,

p134,2 + p134,3 = 1, q134,1 + q134,2 = 1,

0 ≤ p112,2, p
1
12.2, p

1
12,3, q

1
12,2,

q112,2, p
1
12,2, p

1
12,3, q

1
14,1, q

1
14,2

p114,1, p
1
14.2, q

1
23,1, q

1
23,2, p

1
34,2,

p134,3, q
1
34,1, q

1
34,2 ≤ 1

o1+i j , o1−i j , ς1+
i j , ς1−

i j ≥ 0,

o1+i j , o1−i j = 0, ς1+
i j , ς1−

i j = 0

0 ≤ w1
1μ + w1

1ν ≤ 1,
∑4

j=1, j �=i w
1
jμ ≤ w1

iν,

4∑

j=1, j �=i

w1
jν ≤ w1

iμ + 2 i < j, i, j = 1, 2, 3, 4

(25)
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By using the MATLAB Toolbox, we obtain

p112,1 = 0.0969, p112,2 = 0.1187, p112,3 = 0.7844,

q112,1 = 0.5996, q112,2 = 0.4004, p113,1 = 1, p113,2 = 0,

p114,1 = 0, p114,2 = 1, q114,1 = 1, q114,2 = 0, q123,1 = 1,

q123,2 = 0, p134,1 = 0.3181, p134,2 = 0.2606,

p134,3 = 0.4213, q134,1 = 0.4780, q134,2 = 0.5220,

o1−12 = o1+12 = ς1−
12 = ς1+

12 = o1−13 = o1+13 = ς1+
13

= o1−14 = o1+14 = ς1−
14 = o1−23 = o1+23 = ς1−

23 = o1−24
= o1+24 = ς1−

24 = ς1+
24 = o1−34 = o1+34 = ς1−

34 = ς1+
34 = 0,

ς1−
13 = 0.0009, ς1+

14 = 0.0030, ς1+
23 = 0.0587,

w̃1
1 = 〈0.2986, 0.4345〉,

w̃1
2 = 〈0.0746, 0.9254〉, w̃1

3 = 〈0.3166, 0.5359〉,
w̃1
4 = 〈0.0432, 0.8373〉.

Therefore, WCI(D1) = 0.0490 < γ0 , which implies that
D1 is an acceptable consistent PDHFPR. Similarly, using
PDHFPR D2 given by expert p2, an optimization model is
built in line with model (M-3), and the solution is as follows:

p213,1 = 0.8959, p213,2 = 0, p213,3 = 0.1041, q223,1 = 0, q223,2 = 1,

p224,1 = 0.9589, p224,2 = 0.0411, p134,1 = 1, p134,2 = 0,

ς2+
12 = 0.0786, ς2−

13 = 0.0844, o2+14 = 0.0665,

ς2−
24 = 0.0399, o2+34 = 0.072, ς2−

34 = 0.0258,

w̃2
1 = 〈0.4373, 0.4866〉, w̃2

2 = 〈0.1008, 0.8232〉,
w̃2
3 = 〈0.3037, 0.6203〉, w̃2

4 = 〈0.0822, 0.9178〉,
o2−12 = o2+12 = ς2−

12 = o2−13 = o2+13 = ς2+
13

= o2−14 = ς2−
14 = ς2+

14 = o2−23 = o2+23 = ς2+
23

= ς2−
23 = o2−24 = o2+24 = ς2+

24 = o2−34 = ς2+
34 = 0.

Therefore, WCI(D2) = 0.0905 < γ0 , which implies that
D2 is an acceptable consistent PDHFPR. Similarly, using
PDHFPR D3 given by expert p3, an optimization model is
built and we can obtain WCI(D3) = 0.3623 > γ0, which
implies that D3 is an unacceptable consistent PDHFPR. For
this case, Algorithm 1 can be applied to improve the consis-
tency of D3.

UsingEq. (23) to determinewhere expert e3 needs tomod-
ify preference values, we can obtain (u,m) = (2, 3). The
improvedPDHFEd3∗23 = {{0.46|p323,1, 0.56|p323,2}, {0.27|1}}
is obtained according to Eq. (24). Thus, an improved
PDHFPR D∗

3 can be constructed by introducing d3∗23 to
D3. Furthermore, according to model (M-3), the results are
obtained as follows:

q312,1 = 0, q312,2 = 1, p313,1 = 0.1719, p313,2 = 0.8281,

p314,1 = 0, p314,2 = 1, p323,1 = 1, p323,2 = 0,

Fig. 1 Results of �i of alternatives with different λ

q324,1 = 0.5994, q324,2 = 0.4006, q334,1 = 0, q334,2 = 1,

o3−12 = ς3+
12 = o3−13 = o3+13 = ς3+

13 = ς3−
13

= o3−14 = o3+14 = ς3−
14 = o3−23 = ς3+

23 = o3−24
= o3+24 = ς3+

24 = ς3−
24 = o3−34 = ς3+

34 = ς3−
34 = 0

o3+12 = 0.0688, ς3−
12 = 0.0137, ς3+

14 = 0.1102,

o3+23 = 0.1381, ς3−
23 = 0.0687, o3+34 = 0.2131,

w̃3
1 = 〈0.3308, 0.6692〉, w̃3

2 = 〈0.1470, 0.8530〉,
w̃3
3 = 〈0.1345, 0.7048〉, w̃3

4 = 〈0.2270, 0.6122〉.

We can obtain WCI(D∗
3) = 0.1909 < γ0, which implies

that D∗
3 is an acceptable consistent PDHFPR.

Step 3: The individual weights of DMs can be calculated
as follows: ψ1 = 0.3562, ψ2 = 0.3407, ψ3 = 0.3031.

Step4:Compute overall priorityweights:�1 = −0.1677,
�2 = −0.7631, �3 = −0.3588, �4 = −0.6843.

Step 5: As �1 � �3 � �4 � �2, the four evaluation
factors of haze weather are ranked as

x1 � x3 � x4 � x2.

Therefore, PM2.5 is the most critical cause of haze in
Shanghai. This result agrees with the calculation results of
this method.

Sensitivity analysis of � and�

For 0 ≤ λ ≤ 1(θ = 0.5), we take 0.1 as the interval and
conduct 11 experiments in total. The influence of 0 ≤ λ ≤
1(θ = 0.5) on DMs’ weights and ranking results of four
evaluation factors are shown in Table 6. Figure 1 shows the
influence of 0 ≤ λ ≤ 1(θ = 0.5) on the overall priority
weights of alternatives �i = (i = 1, 2, 3, 4).

Table 6 shows that DMs weights change with 0 ≤ λ ≤
1(θ = 0.5). Furthermore, when 0 ≤ λ ≤ 1 takes different
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Table 3 PDHFPR matrix
provided by expert

D1 x1 x2 x3 x4

x1
({0.5|1},
{0.5|1})

({0.2|p112,1, 0.3|p112,2,
0.6|p112,3},

{0.1|q112,1, 0.3|q112,2})
({0.4|p113,1, 0.8|p113,2},

{0.37|1})
({0.3|p114,1, 0.5|p114,2},
{0.14|q114,1, 0.24|q114,2})

x2 –
({0.5|1},
{0.5|1})

({0.2|1},
{0.6|q123,1, 0.8|q23,2}) ({0.25|1}, {0.2|1})

x3 – –
({0.5|1},
{0.5|1})

({0.2|p134,1, 0.6|p134,2,
0.7|p134,3},

{0.1|q134,1, 0.2|q134,2})
x4 – – –

({0.5|1},
{0.5|1})

Table 4 PDHFPR matrix
provided by expert

D2 x1 x2 x3 x4

x1
({0.5|1},
{0.5|1})

({0.6|1},
{0.3|1})

({0.5|p213,1, 0.6|p213,2,
0.7|p213,3}, {0.3|1})

({0.7|1}, {0.2|1})

x2 –
({0.5|1},
{0.5|1})

({0.25|1},
{0.35|q223,1, 0.5|q223,2})

({0.3|p224,1, 0.4|p224,2},
{0.3|1})

x3 – –
({0.5|1},
{0.5|1})

({0.6|p234,1, 0.7|p234,2},
{0.2|1})

x4 – – – ({0.5|1}, {0.5|1})

Table 5 PDHFPR matrix
provided by expert

D3 x1 x2 x3 x4

x1
({0.5|1},
{0.5|1})

({0.6|1},
{0.25|q312,1,
0.3|q312,2})

({0.4|p313,1, 0.5|p313,2}
{0.3|1})

({0.2|p314,1, 0.45|p314,2},
{0.5|1})

x2 –
({0.5|1},
{0.5|1})

({0.6|p323,1, 0.7|p323,2},
{0.5|1})

({0.3|1},
{0.4|q324,1, 0.5|q324,2})

x3 – – ({0.5|1}{0.5|1}) ({0.5|1},
{0.2|q334,1, 0.4|q334,2})

x4 – – – (
{0.5|1},
{0.5|1})

Table 6 DMs weights and
ranking results of four
evaluation factors with different
λ and θ

λ(θ = 0.5) ψ1 ψ2 ψ3 Ranking results λ(θ = 2) Ranking results

0 0.3444 0.3301 0.3255 x1 � x3 � x2 � x4 – –

0.1 0.3560 0.3409 0.3031 x1 � x3 � x2 � x4 0.1 x1 � x3 � x4 � x2

0.2 0.3562 0.3407 0.3031 x1 � x3 � x4 � x2 0.2 x1 � x3 � x4 � x2

0.3 0.3554 0.3396 0.3050 x1 � x3 � x4 � x2 0.3 x1 � x3 � x4 � x2

0.4 0.3546 0.3385 0.3069 x1 � x3 � x4 � x2 0.4 x1 � x3 � x4 � x2

0.5 0.3538 0.3374 0.3088 x1 � x3 � x4 � x2 0.5 x1 � x3 � x4 � x2

0.6 0.3531 0.3363 0.3106 x1 � x3 � x4 � x2 0.6 x1 � x3 � x4 � x2

0.7 0.3523 0.3353 0.3124 x1 � x3 � x4 � x2 0.7 x1 � x3 � x4 � x2

0.8 0.3605 0.3426 0.2969 x1 � x3 � x4 � x2 0.8 x1 � x3 � x4 � x2

0.9 0.3575 0.3394 0.3031 x1 � x3 � x4 � x2 0.9 x1 � x3 � x4 � x2

1 0.3545 0.3363 0.3091 x1 � x3 � x4 � x2 1 x1 � x3 � x4 � x2
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Fig. 2 Results of �i of alternatives with different θ

values, the ranking of haze impact factors changes. When
λ ≤ 0.1, the ranking result is x1 � x3 � x2 � x4. When
0.1 < λ ≤ 1, the ranking is x1 � x3 � x4 � x2. There-
fore, the weight coefficient of OCI(D) affects the ranking
results, which proves the flexibility of the decision approach
in this paper. However, regardless of how λ changes, themost
important factor affecting haze is still PM 2.5. Therefore, our
proposed approach exhibits good stability.

Moreover, we study the ranking of haze impact factors
when 0 ≤ θ ≤ 1(λ = 0.2) changes from 0.1 to 1. The
specific ranking results are shown in Table 6, and the values
of overall priority weights �i (i = 1, 2, 3, 4) are shown in
Fig 2. The ranking results do not change with θ because θ is
the consistency adjusted coefficient, which only affects the
speed of D3 reaching the consistency threshold. Specifically,
the larger the adjusted coefficient θ is, the faster D3 reaches
the consistency threshold.

Comparative analysis

Toprove the superiority of our approach,wewill use the same
illustrative example to compare ourmethodwith themethods
proposed in Hao et al. [17], Garg and Kaur [40,42] and Zhao
et al. [43]. Under PDHFS environment, the method in Hao et
al. [17] andGarg andKaur [40,42] requires all PDHFEs to be
complete. When applying the methods in [17,40] to address
the illustrative example, the missing associated probabilities
of PDHFEs are derived from the associated probability cal-
culation method in this paper.

(1) Hao et al. [17] defined basic operators for PDHFSs and
then proposed a visualization GDM method with PDHFSs
based on the operator. For the sake of comparison, the indi-
vidual weights of DMs is set as the calculation result of
the method in this paper, that is, ψ1 = 0.3562, ψ2 =

0.3407, ψ3 = 0.3031 Now, we use the method in Hao et
al. [17] to analyze the influencing factors of haze weather.

First, the comprehensive PDHFPR matrix D∗ = (d∗
i j )n×n

is obtained using the probabilistic dual hesitant fuzzy
weighted average (PDHFWA) operator (Eq. (19) in [17]),
where the following elements of the comprehensive matrix
are shown:

d∗
i i = ({0.5|1}, {0.5|1}),

d∗
12 = ({0.488|0.0969, 0.5118|0.1187, 0.6|0.7844},

{0.2028|0.5996, 0.3|0.4004}),
d∗
13 = ({0.4361|0.154, 0.4664|

0.7419, 0.5262|0.0179, 0.5517|0.0862}, {0.3233|1}),
d∗
14 = ({0.5676|1}, {0.2325|1})
d∗
21 = ({0.2344|0.5996, 0.3|0.4004},

{0.4057|0.0969, 0.4687|0.1187, 0.6|0.7844}),
d∗
23 = ({0.3657|1}, {0.4042|1}),

d∗
24 = ({0.2826|0.9589, 0.3193|0.0411},

{0.2833|0.5994, 0.3031|0.4006}),
d∗
31 = ({0.3258|1}, {0.4316|0.154, 0.4617|

0.7419, 0.484|0.0179, 0.5179|0.0862}),
d∗
32 = ({0.4675|1}, {0.3031|1}),
d∗
34 = ({0.4522|0.3181, 0.572|0.2606, 0.6137|0.4213},

{0.1928|0.478, 0.2468|0.522}),
d∗
41 = ({0.2881|1}, {0.5431|1}),

d∗
42 = ({0.2994|0.5994, 0.3371|0.4006},

{0.2811|0.9589, 0.31|0.0411}),
d∗
43 = ({0.2354|0.478, 0.2668|0.522},

{0.3839|0.3181, 0.5677|0.2606, 0.5998|0.4213}).

Second, the preference values d∗
i j are aggregated to obtain

the aggregated probabilistic dual hesitant fuzzy preference
values d∗

i of the factor affecting haze xi . Due to the length
limitation of this paper, only some elements of d∗

i are shown
as follows:

d∗
1 = ({0.5001|0.0149, . . . , 0.5501|0.014},

{0.2955|0.5996, . . . , 0.3259|0.4004}),
d∗
2 = ({0.354|0.5749, . . . , 0.3765|0.0165},

{0.3904|0.0581, . . . , 0.4379|0.3142}),
d∗
3 = ({0.440|0.3181, . . . , 0.4868|0.4213},

{0.3345|0.0736, . . . , 0.3724|0.045}),
d∗
4 = ({0.3391|0.2865, . . . , 0.3551|0.209},

{0.4138|0.305, . . . , 0.4741|0.0173}).

Next, the score function of d∗
i is calculated as follows:

s(d1) = 0.2242, s(d2) = −0.0664,

s(d3) = 0.1169, s(d4) = −0.0995.
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Finally, the ranking of the factors affecting haze is as fol-
lows:

x1 � x3 � x2 � x4.

(2) Garg and Kaur [40] defined the correlation coefficients
on PDHFSs and proposed the multi-criteria decision-making
(MCDM) method based on the correlation coefficients for
PDHFSs. Now, we use the method in Garg and Kaur [40] to
handle the above problem, and the main steps are as follows:

First, by using Algorithm 1 in Garg and Kaur [40], the
aggregated decision matrix D∗ = (d∗

i j )n×n is obtained. The
MDs and NMDs and their corresponding probabilities are
listed as follows:

d∗
11 = ({0.5|1}, {0.5|1}),

d∗
12 = ({0.2|0.0323, 0.3|0.0396, 0.6|0.9281},

{0.1|0.1999, 0.3|0.8001}),
d∗
13 = ({0.4|0.3906, 0.5|0.5747, 0.7|0.0347},

{

0.3|2
3
, 0.37|1

3

})

,

d∗
14 =

({

0.45|1
3
, 0.5|1

3
, 0.7|1

3

}

,

{

0.14|1
3
, 0.2|1

3
, 0.5|1

3

})

,

d∗
23 =

({

0.2|1
3
, 0.25|1

3
, 0.6|1

3

}

,

{

0.2|1
3
, 0.5|1

3
, 0.6|1

3

})

,

d∗
24 =

({

0.25|1
3
, 0.3|0.6530, 0.4|0.0136

}

,

{

0.2|1
3
, 0.3|1

3
, 0.4|0.1998, 0.5|0.1335

})

,

d∗
34 = ({0.2|0.1060, 0.5|0.3334, 0.6|0.4202, 0.7|0.1404},

{0.1|0.1593, 0.2|0.5073, 0.4|0.3333}).

Second, the ideal alternative d∗ is determined by Eq. (15)
in [40]as follows:

d∗ =

{< x1, ({0.5|1},
{0.4|0.3906, 0.5|0.5747, 0.7|0.0347}) >,

< x2, ({0.2|0.0323, 0.3|0.0396, 0.6|0.9281},
{0.1|0.1999, 0.3|0.8001}) >},
< x3, ({0.5|1}, {0.3| 23 , 0.37| 13 }) >},
< x4, ({0.45| 13 , 0.5| 13 , 0.7| 13 },{0.1|0.1593, 0.2|0.5073, 0.4|0.3333}) >},

Then, the correlation coefficient index K1, K2, K3, K4,
(Eq. (10), (11), (12), (13)) in [40]) is used to obtain the mea-
surement between d∗

i (i = 1, 2, 3, 4) and d∗, and we getthe
following:

K1(d
∗
1 , d∗) = 0.8528, K1(d2, d

∗) = 0.7087,

K1(d3, d
∗) = 0.7312, K1(d4, d

∗) = 0.7838, K2(d
∗
1 , d∗) = 0.8478,

K2(d2, d
∗) = 0.6729, K2(d3, d

∗) = 0.5961, K2(d4, d
∗) = 0.6201.

The selection of ω in [40] is subjective. When
ω = (0.25, 0.25, 0.25, 0.25)T . we get the following:

K3(d
∗
i , d∗) = K1(di , d

∗), K4(di , d
∗)

= K2(di , d
∗).(i = 1, 2, 3, 4).

Finally, the ranking of four evaluation factors is x1 � x4 �
x2 � x3 when the correlation coefficient index K1 and K3

are used and is x1 � x2 � x4 � x3 when the correlation
coefficient index K2, K4 are used.

(3) Garg and Kaur [42] studied some distance measures
between PDHFSs and distance measure-based maximum
deviation method were set to calculate the weights of cri-
teria. Then, a new MCDM method with unknown attribute
weightswas proposed. By using themethod inGarg andKaur
[42], the following steps are involved:

First, a comprehensive matrix is obtained by aggregating
the individual PDHFPRs usingAlgorithm1 inGarg andKaur
[42], and the elements of the comprehensive matrix are the
same as Garg and Kaur’s [40] method.

Second, because the number of elements in MDs and
NMDs of each PDHFE is different, the distance measure
d2 (Eq. (10) in [42]) is used to obtain the following weights:

ω = (0.2326, 0.262, 0.2427, 0.2627)T .

Then, the probabilistic dual hesitant fuzzy weighted Ein-
stein average
(PDHFWEA) operator (Eq. (31) in [42]) is used to obtain
the aggregate values of each alternative. Due to the length
limitation of this paper, only some elements of the PDHFPR
matrix are shown as follows:

d∗
1 = ({0.5054|0.1208, . . . , 0.4767|0.0004},

{0.2962|0.0889, . . . , 0.2995|0.0444}),
d∗
2 = ({0.3205|0.0156, . . . , 0.4192|0.0009},

{0.4393|0.1031, . . . , 0.3302|0.0014}),
d∗
3 = ({0.5602|0.0156, . . . , 0.3823|0.0741},

{0.2981|0.1095, . . . , 0.3937|0.0018}),
d∗
4 = ({0.2724|0.1208, . . . , 0.4139|0.0072},

{0.4615|0.0156, . . . , 0.4698|0.0396}).

Similarly, the probabilistic dual hesitant fuzzy ordered
weighted Einstein average (PDHFOWEA) operator (Eq. (32)
in [42]), probabilistic dual hesitant fuzzy weighted Einstein
geometric (PDHFWEG) operator (Eq. (33) in [42]), and
probabilistic dual hesitant fuzzy ordered weighted Einstein
geometric (PDHFOWEG) operator (Eq. (34) in [42]) oper-
ators are used to calculate the aggregated values for each
alternative, and the score function values and ranking results
using the four types of operators are given in Table 7.
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Table 7 shows that the most crucial indicator affecting the
generation of haze in Shanghai is PM 2.5, which matches the
result of this paper.

(4)When the probability values of theMDs and theNMDs
are equal, the PDHFPRs degenerates into the dual hesitant
fuzzy PRs.With respect to the GDM problemwith dual hesi-
tant fuzzyPRs, Zhao et al. [43] developed newGDMmethods
to obtain the best alternative, which includes a consensus
reaching process. The method 1 in Zhao et al. [43] is utilized
as the comparison algorithm.

The dual hesitant fuzzy PRs corresponding to PDHFPRs
Dl = (dli j )4×4 = (hli j |pli j ,ml

i j |qli j )4×4(l = 1, 2, 3) are

recorded as cl = (hli j ,m
l
i j )4×4, and the calculation process

is as follows:
First, the compatibility degreesCkl = CO1(Ck,Cl), k, l =

1, 2, 3 between Ck and Cl are computed by CO1 (Eq. (5) in
[43]), which are given as follows:

C1 = (Ckl)3×3 =
⎛

⎝
1 0.9073 0.8400

0.9073 1 0.9040
0.8400 0.9040 1

⎞

⎠

Therefore, the weights of experts are determined by Eq.
(9) in [43]:ψ1

1 = 0.3295, ψ1
2 = 3416, ψ1

3 = 0.3289.
Second, for all l = 1, 2, 3, let C0

l = Cl . Then, using
the symmetric dual hesitant fuzzy weighted averaging oper-
ator (Eq. (10) in [43]), all dual hesitant fuzzy preference
relations C0

1 are fused into C0 = (ci j0)4�4, where ci j0 =
(hi j0, gi j0), (i, j = 1, 2, 3, 4) . Due to the length limitation
of this paper, some elements in C0 are shown as follows:

h120 = {0.6000, 0.4982, 0.4539}, g120
= {0.2829, 0.3000, 0.2019, 0.2155}

h130 = {0.4337, 0.4667, 0.4679, 0.5012, 0.5056, 0.5389,
0.5802, 0.6123, 0.6135, 0.6446, 0.6486, 0.6784, },

g130 = {0.3222}.

Then, the compatibility degrees CO1(C0,C0
l ) between

C0
l , (l = 1, 2, 3) and C0 are calculated using Eq. (5) in [43]

as follows:

CO1(C
0
1 ,C

0) = 0.935,CO1(C
0
2 ,C

0)

= 0.9793,CO1(C
0
3 ,C

0) = 0.9443.

Thus, the group reaches the given threshold.
Using the symmetric dual hesitant fuzzy averaging opera-

tor (Eq. (13) in [43]), we integrate the dual hesitant fuzzy
preference values of each alternative xi (i = 1, 2, 3, 4)
into the collective dual hesitant fuzzy preferences di (i =
1, 2, 3, 4). Then, using Definition 3 in Zhao et al. [43], the
score values are as follows:

s(d1) = −0.1813, s(d2) = −0.0938, s(d3)

= −0.0568, s(d4) = −0.1319.

Thus, the ranking of the four evaluation factors is as fol-
lows:

x1 � x3 � x2 � x4.

In the above process, if we measure the agreement of prefer-
ences by compatibility measure (Eq. (6) in [43]) instead of
(Eq. (5) in [43]), the ranking of the factors affecting haze is
x1 � x3 � x2 � x4.

Basedon the sameexample of analyzing the impact factors
of haze weather, the calculation results of the above four
methods are shown in Table 8.

Table 9 visually demonstrates the comparison of different
methods, and the following detailed comparative analysis
shows the superiority of the proposed GDM method:

1. By comparing the decision results in Table 8, it is shown
that the most crucial factor affecting haze in Shanghai is
PM 2.5, which proves the reasonable effectiveness of our
method.

2. Our method combines the DMs’ risk attitude when cal-
culating the consistency level for PDHFPR. When the
weight coefficient λ ≤ 0.1, the ranking result is x1 �
x3 � x2 � x4, which is the same as the ranking result
by Hao et al. [17], Garg and Kaur [42] and Zhao et
al. [43]. And when 0.1 < λ ≤ 1, the ranking result is
x1 � x3 � x4 � x2. Therefore, the DMs’ risk attitude
affects the ranking results, which proves the flexibility of
our method.

3. Comparison with the methods in Hao et al. [17] and Garg
and Kaur [42], all the methods solve GDM problem with
probabilistic dual hesitation fuzzy environment. How-
ever,Hao et al. [17] andGarg andKaur [42] usedPDHFSs
to directly evaluate alternatives, while the PDHFPRs
proposed in this paper only require the DMs to give
evaluation information through pairwise comparison, so
PDHFPRs are more appropriate for the fuzzy decision of
DMs in complicated environments. In addition, Hao et
al.s [17] and Garg and Kaurs [42] method can only han-
dle GDM problems with known probability information
of PDHFEs. In contrast, our method comprehensively
considers the situation of incomplete decision making
information andunknownweights ofDMs,which ismore
suitable for the increasingly complicated decision envi-
ronment.

4. From Table 8, although Garg and Kaurs [42] method
selects the same most crucial factor affecting haze with
our method, there is a different ranking between the four
factors affecting haze in the method of Garg and Kaur
[42] and our method. This is mainly because Garg and
Kaurs [42] method used the correlation coefficients for
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Table 7 Comparison of
different operators

Operators x1 x2 x3 x4 Ranking results

PDHFWEA 0.2412 −0.0752 0.1182 −0.1178 x1 � x3 � x2 � x4

PDHFOWEA 0.2054 −0.0845 0.1021 −0.1021 x1 � x3 � x2 � x4

PDHFWEG 0.1786 −0.1292 0.0564 −0.1781 x1 � x3 � x2 � x4

PDHFOWEG 0.1691 −0.1387 0.0417 −0.1850 x1 � x3 � x2 � x4

Table 8 Decision-making results by different methods

Methods The ranking results The optimal supplier

Our GDM model x1 � x3 � x2 � x4 or x1 � x3 � x4 � x2 x1

Hao et al. [17]’s method x1 � x3 � x2 � x4 x1

Garg and Kaur [40]’s method x1 � x4 � x2 � x3 or x1 � x2 � x4 � x3 x1

Garg and Kaur [42]’s method x1 � x3 � x2 � x4 x1

Zhao et al. [43]’s method x1 � x3 � x2 � x4 x1

Table 9 Comparison of the proposed approach and other approaches

Approaches Whether the
probability
distribution is
considered

Whether the
weights of DMs
are considered

Whether missing
probability infor-
mation is consid-
ered

Whether the
consistency or
consensus level
is tested and
improved

Whether the risk
attitude of DMs is
considered

Our approach Yes Yes Yes Yes Yes

Hao et al. [17] Yes No No No No

Garg and Kaur [40] Yes No No No No

Garg and Kaur [42] Yes Yes No No No

Zhao et al. [43] No Yes No Yes No

PDHFSs to get the ranking result while our method uses
the optimization model of PDHFPRs to directly obtain
the ranking of alternatives and needs to calculate the
overall priority weights of the four evaluation factors by
improving the consistency level for the individual PDHF-
PRs. Therefore, our method can obtain more credible
decision results.

5. The comparison with the method in Zhao et al. [43] is as
follows: First, Zhao et al.’s [43]method neglects the asso-
ciated probabilities of MDs and NMDs, which may lose
and distort the original information. Our method uses the
original PDHFPR information for calculation, which can
better retain the original information. Second, ourmethod
requires higher consistency than Zhao et al. [43]. In our
method, the original PDHFPR of decision expert p3 is
unacceptable consistent while the consistency level of
decision expert p3 is not required to be improved in Zhao
et al. [43]. Finally, our approach only adjusts one prefer-
ence value each time, so the adjusted PDHFPR matrix is
closer to the original PDHFPRs, which can better retain
the wishes of DMs and greatly improve the accuracy of
decision-making results.

Based on the above discussion and Table 9, our method
compensates for the deficiencies of the existing methods and
offer good application value.

Conclusion and future work

In this paper, the concept of PDHFPRs has been first given,
and the multiplicative consistency, order consistency and
acceptable consistency of PDHFPRs have been proposed.
Considering that decision making experts cannot give accu-
rate probabilities of the elements in PDHFPRs, based on
multiplicative consistency, an optimization model that min-
imizes the deviation variable as the objective function has
been constructed. Then, the probability calculation method
has been given. According to the risk attitude of DMs, the
consistency level for PDHFPRs has been tested using the
weighted consistency index. For unacceptable consistency
PDHFPRs, the obtained optimal deviations have been used
to improve the PDHFE with the largest deviation one by one
to adjust the consistency level for the original PDHFPRs.
Based on the improved acceptable preference relation, the
GDMmethod of PDHFPRs has been set, and the overall pri-
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ority weights have been obtained. Finally, by analyzing the
impact factors of haze weather, the validity of our method
has been illustrated.

Although the method proposed in this paper has many
advantages, it also has certain disadvantages. On the one
hand, this paper presents the weight calculation methods for
DMs, but they are not accurate enough, On the other hand,
the given consistency threshold in this paper is determined by
the DMs, which has a certain degree of subjectivity. Future
research could focus on how to give a reasonable calculation
method of accurate weights for DMs as well as an objective
and appropriate consistency threshold. In addition, due to the
different knowledge and experience of DMs, DMs may use
heterogeneity preference relations to express their decision
information. Therefore, it is interesting to further study the
GDM approach with heterogeneity PDHFPRs.
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