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Abstract
In recent years, evolutionary algorithms have shown great advantages in the field of feature selection because of their simplic-
ity and potential global search capability. However, most of the existing feature selection algorithms based on evolutionary 
computation are wrapper methods, which are computationally expensive, especially for high-dimensional biomedical data. 
To significantly reduce the computational cost, it is essential to study an effective evaluation method. In this paper, a two-
stage improved gray wolf optimization (IGWO) algorithm for feature selection on high-dimensional data is proposed. In 
the first stage, a multilayer perceptron (MLP) network with group lasso regularization terms is first trained to construct an 
integer optimization problem using the proposed algorithm for pre-selection of features and optimization of the hidden layer 
structure. The dataset is compressed using the feature subset obtained in the first stage. In the second stage, a multilayer per-
ceptron network with group lasso regularization terms is retrained using the compressed dataset, and the proposed algorithm 
is employed to construct the discrete optimization problem for feature selection. Meanwhile, a rapid evaluation strategy is 
constructed to mitigate the evaluation cost and improve the evaluation efficiency in the feature selection process. The effec-
tiveness of the algorithm was analyzed on ten gene expression datasets. The experimental results show that the proposed 
algorithm not only removes almost more than 95.7% of the features in all datasets, but also has better classification accuracy 
on the test set. In addition, the advantages of the proposed algorithm in terms of time consumption, classification accuracy 
and feature subset size become more and more prominent as the dimensionality of the feature selection problem increases. 
This indicates that the proposed algorithm is particularly suitable for solving high-dimensional feature selection problems.
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Introduction

With the booming field of big data and artificial intelli-
gence, the quest for simple and efficient models has become 
stronger among researchers. On one hand, there are a large 
amount of existing practical applications involving high-
dimensional data, such as in the fields of text mining [1], 

genomics [2] and image retrieval [3]. However, not all data 
are relevant for problem solving. Sometimes, the inclusion 
of unrelated features may diminish the performance of the 
model. On the other hand, it is due to some applications, 
such as Internet of Things (IoT) field [4], as they have high 
constraints on energy consumption, model size and model 
latency, all must use simple and efficient learning mod-
els to meet the needs. Therefore, removing irrelevant and 
redundant features from the data is a highly recommended 
approach, which can be done by feature selection methods. 
The basic concept of feature selection is to reduce the num-
ber of features by eliminating unrelated or redundant fea-
tures, thus simplifying the learned model, shortening the 
inference time of the model, and enhancing the generaliza-
tion ability of the model [5].

A large amount of research work has demonstrated the 
effectiveness of feature selection in simplifying models and 
improving their performance [6]. According to the different 
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solution methods, feature selection can be grouped into 
three categories: wrapper methods [7], filter methods [8] 
and embedded methods [9]. Wrapper methods combine the 
feature selection process with the classifier training process 
by selecting different feature subsets to obtain different 
reduced data and training the classifier. The cross-valida-
tion performance of the classifier is used as the evaluation 
metrics of the feature subsets. In contrast, the filter method 
judges the importance of features based only on the rela-
tionship between the unidimensional features of the training 
data and the target variables. The embedding method usually 
adds regularization constraints to the loss function to train 
the classifier model, and judges the importance of features 
and performs feature selection by the characteristics of the 
classifier itself.

Although feature selection has been widely studied, 
yet feature selection is still a challenging task. For wrap-
per methods, classifier performance is used as the evalua-
tion metric for feature subsets, and its evaluation method is 
straightforward and accurate, so it usually produces more 
accurate subsets than filtering methods. However, evaluating 
each feature subset requires retraining a classifier, so it is 
computationally expensive, especially for high-dimensional 
data. Therefore, this method is deficient in terms of scal-
ability. Also, there is a risk of overfitting the training set 
because classifier performance metrics are used to evalu-
ate the subsets [10]. For the filter methods, the correlation 
between the single-dimensional features of the data and the 
target variable is used to determine the importance of the 
features, which often has advantages in terms of time effi-
ciency, but it is difficult to determine the appropriate number 
of features that can be selected without a certain amount of 
domain knowledge or extensive experimentation. Also, this 
method may not be able to identify the interaction between 
multiple features [11]. For the embedded methods, it is faster 
than the wrapper methods because it uses the ranking of fea-
tures done at the same time as training the classifier model. 
However, it also suffers from the difficulty of determining 
the optimal number of features to retain. From the above 
description, it can be seen that different feature selection 
algorithms have different advantages and disadvantages. 
Therefore, the combination of different types of feature 
selection algorithms is a promising technique to solve the 
feature selection problem.

The gray wolf optimization (GWO) algorithm is a new 
population-based heuristic algorithm proposed by Mirjalili 
et al. [12]. It mimics the process of gray wolf predation 
in nature. The update of the wolf position relies mainly 
on learning from the leader individuals (alpha, beta and 
delta). With the fast convergence and easy-to-use features 
of the algorithm, the gray wolf optimization algorithm is 
widely used in power dispatch problems [13], path plan-
ning [14], Scheduling [15], feature selection [16], and other 

engineering fields [17]. However, it is worth noting that the 
extant feature selection based on the Gray Wolf optimization 
algorithm deals with data that are usually low-dimensional, 
and it is not trivial to migrate the algorithm directly to high-
dimensional feature selection. This motivates us to combine 
Grey Wolf optimization algorithms and other data mining 
techniques such as machine learning techniques to cope with 
feature selection of high-dimensional data more efficiently.

Evolutionary computation techniques have attracted 
much attention in the field of feature selection because of 
their excellent global search capabilities [18–20]. However, 
there are still two major challenges in the large-scale feature 
selection problem. First, the search space of the problem is 
huge. The feature selection problem is often modeled as a 
discrete optimization problem. For a dataset with D features, 
the total number of solutions is as high as 2D . Since the 
problem is solved on a large scale, the value of D is very 
large, and the huge search space poses a great challenge to 
the evolutionary algorithm, leading to a slow convergence 
of the algorithm. Second, the feature selection process based 
on the evolutionary algorithm needs to evaluate the fitness 
of the solution. In most of the current feature selection pro-
cesses, the corresponding classifier needs to be rebuilt when 
evaluating the fitness of each solution, which leads to the 
computation of the fitness is very expensive. The evaluation 
process takes up the vast majority of the running time of the 
feature selection process. It seriously affects the efficiency of 
the algorithm. These two main challenges limit the applica-
tion of evolutionary algorithms to high-dimensional feature 
selection problems.

For small samples of high-dimensional biomedical data, a 
feature selection algorithm combining wrapper and embed-
ded methods is proposed in this paper to avoid the curse of 
dimensionality. The proposed feature selection process is 
divided into two stages. In the first stage, the MLP network 
is first trained by combining neural networks and group lasso 
regularization techniques. The importance of features and 
hidden layer neurons are evaluated and ranked according to 
the weights of the MLP network. Then the proposed IGWO 
algorithm is used to pre-select the features and optimize the 
structure of the hidden layer of the network, thus reducing 
the size of the search space in the second stage of feature 
selection and solving the problem caused by curse of dimen-
sionality. In the second stage, the feature selection prob-
lem is modeled as a combinatorial optimization problem. 
To enhance the diversity of the algorithm, a new popula-
tion update strategy and leader enhancement strategy are 
proposed in this paper, which greatly enhance the diversity 
of the algorithm. In addition, to address the drawback of 
expensive solution set evaluation in the wrapper method, 
this paper proposes a rapid evaluation strategy, which greatly 
reduces the evaluation cost and improves the efficiency of 
the feature selection process.
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The overall goal of this paper is to propose a two-stage 
improved grey wolf optimization algorithm for the feature 
selection problem on high-dimensional data. The method 
achieves high classification accuracy with a smaller subset 
of features and smaller time consumption. Specifically, the 
main contributions of this paper are as follows.

1.	 To address the first challenge in the large-scale fea-
ture selection process, this paper proposes a two-stage 
improved grey wolf optimization algorithm. Initial filter-
ing of features is performed by modeling the optimiza-
tion problem as an integer optimization problem using 
the importance ranking of features in the first stage. This 
process greatly reduces the search space of the large-
scale feature selection problem. By limiting the search 
space to promising regions, it makes it easier for the 
improved grey wolf optimization algorithm to converge 
in the second stage.

2.	 To address the second challenge in the large-scale fea-
ture selection process, the solution is quickly evaluated 
using a multilayer perceptron neural network. Differ-
ent solutions use the same multilayer perceptron neural 
network for fitness evaluation, and the only difference 
is that different solutions correspond to different neural 
network weights. The cost of modifying the weights on 
the trained multilayer perceptron neural network is very 
cheap. Since our method does not require training the 
classifier from scratch, this fast evaluation method sig-
nificantly reduces the time consumption of the fitness 
computation.

The rest of the paper is organized as follows. Sec-
tion “Background and related work” briefly describes related 
work, including neural network, group lasso, gray wolf 
optimization algorithms, and evolutionary algorithm-based 
feature selection methods. In section “Proposed method”, 
this paper develops a two-stage improved gray wolf opti-
mization algorithm. And a fast evaluation method is also 
developed to improve the efficiency of the feature selection 
process. The details of the experiments and the parameter 
settings are described in section “Experimental studies”. The 
results of the experiments and the discussion are described 
in section “Results and discussion”. Finally, conclusions and 
future research directions are given in section “Conclusion”.

Background and related work

In this section, firstly, the concepts and definitions of neu-
ral networks and group penalization are introduced. Next, 
the gray wolf optimization algorithm is briefly introduced. 
Then a brief review of feature selection algorithms based 

on evolutionary algorithms is given. Finally, the research 
motivation of our proposed IGWO algorithm is presented.

Neural network

A multilayer perceptron is a classical feed-forward neural 
network that efficiently solves nonlinear problems [21], such 
as classification and regression. For classification problems, 
it maps a set of input sample data into the category space 
and obtains the posterior probability that a sample belongs 
to a class, thus classifying the sample.

The MLP neural network is used as a classifier for the 
evaluation of solution sets. A three-layer MLP network solv-
ing a three-classification problem is used as an example for 
the introduction of the MLP network, as shown in Fig. 1. 
This neural network consists of an input layer, a hidden layer, 
and an output layer. Each layer consists of multiple neurons, 
and the neurons between adjacent layers are densely con-
nected. For the input layer, the number of neurons is deter-
mined by the dimensionality of the input data, the number 
of neurons in the hidden layer q is determined by the user, 
and the number of neurons in the output layer is determined 
by the number of categories of the classification problem.

For presentation convenience, Xi =
(
xi1, xi2,… , xiD

)
 is 

used to denote the i-th sample data in the dataset, where D 
denotes the dimensionality of the data. hi is used to denote 
the i-th neuron in the hidden layer. The weight of the input 
layer connected to the hidden layer is called W1 , which is a 
matrix of q × D . The i-th column of the matrix W1 is denoted 
by W1

∗i
(i = 1, 2,… ,D) , which represents the weight between 

the i-th feature of the data and all the neurons in the hidden 
layer. Then for the i-th sample Xi , the output value obtained 
at the hidden layer is Zi , which is a q × 1 dimensional vector 
and is calculated as follows:

(1)Zi = g
[(
W1 ⊗ XT

i

)
+ B1

]
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Fig. 1   The architecture of an MLP network



2772	 Complex & Intelligent Systems (2022) 8:2769–2789

1 3

where XT
i
 denotes the transposition of the sample Xi , with 

the symbol ⊗ denoting the multiplication of the matrix. The 
bias of the neurons in the input layer is denoted by B1 , which 
is a q × 1 vector. g denotes the activation function of the 
input layer, and the ReLU activation function [22] is used in 
this paper. The obtained vector Zi is used as the input data 
of the next layer.

The weight matrix between the output layer and the hid-
den layer is called W2 , which is a 3 × q matrix. Then for the 
ith sample Xi , the output value obtained at the output layer 
is Y  , which is a 3 × 1 dimensional vector, and is calculated 
as follows:

where the symbol ⊗ denotes the multiplication of the matrix, 
and B2 denotes the bias of the neurons in the hidden layer, 
which is a 3 × 1 dimensional vector. The activation func-
tion of the hidden layer is denoted by f  . Since this paper 
addresses the classification problem, the softmax function 
is chosen for f  . The output Yi (i = 1, 2, 3) represents the 
probability value of the sample Xi predicted as each class, 
and the one with the largest probability value is the final 
prediction result.

Consider the 
[(
X1, y1

)
;… ;

(
XM , yM

)]
 dataset, where yi is 

the label corresponding to the sample Xi and M denotes the 
size of the dataset. Using stochastic gradient descent, the 
weights of the neural network are trained, and the weights 
of the neural network are obtained by minimizing the cost 
function of the following equation.

where L refers to the cross-entropy loss function and �(w) 
is a regularization constraint added to the weight term so as 
to avoid overfitting the model to the training data, and the 
most common regularization constraint is a squared con-
straint imposed on the weights. The parameter 𝜆 > 0 is the 
regularization factor, which controls the relative impact of 
the empirical error and the regularization term.

Group lasso

W1
∗i

 denotes the i-th column of matrix W1 , which represents 
the weight between the i-th dimensional feature of the data 
and all hidden layer neurons, and is a q × 1 dimensional vec-
tor. The 2-norm of this vector can characterize the impor-
tance of the i-th feature to some extent. That is, the larger 
the 2-norm of W1

∗i
 , the more important the i-th feature is. 

Formally, the importance metric of the i-th feature can be 
expressed by the following equation.

(2)Yi = f
[(
W2 ⊗ Zi

)
+ B2

]

(3)W* = argmin
w

{
1

M

M∑

i=1

L
(
yi, ŷi

)
+ � × �(w)

}

Similarly, the importance metric of the hidden layer neu-
ron hi can be calculated using the following equation.

Since the purpose of feature selection is to remove the 
unimportant feature parts and retain the important feature 
subsets. And Eq. (4) can characterize the importance of fea-
tures, so the most important feature subset can be found by 
applying lasso constraints to the importance metrics of all 
features. The formula is as follows:

This way of lasso constraining the whole vector as a 
whole is called the group lasso technique [23]. Similarly, to 
remove both unimportant features and unimportant hidden 
layer neurons, the group lasso penalty should be applied to 
both the input and hidden layers of the MLP with the fol-
lowing equation [24].

Gray Wolf optimization algorithm

GWO algorithm mimics the characteristics of grey wolf pre-
dation in nature. The process of predation can be considered 
as a process of finding the optimal solution. Without loss 
of generality, we consider a D-dimensional minimization 
optimization problem in which the smaller the fitness value 
of an individual, the better its performance. Suppose the size 
of the population is N , and Pi =

(
pi1, pi2,… , piD

)
 denotes 

the position of the i-th individual in the population. The fol-
lowing equation is used to represent the predatory behavior 
of Pi.

where d = 1, 2,… ,D , r1 is a random number in the range 
− 1 to 1 and r2 is a random number in the range 0 to 2. The 
diversity of the algorithm is increased by these two random 
numbers, and t represents the number of current iterations. 
p
(t)

id
 is the position of the i-th individual at iteration t in the 

d-th dimension. pfd is used to represent the position of the 
prey (optimal solution). The value of a(t) decreases linearly 
as the iteration progresses from 2 to 0, allowing the algo-
rithm to transition its search properties from an emphasis on 
exploration to an emphasis on exploitation [12].

(4)Rxi =
‖
‖
‖
W1

*i2

‖
‖
‖

(5)Rhi =
‖
‖
‖
W2

*i2

‖
‖
‖

(6)�21(w) =

D∑

i=1

‖
‖
‖
W1

*i2

‖
‖
‖

(7)�21(w) =

D∑

i=1

‖‖‖
W1

*i2

‖‖‖
+

q∑

j=1

‖‖‖
W2

*j2

‖‖‖

(8)p
(t+1)

id
= pfd − a(t) × r1 ×

||
|
r2 × pfd − p

(t)

id

||
|
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In GWO, the population is divided into four classes of 
individuals: alpha, beta, delta, and omega. The populations 
are ranked according to their fitness values from smallest to 
largest. The top three individuals are referred to as alpha, 
beta, and delta individuals in that order, and the remaining 
individuals are referred to as omega. Since it is impossi-
ble to know the location of the prey (optimal solution) in 
advance in a real optimization problem, Eq. (8) cannot be 
applied in practice. An easy way to think of a solution is 
to approximate the position of the optimal solution by the 
high-performing individuals in the current population. In the 
GWO algorithm, the alpha, beta, and delta individuals are 
used to approximate the position of the optimal solution, and 
the other individuals update their positions by learning from 
alpha, beta, and delta, respectively, and the position update 
is represented by the following four equations.

where p(t)
1d
, p

(t)

2d
, and p

(t)

3d
 denote the d-th dimensional posi-

tion of alpha, beta, and delta individuals in the population, 
respectively. r1 , r2 and a(t) are defined as in Eq. (8). p(t+1)

id1

,p(t+1)
id2

 and p(t+1)
id3

 denote the new positions obtained by indi-
vidual Pi learning from alpha, beta, and delta individuals, 
respectively. The final new position learned by Pi is obtained 
by averaging these three new positions.

Related works

In this sub-section, feature selection algorithms based on 
evolutionary algorithms are reviewed. Depending on the 
evolutionary algorithms used, feature selection algorithms 
can be mainly classified into GA-based feature selection 
algorithms, PSO-based feature selection algorithms and 
GWO-based feature selection algorithms.

Genetic algorithm‑based feature selection algorithms

A large number of genetic algorithm (GA)-based feature 
selection methods have been proposed by researchers. In 
[25], Hong et al. proposed an evolutionary algorithm based 
on speciated GA. This algorithm on one hand reduces the 
dimensionality of the search space on high-dimensional 

(9)p
(t+1)

id1
= p

(t)

1d
− a(t) × r1 ×

|
|
|
r2 × p

(t)

1d
− p

(t)

id

|
|
|

(10)p
(t+1)

id2
= p

(t)

2d
− a(t) × r1 ×

||
|
r2 × p

(t)

2d
− p

(t)

id

||
|

(11)p
(t+1)

id3
= p

(t)

3d
− a(t) × r1 ×

||
|
r2 × p

(t)

3d
− p

(t)

id

||
|

(12)p
(t+1)

id
=

p
(t+1)

id1
+ p

(t+1)

id2
+ p

(t+1)

id3

3

datasets by a special encoding form. On the other hand, it 
uses the niching technique to avoid the algorithm from fall-
ing into local optimum. In Ding et al. [26], proposed an opti-
mization algorithm that hybridized genetic algorithm and 
competitive swarm algorithm to solve the feature selection 
problem. The crossover operator and variation operator from 
the genetic algorithm were added to the competitive swarm 
optimization to improve the diversity of new individuals 
in the algorithm and prevent premature maturation of the 
population. The results of the study show that the algorithm 
improves the computational efficiency while increasing the 
classification accuracy. In Amini et al. [27], proposed a two-
layer feature selection method that combines a wrapper and 
an embedded method to select a subset of features. In the 
first layer, a genetic algorithm is used to search for the opti-
mal subset of features. In the second layer, an elastic net is 
used to eliminate the remaining irrelevant features to reduce 
the number of feature subsets and the prediction error.

Particle swarm optimization‑based feature selection 
algorithms

In recent decades, researchers have proposed a large number 
of feature selection methods based on particle swarm optimi-
zation algorithms. In Kennedy and Eberhart [18], proposed 
the discrete particle swarm algorithm (BPSO) for the fea-
ture selection problem. The particle swarm algorithm finds 
the best solution by mimicking the social behavior of bird 
flocking. For the feature selection problem, the best solution 
represents the best subset of features searched by the algo-
rithm. However, traditional particle swarm algorithms do not 
solve large-scale optimization problems well, and the search 
efficiency of particle swarm algorithms decreases dramati-
cally when the size of the optimization problem increases.

In a self-adaptive particle swarm optimization algorithm 
called SaPSO was proposed by Xue et al. [28], for large-
scale feature selection problems. To solve the basic problem 
in self-adaptive-based design, an improved analytic hierar-
chy process method was introduced in the paper. Experimen-
tal results on 12 datasets show that the SaPSO algorithm has 
advantages in both classification accuracy and feature subset 
size. In Tran et al. [29], proposed an adaptive multigroup 
particle swarm algorithm. Based on the importance of fea-
tures, the method divides the entire search space into a series 
of subspaces. During the evolution process, the subpopula-
tions are automatically and dynamically changed accord-
ing to their performance. The results of the study show the 
advantage of the method in high-dimensional feature selec-
tion problems. In Xue et al. [30], introduced the adaptive 
mechanism of policy and parameters into the particle swarm 
optimization algorithm and designed a feature selection 
algorithm called SPS-PSO. The results show that the adap-
tive mechanism can significantly improve the performance 
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of the evolutionary algorithm on the feature selection prob-
lem. In Cheng et al. [19], proposed a competitive swarm 
optimization (CSO) algorithm, which is used to solve large-
scale real-valued optimization problems. In this algorithm, 
the particles are randomly divided into two groups, and each 
group of particles competes with each other in pairs. After 
each competition, the winning particle goes directly to the 
next generation, while the losing particle learns knowledge 
from the winning particle to update its position. Experimen-
tal results show that the algorithm is suitable for solving 
large-scale optimization problems. Since the algorithm was 
originally developed for real-valued optimization problems. 
In the discrete CSO algorithm for feature selection was pro-
posed by Gu et al. [20], To reduce the computational cost 
of solution set evaluation, a solution set archiving technique 
is introduced in the paper. Experimental results show that 
the CSO algorithm has a competitive advantage over some 
particle swarm algorithms for the feature selection problem.

Gray Wolf optimization‑based feature selection algorithms

The GWO algorithm has been widely used to solve the fea-
ture selection problem due to its few control parameters, 
adaptive exploration behavior and simplicity of the mecha-
nism. In Too et al. [31], proposed an opposition-based com-
petitive gray wolf optimization algorithm (OBCGWO) to 
deal with the feature selection problem in electromyography 
(EMG) signal classification. The performance of GWO is 
improved by the opposition-based learning (OBL) strategy 
and the competitive strategy. The proposed method achieves 
better results in several EMG signal classifications. In Hu 
et al. [32], proposed a novel binary gray wolf optimization 
algorithm. To solve the discrete optimization problem, the 
paper proposed a novel parameter update formulation and 
transfer function. The feature selection experiments on 
the UCI dataset show that the proposed algorithm obtains 
lower classification error and fewer features compared to the 
original binary gray wolf optimization algorithm. In Chan-
tar et al. [33], proposed an improved elite-based crossover 
binary GWO algorithm to implement the document classi-
fication task. Experimental results show that support vector 
machine-based feature selection techniques combined with 
binary GWO and elite-based crossover schemes provide bet-
ter performance on the document classification task.

In general, although there have been a large number of 
evolutionary algorithm-based feature selection methods to 
solve the feature selection problem. However, there are not 
many studies that simultaneously solve the problems of huge 
search space and expensive fitness evaluation faced in large-
scale feature selection problems. In this paper, a two-stage 
search strategy is used to solve the problem of too large a 
search space. A rapid fitness evaluation mechanism is used 
to solve the problem of high time cost of fitness evaluation. 

Meanwhile, GWO, as a newly proposed swarm optimiza-
tion algorithm, has the advantages of simple structure, less 
parameters to be set and easy implementation of coding. The 
GWO algorithm is used as the search operator in this paper.

Proposed method

In this section, to improve the performance of the GWO 
algorithm, an improved GWO algorithm is proposed in this 
paper. It is also applied to a two-stage feature selection pro-
cess. In the first stage of feature selection, the size of the fea-
ture set and the structure of the hidden layer are optimized 
using the proposed IGWO algorithm. This stage not only 
reduces the size of the feature set, but also finds the optimal 
number of neurons in the hidden layer. In the second stage, 
the feature selection process is constructed as a combinato-
rial optimization problem and the proposed IGWO algorithm 
is used to find the most meaningful features. At the end of 
the feature selection process, the performance of the feature 
selection algorithm is examined on the test set.

Improved Gray Wolf optimization algorithm

Although the GWO algorithm has been widely used in solv-
ing continuous optimization problems, however, GWO has 
some shortcomings, for example, in population updating, 
the population only uses learning from the best three solu-
tions (leaders) to update its position, which will lead to low 
diversity and premature convergence [34]. Therefore, per-
formance improvement of the GWO algorithm is necessary 
and will be described in detail below.

Population representation

IGWO is a population-based evolutionary optimization algo-
rithm. The population contains N individuals, and each indi-
vidual in the population is encoded as a vector of length D . 
The individuals are represented by the following equation.

where lbd denotes the minimum value of the d-th dimension 
of the vector, ubd denotes the maximum value of the d-th 
dimension of the vector, and rand denotes a random number 
from 0 to 1.

Position updating

In the GWO algorithm, the population only uses learning 
from the best three individuals (leaders) to update its posi-
tion, which limits the diversity of the algorithm. To solve this 
problem, this paper uses a diverse leader selection strategy 

(13)xid = lbd + rand ×
(
ubd − lbd

)
d ∈ [1,D]
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to increase the diversity of the algorithm. Specifically, the 
populations are ranked in order of fitness values from small-
est to largest. Assuming that the size of the population is N , 
each individual generates a random integer n ranging from 1 
to N

2
 when choosing a learning target, and then averages the 

positions of the first n individuals in the population to obtain 
a new individual Pl . Taking this new individual Pl as its own 
learning target, the equation is as follows:

Obviously, when the random number n is equal to 3, the 
result of selecting leaders in the paper is similar to the origi-
nal GWO. Since individuals include randomness in select-
ing leaders, each individual may choose different learning 
objects. This strategy helps to maintain the diversity of the 
population, prevent early convergence of the algorithm, 
and increase the diversity of the algorithm, and increase 
the diversity of the algorithm. When the random number n 
is smaller, it indicates that individuals learn from the best 
individuals. When the random number n is larger, it indicates 
that individuals learn from the collective.

Adaptive learning rate

According to the proposal of the paper [35], not all individu-
als need to be updated in position at each iteration period. 
The criterion often used is that the worse the performance 
of an individual, the higher the probability that it will learn 
from other superior individuals. According to the above 
criterion, the learning probability of the i-th individual is 
defined as follows:

where N represents the population size and D represents the 
dimensionality of the optimization problem. i is the index 
value of individuals in the population. The populations are 

(14)Pl =

∑n

i=1
Pi

n
n ∈

�
1, 2,…

N

2

�

(15)p
(t+1)

id
= pfd − a(t) × r1 ×

|
|
|
r2 × pld − p

(t)

id

|
|
|

(16)Li =
(
i

N

)0.5×log
(

D

100

)

sorted in ascending order according to fitness values. When 
i is larger, it means that the corresponding individual in 
the population has a larger fitness value, its performance is 
worse, and its learning probability Li is larger.

Rapid evaluation strategy

A feature selection algorithm based on wrapper methods 
uses classifier performance as an evaluation metric for a sub-
set of features. This evaluation method has the advantages 
of being straightforward and accurate. However, evaluat-
ing each feature subset requires retraining a classifier. This 
causes the method to be computationally expensive, espe-
cially for high-dimensional feature data. A rapid evaluation 
method was developed to address this problem. Specifically, 
the process of modifying the weights of the MLP network 
is considered as feature selection of the data. Formally, the 
modification of the MLP network can be expressed by the 
following equation.

 where G is used as a mask so that the weight value at the 
corresponding column position of W1 is modified to 0. The 
symbol ⊙ denotes the elementwise product operator.

An example is used to illustrate this process, as shown 
in Fig. 2. The input matrix W1 of the MLP is first extracted, 
and the input matrix W1 is modified according to the content 
of the mask vector G . The mask G then represents a feature 
subset, such as G encoded as vector [1 0 0]. The content of 
this encoding indicates that the first dimensional features of 
the data are retained while the second and third dimensional 
features are discarded. And this meaning can be approxi-
mated by modifying all the second and third column values 
of the matrix W1 to 0. In this encoding, the new input matrix 
NewW1 can be obtained and the input matrix of the original 
MLP network is replaced with the NewW1 to generate a new 
MLP network. It is important to note that the bias of all 
neurons is kept constant, since the elimination of certain fea-
tures and neurons can be achieved by the operation of setting 
0 to the corresponding columns of the weight matrix. Then 
the original data are input to the modified MLP network 

(17)NewW1 = W1 ⊙ G

Fig. 2   Example of modifying 
MLP network weights

⊙ [ ]

Extract weight W1

W1 NewW1

Mask G

Replace W1 with NewW1



2776	 Complex & Intelligent Systems (2022) 8:2769–2789

1 3

to calculate the classifier performance. With this strategy, 
all feature subsets can calculate performance metrics on 
the same classifier model without retraining the network. 
This strategy allows a rapid evaluation of the solution set 
to improve the efficiency of the feature selection process. 
Similarly, the hidden layer of the neural network can be com-
pressed. Formally, the compression of the hidden layer can 
be expressed by the following equation.

where O is used as a mask so that the weight value at the 
corresponding column position of W2 is modified to 0. By 
this operation, an action similar to the elimination of the 
corresponding neuron is thus reached.

Fitness function

Two aspects are considered in the design of the fitness func-
tion in this paper. On one hand, the accuracy of the classifi-
cation results is considered. Since the data classified in this 
paper are high-dimensional unbalanced data, balanced accu-
racy is used in this paper. The higher the balance accuracy 
is, the smaller the fitness value is. On the other hand, the 
sparsity of features needs to be considered, and the sparsity 
of features refers to the proportion of the selected features to 
the total number of features. The fewer features are selected, 
the smaller the fitness value. The fitness function is shown 
in the following equation.

 where d denotes the number of features selected, D is the 
total number of features, and � is the average of the balanced 
accuracy of the classifier on the validation set. w is a control 
parameter that controls the interaction of sparsity and bal-
anced accuracy. w has values ranging from 0 to 1. Larger 
values of w indicate that the model places more emphasis 
on the classification performance. It should be noted that 
this paper constructs a minimization optimization problem, 
i.e., the smaller the value of the fitness of the individual, the 
higher the quality of the individual.

The K-fold protocol ( K = 5 ) is used for cross-validation 
to alleviate the overfitting problem during feature selection. 
Specifically, the training set is divided equally into five parts, 
with one part serving as the validation set and the remaining 
four parts as the learning set. The process is repeated for all 
five parts. The learning set is used for MLP training, and the 
validation set is used to characterize the generalization per-
formance of the MLP network. The average of the balanced 
classification accuracy of the MLP network on the validation 
set is denoted as � , and � is calculated as follows:

(18)NewW2 = W2 ⊙ O

(19)fitness = (−�) × w +
d

D
× (1 − w)

 where the balanced accuracy is calculated as follows:

where c is the number of categories of the classification 
problem and accuracyi is the accuracy rate of the i-th 
category.

Feature selection in the first stage

Due to the high dimensionality of the high-dimensional 
feature selection problem, directly modeling the feature 
selection problem as a combinatorial problem will lead to 
a huge search space for the optimization problem, which is 
not conducive to searching for the optimal solution. There-
fore, in the first stage of feature selection, a two-dimensional 
integer optimization problem is constructed to perform a 
coarse search of the search space. This will be described in 
detail below.

Population representation

In the first stage, the feature subset length Len and the num-
ber of neurons q in the hidden layer need to be optimized 
in this stage, and the proposed IGWO algorithm is used to 
optimize these two parameters simultaneously. Each indi-
vidual in the population is represented as shown in Eq. (22).

where pi1 denotes the first dimension of the i-th individ-
ual in the population, which is the number of features to 
be retained. pi1 is an integer from 1 to U , where U is the 
maximum value of dimensionality in the integer optimiza-
tion problem. pi2 denotes the second dimension of the i-th 
individual in the population, which is the number of hidden 
layer neurons to be retained.pi2 is an integer from 10 to M , 
where M is the number of samples.

As an illustrative example, Fig. 3 shows how the individu-
als in the population are used to modify the MLP network 
in the first stage of the algorithm. For the convenience of 
description, for the input matrix W1 , it is assumed that the 
importance of the represented features decreases as the num-
ber of columns of W1 increases. For the output matrix W2 , 
it is assumed that the importance of the represented hidden 
layer neurons decreases as the number of columns of W2 
increases. Taking P1 = [1, 2] as an example, first because P11 
takes the value of 1, this means that only the top one most 

(20)� =
1

5

5∑

i=1

balanced accuracyi

(21)balanced accuracy =
1

c

c∑

i=1

accuracyi

(22)

{
pi1 ∈ [1,U] Number of features selected

pi2 ∈ [10,M] Number of selected hidden layer neurons
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important feature is retained. The matrix W1 is extracted 
from the original MLP network and the input matrix is 
updated to obtain the new MLP network named temp using 
Eq. (17). Since P12 takes the value of 2, this means that only 
the top two most important neurons are retained. The matrix 
W2 is extracted from temp’s MLP network and the output 
matrix is updated by Eq. (18) to obtain the modified MLP 
network. Finally, the fitness of P1 was evaluated using the 
modified MLP network.

Improved Gray Wolf optimization algorithm for integer 
optimization

At this stage, the IGWO algorithm is used for integer optimi-
zation. For ease of representation, the algorithm is referred 
to as the IGWO1 algorithm. The whole algorithm consists 
of two parts. In part 1, the training set is first divided into 
a learning set and a validation set, where the learning set is 
used to train the MLP neural network and the validation set 
is used to test the performance metrics of features subset. 
In training the MLP network, the number of neurons in the 
hidden layer is taken as the maximum, i.e., the number of 
samples. To be able to optimize both the number of fea-
tures and the number of neurons in the hidden layer, the 
group lasso constraint is imposed on both the input layer 
weights and the hidden layer weights. The model is trained 
using stochastic gradient descent to obtain a redundant MLP 
network named NN . After obtaining the MLP network, the 
importance metrics R1 and R2 of features and neurons are 
calculated according to Eqs. (4) and (5), respectively. Then, 

the population is initialized using Eq. (13), while the learn-
ing rate of each individual in the population is calculated 
using Eq. (16).

The part 2 of Algorithm 1 is an iterative process. The fit-
ness values of the individuals need to be calculated at each 
iteration. It should be noted that the population obtained by 
initializing using Eq. (13) is encoded in a real number mode, 
while the two parameters to be optimized are in integer 
mode. The algorithm is illustrated using the i-th individual 
Pi in the population as an example. Firstly, the downward 
rounding operation of Pi is needed to obtain tempPi . temppi1 
and temppi2 are used to denote the first and second dimen-
sions of tempPi , respectively. Then a copy of NN , tempNN , 
is generated and modified to simulate the selection process 
of features. Specifically, according to the R1 metric, only the 
top temppi1 most important features of the network tempNN 
are retained using Eq. (17). According to the R2 metric, only 
the top temppi2 most important hidden layer neurons of the 
network tempNN are retained using Eq. (18). After that, the 
validation set is input to the modified tempNN network and 
the fitness value of individual Pi is calculated using Eq. (19).

When the fitness values of all individuals in the popula-
tion are calculated, the individual with the lowest fitness 
value is alpha. Alpha is the first individual in the population 
when the fitness values are sorted in ascending order. After 
all the above tasks are completed, the individual position 
update operation is started. During each individual update, 
a random number � from 0 to 1 is generated. if � is less 
than the learning rate Li , the position of the individual Pi is 
updated using Eqs. (14) and (15). The algorithm repeats iter-
ations until the maximum number of iterations is satisfied. 

Fig. 3   Example of modifying 
the MLP network using the 
solution

⊙ [ ]

Extract weight W1

W1 NewW1

Dim1=1

Replace W1 with NewW1

⊙ [ ]

Extract weight W2

W2
NewW2

Dim2=2

Replace W2 with NewW2
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At the end of the algorithm, based on the alpha value of the 
last generation and the feature importance metric R1 , the 
algorithm outputs the feature index to be retained and the 
optimal number of hidden layer neurons.
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Feature selection in the second stage

Based on the optimal solution searched in the first stage of 
feature selection, the promising region in the search space 
can be obtained. Then, in the second stage, the search space 
is restricted to the promising region, thus reducing the search 
difficulty of the problem. In the second stage, the feature 
selection problem is modeled as a discrete optimization 
problem so that the promising region is finely searched. 
Since the size of the problem is significantly reduced, this 
makes it easier for the evolutionary algorithm to converge. 
This is described in detail below.

Population representation

The value range of each dimension of an individual is real 
numbers from 0 to 1, while a threshold parameter is used to 
determine whether a feature is selected or not, as shown in 
Eq. (23).

where pid denotes the d-th dimensional value of the i-th 
individual in the population. If pid ≥ 0.6 means that the 

(23)
{

pid ≥ 0.6 Retained feature

pid < 0.6 No retained feature

corresponding feature is retained, and if pid < 0.6 means 
that the corresponding feature is not retained. The dimension 
of an individual is equal to the number of features retained 
in the first stage of feature selection. In this encoding mode, 
each individual in the population represents a candidate 
solution for a feature subset, and the optimal feature subset 
is obtained by iterative optimization.

Proposed leader enhancement algorithm

Alpha, beta and delta individuals play an important leading 
role in the GWO algorithm. Individuals tend to move to a 
better position by learning from these leaders. To prevent 
the proposed IGWO algorithm from falling into a local opti-
mum, these leaders can enhance themselves through leader 
enhancement strategies. Algorithm 2 describes the proposed 
enhancement strategy algorithm. In this algorithm, the 
enhancement search process is divided into local mutation 
search and global mutation search, both with equal probabil-
ity. The maximum number of features that can be changed by 
local mutation is defined as � , and the maximum number of 
features that can be changed by the global mutation process 
is 10 times � . When the number of features S to be mutated 
is determined, S features are randomly added or deleted from 
the leader Pi with equal probability, thus generating a new 
individual NewPi.
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Improved Gray Wolf optimization algorithm 
for combinatorial optimization

At this stage, the IGWO algorithm is used for combinatorial 
optimization. For ease of representation, the algorithm is 
referred to as the IGWO2 algorithm. Algorithm 3 describes 
the pseudo-code of the proposed IGWO2 algorithm. The 
whole algorithm consists of two parts. In part 1, a new train-
ing set is generated by compressing the training set based 
on the feature index obtained in the first stage of feature 
selection. The number of dimensions of this combinatorial 
optimization problem is equal to the number of dimensions 
of the samples in the new training set. The new training set 
is then divided into a learning set and a validation set, where 
the learning set is used to train the MLP neural network and 
the validation set is used to test the performance metrics of 
features subset. In training the MLP network, the number 
of neurons in the hidden layer is taken to be the optimal 
number of hidden layers obtained by optimization in the 
first stage of feature selection. The group lasso constraint is 
imposed on the input layer weights and the model is trained 
using stochastic gradient descent to obtain a redundant MLP 
network named NN . Then, the population is initialized using 
Eq. (13). Also, the learning rate of each individual in the 
population is calculated using Eq. (16).

The part 2 of Algorithm 3 is an iterative process. It should 
be noted that the individuals need to be discretized before 
calculating the fitness value of an individual. The algorithm 
is illustrated by taking the i-th individual Pi in the population 
as an example. The mask tempPi is obtained by discretizing 
Pi according to Eq. 23, and then the copy tempNN of NN is 
modified according to the value of the mask tempPi using 
Eq. (17). After that, the validation set is input to the modi-
fied tempNN network and the fitness value of individual Pi 
is calculated using Eq. (19).

When the fitness values of all individuals in the popula-
tion have been calculated, the fitness values are ranked in 
ascending order. After all the above tasks are completed, the 
individual position update operation is started. For the lead-
ers, i.e., the first three individuals in the population, Algo-
rithm 2 is used to update them. For the other individuals in 
the update, a random number � from 0 to 1 is generated. if 
� is less than the learning rate Li , the position of the parti-
cle Pi is updated using Eqs. (14) and (15). The algorithm 
repeats iterations until the maximum number of iterations 
is satisfied. At the end of the algorithm, the alpha of the last 
generation is output.
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Computational complexity of two‑stage improved Gray 
Wolf optimization

The computational complexity of the two-stage IGWO 
algorithm depends on three main components: leader selec-
tion, population ranking, and fitness evaluation. First, each 
individual in the population needs to choose its own leader 
and learn from the leader. The computational complexity 
of a population consisting of N individuals in choosing a 

leader is O(N) . Second, at each iteration cycle, the popula-
tion needs to be sorted according to the fitness value. The 
worst computational complexity to perform the sorting is 
O
(
N2

)
 . Finally, the fitness evaluation is performed on the 

individuals. Each time an individual is evaluated for fitness, 
the MLP network needs to perform a feedforward propaga-
tion, and its computational complexity is O(D × q + q × c) , 
where D denotes the dimensionality of the data input to the 
MLP network, q denotes the number of neurons in the hid-
den layer, and c denotes the number of categories for clas-
sification. Then the complexity of evaluation for N individu-
als is O(N × (D × q + q × c)) , and the iteration period of the 
algorithm T  , then the total complexity of the algorithm is 
O
(
T ×

(
N + N2 + N × (D × q + q × c)

))
.

Experimental studies

In this section, the performance of the proposed two-stage 
IGWO algorithm is evaluated and compared with some evo-
lutionary algorithm-based feature selection algorithms and 
traditional feature selection algorithms.

Datasets

To evaluate the performance of our proposed method, 10 
gene expression datasets are selected for performance testing 
of the algorithm in this paper. The characteristics of these 
datasets are summarized in Table 1, which shows the number 
of features, the number of samples, the number of classes 
classified, and the percentage of instances in the smallest and 
largest classes for each dataset. From the table, it can be seen 
that these datasets are characterized by high dimensional 
small samples, which helps to distinguish the performance 
differences of the algorithms. In addition, these datasets can 
be publicly downloaded on the http://​www.​gemss​ystem.​org.

Due to the small number of samples in the gene expres-
sion dataset, ten-fold cross validation was used to create 
the training and test sets. As shown in Fig. 4, the data are 

Table 1   Datasets

Datasets Features Instances Class Smallest 
class (%)

Largest 
class 
(%)

SRBCT 2308 83 4 13 35
DLBCL 5469 77 2 13 53
9Tumor 5726 60 9 25 75
Leukemia 1 5327 72 3 3 15
Brain tumor 1 5920 90 5 4 67
Leukemia 2 11,225 72 3 14 30
Brain tumor 2 10,367 50 4 49 51
Prostate 10,509 102 2 28 39
Lung cancer 12,600 203 5 4 16
11 Tumor 12,533 174 11 3 68

Fig. 4   Overview of feature 
selection in 1 of the ten-fold 
cross validation

90%

Training Set

Two-stage 
Improved Grey 

Wolf 
Optimization 

Trained
MLP

Classification
Performance

Test Set

Reduced Test Set
10%

Data Set

Reduced Training Set

Selected 
Features

Training 
MLP 

Table 2   Algorithm parameter setting

Parameter Value

Population size N 50
Maximum iterations T 100
Control parameter w 0.99
Mutation of intensity β 10
The maximum dimension of the integer optimization U 1000
Number of training epoch 150
Regularization factor � 0.1

http://www.gemssystem.org
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divided into ten parts, nine of which are the training set and 
are used during the feature selection process. The remaining 
one part is used as the test set, which is never used in the fea-
ture selection process. Using the training set, the optimized 
feature subset is obtained by searching under the proposed 
two-stage algorithm. After the feature selection process is 
completed, the training and test sets are dimensionally com-
pressed according to the selected features. The compressed 
training set is used to train the MLP neural network. The 

compressed test set is also tested on the trained MLP net-
work. The performance of the feature selection method is 
evaluated in terms of the accuracy of the classifier on the 
compressed test set. It is important to note that this process 
needs to be repeated ten times.

Table 3   Average test results Datasets Algorithm Time (m) Feature size Best Mean ± Std S

SRBCT Full 2308.0 87.08 +

PSO 8.2 1119.4 92.50 89.51 ± 1.56 +

CSO 19.9 85.4 100.00 93.29 ± 3.52 +

Two-stage IGWO 4.5 29.5 100.00 99.14 ± 0.64
DLBCL Full 5469.0 83.00 +

PSO 47.6 2681.0 86.33 83.67 ± 1.52 +

CSO 394.8 30.1 100.00 94.30 ± 4.05 =

Two-stage IGWO 4.6 45.8 98.30 93.00 ± 3.60
9 tumor Full 5726.0 36.67 +

PSO 39.2 2811.9 45.00 42.72 ± 1.42 +

CSO 373.4 220.3 68.33 59.50 ± 3.72 =

Two-stage IGWO 4.6 243.8 63.33 60.28 ± 2.24
Leukemia 1 Full 5327.0 79.72 +

PSO 41.2 2615.5 87.36 80.60 ± 2.55 +

CSO 251.8 170.1 96.81 88.45 ± 3.90 +

Two-stage IGWO 4.7 27.6 94.17 93.47 ± 0.66
Brain tumor 1 Full 5920.0 72.08 +

PSO 66.7 2917.2 77.08 73.73 ± 2.21 +

CSO 462.1 207.6 86.67 79.93 ± 3.09 =

Two-stage IGWO 4.8 189.0 82.50 78.89 ± 2.75
Leukemia 2 Full 11,225.0 89.44 +

PSO 120.6 5535.7 92.22 89.83 ± 1.00 +

CSO 1845.2 88.6 98.33 91.72 ± 3.16 =

Two-stage IGWO 5.5 45.6 97.22 94.91 ± 1.80
Brain tumor 2 Full 10,367.0 62.50 +

PSO 80.5 5117.2 67.08 61.99 ± 2.91 +

CSO 950.8 90.4 90.83 80.44 ± 6.28 −

Two-stage IGWO 5.8 182.8 79.17 74.03 ± 3.65
Prostate Full 10,509.0 85.33 +

PSO 160.6 5193.7 88.33 86.00 ± 1.49 +

CSO 2369.9 357.2 95.17 88.99 ± 2.68 =

Two-stage IGWO 5.8 41.8 94.33 92.17 ± 2.03
Lung cancer Full 12,600.0 78.05 +

PSO 574.2 6234.7 82.72 78.77 ± 1.53 +

CSO 5565.9 226.4 93.79 87.72 ± 2.93 +

Two-stage IGWO 6.7 95.4 98.29 95.64 ± 1.43
11 tumor Full 12,533.0 71.42 +

PSO 418.5 6205.0 75.59 71.81 ± 1.75 +

CSO 6288.6 588.6 84.47 79.52 ± 2.35 +

Two-stage IGWO 6.7 236.7 93.05 90.59 ± 1.98
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Experimental setting

In the two-stage IGWO algorithm, the importance ranking 
of all features is obtained using the MLP network, and the 
search space in the first stage is restricted to the inside of 
the top U most important features. Through experimental 
analysis, the algorithm can obtain good performance when 
U is set to 1000. In addition, the number of populations does 
not need to be too large because the search range of features 
is limited. The number of populations is set to 50, and the 
maximum number of iterations of the algorithm is 100.

w is set to 0.99 because the classification performance 
of the classifier is more important than the sparsity of the 
features. When training the MLP network, the training epoch 
of the MLP network is set to 150 to ensure that the weights 
of the MLP network reach convergence. For the regulariza-
tion parameter � , the choice is made from four typical values 
{1, 0.1, 0.01, 0.001} , and the best algorithm performance is 
achieved when � is 0.1. The parameter settings used by the 
algorithm in this paper are shown in (Table 2).

Comparison algorithm

To compare with the feature selection algorithm proposed 
in this paper, four existing feature selection algorithms were 
selected. These previously published algorithms include 
linear forward selection (LFS) [36], correlation-based FS 
(CFS) [37], PSO [18], and CSO [20]. Among them, LFS 
and CFS are two traditional feature selection algorithms. 
PSO and CSO are two evolutionary computation-based fea-
ture selection algorithms. All methods operate in the same 
experimental environment.

Results and discussion

In this section, the performance of the proposed algorithm is 
tested on ten gene expression datasets to evaluate the effec-
tiveness of our proposed algorithm. Table 3 shows the aver-
age experimental results for the original feature set (Full), 
PSO, CSO and the proposed algorithm over 30 experiments. 
Table 4 shows the average experimental results of LFS, CFS 
and the proposed algorithm over 30 experiments. The exper-
imental data include the running time of the algorithms, the 
feature size, and the best and average accuracy on the test 
set. Note that the accuracy in the table refers to the bal-
anced accuracy calculated using Eq. (21). The running time 
in Table 3 is in minutes and in Table 4 the running time is in 
seconds. In Tables 3 and 4, the minimum time consumption, 
minimum feature size, highest best and average accuracy 
obtained on each dataset are highlighted in bold. The last 
column in the table shows the results of the Wilcoxon sta-
tistical test at the 5% significance level. The results of the 

statistical tests are indicated by each of the three symbols 
" + ", " = ", and "−". The symbols " + ", " = ", and "−" indi-
cate that the proposed method is significantly better, similar, 
and worse than the method being compared, respectively.

Comparisons with other evolutionary algorithms

To evaluate the performance of the proposed two-stage 
IGWO feature selection algorithm, an algorithm comparison 
is performed using the full set of features and two evolution-
ary algorithm-based feature selection algorithms.

Two‑stage improved Gray Wolf optimization versus full

As shown in Table 3, the accuracy of the proposed algorithm 
on all datasets is higher than the accuracy of the model con-
structed using all features, which indicates the effectiveness 
of the feature selection process in the gene expression data-
set. Specifically, in terms of the best accuracy, the proposed 
algorithm improved the best accuracy by more than 9.00% 
on all datasets. The largest improvement in best precision 
was found on the 9Tumor dataset, where the best precision 
was improved by 26.66%. In terms of average accuracy, the 
proposed feature selection algorithm improves the average 
accuracy by more than 5.47% on all the datasets. The largest 
improvement in average accuracy is on the 9Tumor dataset, 
with an average accuracy improvement of 23.61%. In addi-
tion, for the size of feature subsets, the proposed algorithm 
eliminates more than 95.7% of the features in all datasets. 
The largest percentage of feature reduction is on the Prostate 
dataset, which reduces about 99.6% of the features.

The experimental results show that the proposed algo-
rithm can effectively reduce the size of features while 
improving the accuracy of classification. This indicates that 
the proposed two-stage search strategy is effective. In addi-
tion, the running time of the algorithm does not increase 
significantly with the increase of the problem dimension, 
mainly because the proposed rapid evaluation method effec-
tively reduces the evaluation cost of the solution set.

Two‑stage improved Gray Wolf optimization versus particle 
swarm optimization

As shown in Table 3, the proposed algorithm significantly 
outperforms the PSO algorithm in terms of classification 
accuracy and the number of selected features on all datasets 
as well as the running time of the algorithm. Specifically, 
compared to the PSO algorithm, the proposed algorithm 
improves the best accuracy by more than 5.00% on all data-
sets in terms of the best accuracy. The largest best accuracy 
improvement is in the 9Tumor dataset, where the best accu-
racy is improved by 18.33%. In terms of average accuracy, 
the proposed algorithm improves the average accuracy by 
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more than 5.08% on all the datasets. The largest improve-
ment in average accuracy is on the 11Tumor dataset, where 
the average accuracy is improved by 18.78%. For the size of 
feature subsets, the number of feature selections obtained by 
the PSO algorithm on all datasets is 15–124 times the num-
ber of features retained by the proposed algorithm, which is 
much worse than the algorithm in this paper.

In PSO algorithm, the feature selection problem is 
directly modeled as a high-dimensional combinatorial opti-
mization problem. Due to the high dimensionality of the 
problem, the algorithm can easily fall into local optimal 
solutions. This causes the PSO algorithm to perform worse 
than the algorithm in this paper. For the running time of 
the algorithm, the running time of the PSO algorithm is 1.8 
times to 85 times longer than that of the proposed algorithm 
on all datasets. The reason for the enormous running time 
in the PSO algorithm is that the classifier needs to be recon-
structed for each solution to be evaluated. The expensive 
computational cost limits the application of the PSO algo-
rithm to large-scale feature selection problems.

Two‑stage improved Gray Wolf optimization 
versus competitive swarm optimization

As shown in Table 3, the best classification accuracy of 
the proposed algorithm is equal to or better than that of the 
CSO algorithm on three-tenths of the datasets. The average 
accuracy on seven-tenths of the datasets is better than that 
of CSO, with the largest improvement in the average accu-
racy on the 11Tumor dataset, where the average accuracy 
is improved by 11.07%. For the size of feature subsets, the 
proposed algorithm selects fewer features on seven-tenths 
of the datasets. On the Prostate dataset, the CSO algorithm 
obtains eight times the number of feature selections than the 
number of features retained by the proposed algorithm. For 
the running time of the algorithm, the CSO algorithm runs 
between 4 and 938 times longer than the proposed algorithm 
on all datasets. Although the CSO algorithm has good per-
formance in terms of best accuracy, the expensive compu-
tational cost limits the application of the CSO algorithm to 
large-scale feature selection problems.

From the above discussion, it can be seen that the pro-
posed algorithm has better performance in most cases com-
pared to Full, PSO, and CSO. In 30 comparisons of aver-
age classification accuracy, the proposed algorithm won 
25 times, tied 4 times, and lost 1 time. This demonstrates 
the superiority of the two-stage search strategy designed 
in this paper. Initial filtering of features is performed by 
modeling the optimization problem as an integer optimiza-
tion problem using the importance ranking of features in 
the first stage. This process greatly reduces the search space 
of the large-scale feature selection problem. By limiting the 
search space to promising regions, it makes it easier for the 

IGWO algorithm to converge in the second stage. Thus, the 
proposed algorithm has this better performance.

The running time of the algorithm is a key factor limit-
ing the application of evolutionary algorithm-based feature 
selection methods to large-scale feature selection problems. 
In terms of the running time of the algorithm, with the help 
of the fast evaluation strategy for fitness values proposed 
in this paper, it has an overwhelming advantage over other 
algorithms in terms of running time. On one hand, this is 
because different solutions use the same MLP for fitness 
evaluation, the only difference being that different solu-
tions correspond to different MLP weights. The weights of 
the trained MLP are very inexpensive to modify. Since our 
method does not require training the classifier from scratch, 
this fast evaluation method greatly reduces the time con-
sumption of the fitness computation. On the other hand, the 
inference of the neural network can be easily accelerated 
with the help of GPUs, which makes the computation of fit-
ness even cheaper. The running time of the PSO algorithm 
is 1.8 times to 85 times longer than the proposed algorithm 
on all datasets, and the running time of the CSO algorithm 
is 4 times to 938 times longer than the proposed algorithm. 
This indicates that the comparison algorithms are all much 
worse than the proposed algorithms in terms of algorithm 
running efficiency. In addition, the advantages of the pro-
posed algorithm in terms of time consumption, classification 
accuracy and feature subset size become more and more 
prominent as the dimensionality of the feature selection 
problem increases. This indicates that the proposed algo-
rithm is particularly suitable for solving large-scale feature 
selection problems.

Comparisons with traditional methods

To evaluate the performance advantages and disadvantages 
between the proposed two-stage IGWO feature selection 
algorithm and the traditional feature selection algorithm, 
an algorithm comparison is performed using two traditional 
feature selection algorithms.

Two‑stage improved Gray Wolf optimization versus linear 
forward selection

As shown in Table 4, the proposed algorithm outperforms 
the LFS algorithm in terms of the best accuracy on all data-
sets. The improved best accuracies are all above 1.67%. The 
largest improvement in the best accuracy is on the 9Tumor 
dataset, where the best accuracy is improved by 36.66%. In 
terms of average accuracy, the proposed algorithm achieves 
better accuracy than LFS on nine-tenths of the datasets. Only 
on the Brain2 dataset, the average accuracy of LFS is higher 
than the algorithm proposed by LFS. The LFS algorithm has 
an advantage in the running time of the algorithm, which is 
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caused by the premature convergence of the LFS algorithm 
in the search process and thus falling into a local optimum 
solution.

Two‑stage improved Gray Wolf optimization 
versus correlation‑based FS

As shown in Table 4, the proposed algorithm outperforms 
the CFS algorithm in terms of classification accuracy on all 
datasets. The largest improvement in the best accuracy is on 
the 11Tumor dataset, where the best accuracy is improved 
by 13.01%. In terms of average accuracy, the proposed algo-
rithm achieves classification accuracies equal to or better 
than LFS on eight tenths of the datasets. For the size of the 
feature subset, the proposed algorithm selects fewer features 
on seven tenths of the dataset, where the proposed algorithm 
retains only 1/5 times the number of features retained by 
the CFS algorithm on the Lung Cancer dataset. In terms of 
algorithm running time, the CFS algorithm has a slightly 
shorter running time than the proposed algorithm on the 
SRBCT dataset. The running time of the CFS algorithm is 
longer than that of the proposed algorithm on all the remain-
ing datasets. It should be noted that the running time of the 
CFS algorithm increases substantially as the dimensionality 
of the problem increases. In the Lung Cancer dataset, its run-
ning time is 211 times longer than that of the proposed algo-
rithm, which indicates that the proposed algorithm is more 
suitable for large-scale feature selection problems than CFS.

From the above discussion, it can be seen that the pro-
posed algorithm wins 15 times and ties 5 times in the com-
parison of 20 average accuracies with 2 traditional methods. 
The results show that for most large-scale feature selec-
tion problems, the proposed algorithm is able to achieve a 
smaller subset of features and better classification accuracy 
with efficient running time compared to traditional methods.

The potential applications of two‑stage improved 
Gray Wolf optimization

With a two-stage search strategy and a fast fitness evaluation 
mechanism, our proposed method is particularly suitable for 
solving large-scale feature selection problems. An exam-
ple is data analysis of gene expression data. Gene expres-
sion data analysis is an important tool in cancer diagnosis. 
Although the dimensionality of genes is very high, only a 
small fraction of the dimensionality plays a role in classi-
fication. Therefore, searching for a subset of genes related 
to cancer among all characteristic genes is a key aspect in 
cancer gene research [38]. The algorithm proposed in this 
paper can effectively cope with this problem. Besides, 
many machine learning fields, such as text mining [1] and 
image retrieval [2], require data analysis of large amount 

of high-dimensional data, and the method proposed in this 
paper can also be used to solve such problems.

The limitation of two‑stage improved Gray Wolf 
optimization

Although the proposed method is suitable for solving large-
scale feature selection problems. However, the advantage 
of our algorithm gradually becomes smaller in small-scale 
feature selection problems. On one hand, it is because the 
search space of the small-scale feature selection problem is 
small, and it is not too difficult to model the problem directly 
as a discrete optimization problem for solving. On the other 
hand, it is because of the small size of the features, it is 
not too expensive to perform the fitness evaluation directly 
like using k-nearest neighbor [39], Support Vector Machine 
[40] and other classifiers. In addition, although the proposed 
algorithm improves the performance of the classifier, the 
existing experimental results are still far from the desired 
goal, especially for the feature selection problem dealing 
with class imbalance. However, this type of problem is also a 
major challenge to be solved in the field of feature selection.

Conclusion

In this paper, a two-stage IGWO algorithm is proposed to 
solve the feature selection problem for high-dimensional 
biological data. The proposed algorithm can significantly 
reduce the size of features while maintaining high perfor-
mance metrics. Meanwhile, to solve the problem of high 
computational cost of wrapper-based feature selection algo-
rithm, a rapid evaluation method is proposed using group 
lasso technique and MLP network. This method approxi-
mates the feature selection process by modifying the weight 
data of the MLP network, thus directly evaluating individu-
als on the modified neural network without retraining and 
greatly reducing the evaluation cost. In the fitness design, 
sparsity and classification accuracy are aggregated as a sin-
gle objective to serve as an individual fitness evaluation. 
Then modeling the problem as a multi-objective problem 
is a worthy consideration. In addition to feature selection, 
group lasso regularization and IGWO based algorithms can 
be used for neural network sparse structure learning. There-
fore, using IGWO algorithm to learn optimal neural network 
structure, which is the direction of our further research.
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