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Abstract
Query weight optimization, which aims to find an optimal combination of the weights of query terms for sorting relevant 
documents, is an important topic in the information retrieval system. Due to the huge search space, the query optimization 
problem is intractable, and evolutionary algorithms have become one popular approach. But as the size of the database grows, 
traditional retrieval approaches may return a lot of results, which leads to low efficiency and poor practicality. To solve this 
problem, this paper proposes a two-stage information retrieval system based on an interactive multimodal genetic algorithm 
(IMGA) for a query weight optimization system. The proposed IMGA has two stages: quantity control and quality optimi-
zation. In the quantity control stage, a multimodal genetic algorithm with the aid of the niching method selects multiple 
promising combinations of query terms simultaneously by which the numbers of retrieved documents are controlled in an 
appropriate range. In the quality optimization stage, an interactive genetic algorithm is designed to find the optimal query 
weights so that the most user-friendly document retrieval sequence can be yielded. Users’ feedback information will accel-
erate the optimization process, and a genetic algorithm (GA) performs interactively with the action of relevance feedback 
mechanism. Replacing user evaluation, a mathematical model is built to evaluate the fitness values of individuals. In the 
proposed two-stage method, not only the number of returned results can be controlled, but also the quality and accuracy of 
retrieval can be improved. The proposed method is run on the database which with more than 2000 documents. The experi-
mental results show that our proposed method outperforms several state-of-the-art query weight optimization approaches in 
terms of the precision rate and the recall rate.
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Introduction

The process of an information retrieval system (IRS) is to 
find the information which stays consistent mostly with the 
user’s need from a huge database [1–5]. With the develop-
ment of information technology, the amount of information 
grows explosively. As a result, how to find the most satisfac-
tory information from databases becomes very challenging 

[6–10]. Information retrieval has attracted increasing atten-
tion in recent years [11–14].

Vector space model (VSM) [15] as a famous IRS model 
is characterized by describing the queries. By sorting simi-
larities between documents vectors and the query vector, an 
ordered sequence of retrieved documents can be obtained. 
The documents that meet the user’s needs best will be 
placed in the front of the document sequence. In the VSM, 
the retrieval process can be seen as the process of finding 
the best combination of weights of query terms, which is 
called query optimization. With numerous possible combi-
nations of query weights, the problem of query optimization 
becomes a challenging issue in information retrieval.

Evolutionary computation (EC) has become a popular 
technique for solving query weight optimization problems. 
EC is a population-based stochastic optimization method 
with high robustness and wide applicability [16–18]. For 
example, Cordon et al. [19] have verified that the application 
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of evolutionary algorithms (EAs) is promising in solving the 
query weight optimization problem. They also stated that 
genetic algorithm (GA) is the most commonly-used EA in 
this field. Horng and Yeh et al. [20] proposed a new objective 
function of GA to express the score of the rank of retrieved 
documents. If a combination of the query weights can place 
relevant documents in a higher rank in the retrieved list, the 
solution will be assigned a better fitness value. Lopez et al. 
[21, 22] also investigated different fitness functions of GA 
and further compared them with the classical Ide algorithm 
[1]. The final conclusion that GA has great potential in solv-
ing the query weight optimization is drawn.

As a kind of emerging EC technology, interactive evolu-
tionary computation (IEC) which applies user’s evaluation 
to the process of EC, has been commonly applied in website 
design, data analysis, IRS, product design, and so on [23–27] 
in recent years. Different from traditional EC, the fitness 
evaluation of IEC is subjective and relative, and IEC needs 
users to assign fitness values for individuals. Users tend 
to feel tired when performing a large number of repetitive 
operations, which can affect the quality of user evaluation. 
Furthermore, the optimization results are also influenced. 
More and more studies focus on improving IEC with dif-
ferent strategies. The first approach is to improve the way 
users evaluate. For example, Takagi et al. [28] proposed an 
input method using discrete fitness values for an interac-
tive genetic algorithm (IGA). They changed the traditional 
percentage system to a smaller scale of five or seven during 
the user evaluation, which helps reduce user fatigue. Lee 
et al. [29] proposed a sparse fitness evaluation in IGA for 
reducing the user burden. They adopt clustering to divide 
the population into several sub-populations. One representa-
tive individual is selected from each sub-population. Then, 
the fitness value of other individuals in this subpopulation 
is determined according to the fitness value of the repre-
sentative individual and the distance to the representative 
one. Watanabe et al. [30] proposed an interactive genetic 
algorithm based on a paired comparison (PC-IGA). Instead 
of assigning a specific score to the user, PC-IGA allowed 
that the user only needed to compare two individuals and 
select the better one. The selected individual can enter the 
next round of competition until the final winner is obtained. 
Sun et al. [31] proposed an interactive genetic algorithm 
with the individual’s fuzzy and stochastic fitness to replace 
the user’s evaluation for each individual. By using a fuzzy 
number to assign fitness, this approach can reduce the user’s 
burden dramatically. Another strategy for improving IEC is 
to build a surrogate model to evaluate the fitness value of 
the individual. The second method is to build the surrogate 
model to replace user evaluation. Wang et al. [32] proposed 
an interactive genetic algorithm combined with a support 
vector machine. Making full use of the positive and negative 
examples selected by the user at the initial stage, a support 

vector machine is utilized to construct a classifier. Experi-
mental results show that this method can better reduce user 
fatigue. Li et al. [33] proposed an adaptive learning evalua-
tion model to judge beauty instead of users in the evolution-
ary art system. The model extracts specific aesthetic features 
from internal evolutionary images and external real-world 
painting. By training these features, a more accurate learn-
ing method is selected and a model is established. Although 
these methods can alleviate the user’s fatigue greatly, effec-
tive evolutionary operators are not involved. The third 
strategy is to modify evolutionary operators in IEC. Tinkle 
et al. [34] utilized the weighted hypervolume to assign the 
fitness of solutions for solving multiobjective optimization 
problems, which can accelerate the convergence of IEC. 
Gong et al. [35] proposed a hierarchical interactive evolu-
tion algorithm. The algorithm initially performed a global 
search in the entire search space. When it reached a certain 
level, it switched to the area search of key gene segments. 
This continuously reduced the search area until a satisfactory 
solution is found.

However, research on IEC in the field of the query weight 
optimization has lots of issues that need to be solved. For 
instance, with the increase of documents in the database, the 
search space increases exponentially, and the query optimi-
zation problem becomes intractable. Therefore, traditional 
IEC faces the disadvantage of poor efficiency in solving the 
query weight optimization problem. Moreover, it is neces-
sary to find as many solutions as possible to meet the needs 
of the user in a single search. Traditional query weight 
optimization methods still need to improve the accuracy of 
the search to make the retrieval system more user-friendly. 
To solve the above issues, this paper proposes a two-stage 
information retrieval system based on interactive multimodal 
GA (IMGA) for query weight optimization. Due to the sizes 
of databases grow rapidly, the query optimization problem 
becomes a large-scale optimization problem. To increase 
the search accuracy of the algorithm, we adopt a multimodal 
GA to reduce the search space firstly, which optimizes the 
number of returned relevant documents in case that the 
number of returned documents is too many or too few. An 
IRS can be more user-friendly by controlling the number of 
returned documents. Then an interactive GA is implemented 
for query weight optimization to improve the accuracy of 
results. After the search space of the query weight optimiza-
tion in the second stage is reduced, the search accuracy of 
the proposed method IMGA is easier to be improved. Thus, 
a two-stage method which contains a quantity control stage 
and a quality optimization stage at the meantime. The pro-
posed method has the following contributions:

1.	 A two-stage method for query weight optimization is 
introduced, including a quantity control stage and a qual-
ity optimization stage. In this way, both the quantity and 
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quality of the returned results can be taken into account 
in the proposed approach. In the quantity control stage, 
a multimodal GA is used to optimize the number of 
returned relevant documents in case that the number of 
returned documents is too many or too few. In the qual-
ity control stage, an interactive GA is implemented for 
query weight optimization to improve the accuracy of 
results.

2.	 To tackle the sub-problems in these two stages, we adopt 
two different GAs respectively. In the first stage, the aim 
is to search for several combinations of the query terms, 
so that the number of retrieved documents found by each 
combination can be controlled in a suitable range. To 
obtain multiple combinations simultaneously instead 
of a single combination, a special multimodal GA with 
niching is adopted to yield multiple solutions at the same 
time that minimize the difference between the actual 
number of documents retrieved and the expected range 
of the number of retrieved documents. In this way, it 
is able to control the number of retrieved documents 
and decrease the scale of the optimization problem. In 
the second stage, an interactive GA is applied to search 
for the optimal weights of the query terms, so that the 
sequence of documents retrieved is the most suitable 
for the users. Replacing user evaluation, returned results 
that are multiple sequences of documents are evaluated 
by a mathematical model. What’s more, for each sub-
groups of the query terms found during the first stage, 
the corresponding weights are optimized separately by 
an interactive GA process. In this way, the search per-
formance of the proposed method can be improved.

To verify the effectiveness of the proposed two-stage 
method IMGA, we conduct the experiment on the database 
which contains more than 2000 documents from different 
categories. The proposed approach is run on the database 
compared with some state-of-the-art query weight optimiza-
tion algorithms in terms of the retrieval performance.

The remainder of this paper is organized as follows. Sec-
tion “Related concepts” gives a brief introduction to the 
background information. In Section “A two-stage infor-
mation retrieval system with relevance feedback based on 
IMGA for query weight optimization”, we present a novel 
two-stage information retrieval system based on an interac-
tive multimodal genetic algorithm for query weight optimi-
zation. The experimental results of the proposed method 
are shown in Section “Experiment results”. Finally, Section 
“Conclusion” concludes this paper.

Related concepts

Research of EAs for information retrieval mainly involves 
three parts, i.e., the expression of queries and documents, the 
relevance feedback mechanism, and the design of EAs. To 
facilitate understanding, this section will present the back-
ground of this work, including VSM, IEC, and GA as well. 
Besides, the niching strategy, designed for improving search 
diversity of EAs, will also be presented.

Vector space model

Vector space model (VSM) is firstly introduced by Salton 
et al. [15] to transform the intricate document retrieval pro-
cess into intuitive vector operations in the vector space. 
Query terms and documents are described as vectors. By 
operating on the vectors, the relevance between documents 
and the query can be accessed by calculating the relevant 
degrees among vectors.

Given a query, each query term in the query is expressed 
as ti. A document k which is consisted of a set of terms ti 
( 1 = i = n ) is represented as a vector d⃗k

where wik denotes the weight of the query term ti in the doc-
ument vector. The query q is also represented as a vector Q⃗k

where wik denotes the weight of the query term ti in the 
query vector.

For the ith query term ti, its weight in the query vector is 
related to the frequency of the query term ti in the document 
dk. The frequency of the ith term of the query vector in the 
kth document is denoted by tfik. In fact, some terms appear 
frequently in the documents and contribute little to increase 
the query accuracy, so it is necessary to give lower weights 
to the terms that appear frequently in the document database. 
Assume that the number of all documents is N, the number 
of keywords ti in the document is ni, the inverse document 
frequency (IDF) of the term ti is defined as follows [36]

In this way, the more frequently a term appears in the 
document database, the smaller value of IDF it has. When 
the number of keywords ti in the document is 0, the value 
of IDF will be set infinity. For the sake of distinguishing the 
importance of each term, the weight wik for the term ti in the 
document dk is given as follows [36]

(1)d⃗k =
(
w1k,w2k,… ,wnk

)
,

(2)Q⃗k =
(
w1k,w2k,… ,wnk

)
,

(3)IDF = log
N

ni
.
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where maxtfik denotes the frequency of the term that appears 
the most frequently in the document. In other words, the 
larger the weight of the term has, the more informative the 
term is.

Interactive evolutionary computation

In IEC, the user’s need is attached to the evaluation of 
solutions of EC. IEC organically combines the intelligent 
evaluation of human beings with EC, breaking through the 
limitation of establishing the numerical performance index 
of the optimized system. The process of IEC is represented 
in Fig. 1.

Relevance feedback mechanism

The mechanism of relevance feedback employed in the IRS 
is a kind of IEC [37–39], in which part of the returned results 
would be marked as relevant documents or irrelevant ones by 
the user. This technology separates relevant documents from 
irrelevant documents according to the user’s opinion. As a 
kind of relevance feedback algorithms, Ricchio’s relevance 
feedback algorithm is widely used in Salton’s SMART sys-
tem in 1970 [40]. This algorithm constantly modifies the 
new query vector by the documents which are part of the 
database, marked as relevant or irrelevant with respect to 
the uses’ need. It expects to find an optimal vector which 
is nearest to the centroid vector of relevant documents and 
farthest to the centroid vector of irrelevant documents. Rel-
evance feedback techniques based on GA have shown great 
potential. Zhu et al. [41] combined different relevance feed-
back techniques with GA in the form of designing fitness 

(4)wik =
tfik

maxtfjk
× IDFi,

functions and introduced three different genetic operators to 
develop a new GA-based query optimization method. They 
compared the proposed method with three well-known query 
optimization methods with relevance feedback: the tradi-
tional Ide Dec-hi method [1], the Horng and Yeh’s method 
[20], and the Lopez-Pujalte et al.’s method [19] which are 
all based on GA. The results have shown that the informa-
tion retrieval methods with the relevance feedback mecha-
nism based on GA have better performance. In the process 
of the IRS, the relevant feedback mechanism mainly aims 
to improve the quality of final search results through user 
interaction [1]. The fundamental of the relevance feedback 
mechanism is described as follows. The user submits a query 
and the system returns an initial search result. Then, par-
tial results are marked as relevant or not by the user, and 
the query will be modified to keep the query vector moving 
closer towards the centroid of vectors of relevant documents 
and farther from the centroid of vectors of irrelevant docu-
ments. After several relevance feedbacks, the optimal query 
vector is obtained.

Fitness function

The setting of the fitness function in IEC is related to users’ 
preferences. To improve IEC, many approaches adopt a 
surrogate model to evaluate individuals instead of manual 
marking. In the relevance feedback mechanisms, fitness 
functions are designed in a variety of ways. One of the 
most famous methods is proposed by Chang et al. [36]. By 
comparing the degrees of similarity between the query vec-
tor and the document vectors, an ordered sequence of the 
retrieved documents can be returned. The degree of similar-
ity between the query vector ��⃗Q and the document vector ���⃗dk 
is calculated as follows

Fig. 1   The IEC system
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where S(Q⃗, d⃗k) is between 0 and 1, and ri is the relevant 
degree of the query term ti. They used 16 fuzzy rules and 
the membership functions to infer the value of ri for each 
query term ti [20]. The larger the value of S(Q⃗, d⃗k) is, the 
more relevant ��⃗Q and ���⃗dk are.

The fitness value of the query can be reflected by the 
sequence of the retrieved documents, which is sorted by 
S(Q⃗, d⃗k) . Instead of users’ evaluation of each individual, each 
individual is evaluated by the following formula [36]

where D is the set of documents in the system based on the 
user’s feedback;|D| is the number of retrieved documents; r 
(di) represents the relevance of document di . If di is relevant 
to the query vector qi, r (di) is equal to 1; otherwise, it is 0. 
The fitness value is between 0 and 1. The higher a relative 
document is ranked, the larger the fitness value of this sort 
is. Obviously, the fitness value of the top-ranked documents 
is equal to 1.

Genetic algorithm

Genetic algorithm (GA) is a stochastic search method inspired 
by the evolutionary laws of biology, which is one of the most 
popular evolutionary algorithms. It was first introduced in 
1975 by J. Holland [42]. GA introduces the concept of popu-
lation composed by chromosomes which are also regarded as 
individuals. Each chromosome corresponds to a solution to 
the problem. The population consisted of chromosomes in GA 
evolves iteratively to approximate the global optimal solution 
of the problem by performing three major evolutionary opera-
tors: selection, crossover, and mutation. By evaluating the fit-
ness value of chromosomes, the optimal individual will be 
picked out.

Niching method

Niching method is a popular strategy to aid classical EAs to 
improve search diversity [43–45]. The principle of niching 
is to divide the whole population into several sub-population 
named niches based on various split rules. Each niche can 
search for one local optimum. In this way, multiple promis-
ing solutions are returned simultaneously and the diversity 
of the solutions can be improved. Crowding [43], as a com-
mon niching method, decomposes the whole population by 
distances of solutions. The framework of crowding is shown 
as Algorithm 1. 

(5)S
�
Q⃗, d⃗k

�
=

∑s

i=1

�
1 −

���wiq − wik
���
�
ri

∑s

i=1
ri

,

(6)F =
1

|D|
|D|∑
i=1

r(di)

|D|∑
j=i

1

j
,

A two‑stage information retrieval system 
with relevance feedback based on IMGA 
for query weight optimization

An overview of the two‑stage information retrieval 
system

The user submits a query containing multiple terms firstly. 
Then the optimization process is implemented with two dif-
ferent GAs corresponding to the two stages: the quantity 
control stage and the quality optimization stage. Accord-
ingly, the quantity control stage aims to control the number 
of retrieved documents to improve the performance of the 
retrieval in the next stage and the quality optimization stage 
is for the purpose of optimizing the weights of query terms 
so that the retrieved documents are suitable for users. After 
obtaining the original search results, the user marks part of 
the search results as relevant or irrelevant. The system will 
continue to optimize the query weights until it meets the 
terminal condition. The procedure of the system is presented 
in Fig. 2.

At the first stage, the search space of GA is composed 
of all possible combinations of the original query terms. 
The objective of the multimodal GA in this stage is to find 
several combinations of the query terms so that the number 
of retrieved documents found by each of these combina-
tions is in a suitable range. In order to find multiple feasi-
ble combinations simultaneously, a multimodal GA with a 
niching strategy is applied. The niching strategy makes it 
possible to obtain multiple promising groups of solutions 
at the same time. At the second stage, each sub-group of 
query terms serves as an independent query to search the 
database. Weights of the queries are optimized by an inter-
active GA with the relevance feedback mechanism and the 
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marked search result makes the optimization process towards 
to the optimal combination of query weights constantly. 
After this stage, several groups of sequential documents are 
acquired. All of these retrieved documents are integrated 
in descending order according to their frequencies to gain 
the best sequence of retrieved documents for user’s browse. 
The flowchart of stage 1 and stage 2 are shown in Figs. 3 
and 4 apart.

In order to clearly describe IMGA, two stages are detailed 
in the next subsections.

Stage 1: quantity control stage

The purpose of the quantity control stage is to decrease the 
scale of the optimization problem and control the number of 
retrieved documents in a suitable range by a multimodal GA. 
All the possible combinations of the query terms form the 
search space of the GA. As the aim is to find multiple com-
binations of query terms instead of a single combination, 
this paper proposes to use a special multimodal GA with 
niching. In this GA, if the number of documents retrieved 
by a query is acceptable, the fitness value of the query would 
be high. Otherwise, when a query returns too many or too 
few retrieved documents, it will be given a very low fitness 
value. Details of GA and niching strategy are described as 
follows.

Objective function

In the process of evolution, for each query combination or 
solution qi, its fitness value is calculated as follows.

where account (qi) denotes the number of retrieved docu-
ments by the query vector ��⃗qi ; A denotes a penalty value 
needed to be subtracted when the number of retrieved docu-
ments by a query vector is not in a certain interval; B and B’ 
define a reasonable range of the number of retrieved docu-
ments, i.e., [B, B’]. When the number of retrieved documents 
is in the range, the solution will be given an extremely high 
fitness value. The values of A, B, and B’ are all associate 
with the size of the document database. ∞ denotes a maxi-
mum fitness value to flag that retrieval results by a query 
combination are promising.

Multimodal GA with niching method

Different from traditional GA-based query optimization 
methods that only return one solution, the first stage of the 
proposed approach aims to acquire several optimal solutions 
whose numbers of retrieved documents are suitable. We 
propose a multimodal GA with a niching method to obtain 
multiple solutions simultaneously. In the GA, closely spaced 
solutions gather to form multiple crowding. In other words, 
the solutions that are close in physical space constitute a 
crowding. Due to the high probability of a good solution 
to be found near a similarly good performing solution, this 
paper adopts the crowding technique to implement the nich-
ing method. Each crowding search for feasible solutions and 

(7)f (qi) =

⎧
⎪⎨⎪⎩

acount(qi) − A

∞

acount(qi) − A

account(qi) ≤ B

B ≤ account(qi) ≤ B�

B� ≤ account(qi)

,

Fig. 2   The procedure of the information retrieval system
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multiple promising solutions will be obtained simultane-
ously by different crowding.

The flow of quantity control stage

At the quantity control stage, the value of the gene Gi 
of the binary-coded chromosome represents whether the 
query term is in the query vector. If the query vector con-
tains the term ti, then Gi is 0, else Gi is 1. N chromosomes 
are randomly generated to form an initial population. Dur-
ing GA evolution, parent chromosomes are selected by 
roulette selection and offspring are generated through real-
valued multipoint crossover and polynomial mutation. In 
order to increase the diversity of the population, we take 
the niching strategy to updating the population and choose 
multiple chromosomes that perform promisingly. Based on 
a multimodal genetic algorithm, it is possible to maintain 

the diversity of the solution, as well to achieve high global 
optimality. The flow of the quantity stage is as follows.

1.	 N chromosomes are generated stochastically to form the 
initial population P0, where the chromosome dimension 
is S which represents the number of initial query terms. 
Let K = 1, where K counts the number of iterations of 
GA.

2.	 Calculate each chromosome’s fitness based on the for-
mula (7).

3.	 Form M crowding according to distances of chromo-
somes in the physical space. Roulette selection strat-
egy is adopted to select pairs of chromosomes in each 
crowding and generate a random number m1 for each 
pair of chromosomes. If m1 is less than the crossover 
rate Pc, randomly generate the number and the locations 
of crossover points. At each crossover-point, exchange 
their genes with each other.

4.	 Randomly generate a real value n1 between 0 and 1 for 
each chromosome in each crowding, and if n1 is less 
than the mutation rate Pm, the chromosome will per-
form mutation. That is, generate a random number of 
randomly-located mutation points. At each mutation-
point, if the gene is 1, then it is transferred into 0. And 
vice, it is transferred into 1.

5.	 Choose the optimal chromosome in each crowding and 
compare these M chromosomes with the worst M chro-
mosomes in the old population. The M chromosomes 
whose fitness values are higher replace the M poor ones. 
Let K = K + 1.

6.	 If there are M chromosomes in the population that have 
the best fitness values, i.e., � , then stop it and go to Step 
7, otherwise, go to Step 2. If K is equal to the maximum 
number of iterations, then the top M chromosomes with 
the largest fitness value are the best solutions and go to 
Step 7.

7.	 Convert M best chromosomes into M sub-groups of 
query terms.

The above process is summarized in Algorithm  2, 
where N is the population size. Pc and Pm are the crossover 
rate and the mutation rate respectively; M is the number 
of niches in this stage.

Initialize
population

Satisfy the termination condition

Roulette Selection.

Random[0,1]<Pc

Crossover

Random[0,1]<Pm

Mutate

N

Y

Y

StartStage 1

Retrieve documents by each individual
and evaluate fitness of individuals.

K = 1

Update. K = K + 1.

N

Y

N

Output M best individuals which
denoteM sub-group query terms

respectively

Form M crowding
according to distances.

Fig. 3   The flowchart of the quantity control stage
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Fig. 4   The flowchart of the quality optimization stage
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Stage 2: quality optimization stage

At this stage, all combinations of query terms acquired in 
the above stage are regarded as independent sub-queries. 
Each sub-query can be expressed as a query vector in VSM. 
Incorporating with the user’s feedback mechanism, each 
query vector evolved as an individual in the population is 
optimized by an interactive GA. A surrogate model is built 
to evaluate the fitness values of individuals. Weighs of query 
terms optimized and the sequence of retrieved documents is 
yielded in the end. The details of the algorithm are described 
as follows.

Objective function

At the quality optimization stage, M sub-queries obtained 
in the previous stage are expressed as M query vectors. 
Weights of the query vectors are optimized by an interac-
tive GA with the relevance feedback mechanism. The system 
sorts the documents in descending order according to the 
degree of similarity between the query vector and docu-
ments. For example, the document whose vector has a high 
degree of similarity with the query vector is ranked before 
the documents whose vector has a low degree of similarity 
with the query vector. Replacing user evaluation, the fitness 
values are calculated by a mathematical model. The math-
ematical model is represented as the score of the sequence of 

retrieved documents. The mathematical model of the objec-
tive function in interactive GA is described as formula (6).

The flow of quality optimization stage

The weights of query terms in each combination obtained 
in the quantity control stage are optimized by an interactive 
GA independently in this stage. After optimization, each 
sub-process can get a promising combination of weights of 
the query terms and a sequence of retrieved documents. That 
is, corresponding to M sub-queries, M sets of weights and 
M sequences of documents will be finally obtained. All the 
documents that appear in M sequences are sorted in descend-
ing order according to the document that frequency occurred 
in M sequences. At last, we can get a sequence of retrieved 
documents for the user’s browse, and meanwhile, we can 
determine the weights of query terms. The detailed descrip-
tions of the stage are as follows.

1.	 N’ chromosomes are generated stochastically to form the 
initial population P0’ and each gene Gi of a chromosome 
gives the weight of the i-th query term ti in the query 
vector. Let K’ = 1.

2.	 Calculate degrees of similarity between query vectors 
and document vectors according to the formula (5). The 
fitness value of each chromosome is calculated by for-
mula (6).

3.	 Adopt the roulette selection strategy to select parent 
chromosomes with higher fitness values into the next 
generation with a higher probability. Generate a ran-
dom number m’ for each pair of chromosomes. If m’ is 
less than the crossover rate Pc’, randomly generate the 
number and the location of crossover points. At each 
crossover-point, exchange their genes with each other.

4.	 Randomly generate a real value n’ between 0 and 1 for 
each chromosome, and if n’ is less than the mutation 
rate Pm’, the chromosome accepts mutation. Generate 
the number and the location of mutation points. At each 
mutation-point, generate a random number which is in 
the range of 0 to 1 instead of the original gene.

5.	 If fitness values of all chromosomes which are in the 
old population are less than the fitness value of the one 
which is in the new population, replace the chromosome 
which performs worst in the old population by the new 
chromosome. Let K’ = K’ + 1.

6.	 If there is a chromosome with the best fitness (F = 1) in 
the new population, then the chromosome is the optimal 
solution, and to go to Step 7. Otherwise, go to Step 3. If 
K’ is equal to the maximum number of iterations, then 
go to Step 7. The chromosome whose fitness value is the 
largest is the final result, otherwise, go to Step 3.

7.	 Use formula (5) to calculate degrees of similarity 
between the documents vectors and the user’s queries to 
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get a descending order of retrieved documents in terms 
of degrees of similarity.

8.	 M groups of sequential documents are obtained. Then 
sort these documents in descending order all over again 
according to the document frequency appeared in M 
groups, and this sequence is the final sequence. Choose 
Top 10 or Top 20 of the retrieved documents to measure 
the performance of the proposed approach.

The above process is summarized in Algorithm 3, where 
N’ is the population size; D is the database size; Pc’ and Pm’ 
are the crossover rate and the mutation rate respectively; M 
is the number of sub-query vectors, in other words, it is also 
the number of solutions returned in the first stage. 

Experiment results

Experimental configuration

In the stage of the query weight optimization, due to the use of 
the relevance feedback mechanism, some documents need to 
be marked by their relevance to users, and common retrieval 

databases are inadequate for our work. As a result, a database 
that contains more than 2000 documents downloaded from 
the IEEE XPLORE [46] is used to test the performance of the 
proposed method. It includes 10 different categories of papers, 
and the number of each category of documents is between 185 
and 226. The categories of documents are shown in Table 1. 
We use ten queries to analyze the performance of the proposed 
method. Table 2 shows ten test instances of queries.

The several vital parameters of the algorithm are set as 
follows. In the first stage, the population size is 30, and the 
dimension of individuals in the population is 10 because the 
number of query terms is 10 in each query. The maximum 
number of iterations of IMGA is 100. Referred to Lopez-
Pujalte et al.’s experiments [21], the crossover rate and muta-
tion rate are set to 0.8 and 0.2 respectively. The number of 
niches is set to 5, and the reasonable range of the number of 
retrieved documents is set from 20 to 50. In the second stage, 
the population size is 30, and the maximum number of itera-
tions of the proposed algorithm is 100. The crossover rate and 
mutation rate are 0.8 and 0.2 respectively. To ensure fairness, 
IMGA and other methods for comparison both run 30 inde-
pendent times.

Measure indicator

As two common performance indicators, the recall rate and 
the precision rate are used to measure the performance of 
algorithms in the IRS. The precision rate is the proportion of 
relevant documents in the returned result. The recall rate is 
the proportion of relevant documents that are returned to all 
relevant documents. The definition of the two indicators can 
be presented as follows

where the definitions of tp, fp, and fn are presented in 
Table 3.

(8)
Precision Rate =

tp

tp + fp
,

Recall Rate =
tp

tp + fn
,

Table 1   Categories of documents

Cat-
egory 
number

Category name Cat-
egory 
number

Category name

1 Evolutionary Algorithm 6 Neural Network
2 National Economy 7 Fuzzy set
3 Natural Language Pro-

cessing
8 Face Recognition

4 Software Engineering 9 Information Retrieval
5 Object Oriented Data-

base
10 Network Security
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Comparison results

Firstly, the Ricchio’s relevance feedback algorithm [40] 
is implemented as a baseline to analyze the performance 
of the other state-of-the-art algorithms. Then, we conduct 
experiments on the comparison with the Chang-Chen-Liau’s 
method [36], the TF/IDF method [47], and the TF-IDF-AP 
algorithm [48], and the with respect to the recall rates and 
precision rates of Top 10 and Top 20 retrieved documents. 
Moreover, a new ranking measure that combines the vec-
tor space measure and association rules technique (ranking 
measure with VSM and AR) which was proposed by Siham 
et al. [49] is also compared together.

Figures 5 and 6 illustrate the recall rates and the precision 
rates of the top 10 retrieved documents with respect to the 
proposed method and the five other algorithms. Figures 7 
and 8 show the recall rates and the precision rates of the top 
20 documents of the six algorithms.

From these figures, it can be observed that IMGA per-
forms much better than the five other methods in terms of 
the recall rates and precision rates. While the Ricchio’s rele-
vance feedback method has just a higher recall rate of the top 
20 than IMGA in the fourth query, and the TF/IDF method 
performs better than the four other algorithms on the preci-
sion rates of top 20 in the first query. The ranking measure 
with VSM and AR has better potential in the eighth query. 
Compared with the Chang-Chen-Liau’s method, IMGA adds 
a process of quantity control and multiple sub-query terms 
are returned so that these weights of sub-query terms are 

Table 2   Queries instances

Q0 Ant colony optimization particle swarm distributed genetic algorithm evolution computing
Q1 National economy economic finance model industry production development government contribution
Q2 Object oriented data set system structure rule model technology database
Q3 Mobile agent network graph security node autonomy synchronization localization adaptability
Q4 Natural language processing database data method artificial intelligence rule word
Q5 Software engineering knowledge area modeling analysis project education design requirement
Q6 Fuzzy set theory membership function
Boolean degree value operation logic
Q7 Network security privacy firework access architecture control policy key attack
Q8 Face recognition human technology facial
image accuracy computer vision identity
Q9 Information retrieval query weight frequency database search index retrieved private

Table 3   The relationship of relevant documents and the irrelevant 
documents

Relevant Nonrelevant

Retrieved True positives (tp) False positives (fp)
Not retrieved False negatives (fn) True negatives (tn)

Fig. 5   Recall rates of the top 10 retrieved documents with respect to 
ten queries by different methods

Fig. 6   Precision rates of the top 10 retrieved documents with respect 
to ten queries by different methods
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optimized jointly in the weight optimization stage, which 
makes weights of query terms optimized more accurately.

Then we compare the average recall rates and the average 
precision rates of the six algorithms in terms of ten queries. 
Table 4 shows the average recall rates and the average pre-
cision rates of the top 10 and top 20 retrieved documents 

with respect to the four other methods. Obviously, IMGA 
achieves higher average recall rates and precision rates of 
the document retrieval, especially precision rates.

For a more intuitive observation of the experimental 
results,a significance test on the average recall rates and the 
average precision rates of 30 independent runs are imple-
mented. Table 5 shows the t test with a confidence level 
of 0.95 of the recall rates and the precision rates between 
IMGA and the Chang-Chen-Liau’s method by ten groups 
of user’s queries. From the table, we can see that IMGA has 
performed much better than the Chang-Chen-Liau’s method 
for all queries. The results of experiments have significant 
improvement in terms of the average recall rates and the 
average precision rates.

Analysis of the effectiveness of Niches

The number of niches is sensitive which is related to the 
population size. As the number of niches increases, more 
solutions can be obtained and the diversity of the solutions 
is achieved. Yet the way of merging the multiple solutions 
faces the challenge. On the other hand, the small number of 
niches will cause the diversity of solutions is not guaranteed. 
Therefore, choosing an appropriate niche size is significant 
to increase the performance of IMGA.

In order to analyze the impact of the niche size used 
in the GA during the first stage, we did a set of experi-
ments on the five queries Q0–Q4, the number of niches 
is set to 3, 5, 7, 9, 12 respectively, and the performance 
of these algorithms is compared. Figures 9 and 10 show 
the recall rates and the precision rates of the top 10 docu-
ments with respect to different numbers of the niche (M) 
respectively. Figures 11 and 12 show the recall rates and 
the precision rates of the top 20 documents with respect 
to different numbers of the niche (M) respectively. From 
these four figures, we can see that IMGA performs better 
than any other when the number of niches is 5, whatever 
it returns the top 10 or 20 documents. What is more, when 
the population increases to 50, the situation remains the 
same. Figures 13, 14, 15 and 16 show the recall rates 

Fig. 7   Recall rates of the top 20 retrieved documents with respect to 
ten queries by different methods

Fig. 8   Precision rates of the top 20 retrieved documents with respect 
to ten queries by different methods

Table 4   Average recall rates 
and average precision rates of 
the proposed system compared 
with other five methods

TOP 10 Aver-
age Recall 
Rate

TOP 10 Average 
Precision Rate

TOP 20 Aver-
age Recall 
Rate

TOP 20 Aver-
age Precision 
Rate

IMGA 0.329 0.862 0.349 0.767
Chang-Chen-Liau’s Method 0.190 0.455 0.205 0.369
The Ricchio’s Relevance
Feedback Algorithm 0.116 0.290 0.182 0.240
TF/IDF Method 0.113 0.330 0.182 0.275
TF-IDF-AP Algorithm 0.124 0.310 0.194 0.250
Ranking measure with VSM and AR 0.167 0.372 0.208 0.271
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and the precision rates of the top 10 and top 20 retrieved 
documents when the population size increases to 50 with 
respect to different numbers of niches respectively. When 
the number of niches increases, the performance of IMGA 
gets worse for almost queries. In our algorithm, 5 niches 
are the best choice with respect to 30 and 50 population 
sizes.

Conclusion

In this paper, we have proposed a two-stage informa-
tion retrieval system based on an interactive multimodal 
genetic algorithm (IMGA) for query weight optimization. 
This system has a two-stage retrieval process: quantity 
control and quality optimization. In the quantity con-
trol stage, we adopt a multimodal genetic algorithm to 
obtain multiple feasible solutions to control the number of 
retrieved documents in an appropriate range. In this way, 

Fig. 9   Recall rates of top 10 retrieved documents with respect to five 
queries by different numbers of niches (N = 30)

Fig. 10   Precision rates of top 10 retrieved documents with respect to 
five queries by different numbers of niches (N = 30)

Fig. 11   Recall rates of top 20 retrieved documents with respect to five 
queries by different numbers of niches (N = 30)

Fig. 12   Precision rates of top 20 retrieved documents with respect to 
five queries by different numbers of niches (N = 30)

Fig. 13   Recall rates of top 10 retrieved documents with respect to five 
queries by different numbers of niches (N = 50)

Fig. 14   Precision rates of top 10 retrieved documents with respect to 
five queries by different numbers of niches (N = 50)
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the algorithm decreases the dimension of the optimization 
problem to improve the accuracy of weight optimization in 
the next stage. In the quality optimization stage, an inter-
active genetic algorithm assisted with the user’s relevance 
feedback mechanism is used to optimize the weights of 
query terms. Replacing user evaluation, a mathematical 
model is built to evaluate individuals. The retrieved doc-
ument sequence which is suitable for the user’s need is 
returned in the end. We did experiments on the document 
database to verify the effectiveness of the proposed IMGA. 
The experimental results show that the recall rates and 
the precision rates of the proposed two-stage method are 
much higher than Chang-Chen-Liau’s method, the TF/IDF 
method, the TF-IDF-AP algorithm, and Ranking measure 
with VSM and AR.

In the future, we will continue to research the applica-
tion of evolutionary algorithms in the field of informa-
tion retrieval. The proposed method will be implemented 
on a larger dataset with more extensibility and flexibility. 
Other promising EAs will be studied to be embedded in 
the infomation retrieval system. What is more, the perfor-
mance of the retrieval algorithm will be tested in another 
performance measures.
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