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Abstract
Autism spectrum disorder (ASD) is a neurological and developmental disorder that begins early in childhood and lasts 
throughout a person’s life. Autism is influenced by both genetic and environmental factors. Lack of social interaction, 
communication problems, and a limited range of behaviors and interests are possible characteristics of autism in children, 
alongside other symptoms. Electroencephalograms provide useful information about changes in brain activity and hence are 
efficaciously used for diagnosis of neurological disease. Eighteen nonlinear features were extracted from EEG signals of 40 
children with a diagnosis of autism spectrum disorder and 37 children with no diagnosis of neuro developmental disorder 
children. Feature selection was performed using Student’s t test, and Marginal Fisher Analysis was employed for data reduc-
tion. The features were ranked according to Student’s t test. The three most significant features were used to develop the 
autism index, while the ranked feature set was input to SVM polynomials 1, 2, and 3 for classification. The SVM polynomial 
2 yielded the highest classification accuracy of 98.70% with 20 features. The developed classification system is likely to 
aid healthcare professionals as a diagnostic tool to detect autism. With more data, in our future work, we intend to employ 
deep learning models and to explore a cloud-based detection system for the detection of autism. Our study is novel, as we 
have analyzed all nonlinear features, and we are one of the first groups to have uniquely developed an autism (ASD) index 
using the extracted features.
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Introduction

Autism spectrum disorder (ASD), also commonly known as 
autism, is a complex neurological condition. ASD is char-
acterized by a shortfall in social behaviors and nonverbal 
communications, such as avoiding eye contact or facing 
difficulties with controlling emotions and understanding 
others’ emotions, in the first three years of human life [1]. 
Nonspecific symptoms such as abnormal sensory percep-
tion skills and experiences, inept motor skills, and insomnia 
are common in some children with ASD. Other symptoms 
include cognitive impairment, hyperactivity, and aggressive 
and repetitive behaviors. ASD is known to be multifactorial, 
stemming from both genetic and environmental influences 
[2]. Gene and chromosomal defects exist in approximately 
10% to 20% of individuals with ASD [3], with siblings born 
into ASD families having a 50 times larger risk of ASD, 
amid a relapse rate of 5%–8% [4].

Environmental influences during prenatal, perinatal, and 
post-natal period also contribute to ASD [5]. Pre-natal fac-
tors such as exposure to teratogens that cause malforma-
tion of embryo[6], perinatal factors such as unusually short 
gestation duration or birth asphyxia, and post-natal factors 
such as viral infection or mercury toxicity have been attrib-
uted as possible factors contributing to ASD [7, 8]. Figure 1 
presents the neural connections existing in a normal versus 
ASD brain. The brain of a child with autism is characterized 
by a surplus of connections between brain cells as compared 
to the brain of a normal child. This occurs due to a decline 
in the natural process of removing damaged or degraded 
neurons during brain development, causing nonuniformity 
in neural pattern, disconnectedness, and lack of correlation 
of cognitive function between different regions, affecting the 
brain network [9]. Hence, more dense neural connections are 
observed in an autistic brain [10] and thus, this explains the 

shortfalls in social behavior and cognitive functions in ASD 
children as compared to normal ones. Thus, studying brain 
signals and understanding the neural patterns could shed 
light on why autistic children exhibit certain characteristics.

With 1 in 160 children expected to suffer from ASD 
globally, and the occurrence of ASD rising progressively, 
timely intervention, and prognosis during early childhood 
is important [11]. ASD is typically diagnosed based on 
clinical assessments such as screening tests, to detect the 
presence of core symptoms such as lack of social interac-
tions, communication problems, and constrained behav-
iors and interests in children. However, experts who may 
not have seen a large number of children with ASD may 
over- or underdiagnose [12], due to the varying diagnostic 
representations these children may present. This warrants 
the need for an automated diagnostic tool to aid clinicians 
in diagnosing ASD accurately. Electroencephalograms 
(EEG) record the brain activity, and provide useful infor-
mation about the condition of the brain. Hence, brain 
signals are prevalently employed to study neurological 
disorders such as Parkinson’s disease [13], depression 
[14], epilepsy [15], autism [16–18], schizophrenia [19], 
attention-deficit hyperactivity disorder [20], and Alzhei-
mer’s disease [21]. Since EEG signals are nonstationary 
in nature, nonlinear features are used to classify normal 
and abnormal EEG signals [22]. Therefore, in this work, 
we aim to develop a classification system for the detec-
tion of autism. This system would be able to rapidly clas-
sify EEG signals into autism versus normal. The system is 
developed by first extracting nonlinear features from EEG 
signals. Optimal features are selected with Student’s t test. 
The optimal feature set is then reduced using Marginal 
Fisher Analysis (MFA) and ranked again using the t test. 
The best-performing features are classified using the Sup-
port Vector Machine (SVM) with polynomials 1, 2, and 3 
thereafter. Additionally, we are one of the first groups to 

Fig. 1   Less dense neural con-
nections in a normal, and more 
dense neural connections in b 
ASD brain
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have developed an ASD index to discern between the two 
classes using the three most significant features.

The remainder of this paper is organized as follows: 
"Introduction" and "Methodology" discuss the background 
of autism, and summarize studies using computer-aided 
detection (CAD) systems to detect autism, respectively. 
"Results" describes the methodology employed, and "Dis-
cussion" and "Conclusion" discuss the results obtained and 
compare it against other studies. Sections 7 and 8 highlight 
future work and conclude the paper.

Methodology

Data used

The EEG signals used in this study were obtained from 
40 ASD and 37 normal children, with an age range of 
4–13 years. Children with ASD were recruited from the 
centers of special education and from normal schools, based 
in Jordan. The children with ASD had been pre-diagnosed 
by experts of behavioral assessment. Children suffering from 
other neurological disorders and those on medications were 
excluded from the study. A parent of each child provided 
informed consent prior to the study.

Study protocol and EEG recording

This study had been approved by the ethical committee of 
the Institutional Review Board (IRB) of Jordan University 
of Science and Technology (JUST) and King Abdullah Hos-
pital (KAAH). EEG signals were collected from the partici-
pants (ASD and normal children) as they were seated, in the 
resting state, with eyes opened. The EEG specialist placed 
an EEG cap (64 channels ANT neuro), with the suitable size, 
on the head of participants. The participants were between 
the 3rd and 6th grades of elementary school, having an age 
range of 9–12 years. Normal children were recruited from 
regular schools (not special education schools). They were 
selected based on the school medical and social records, 
wherein they appeared with normal attitude, without any 
problems in school scores or health. ASD children were 

recruited from special education schools. All children were 
pre-assessed by behavior experts who diagnosed the state 
and severity of the child based on the different internation-
ally established scaling methods. All children with comor-
bidities (based on the medical record) were excluded from 
this study. Twenty minutes of brain signals were recorded. 
The EEG cap was fixed on the participants’ scalp, follow-
ing the 10–20 international standards. The affixed cap was 
linked through a cable to the 64-EEGO amplifier, and a 
desktop computer with MATLAB, EEGO software, and 
LA-106 ERP software. The signal at each channel was sam-
pled at 500 Hz, and the frequency range considered was 
from 0.3 to 40 Hz. All EEG signals were segmented into 
sample lengths of 5519 data points. Figure 2 presents the 
proposed methodology.

Feature extraction

Eighteen nonlinear, highly distinctive features were extracted 
from the signals. They are the: 1. approximate entropy [23], 
2. permutation entropy [24], 3. sample entropy [25], 4. Tsal-
lis entropy [26], 5. fuzzy entropy [27], 6. Kolmogorov–Sinai 
entropy [28], 7. Kolmogorov complexity [29], 8. modified 
multiscale entropy [30], 9. Rényi entropy [31], [41], 10. 
Shannon entropy [32], 11. wavelet entropy [33], 12. signal 
activity [34], 13. Bispectrum [35], 14. Cumulant [36], 15. 
Hjorth [37], 16. RQA [38], 17. largest Lyapunov exponent 
[39], and 18. correlation dimension [40] features.

Approximate entropy is helpful to compute the com-
plexity in time-series data even in the presence of artifact. 
It is prevalently used to examine EEG and electrocardio-
gram (ECG) signals [23]. Permutation entropy [24] meas-
ures system complexity by identifying the order relations 
between time-series values, and obtaining a probability 
distribution of the ordinal patterns. Sample entropy [24] 
assists in reflecting and hence diagnosing the unhealthy 
state of signals. Tsallis entropy [24] is used prevalently for 
statistical calculations in medicine and physics; hence, it 
is explored further is this study. Fuzzy entropy [27] com-
putes the level of fuzziness, which is crucial in applied sci-
ence-related fields; thus, we have also used this parameter. 
Other parameters include the Kolmogorov–Sinai entropy 
[28] which controls the maximum amount of information 

Fig. 2   Flow diagram of the proposed method to detect autism
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that can be produced by a system, and Kolmogorov com-
plexity [29], a complexed pattern that uses the shortest 
program as features to describe occurrence. Entropies, 
such as the modified multiscale entropy [30] which aids 
in the complexity computation of time-series data, Rényi 
entropy which is an extension of Shannon’s entropy 
power, Shannon entropy [32] which typically measures 
the amount of information required to identify random 
samples, and wavelet entropy [42] which has the poten-
tial to analyze transient features present in nonstationary 
signals, were also used. Additionally, signal activity [37] 
which describes the time variation of the signal trace, 
bispectrum [43], a higher order spectra feature generated 
by the decomposition of signals, cumulant [44] which is 
proficient in analyzing imaginary signals, Hjorth param-
eters [37] which signify statistical properties, recurrence 
quantitative analysis [45] which computes the number and 
period of recurrences in a system, largest Lyapunov expo-
nent [46] which detects and distinguishes disorder in a sys-
tem, and correlation dimension [47] which measures the 
dimensionality of space occupied by a set of data were also 
explored. These features have also been used in a study of 
congestive heart failure detection by Vicnesh et al. [48].

Feature selection and ranking

Highly significant parameters were then chosen using Stu-
dent’s t test [49]. A t test is a form of statistical test that 
is performed to compare the mean values between two 
groups. There are two types of t tests: independent and 
paired t test. The independent t test is used to compute the 
difference in mean between two groups that are dependent 
on each other, while the paired t test is used to compute the 
difference in mean between two groups that are independ-
ent of each other [49]. In this study, the independent t test 
was used for feature selection. Features of p values greater 
than 0.05 were discarded, while the remaining features 
were reduced to a smaller dataset using MFA [50]. MFA 
is a nonlinear dimensionality reduction technique that is 
used in areas such as facial recognition. It is a supervised, 
diverse learning algorithm that works by maintaining the 
local manifold information. It applies the developments of 
rank minimisation [51]. MFA is considered to be advanta-
geous as compared to the Linear Discriminant Analysis 
(LDA) data reduction technique, as it is able to provide the 
characteristics of intraclass spatial arrangement and inter-
class disconnectedness. In addition, MFA also has the abil-
ity to better characterize the disconnectedness of various 
classes when compared to the interclass variance in LDA, 
even without having any prior information regarding data 
distributions [50]. Thus, MFA is used in this work. The 
reduced dataset was then subjected to Student’s t test for 

feature ranking. After feature selection, MFA is employed 
to condense the large number of features into key compo-
nents. Hence, this reduction step allows the model to cap-
ture all the key information in the data to make accurate 
predictions. The reduced set is then ranked to obtain the 
most significant features, necessary for accurate classifi-
cation. Furthermore, while the reduced dataset still main-
tains the integrity of the data, it reduces the computational 
complexity as well. Thus feature selection, MFA, and fea-
ture ranking were employed on the entire dataset, before 
classification. Table 2 presents the best 24 MFA features, 
in the Appendix section.

Development of a unique autism index

In some of our previous studies, we have successfully 
developed an index to clearly separate the normal from the 
abnormal classes [52, 53]. Hence, at this juncture, the sig-
nificant entropy features were carefully combined to cre-
ate an index [53] for autism diagnosis, to discern normal 
from autism class. After various combinations based on 
the trial-and-error method, the top 3 significant MFA fea-
tures (MFA 6, MFA 1, MFA 4) were used to develop the 
index as these features yielded better results and showed 
the best separation, as compared to the other features that 
were tested. This is shown in Eq. 1, as established through 
the development of the index, wherein MFA6, MFA1, and 
MFA4 refer to the most significant MFA features extracted 
in this study

Fig. 3   Boxplot for autism diagnosis index
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Figure 3 shows the boxplot of the developed index, 
which presents the unique range of values for the diag-
nosis of normal and autism classes. It is evident from the 
boxplot that the two classes are well separated, and hence, 
this attests that the index could be effectively used to dis-
cern between the normal and autistic groups. Thus, this 
not only explains that our features are competent but also 
that our study is unique and is different from other studies 
that also explored nonlinear features.

Classification

The optimal feature set was then classified using the SVM 
classifier with polynomial kernels of order 1, 2, and 3. SVM 
is highly preferred in classification tasks in machine learning 
as it produces results of significant accuracy with little com-
putational power. Additionally, SVM is able to better tackle 
complex classification tasks as compared to other classifiers 
such as k-nearest neighbor (K-NN) or Naïve Bayes. SVM 
also has kernel functions which enables it to outperform 
other classifiers, and it also trains more rapidly. SVM works 
by designing two hyperplanes that classify all training vec-
tors into 2 groups. The best classification is achieved with 
the hyperplane that leaves the largest margin between the 

(1)ASDindex = MFA6
3 − 14(MFA1) − 16(MFA4) + 15.

2 groups [54]. SVM is prevalently used for the detection 
of neurological diseases such as epilepsy [55], depression 
[56], Alzheimer’s disease [57], and schizophrenia [58]. For 
the above-mentioned reasons, the SVM classifier was con-
sidered in this study. K-fold (K = 10) cross-validation [59] 
was used to evaluate the performance of the classifiers with 
the aid of the performance metrics: sensitivity, accuracy, 
specificity, and positive predictive value, wherein 90% of the 
data were used for training and 10% for testing. Table 1 pre-
sents the best classification results achieved with the SVM 
polynomial 2 classifier.

Results

Comparing the results from Table 1, the SVM polynomial 2 
is the best classifier, having the highest accuracy of 98.7%, 
as compared to the other classifiers used. Since the SVM 
polynomial 2 classifier was trained and tested with 20 fea-
tures, it yielded a higher accuracy compared to SVM poly-
nomials 1 and 2. The SVM polynomial 1 classifier achieved 
the lowest accuracy as it was only trained and tested with 
eight features. Figure 4 shows the classification accuracies 
achieved with increasing number of features for the SVM 
polynomial 2. It can be noted that the highest accuracy was 
achieved with just 20 MFA features, and it falls further when 

Table 1   Best classification results for SVM polynomials 1, 2, 3

Classifier No of features True positive True negative False 
posi-
tive

False 
nega-
tive

Accuracy (%) PPV (%) Sensitivity (%) Specificity (%)

SVM Polynomial 1 8 39 34 3 1 94.80 92.86 97.50 91.90
SVM Polynomial 2 20 39 37 0 1 98.70 100 97.50 100
SVM Polynomial 3 14 39 36 1 1 97.40 97.50 97.50 97.30

Fig. 4   Classification accuracies achieved with varying number of features
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more than 20 features are taken into consideration. Figure 5a 
presents scatterplots highlighting the top 3 MFA features. 
From the scatterplots, it is noticeable that the two classes, 
normal and autism, are separated, and the features correlate 
with the classification. Figure 5b presents the scatterplots 
of the best MFA features. It is apparent that generally, the 
mean values of MFA features are higher in the normal class, 
as compared to the autism class. This could be attributed 
to the higher variance in the normal class. Figure 6a and 
b illustrates the bispectrum plots for normal and autism 
signals, respectively. Figures 7a and b illustrates the cumu-
lant plots for normal and autism signals, respectively. From 
Figs. 5a, 6 and 7, it is obvious that the patterns are very dis-
tinguished for the two classes: normal and autism; thus, we 
have obtained results of high accuracy, due to the extraction 
of highly discriminant features. Therefore, this affirms the 
competency and great discriminatory nature of features used 
for the classification of ASD in our study.

Discussion

CAD systems have been used enthusiastically by other 
authors to detect ASD. Bhat et al. [60] extracted time and 
frequency domain features from EEG signals to success-
fully classify ASD, using data from one healthy subject 
and one patient. It was established that features extracted 
from nonlinear analysis can be used as mathematical indica-
tors to detect early stage of ASD. Grobekathofer et al. [61] 
explored detecting stereotypical motor movements in ASD 
individuals through the extraction of Recurrence Quantifi-
cation Analysis (RQA) features, using data from six autis-
tic patients. As the best classifier, random forest yielded an 
accuracy of more than 86% as compared to SVM, which 
achieved an accuracy of 86% only.

After pre-processing of EEG signals, Djemal et al. [62] 
employed the Discrete Wavelet Transform (DWT) to obtain 
coefficients D1–D4. Entropy and five statistical metrics 
were then used for feature extraction. The Artificial Neural 
Network (ANN) was utilized for classification. Data from 

nine healthy subjects and ten autistic patients were used in 
this study. DWT together with Shannon entropy yielded the 
highest accuracy of 99.71% with the ANN classifier.

Acharya et  al. [63] discussed research works that 
employed EEG signals for the diagnosis of autism and the 
possibility of autism diagnosis through the development of 
automated tools, using signal processing techniques, in their 
review paper.

Yousef et al. [64] employed statistical measures with the 
aid of the Statistical Package for the Social Sciences (SPSS) 
software to study the relationship between signal patterns 
and severity of autism. In this study, data were used from 
40 healthy subjects and 40 patients. The EEG anomalies 
correlated with the ASD severity, and the region of brain-
wave anomalies were observed to be largely correlated to 
the severity of autism.

Lushchekina et al. [65] obtained EEG recordings using 
joined ear electrodes with a CONAN 4.5 automated elec-
trophysiological system [66]. The recordings were obtained 
from 24 normal subjects and 27 early childhood autistic 
patients. The spectral strength and average coherence were 
computed in autistic children and compared against normal 
children. The spectral strength of the theta waves in healthy 
children was found to be the greatest in the occipital regions, 
decreasing gradually in the frontal regions.

Elhabashy et  al. [67] obtained EEG recordings from 
children as they rested on a chair with eyes opened. The 
recordings were obtained from 21 healthy subjects and 21 
autistic patients. A 19-electrode cap was fixed on the chil-
dren according to the 10–20 international standard. Fourier 
power spectral analysis was conducted on 75 s of artifact-
free EEG, which was divided into 4 s epochs. The absolute 
and relative power were computed for each frequency band 
per electrode, and coherence indicators were then computed. 
The absolute power of delta and theta frequency bands were 
found to be larger in children with ASD, specifically in the 
frontal region.

Eldridge et al. [68] collected EEG data continuously in 
a soundproof room as auditory stimuli were presented bin-
aurally to children. The data were obtained from 30 healthy 

Fig. 5   a Scatterplots of the top 
3 MFA features. (* N: Normal 
and A: Autism). b Boxplots 
of the best-performing MFA 
features. (* N: Normal and A: 
Autism)
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Fig. 5   (continued)
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subjects and 19 autistic patients. After pre-processing of 
signals, the median responses were computed for each par-
ticipant and the two parameters were compared statistically. 
The modified multiscale entropy features and variance in 
time were also extracted from the signals. The SVM, logis-
tic regression, and Naïve Bayes classifiers were employed, 
with Naïve Bayes yielding the highest accuracy of 79% for 
classification.

Heunis et al. [69] obtained EEG data from the typical 
19 clinical electrode system. The data were obtained from 
46 healthy subjects and 16 autistic patients. After pre-pro-
cessing, the Cross Recurrence Plot toolbox in MATLAB 
software was then employed to extract ten Recurrence quan-
tification analysis (RQA) features. Tenfold validation and 

leave-one-out approaches were used for classification. The 
leave-one-out analysis coupled with SVM delivered the best 
accuracy of 92.9%.

After the acquisition of signals, Hadoush et  al. [70] 
computed regional averaged MSE values for five corti-
cal regions. In this study, the data were obtained from 18 
patients with mid-autism and severe autism each. The MSE 
curve was plotted to study signal complexity. The SPSS sta-
tistical software was employed for quantitative analysis. The 
Kolmogorov–Smirnov test was used to assess whether the 
computed multiscale entropy (MSE) values had a normal 
distribution. The analysis of variance (ANOVA) test was 
then applied to differentiate the two groups. The averaged 
MSE values were reported to be larger in mildly autistic 

Fig. 6   a Bispectrum plot of a normal EEG signals and b autistic EEG signals
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children as compared to children with severe autism in the 
five brain regions assessed.

Buckley et al. [71] extracted features from EEG signals 
from normal and autistic children in the completely awake, 
drowsy, and sleep stages. The signals were acquired from 
50 healthy subjects (21 with developmental delay without 
autism and 29 with normal development) and 87 autistic 
children. The voltage and partial correlations between each 
electrode pair were recorded to assess functional connec-
tivity. Autistic children were found to exhibit epileptiform 

activity in the brain signals as compared to the normal 
children.

Pham et al. [72] obtained EEG signals from 37 healthy 
subjects and 40 autistic patients and employed higher order 
spectra (HOS) bispectrum to convert the acquired signals 
to images and extracted nonlinear features from the images. 
The locality sensitivity discriminant analysis (LSDA) was 
then used to condense the features. Highly discriminatory 
features were then chosen using the t test, and fed to vari-
ous classifiers subsequently. The classifiers were evaluated 
using tenfold cross-validation. The PNN classifier achieved 

Fig. 7   Cumulant plots of a normal EEG signals and b autistic EEG signals
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the highest accuracy of 98.70%, outperforming the other 
classifiers.

Cheong et al. [73] obtained EEG signals from 30 autis-
tic children and pre-processed the signals using the discrete 
wavelet transform and extracted nonlinear features. These 
were then classified with the multilayer perceptron model, 
yielding a classification accuracy of 92.3%.

Grossi et al. [74] embarked on a pilot study and explored 
a newer IFAST algorithm together with multiscale entropy 
features and ranked organizing maps for the classification 
of autism. In this study, data were obtained from 10 healthy 
subjects and 15 autistic patients. An accuracy of 100% was 
achieved for the training and testing validation method, 
while an accuracy between 84% and 92.8% was achieved 
for the leave-one-out validation method.

Sinha et al. [75] obtained EEG signals from 20 healthy 
subjects and 10 autistic patients and pre-processed the 
acquired signals using the discrete wavelet transform and 
extracted nonlinear features thereafter. These features were 
fed to the K-NN classifier, yielding a classification accuracy 
of 92.8%.

Haputhanthri [76] obtained EEG signals from 10 healthy 
subjects and 10 autistic patients and extracted statistical 
features after pre-processing the signals using the discrete 
wavelet transform (DWT) technique. Feature selection was 
then done based on correlation, after which the features were 
input to the random forest classifier, achieving an accuracy 
of 93%.

Abdolzadegan et al. [71] obtained EEG signals from 
11 healthy subjects and 34 autistic patients and extracted 

a combination of linear and nonlinear parameters from the 
signals. The features were fed to some classifiers wherein the 
SVM classifier achieved the highest classification accuracy 
of 90.57%.

Arunkumar et  al. [77] obtained EEG signals from 4 
healthy subjects and 6 autistic patients and explored spectral 
analysis of the signals using the short-time Fourier trans-
form. Through this study, it was reported that EEG signals 
could be used to successfully classify autism versus normal.

Subudhi et al. [78] acquired EEG signals from 41 autis-
tic patients and 32 healthy subjects and extracted nonlinear 
features from the signals. The significant features were clas-
sified thereafter using the support vector machine classifier, 
yielding an accuracy of 90.41%.

Tawhid et al. [79] acquired EEG signals from 12 autistic 
patients and 4 healthy subjects and transformed the 1-dimen-
sional signals to 2-dimensional spectrogram images using 
Fourier transform. Significant features are selected using 
principal component analysis thereafter, and fed to the sup-
port vector machine classifier for classification, yielding an 
accuracy of 95.25%.

A slightly different study was conducted by Bosl et al. 
[80], for predicting autism risk. After acquiring the EEG 
data, the signal or time-series was decomposed into differ-
ent frequency bands using the Daubechies (DB4) wavelet 
transform, and nine nonlinear features were obtained from 
the frequency bands. Discriminatory features were chosen 
using the recursive feature elimination algorithm, and clas-
sification was performed thereafter using SVM with radial 
basis functions. With the proposed method, high specificity, 

Fig. 8   Illustration of how the 
cloud-based detection system 
works



2409Complex & Intelligent Systems (2021) 7:2399–2413	

1 3

sensitivity, and positive predictive values of > 95% were 
yielded for some ages.

It is notable from the discussion above that most of the 
studies employed nonlinear feature extraction to study the 
physiological conditions of the EEG signals and cross-vali-
dation techniques to evaluate proposed methods. Since EEG 
signals are time-varying and disordered naturally; nonlinear 
features were also exploited for the classification of autism 
in this study.

EEG signals are generally nonlinear, and spiking patterns 
of the brain signals provide useful information about brain 
conditions. Hence, EEG signals are studied fervently using 
nonlinear feature extraction methods. As these biosignals 
are also multiscaled, the signals display different behaviors, 
depending on the scale at which they are being examined, 
potentially providing insights into different types of diseases. 
Multiple recent studies have analyzed EEG signals using 
multiscale entropy. Our proposed CAD system employs fea-
ture extraction methods for the classification of brain signals 
into ASD and normal EEG signals. The SVM polynomial 
2 performs the best with 20 features, compared to the other 
two classifiers explored, yielding the highest accuracy of 
98.7%. Comparing the studies as discussed above, Bhat et al. 
[60] have used nonlinear features for classification, but the 
data size is insignificant for comparison. Eldridge et al. [68] 
extracted the modified multiscale entropy feature from EEG 
signals, but the classification accuracy achieved was lower 
than in our study. Hadoush et al. [70] studied multiscale 
entropy features, but only two features were extracted, with-
out any classification. Furthermore, classification was not 
done. Heunis et al. [69] performed RQA nonlinear analysis 
of signals. However, lesser features were used, and the clas-
sification accuracy achieved was lower than in our study. 
Grobekathofer et al. [61] also explored RQA feature extrac-
tion methods; however, the data size was small (n = 6). 
Furthermore, the study is not as promising, since normal 
subjects were not included.

Lushchekina et al. [65], Elhabashy et al. [67], and Yousef 
et al. [64] employed statistical analysis methods. However, 
the spectral and absolute power in specific brain regions of 
autistic children as well as correlations of autism severity 
with EEG abnormality were reported, but classification was 
not done. Djemal et al. [62] extracted entropy features and 
achieved a slightly higher accuracy than our study, but the 
data size is inconsiderable by comparison. Buckley et al. [71] 
reported the relationship between epileptic activity in EEG 
signals of autistic children and that of normal children, but 
a classification was not done. Arunkumar et al. [77] did not 
do a classification study and reported on qualitative results. 
Grossi et al. [74] and Haputhanthri. [76] had achieved lower 
accuracies than our study, for their classification methods. 
Although Abdolzadegan et al. [71] had explored nonlin-
ear features similar to our study, linear features were also 

extracted, wherein a lower accuracy was obtained as com-
pared to our study. Cheong et al. [73] and Sinha et al. [53] 
had also extracted nonlinear features similar to our study, but 
obtained lower accuracies than our study. Although Subudhi 
et al. [78] and Tawhid et al. [79] had obtained higher accu-
racies than our study, the authors had used lesser data as 
compared to our study. Pham et al. [72] did a similar classifi-
cation to that of our study and achieved the same accuracy as 
ours (98.7%). However, Pham et al. [72] extracted the HOS 
bispectrum and nonlinear texture features and employed 
LSDA, while in our study, we extracted different nonlinear 
features and had employed MFA. Furthermore, we uniquely 
developed an ASD index. Hence, it is evident that our pro-
posed method is unique, rapid, and the most expedient, to be 
considered as a potential diagnostic tool for the classification 
of ASD by healthcare professionals. The following are the 
advantages and disadvantages of this work:

Advantages

	 i.	 The proposed system is robust, as it has been validated 
by tenfold cross-validation.

	 ii.	 The proposed technique is a novel classification tech-
nique for autism. The high accuracy obtained is due 
to the highly discriminative feature set used.

	 iii.	 Rapid and accurate diagnosis of autism is possible 
with the developed classification system.

	 iv.	 We are one of the first groups to have developed a 
novel ASD index in this study, wherein ASD can be 
effectively diagnosed using a single number.

	 v.	 Unique bispectrum and cumulant plots have been pre-
sented for normal and ASD classes.

Disadvantages

	 i.	 The feature extraction process is done manually and 
the optimal features are selected by hand, making it 
cumbersome as a whole.

	 ii.	 The data used are insufficient to train a deep learning 
model for classification.

Conclusion

In this study, a unique classification system was developed to 
categorize autism and normal EEG signals. Eighteen nonlinear 
features were extracted from the acquired brain signals. Highly 
significant features were then selected based on the t test. The 
significant feature set was then reduced using MFA before 
being ranked based on the t values from the t test. The reduced, 
significant feature set was then input to SVM polynomials 1, 
2, and 3, while the three most significant features were used 
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to develop an index for autism diagnosis. Tenfold was used to 
validate our classification system. A high classification accu-
racy of 98.70% was achieved with 20 features using the SVM 
polynomial 2 classifier. This attests that the proposed technique 
is effective in the classification of normal versus ASD chil-
dren. Although the proposed method is promising, manually 
extracting features can be cumbersome. To mitigate, we intend 
to gather more data and employ deep learning algorithms for 
ASD diagnosis. We also propose to include the cloud-based 
detection model as part of our future work.

Future work

To enhance the efficiency of our system, we recommend add-
ing a cloud-based detection element. Figure 8 illustrates how 
the proposed cloud-based detection system works. The EEG 
signals extracted from patients would be stored in the hos-
pital’s server and sent to cloud, where our developed CAD 
system would be located. Upon analysis, the classification 

result would be sent back to the server to aid the clinician in 
decision-making. The clinician would then send the results 
back to the server, which would communicate directly with 
the patient smartphone. With the application of this system, 
the clinician’s task would be simplified. We also intend to 
test the model with additional EEG signals, and upload to 
cloud for faster diagnosis as part of our future work. With 
more data available, blindfold validation would become use-
ful to incorporate into the system. With the data used to 
train the model each time, it will become more robust. With 
more data available, deep learning techniques could also be 
explored. The advantage of placing the proposed system in 
cloud is that it could also be used to diagnose other neuro-
logical diseases that affect children, such as attention-deficit 
hyperactivity disorder and epilepsy.

Appendix

See Table 2.

Table 2   Range 
(mean ± standard deviation) of 
best-performing MFA features

Normal Autism p Value t Value

Mean SD Mean SD

MFA4 – 3.9E + 10 2.97 – 3.9E + 10 0.45 7.17E– 06 4.82
MFA6 6.88E + 10 4.00 6.88E + 10 0.56 0.00013 4.03
MFA1 3.62E + 10 2.84 3.62E + 10 0.43 0.000133 4.02
MFA17 2.01E + 11 38.36 2.01E + 11 1.83 0.00029 3.80
MFA24 – 4.7E + 10 3.83 – 4.7E + 10 0.55 0.00031 3.78
MFA28 7.45E + 08 3.12 7.45E + 08 0.48 0.000528 3.62
MFA21 – 5.4E + 10 7.24 – 5.4E + 10 0.74 0.000557 3.60
MFA3 9.18E + 10 2.22 9.18E + 10 0.29 0.000558 3.60
MFA22 – 1.2E + 11 6.17 – 1.2E + 11 0.59 0.000917 3.45
MFA20 6.09E + 10 4.42 6.09E + 10 0.68 0.000988 3.42
MFA27 – 8E + 09 1.97 – 8E + 09 0.46 0.001528 3.28
MFA30 – 1.5E + 10 2.17 – 1.5E + 10 0.37 0.001883 3.22
MFA13 – 1.5E + 11 31.54 – 1.5E + 11 0.63 0.00 2.91
MFA10 3.88E + 10 25.60 3.88E + 10 0.81 0.00 2.90
MFA8 – 9.6E + 10 8.84 – 9.6E + 10 0.83 0.00 2.85
MFA19 – 6.3E + 10 2.84 – 6.3E + 10 0.55 0.00 2.73
MFA9 – 3.3E + 08 8.30 – 3.3E + 08 0.85 0.01 2.64
MFA26 3.54E + 10 5.60 3.54E + 10 0.18 0.01 2.59
MFA29 – 6.5E + 09 0.67 – 6.5E + 09 0.23 0.01 2.44
MFA7 2.83E + 10 2.77 2.83E + 10 1.05 0.02 2.26
MFA12 4.43E + 10 3.34 4.43E + 10 1.68 0.03 2.20
MFA11 4.55E + 10 4.66 4.55E + 10 1.14 0.03 2.19
MFA15 2.2E + 10 10.30 2.2E + 10 1.51 0.03 2.13
MFA5 – 5.7E + 10 2.36 – 5.7E + 10 0.35 0.04 2.06
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