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Abstract
Motivated by express and e-commerce companies’ distribution practices, we study a two-echelon electric vehicle routing
problem. In this problem, fuel-powered vehicles are used to transport goods from a depot to intermediate facilities (satellites)
in the first echelon,whereas electric vehicles, which have limited driving ranges and need to be recharged at recharging stations,
are used to transfer goods from the satellites to customers in the second echelon. We model the problem as an arc flow model
and decompose the model into a master problem and pricing subproblem. We propose a branch-and-price algorithm to solve
it. We use column generation to solve the restricted master problem to provide lower bounds. By enumerating all the subsets
of the satellites, we generate feasible columns by solving the elementary shortest path problemwith resource constraints in the
first echelon. Then, we design a bidirectional labeling algorithm to generate feasible routes in the second echelon. Comparing
the performance of our proposed algorithm with that of CPLEX in solving a set of small-sized instances, we demonstrate
the former’s effectiveness. We further assess our algorithm in solving two sets of larger scale instances. We also examine the
impacts of some model parameters on the solution.

Keywords Two-echelon · Electric vehicles · Branch-and-price algorithm · Column generation · Labeling algorithm

Introduction

With the depletion of fossil energy and the urgent need
for environmental protection, increasing nations have used
electric vehicles (EVs) to replace fuel-powered vehicles for
urban transport and logistics. For example, the European
Commission’s Urban Mobility Package aims to achieve zero
emissions of urban logistics by 2030 [20], and its partners
agree on a green deal about zero-emission urban logistics in
the Netherlands [24]. This means that the use of gasoline- or
diesel-powered freight vehicleswill be limited inmany cities.
Consequently, the sales of new energy vehicles have regis-
tered phenomenal growth in key markets such as Europe,
the Middle East, China, and Australia [31]. The cumulative
sales of new energy vehicles in China reached 2.7 million
in 2018 [41]. In this environment, many logistics (e.g., SF
express) and e-commerce companies (e.g., JD.com, Ama-
zon) have used EVs for logistics and distribution in cities
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[51]. Different from gasoline- and diesel-powered vehicles,
EVs have limited driving ranges and need en-route recharg-
ing, which rely on the volume of batteries and the limited
recharging infrastructure because of the immature battery
technology. The adoption of EVs gives rise to new challenges
for the vehicle scheduling and routing problem, which moti-
vates research on tailoring models to capture the limitations
of EVs. Specifically, EVs need to decide when and which
recharging stations to recharge when they are running out of
battery power. As a result, many studies on the electric vehi-
cle routing problem (EVRP) have recently appeared in the
literature [21,26,36,39]. The majority of such works on the
EVRP only consider a single echelon where the distribution
center delivers goods to the customers directly.

In contrast, the two-echelon (or multi-echelon) distribu-
tion system is very efficient for city logistics and e-commerce
logistics [13,15]. For a B2C e-commerce firm, customers
place orders online on its platform, and then, the orders are
picked and collected in the depot, which are generally located
on the outskirts of cities. The packages are transported to
satellites that are located close to the city centers. After that,
the packages are assigned to distributors to deliver to cus-
tomers. Such a two-echelon distribution system can keep
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Fig. 1 An instance of the
2E-EVRP

large fossil fuel-powered vehicles out of the city centers and
use EVs with lower pollution to transfer the packages from
the satellites to the customers. Motivated by this real prac-
tice of transport logistics, we study the two-echelon electric
vehicle routing problem (2E-EVRP) to help express and e-
commerce companies address their key transport planning
and scheduling problem. In the first echelon, fossil fuel-
powered trucks transport goods from the depot to a subset of
satellites. The second echelon consists of transferring goods
from the satellites to the final customers using EVs.

Figure 1 shows an instance with one depot, four satellites,
seven customers, and three recharging stations.Ourmodel for
the 2E-EVRP is to craft an optimal transport plan tominimize
the total cost. We use the arc flow formulation to model the
problem and design an exact algorithm to solve it.

We make the following contributions in this study:
(1) Motivated by the distribution systems adopted by B2C

firms and express firms, we propose the 2E-EVRP and build
an arc flow model.

(2) We develop an efficient branch-and-price (BP) algo-
rithm to solve the 2E-EVRP. Specifically, we decompose
the arc flow model as an integer master problem and apply
relaxations of the integer master problem to derive lower
bounds for the optimal solution. We design a bidirectional
labeling algorithm to generate feasible routes with recharg-
ing stations in the second echelon. We adopt the state-space
relaxation and the ng-route relaxation as acceleration strate-
gies to reduce the time required to solve the subproblem.

(3) Comparing the performance of the BP algorithm with
that of CPLEX in solving a set of small-scale instances, we

demonstrate the former’s effectiveness.We further assess the
performance of the BP algorithm in solving two sets of larger
scale instances. We also examine the impacts of some model
parameters on the solution and cost.

The rest of the paper is organized as follows: We give a
review to identify the research gap in Sect. 2. We formulate
the 2E-EVRP as an arc flowmodel and decompose themodel
as an integer master problem and apply relaxation to derive
the lower bounds in Sect. 3. We propose a BP algorithm
with accelerate strategies in Sect. 4. We present the results of
numerical studies in Sect. 5. Finally, we conclude the paper
and give suggestions for future research in Sect. 6.

Literature review

There are many variants of VRP [6,19,25]. However, there
are three streams of literature related to our work, namely the
two-echelon vehicle routing problem (2E-VRP), the electric
vehicle routing problem (EVRP), and the two-echelon elec-
tric vehicle routing problem (2E-EVRP).

Two-echelon vehicle routing problem

Crainic et al. [12] considered the2E-VRP in early time,which
is formally introduced by Perboli et al. and Crainic et al.
[11,45]. Cuda et al. [14] gave an extensive review of the
problem. In the following, we only review the works that are
most closely related to our study.
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There are some studies that provide exact algorithms for
the problem. Perboli and Tadei [43] proposed two meta-
heuristics and some new families of valid inequalities derived
from the traveling salesman problem (TSP) and the vehicle
routing problem (VRP). Jepsen et al. [33] presented an edge
flow model and applied a relaxation, which is similar to the
formulation introduced by Perboli et al. [45]. Based on this,
they proposed a branch-and-cut algorithm to solve the prob-
lem. Baldacci et al. [5] built a new model of the 2E-VRP and
derived somenew lower bounds.Basedon this, theyproposed
an exactmethod that transforms the 2E-VRP intomulti-depot
capacitated vehicle routing problems (MDCVRPs) with a
limited set. Dellaert [15] proposed an arc-based formulation
and developed a branch-and-price algorithm that can solve
instances of up to five satellites and 100 customers. Perboli et
al. [44] further gave two groups of valid inequalities: one was
an extension of the existing VRP valid inequalities and the
other consisted of explicit valid inequalities for the 2E-VRP.

Because of the hard-solving of the problem, researchers
have developed heuristics algorithms for it. Hemmelmayr
et al. [29] proposed an adaptive large neighborhood search
(ALNS) heuristic for the 2E-VRP. Breunig et al. [8] pre-
sented a meta-heuristic, in which some tailored operators
were designed to optimize the selection of satellites. Grang-
ier et al. [28] considered integrated constraints (e.g., time
windows, synchronization, multiple trips) in the second
echelon and proposed an ALNS to solve the problem. Li
et al. [37] adopted Clarke and Wright’s savings heuris-
tic algorithm, and further improved through a local search
phase.

The above works assume that the transport in both eche-
lons performed by gasoline- or diesel- powered vehicles, and
do not consider the vehicle en-route recharging. In contrast,
we consider the 2E-EVRP, where EVs are used in the second
echelon, so we need to consider when and where to recharge
the EVs.

Electric vehicle routing problem

Since 2000, green supply chain [1,17,18,52] and city logis-
tics [27,38,48] have attracted extensive interest, and the use
of EVs is thought of as an effective means for realizing
green distribution. There has been a growing interest in the
EVRP, since Gonçalves et al. [26] first studied it. Pelletier
et al. [42] gave a comprehensive review and suggested some
research perspectives for the EVRP. In the following, we
only review the works that are most closely related to our
study.

Liao et al. [39] considered the battery charging or swap-
ping in the EVRP, proposed a dynamic programming to
solve the EVRP with the shortest travel time, and devel-
oped an algorithm for the fixed tour EV touring prob-
lem. Hiermann et al. [30] studied a mixed vehicle routing

problem that involves various types of EVs with differ-
ent acquisition costs, driving ranges, and payloads. The
results showed that the type and number of EVs to be used
depend on the typical customer distribution in the urban
area. Desaulniers et al. [16] considered four variants of
the EVRP and designed customized branch-and-price algo-
rithms for each variant. Montoya et al. [40] studied the
EVRP with piecewise linear charging functions and pro-
posed a hybrid meta-heuristic to solve it. Zhang et al. [53]
introduced a new model considering the energy consump-
tion caused by coal-fired generation. Keskin and Çatay [35]
compared the total recharging costs under three recharg-
ing configurations, i.e., normal, fast, and super-fast, where
partial recharging was permitted. Froger et al. [22] fur-
ther studied the EVRP with a general nonlinear charging
function, assuming that the EVs can be fully or partially
recharged. Cortés-Murcia et al. [10] proposed a new vari-
ant that allows at most one customer to visit when an EV
is recharging en-route. Hua and Xu [23] studied the loca-
tion of charging stations to serve all EVs in a given area.
Tahami et al. [49] provided a compact formulation of the
EVPR, and three exact methods were introduced to solve the
formulation and its augmented variants. The above works
focus on the single-echelon EVRP. In contrast, we consider
the 2E-EVRP in which EVs are used in the second eche-
lon, while fossil fuel-powered trucks are used in the first
echelon.

Two-echelon electric vehicle routing problem

To our best knowledge, there are only three studies on the
2E-EVRP up to now [7,34,50]. Jie et al. [34] studied the
2E-EVRP in which the battery of EV can be replaced at
the stations. They proposed a hybrid algorithm combining
the column generation (CG) with an ALNS to deal with the
problem. Wang et al. [50] studied the 2E-EVPR with time
windows of satellites and customers. The randomly gener-
ated instances were solved by GUROBI. In our paper, we
focus on the exact algorithm to find the optimal solution of
2E-EVRP.

Breunig et al. [7] studied the 2E-EVRP inwhich EVswere
only used in the second echelon, and proposed an exact algo-
rithm for it based on the algorithm proposed by Baldacci et
al. [5] for 2EVRP. The algorithm consists of two main steps:
(i) generate the set of all first echelon routes and calculate
an initial lower bound; (ii)fix the selected set of first echelon
routes and transform the resulting problem into MDCVRP,
which is further solved by the procedure proposed in Bal-
dacci and Mingozzi [2]. Different from them, we propose
an arc flow model and decompose the model into an integer
master problem and a pricing subproblem. We then design a
branch-and-price algorithm to solve the problem.
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Problem formulation

In this section, we formulate the 2E-EVRP as an arc flow
model and decompose the model as an integer master prob-
lem. The relaxation of the integer master problem is used to
derive lower bounds for the optimal solution.

Arc flowmodel

We model the 2E-EVRP on graph G = {V , A}. The vertex
set V = {0}∪ S∪C ∪ F , where 0 represents the depot, S and
C represents the sets of satellites and customers, respectively,
and F is the set of recharging stations at second echelon. The
arc set A = A1 ∪ A2 consists of two subsets, namely the set
of arcs at first echelon A1 = {(i, j)|i, j ∈ {0} ∪ S, i �= j}
and the set of arcs at second echelon A2 = {(i, j)|i, j ∈
S ∪ C ∪ F, i �= j} \ A

′
2, where A

′
2 = {(i, j)|i, j ∈ S} ∪

{(i, j)|i, j ∈ F}.
Suppose the trucks and theEVs are located at the depot and

satellites, respectively. The trucks are homogeneous and their
load capacity is Q1. TheEVs are also homogeneous, and their
load capacity and battery capacity are Q2 and Q3, respec-
tively. When an EV travels on arc (i, j), it incurs transport
cost ci j and electricity consumption ei j . We assume that ci j
and ei j are linear functions of the distance di j , i.e., ci j = αdi j
and ei j = βdi j , α, β > 0. Let E be the maximum recharging
time that is required to recharge Q3 units of electricity, we
have E = γ Q3, where γ > 0 is the charging rate. Here, we
assume that α = β = γ = 1 to simplify the presentation and
analysis. In fact, the values of these parameters do not affect
the effectiveness of our proposed algorithm.

Let the fixed costs of a truck and an EV be u1 and u2,
respectively. Suppose the battery is fully recharged on a visit
to a recharging station and anEVcanvisit a recharging station
many times. However, consecutive visits to two recharging
stations are forbidden.

Each customer i ∈ C has a demand qi . We assume that the
depot and satellites are large enough to handle the demand
of all customers. The satellites are intermediate stations that
are used to transfer goods from the depot to the customers.
Each route of the first echelon starts from and ends with the
depot after visiting some satellites. The goods delivered by
a truck cannot exceed the load capacity Q1. Each satellite
can be visited by more than one truck. However, a satellite
can be visited by a truck no more than once. Any route of
the second echelon starts from a satellite, visits a subset of
customers and recharging stations, and then returns to the
same satellite. The total quantity of goods delivered by an
EV cannot exceed the load capacity Q2 and the remaining
battery power of EVs cannot be negative. Each customer can
only be visited once. Table 1 summarizes the notation used
throughout the paper. Then, the 2E-EVRP problem can be
modeled as the followingmixed integer programming (MIP):

Table 1 The notation used in the paper

Variable Definition

0 Depot;

S,C, F Sets of satellites,customers and recharging sta-
tions,respectively;

A1, A2 Arcs of the first and second echelon, respectively;

Q1, Q2 The capacity of trucks and EVs, respectively;

Q3 Maximum battery capacity of EVs;

K1, K2 Set of trucks and EVs;

k1, k2 Number of trucks and EVs,respectively;

ci j Transport cost of arc (i, j);

ei j Energy consumption of arc (i, j);

qi Demand of customer i ∈ C ;

di j Distance between vertex i and vertex j ;

h+
isk , h

−
isk The remaining battery power when EV k arrives and

leaves vertex i from satellite s, respectively;

bik The amount of goods delivered to satellite i by truck
k;

xi jk Binary decision variable demonstrating whether truck
k passes through arc (i, j);

yi jsk Binary decision variable demonstrating whether EV
k from satellite s passes through arc (i, j).

Min
∑

k∈K1

∑

(i, j)∈A1

ci j xi jk +
∑

k∈K1

∑

j∈S
u1x0 jk

+
∑

s∈S

∑

k∈K2

∑

(i, j)∈A2

ci j yi jsk +
∑

s∈S

∑

k∈K2

∑

(s, j)∈A2

u2ys jsk (1)

∑

(0, j)∈A1

x0 jk ≤ 1 ∀k ∈ K1 (2)

∑

(i, j)∈A1

xi jk =
∑

( j,i)∈A1

x jik ∀i ∈ S, k ∈ K1 (3)

∑

i∈S
bik ≤ Q1

∑

(0, j)∈A1

x0 jk ∀k ∈ K1 (4)

∑

k∈K1

bsk =
∑

k∈K2

∑

i∈C

∑

(i, j)∈A2

qi yi jsk ∀s ∈ S (5)

∑

s∈S\{s}

∑

k∈K2

(
∑

(s, j)∈A2

ys jsk +
∑

(i,s)∈A2

yissk) = 0 (6)

∑

s∈S

∑

k∈K2

∑

(i, j)∈A2

yi jsk = 1 ∀ j ∈ C (7)

∑

(i, j)∈A2

yi jsk =
∑

( j,i)∈A2

y jisk

∀ j ∈ C ∪ F, s ∈ S, k ∈ K2 (8)
∑

i∈C

∑

(i, j)∈A2

qi yi jsk ≤ Q2 ∀s ∈ S, k ∈ K2 (9)

h+
jsk + ei j − h−

isk ≤ Q3(1 − yi jsk)

∀(i, j) ∈ A2, s ∈ S, k ∈ K2 (10)
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h−
isk = Q3 ∀i ∈ S ∪ F, s ∈ S, k ∈ K2 (11)

h+
isk = h−

isk ∀i ∈ C, s ∈ S, k ∈ K2 (12)

xi jk ∈ {0, 1}
∀(i, j) ∈ A1, k ∈ K1 (13)

yi jsk ∈ {0, 1} ∀(i, j) ∈ A2, s ∈ S, k ∈ K2 (14)

h+
isk, h

−
isk ≥ 0

∀i ∈ V \{0},s ∈ S, k ∈ K2 (15)

bik ≥ 0 ∀i ∈ S, k ∈ K1. (16)

The objective function (1) is to minimize the total cost
including the fixed cost and the transport cost in both eche-
lons. Constraints (2) guarantee that a truck visits a satellite
nomore than once. Constraints (3) and (8) show the flow bal-
ance of vehicles. Constraints (4) and (9) ensure the capacity
of vehicles cannot be exceeded. Constraints (5) indicate the
balance of goods receiving and delivery, which means that
all goods received by a satellite from the depot must be deliv-
ered to customers. Constraint (6) prevents the situation that
an EV returns to a different satellite from the starting satel-
lite. Constraints (7) specify that each customer can only be
visited once. Constraints (10) reveals the relationship of bat-
tery power when an EV transfers from vertex i to vertex j ,
which also eliminates the sub-tours in the route. Constraints
(11) impose that the battery power is full when an EV departs
from a satellite or a recharging station. Constraints (12) keep
the battery power of an EV the same when it arrives at or
leaves a customer.

Dantzig–Wolfe decomposition

We shall use the idea of Dantzig–Wolfe decomposition to
propose an algorithm for the problem. The MIP model (1)-
(16) will be decomposed into an integer master problem and
a pricing subproblem by the Dantzig–Wolfe decomposition.
Let R1 and R2 be the feasible routes sets of the first and
second echelon, respectively. Let Rs

2 be the set of feasible
routes in the second echelon starting from and ending at the
satellite s, where R2 = ⋃

s∈S Rs
2.

Let λr be an integer variable that indicates the times route
r ∈ R1 is implemented. For each route r ∈ R1 ∪ R2, cr
denotes its transport cost and air (i ∈ V \{0}) equals to 1 if
vertex i is visited by route r and 0 otherwise. Let psr be
the quantity of the goods delivered to satellite s using route
r ∈ R1. For a route r ∈ Rs

2
, θ sr is a decision variable that is

equal to 1 if route r is a component of the optimal distribution
strategy and 0 otherwise. Table 2 summarizes the notation of
the integer master problem used throughout the paper. The
integer master problem (IMP) is shown as follows:

Table 2 The notation used in the integer master problem

Variable Definition

R1, R2 Sets of feasible routes of the first and second echelons,
respectively;

Rs
2 Set of feasible routes in the second echelon starting

from and ending at satellite s ∈ S;

cr Transport cost of route r ∈ R1 ∪ R2;

air Binary variable indicating whether vertex i is visited
by route r ∈ R1 ∪ R2;

λr Decision variable indicating the times route r ∈ R1 is
implemented;

psr Decision variable indicating how many goods does
route r ∈ R1 transport to satellite s;

θ sr Binary decision variable indicating whether a route
r ∈ Rs

2 is implemented.

Min
∑

r∈R1

(cr + u1)λr +
∑

s∈S

∑

r∈Rs
2

(cr + u2)θ
s
r (17)

∑

r∈Rs
2

θ sr

∑

i∈C
airqi =

∑

r∈R1

psr ∀s ∈ S (18)

∑

s∈S

∑

r∈Rs
2

airθ
s
r = 1 ∀i ∈ C (19)

∑

s∈S
asr p

s
r ≤ Q1λr ∀r ∈ R1 (20)

∑

r∈R1

∑

s∈S
(1 − asr )p

s
r = 0 (21)

λr ∈ N+ ∀r ∈ R1 (22)

θ sr ∈ {0, 1}∀r ∈ Rs
2 ∀s ∈ S (23)

psr ∈ N+ ∀r ∈ R1, s ∈ S. (24)

The objection function (17) is the sum of the fixed cost
and transport cost in both echelons. Constraints (18) ensure
the flow balance at each satellite, which means the total
amount of goods received by a satellite from the depot equals
that shipped from the satellite to customers. Constraints (19)
ensure that each customer is visited only once in the sec-
ond echelon. Constraints (20) guarantee that the capacity of
the trucks is not exceeded. Constraint (21) imposes the rela-
tionship between asr and psr that a route of the first echelon
cannot deliver goods to a satellite if the route does not visit it.
Constraints (22)–(24) restrict the domains of the associated
variables.

We relax constraints (22) and (23) as λr ≥ 0 and θ sr ≥ 0
to generate lower bounds for the model. The linear relax-
ation of the IMP (17)-(24) is called the master problem. The
lower bound of the master problem can be strengthened by
imposing the capacity constraint
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∑

r∈R1

λr ≥
⎡

⎢⎢⎢

∑
i∈C

qi

Q1

⎤

⎥⎥⎥
, (25)

which imposes a minimum number of vehicles used at the
first echelon to transport the goods from the depot to satel-
lites.

Branch-and-price algorithm

Formodel (17)–(25), there are toomany variables to solve by
a standard MIP solver or the branch-and-bound algorithm.

Therefore, we propose a BP algorithm for it based on its
structure. Noting that each route r ∈ R1 ∪ R2 corresponds
to a variable (λr or θ sr ) in the master problem, we keep the
set of routes R1 unchanged and replace the sets Rs

2(s ∈ S)

by the initial subsets of routes R̂s
2 ⊂ Rs

2(s ∈ S), where
|R̂s

2| << |Rs
2|. We call the master problemwith the variables

(columns) λr (r ∈ R1) and θ sr (s ∈ S, r ∈ R̂s
2) the restricted

master problem (RMP). Then, we adopt the column genera-
tion (CG) algorithm to solve the RMP. We branch the RMP
into two subproblems based on a branching strategy if the
solution of the RMP is fractional. Therefore, our algorithm
comprises three main components: (i) an insertion heuristic
(IH) to generate the initial subsets of routes R̂s

2 ⊂ Rs
2(s ∈ S),

(ii) a CG algorithm that evaluates the lower bounds of IMP

(17)–(25) by solving the RMP, and (iii) a branching strategy
that forces the solution of the RMP to be integers.

The branch-and-price algorithm framework

In this subsection, we discuss the BP algorithm, which
is called Algorithm 1. At first, the initial set of variables
(columns) ζ is generated. Based on the initial set of columns
ζ , we call CG to calculate the new lower bound. Then, we
explore the branch nodes of search tree T and update the
lower bound and upper bound. The optimal solution r* is
obtained when the lower bound LB equals the upper bound
UB.

Algorithm 1 The BP algorithm

Input: Data on the depot, satellites, customers, and vehicles, and the maximum running
time Tmax;

Output: The optimal solution r∗;

1: Initialize the columns set ζ=∅ and the search tree T=∅;
2: Call IH to generate a feasible solution ψ of the second echelon and get the initial
columns set ζ . Calculate UB0, UB ← UB0 (see Sect. 4.2);

3: Call CG to solve P0, and get the solution S0 and its cost C(P0) (see Sect. 4.3);
4: LB ← C(P0),T ← T ∪ P0;
5: while T ≤ Tmax and UB �= LB and T �= ∅ do
6: Choose a branch node P such that C(P) = min

P ′ ∈T
{C(P

′
)}. Obtain its solution S;

7: P0 ← P ,S0 ← S, T ← T \P0;
8: if S0 is an integer solution and C(P0) < UB then
9: UB ← C(P0) and prune the branch nodes P such that C(P) ≥ UB;
10: else if S0 is a non-integer solution then
11: Branch P0 into P1 and P2, call CG to get the optimal solutions S1 and S2

and their costs C(P1) and C(P2);
12: T ← T ∪ {

P1, P2
}
, LB ← min

P ′ ∈T
{C(P

′};
13: end if
14: end while
15: return r*

Since the number of satellites is generally relatively small,
we enumerate all the subsets of the satellites with the depot
in the first echelon. Then, we find the shortest route of each
subset that starts from and ends at the depot by solving the
ESPPRC. These shortest routes constitute the set of the first
echelon routes R1. In the second echelon, we apply an inser-
tion heuristic (Algorithm 2) to generate a feasible solutionψ

of the second echelon, whereψ = ⋃
s∈S R̂s

2. Then, we get the
initial set of variables as ζ = {λr |r ∈ R1} ∪ {θ sr |s ∈ S, r ∈
R̂s
2}.
Once the feasible solution ψ of the second echelon is

fixed, the 2E-EVRP can be transformed into solving the split
delivery vehicle routing problem at the first echelon. We use
the CPLEX to solve this problem and derive the initial upper
bound UB0.
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We denote T as the search tree to represent the original
problem and its subproblems. The RMPwith the initial set of
columns is regarded as the original problem and is thought of
as the root node of T . In each iteration, we select an unfath-
omed node from T which is denoted as P0. The optimal
solution and its corresponding value of P0 are denoted as
S0 and C(P0), respectively. The upper bound in the current
iteration is UB. If it is an integer solution, the UB will be
updated and the unnecessary branch nodes will be pruned. If
S0 is not an integer solution and C(P0) < UB, we branch

P0 into two subproblems P1 and P2 (child nodes) and add
P1 and P2 to the search tree T . The optimal solutions of P1

and P2 can be obtained by invoking the CG algorithm. Since
P0 is fathomed, we remove P0 from the search treeT . Then,
the lower bound will be updated.

Insertion heuristic algorithm

In this subsection, we design an insertion heuristic (IH) algo-
rithm to obtain a feasible solution ψ of the second echelon,
which consists of the routes that satisfy the resource con-
straints without en-route recharging. The algorithm consists
of two steps: (i) assign customers to their nearest satellites;
(ii) route the assigned customers of each satellite. We sum-
marize IH algorithm as Algorithm 2.

Algorithm 2 Insertion heuristic

Input: Distance di j , cost ci j , and electricity consumption ei j for each arc (i, j) ∈ A2,
demand qi for each customer i ∈ C , EVs’ capacity Q2, and the maximum
recharging time E ;

Output:A feasible solution ψ of the second echelon;

1: For each s ∈ S, initialize set 	s = ∅, Ds = ∅;
****** assign customers to its nearest satellite ******

2: for i ∈ C do
3: ϕi = ∅;
4: for s ∈ S do
5: Calculate the distance dis between customer i and satellite s;
6: ϕi ← ϕi ∪{dis};
7: end for
8: dik = min

s∈S {dis |dis ∈ ϕi};
9: 	k ← 	k ∪{i}, Dk ← Dk ∪{dik};
10: end for

****** route the assigned customers of each satellite ******
11: for s ∈ S do
12: n = 1;
13: while 	s �= ∅ do
14: Pn

s = {s, i, s},T load = qi , T
rt = esi + eis ;

15: repeat
16: Insert customer u ∈ 	s with the minimum inrsertion cost into route Pn

s , such
that the load capacity and battery capacity constraints are satisfied, and
remove u from 	s ;

17: until no such customer in 	s exists
18: n ← n + 1;
19: end while
20: end for
21: return ψ = ⋃

s∈S Pn
s

Column generation algorithm

In this subsection, we describe the column generation (CG)
algorithm that generates lower bounds for the IMP (17)–(25).
To state the algorithm, we first introduce the pricing sub-
problem, which aims at finding a column with the minimum
reduced cost.
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For a given satellite s ∈ S, let αs and πi (i ∈ C) be
the dual variables associated with constraints (18) and (19),
respectively. Suppose there is a route r ∈ R2 starting from
satellite s. Let yi j be a binary variable to indicate whether
this route passes through arc (i, j). hi j means the remaining
battery power when EV leaves vertex i . ai denotes whether
customer i is visited by this route. Then, the pricing subprob-
lem is shown as follows:

min c =
∑

(i, j)∈A2

ci j yi j + u2 − αs

∑

i∈C
aiqi −

∑

i∈C
aiπi (26)

∑

j∈C∪F

yi j = ai ∀i ∈ C (27)

∑

i∈C∪F

yi j = a j ∀ j ∈ C (28)

∑

j∈C∪F

ys j = 1 (29)

∑

i∈C∪F

yis = 1 (30)

∑

(i, j)∈A2

yi j =
∑

( j,i)∈A2

y ji ∀i ∈ C ∪ F (31)

∑

i∈C
qiai ≤ Q2 (32)

h+
j + ei j − h−

i ≤ Q3(1 − yi j ) ∀(i, j) ∈ A2 (33)

h−
i = Q3 ∀i ∈ S ∪ F (34)

h+
i = h−

i ∀i ∈ C (35)

yi j ∈ {0, 1} ∀(i, j) ∈ A2 (36)

ai ∈ {0, 1} ∀i ∈ C (37)

h+
i , h−

i ≥ 0 ∀i ∈ V \{0}. (38)

The objective function (26) seeks for the column with
minimum reduced cost. Constraints (27)–(28) imply the rela-
tionship between yi j and ai . Constraints (29)–(30) restrict
the route starting from and ending at the same satellite.
Constraints (31)–(35) are the same as constraints (8)–(12).
Constraints (36)–(38) are the variable domains.

The pricing subproblem is subject to cost, capacity, and
electricity constraints, which are called resource constraints.
We can re-formulate the subproblem as an ESPPRC in
G ′=(V ′, A2) where V ′ = S ∪ F ∪ C . Since the ESPPRC is
strongly NP-hard, we adopt dynamic programming to solve
it.

To compute the reduced costs of the feasible routes in G ′,
we replace the arc cost ci j by a modified cost ci j as follows:

ci j =

⎧
⎪⎪⎨

⎪⎪⎩

ci j + 0.5u2 − 0.5αsq j − 0.5(πi + π j )

if i ∈ S, j ∈ C ∪ F
ci j − 0.5αs(qi + q j ) − 0.5(πi + π j )

if i, j ∈ C ∪ F

(39)

The variables πi and qi are set to 0 if i ∈ S ∪ F . For any
feasible route r , the reduced cost cr equals the sum of the
modified costs of the arcs in the route.

The CG algorithm is an iterative algorithm that alternates
between solving the RMP and the pricing subproblem. We
denote the set of feasible routes as R

′
2, which is generated by

a labeling algorithm.

Algorithm 3 CG Algorithm

Input:The RMP of a branch node and its column set ζ ;
Output:The optimal solution S∗;

1: do {
2: Solve the RMP to get a solution S, and dual variables αs and πi ;
3: Use the dual variables αs and πi to construct the pricing subproblem;
4: Call the labeling algorithm to generate a feasible route set R

′
2 (see Sect. 4.3.1);

5: Calculate the reduced cost cr for each r ∈ R
′
2 and ck = min

r∈R
′
2

{cr};
6: if ck ≥ 0 then
7: S∗ ← S;
8: break;
9: else
10: ζ ← ζ ∪{θ sk};
11: end if
12: } while (ck ≤ 0) ;
13:return S∗

Let S be a feasible solution and S∗ be the optimal solution
of the RMP, respectively. We present the CG algorithm in
detail in Algorithm 3.
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Labeling algorithm

In this subsection, we discuss the labeling algorithm that
generates a set of feasible routes R

′
2 of the second echelon.

Each feasible route in R
′
2 starts from a satellite and ends at

the same satellite, and satisfies a set of resource constraints.
To present conveniently, we call the starting satellite s and
the ending satellite t . Therefore, each feasible route corre-
sponds to an s − t path. In the labeling algorithm, each label
of vertex i represents a partial path from a satellite s to ver-
tex i . Labels extend forwardly using the resource extension
functions (REFs) and those that violate the resource con-
straints will be discarded [32]. Furthermore, a dominance
rule is introduced to eliminate partial paths from which the
s − t path with the minimum reduced cost cannot be yielded
by extending them.

Because of the symmetry of our model, we use a bidi-
rectional search to generate the set of feasible routes of the
second echelon. The bidirectional search consists of two
mono-directional searches, namely the forward search from
s to t and the backward search from t to s. To present clearly
the bidirectional search, we introduce the mono-directional
search first.

Mono-directional search Amono-directional forward search
extends the labels from s to t . In the search, a partial path
r that starts from s to vertex i can be represented by a label
(X i,Yi , Zi , (H

custk
i )k∈C , s), where Xi is the reduced cost

along path r , Yi is the cumulative load transferred along path
r , Zi is the cumulative recharging time required, since last
recharge along path r , and Hcustk

i is the number of visiting
times for customer k ∈ C along path r .

The components of the initial label at satellite s are set
to 0. Suppose that (X i,Yi , Zi , (H

custk
i )k∈C , s) is a label of

vertex i ∈ s ∪C ∪ F and j ∈ C ∪ F is a successor of i , i.e.,
arc (i, j) ∈ A2. When the partial path r extends from i to j ,
a new label (X j ,Y j , Z j , (H

custk
j )

k∈C , s) of vertex j ∈ C∪F
is generated according to the following REFs:

X j = Xi + ci j (40)

Y j = Yi + q j (41)

Z j =
{
ei j i f i ∈ F
Zi + ei j otherwise

(42)

Hcustk
j =

{
Hcustk
i + 1 i f k = j

Hcustk
i otherwise

(43)

If oneof the conditionsY j > Q2, Z j > E , andHcustk
j > 1

for a customer k ∈ C holds, label (X j ,Y j , Z j , (H
custk
j )

k∈C , s)
is infeasible and discarded.

To avoid enumerating all the feasible partial paths, each
new generated label is examined by the dominance rule.
Given that REFs (40)–(43) are nondecreasing, we define the
dominance rule as follows:

Definition 1 Let Ln = (Xn,Yn, Zn, (H
custk
n )k∈C , s), n ∈

{1, 2}, be two labels associated with different paths start-
ing from the same satellite s and ending at the same vertex
i . Label L2 is dominated by L1 if

X1 ≤ X2 (44)

Y1 ≤ Y2 (45)

Z1 ≤ Z2 (46)

Hcustk
1 ≤ Hcustk

2 ∀k ∈ C (47)

and at least one of the inequalities is strict.

If L
1
dominates L

2
, L

2
is discarded.

Bidirectional search In the bidirectional search, labels are
extended both forward from satellite s to its successors and
backward from t to its predecessors. Labels, REFs, and the
dominance rules of the backward search can be defined anal-
ogously as those of the forward search.

In the bidirectional search, we select a resource as the
critical resource for which its value is nondecreasing as the
path extends. We choose the capacity of the vehicles as the
critical resource and set themidpoint as Q2/2. The restriction
condition for the forward search is

Y ≤ Q2/2. (48)

A forward label is no allowed to be extended if its compo-
nent Y exceeds Q2/2. Simultaneously, backward labels are
extended backward from t except Y > Q2/2.

Let L fw
i and Lbw

i be the sets of forward and backward
labels associated with vertex i , respectively. The forward and
backward labels should be merged to form an s − t path. Let
(Xi ,Yi , Zi , (H

custk
i )k∈C , s) ∈ L fw

i and

(X
′
i ,Y

′
i , Z

′
i , (H

custk
i

′
)k∈C , s) ∈ Lbw

i be the labels of a for-
ward path and a backward path starting from the same
satellite s and ending at the same vertex i , respectively. An
s − t path can be yielded by merging these two labels only
if the labels meet the following conditions:

Yi + Y
′
i − qi ≤ Q2 (49)

H
custk
i + Hcustk

i

′ {≤ 1 i f k �= i
=2 otherwise

(50)

and the additional conditions, which correspond to two cases
of the merged vertex.
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Case 1. The ending vertex is a recharging station, i.e., i ∈ F ,
if

max{Zi , Z
′
i } ≤ E . (51)

Case 2. The ending vertex is a customer, i.e., i ∈ C , if

Zi + Z
′
i ≤ E . (52)

Acceleration strategies

We adopt two strategies to reduce the computing time to
solve the pricing subproblem. One strategy is the state-
space relaxation, which is proposed by Christofides et al.
[9]. This strategy is achieved by removing the label compo-
nent (Hcustk )k∈C that is used to record the number of visiting
times. The other strategy is theng-route relaxation introduced
by Baldacci et al. [3].

The state-space relaxation has been used to solve the TSP
[4,46]. In their paper, the component (Hcustk )k∈C is replaced
by the sum of all customers’ visits δ = ∑

k∈C
Hcustk . Here, we

remove the component (Hcustk )k∈C from the label instead of
replacing it by δ to obtain the label with relaxation. Let L f w

and Lbw be the sets of forward and backward labels with
relaxation, respectively. The labeling algorithm is performed
to extend the labels of L fw and Lbw in each round of the CG
algorithm. If the labeling algorithm fails to generate columns
with negative reduced costs, it is implemented with the set
of labels L f w and Lbw.

For each vertex i ∈ C ∪ F , let Ni be its neighborhood
that contains the |Ni | − 1 closest vertices (customers and
recharging stations) and i itself. Let P = {s, i1, i2, ..., i p} be
a feasible path associated with the subset

∏
(P) ⊆ V (P),

where
∏

(P) is

∏
(P)=

⎧
⎪⎪⎨

⎪⎪⎩

{ik |ik ∈
p⋂

s=k+1
Nis}∪ {i p}∩ C i f i p ∈ C

{ik |ik ∈
p⋂

s=k+1
Nis}∪ {i p}∩ C ∪ F i f i p ∈ F

(53)

A ng-route is a non-necessarily elementary path P =
{s, i1, i2, ..., i p=i} starting from a satellite s, visiting some
vertices, and ending at vertex i , such that i /∈ ∏

(P ′), where
P ′ = {s, i1, i2, ..., i p−1} is a ng-path. The label Lip is allowed
to extend to a vertex i p+1, such that i p+1 /∈ ∏

(P) and all of
the label components at vertex i p+1 satisfy the conditions.
When Ni contains all of the vertices, such that Ni ⊇ C , it is
obvious that label Lip generates the elementary paths. If |Ni |
is small enough, it is difficult to produce a near-elementary

route, which means that the subproblem can be solved easily.
To trade off the computing time and solution quality, we set
|Ni | to be 10 in the numerical studies.

Branching strategy

To derive an integer solution, we resort to branching. The
branching strategy consists of three types of branching deci-
sions [47]. Let {λr |r ∈ R1} and {̂θ sr |s ∈ S, r ∈ R̂s

2
} be the

solutions of the latest RMP. The variables {λr |r ∈ R1} are
preferred to branch first. Suppose λw is the most fractional
variable, i.e., its decimal part is closest to 0.5. Twochild nodes
are created, namely one adds the constraint λr ≥ �λw� and
the other adds the constraint λr ≤ �λw�.

If all of the variables {λr |r ∈ R1} are integers, we evaluate
the number of vehicles

∑

r∈R̂s
2

θ̂ sr used by each satellite s ∈ S.

Assume that satellite k uses the most fractional number of
vehicles. Similarly, two child nodes are produced, namely

one adds the constraint
∑

r∈Rk
2

θkr ≤
⎢⎢⎢⎣ ∑

r∈R̂k
2

θ̂kr

⎥⎥⎥⎦ and the other

adds the constraint
∑

r∈Rk
2

θkr ≥
⎡

⎢⎢⎢
∑

r∈R̂k
2

θ̂kr

⎤

⎥⎥⎥
.

The third branching decision is used if {λr|r ∈ R1} and
{ ∑

r∈R̂s
2

θ̂ sr |s ∈ S} are integers. Let ti jr be the number of

times that a vehicle travels the arc (i, j) ∈ A2. The total
number of times all vehicles passed through arc (i, j) is∑

r∈R̂s
2

ti jr θ̂ sr . Assuming that (u, v) ∈ A2 is the most frac-

tional arc, we create two child nodes, namely one adds the
constraint

∑
r∈Rs

2

tuvrθ
s
r ≤ 0 and the other adds the constraint

∑
r∈Rs

2

tuvrθ
s
r ≥ 1.

The second and third branching decisions are imposed
by adding inequalities to the RMP. Each inequality has a
corresponding dual variable. For a given satellite s ∈ S, let
I sBR be the set of the inequalities that have been added to
the RMP at the current branch node and βs be the set of the
corresponding dual variables of the second decision. Let I sBA
be the set of inequalities and γ s be the set of dual variables
of the third decision. Then, the subproblem is

min
s∈S,r∈Rs

2

cr = cr + u2 − αs

∑

i∈C
airqi

−
∑

i∈C
airπi −

|I sBR |∑

k=1

βs
k −

|I sBA|∑

k=1

ti jrγ
s
k . (54)

If I sBR or I sBA is empty, the corresponding part in (54) is 0.
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To reduce the memory requirement, we adopt the depth-
first search strategy to explore the search tree.

Numerical studies

In this section, we present numerical studies to evaluate
the effectiveness of the BP algorithm. We present the test
instances used in the studies in Sect. 5.1 and the performance
of the algorithm in Sect. 5.2. We present the sensitivity anal-
ysis of recharging station density, battery capacity, and fixed
costs of EVs in Sect. 5.3.

We coded the algorithm in Python 3.6.3 and used CPLEX
12.8.0 to solve the RMP.We conducted the numerical studies
on a computer with an Inter(R) Core(TM) i7-9700K CPU
(3.6GHz) and 32GB of RAM memory.

The test instances

As the 2E-EVRP problem in our paper is different from those
considered in existing studies, no benchmarks’ instances are
available to test the performance of our proposed algorithm.
Therefore, we generate new instances for the numerical stud-
ies.

First, we generated a set of small-sized instances, labeled
as Set 1, on the basis of instances in Breunig et al. [7]. We
generated second and third sets of instances, labeled as Set
2 and Set 3, respectively, which are based on the instances
proposed by Breunig et al. [7] and Desaulniers et al. [16],
respectively. Set 1 has 12 instances, each of which has ten
customers and no more than two recharging stations. Set
2 has 12 instances, each of which has 20 customers and
two recharging stations. Set 3 also has 12 instances, each
of which has 20 customers and two recharging stations. To
apply the instances to our problem, we need to preprocess
these instances. First of all, we randomly removed some cus-
tomers if the number of customers is great than our instances.
Afterward, for the instances from Breunig et al. [7], we
removed the recharging function as well as the capacity limit
of the satellites. For the instances from Desaulniers et al.
[16], we randomly inserted the satellites into the graph. All
the instances can be downloaded by accessing URL: https://
github.com/Novigram/Insatances-for-2E-EVRP.git.

Computational results

In this subsection, we report the results of applying our BP
algorithm to solve the generated instances. First, we compare
the performance of theBP algorithmwith that of CPLEX (arc
flow model) on Set 1 (the small-sized instances) and report
the results in Table 3. We give the names of the instances
in the first column, e.g., “E-c10-s3-r1-1” means that the first
instance, which has ten customers, three satellites, and one

recharging station. This naming rule also applies to Set 2
and Set 3. The column “Opt” reports the optimal solution of
CPLEX. If CPLEX cannot find the optimal solution within
3,600 s, the best upper bound is considered as the best approx-
imate solution. The columns “UB” and “LB” denote the
upper bound and lower bound founded on terminating the
algorithm. The column “T(s)” shows the computation time
(seconds) of CPLEX and the BP algorithm, respectively. The
column “Gap” reports the percentage gap between the upper
bound and lower bound.

defined as 100(UB-LB)/UB.
FromTable 3, we see that the BP algorithm can solve all of

the 12 instances and find the optimal solutions. In addition,
the BP algorithm solves the instances (except E-c10-s3-r1-
5) faster than CPLEX. On average, the BP algorithm takes
13.9727 s, whereas CPLEX takes 47.2367 s to solve an
instance in Set 1. The BP algorithm is 70.42% faster than
CPLEX. Table 3 shows the correctness of the model and the
effectiveness of our algorithm.

Next, we evaluate the performance of the BP algorithm in
solving some larger scale problems (Set 2 and Set 3). We set
the maximum CPU running time as 100,000 s. We report the
computational results in Table 4.

In Table 4, the upper bound in column “UB” marked with
an asterisk means that the BP algorithm finds the optimal
solution. The column “RLB” denotes the root lower bound,
which is the optimal value of the RMP at the root node.

From Table 4, we see that the BP algorithm performs well
in solving the 2E-EVRP in moderate computing time. Over-
all, the BP algorithm solves 15 out of the 24 instances within
the maximum running time. The BP algorithm finds the opti-
mal solutions for seven instances in Set 2. For the other
instances, the average percentage gap between the upper
bound and lower bound is small, which is approximately 1.1
%. For the instances in Set 3, the BP algorithm solves eight
instances within the maximum running time. For the other
instances, the percentage gaps between the upper and lower
bounds are very small and acceptable.

We can also observe that some instances are very hard
to solve (E-c20-s2-r2-1, E-c20-s2-r2-2, etc.), while other
are very easy to solve (E-c20-s2-r2-5, E-c20-s2-r2-9, etc.),
despite they have the same dimensions. The computing time
is mainly affected by the number of branch nodes. Each
branch process means that the CG has to be executed many
times,which is very time-consuming. If an integer solution of
a branch node is produced, this node is no longer branched.
Therefore, the earlier the integer solution is generated, the
fewer of branch nodes are produced. If the search tree has
fewer branches, the running time will be smaller.
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Table 3 Performance of the BP
algorithm on the instances of set
1

Instance CPLEX BP
Opt T LB UB Gap(%) T(s)

E-c10-s3-r1-1 315 70.45 315 315 0 4.4677

E-c10-s3-r1-2 287 7.83 287 287 0 2.8900

E-c10-s3-r1-3 315 114.78 315 315 0 21.5105

E-c10-s3-r1-4 330 79.69 330 330 0 4.7020

E-c10-s3-r1-5 282 3.06 282 282 0 3.7960

E-c10-s3-r1-6 258 3600 258 258 0 55.9486

E-c10-s3-r1-7 279 4.73 279 279 0 3.7178

E-c10-s3-r1-8 334 48.52 334 334 0 4.7801

E-c10-s3-r1-9 288 52.78 288 288 0 20.3702

E-c10-s3-r1-10 286 51.53 286 286 0 14.7309

E-c10-s3-r1-11 230 27.22 230 230 0 5.3112

E-c10-s3-r1-12 270 106.25 270 270 0 25.4471

Avg. 289.5 47.2367 289.5 289.5 0 13.9727

Table 4 Performance of the BP
algorithm on the instances of
Sets 2 and 3

Instance LB UB RLB Gap(%) T(s)

Set2

E-c20-s2-r2-1 4854 4854* 4791.1 0 14.76

E-c20-s2-r2-2 4913 4913* 4792.16 0 29.88

E-c20-s2-r2-3 4986 4986* 4853.19 0 19391.02

E-c20-s2-r2-4 5400 5400* 5363.28 0 72.02

E-c20-s2-r2-5 5661.41 5669 5477.07 0.13 100000

E-c20-s2-r2-6 4079 4079* 3998.11 0 43731.56

E-c20-s2-r2-7 6396 6396* 6185.29 0 37145.77

E-c20-s2-r2-8 6690 6690* 6645.28 0 3752.18

E-c20-s2-r2-9 6187.56 6306 5918.11 1.88 100000

E-c20-s2-r2-10 9567.8 9586 9510.13 0.19 100000

E-c20-s2-r2-11 10384.81 10449 10351.36 0.61 100000

E-c20-s2-r2-12 6350.74 6527 6311.52 2.70 100000

Avg. 6289.19 6321.25 6183.05 1.10

Set3

E-c20-s2-r2-13 517 517* 460.6 0 158.2

E-c20-s2-r2-14 457 457* 403.4 0 1569.1

E-c20-s2-r2-15 336 336* 291.04 0 90421.07

E-c20-s2-r2-16 566 566* 494.6 0 49228.99

E-c20-s2-r2-17 402.97 430 362.81 6.29 516334.3

E-c20-s2-r2-18 507.63 545 481.23 6.86 271460.1

E-c20-s2-r2-19 497 497* 438.72 0 49498.76

E-c20-s2-r2-20 394.67 435 373.63 9.27 100000

E-c20-s2-r2-21 593.3 637 571.26 6.86 100000

E-c20-s2-r2-23 542 542* 483.98 0 4903.78

E-c20-s2-r2-24 481 481* 432.2 0 507.15

Avg. 480.63 493 432.51 7.32
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Fig. 2 Impact of recharging stations density on the total cost

Sensitivity analysis

In this subsection, we investigate the impacts of the recharg-
ing stations density, battery capacity, and fixed cost of EVs
on the optimal solution. We selected five instances, namely
E-c20-s2-r2-1 (instance 1), E-c20-s2-r2-2 (instance 2), E-
c20-s2-r2-4 (instance 3), E-c20-s2-r2-14 (instance 4), and
E-c20-s2-r2-24 (instance 5) from Sets 2 and 3 to gener-
ate three additional sets of instances, namely Sets 4, 5,
and 6, to conduct the sensitivity analysis. Set 4 consists
of 25 instances, which are divided into five groups, with
nr ∈ {2, 4, 6, 8, 10} recharging stations. Set 5 also has
25 instances, which are divided into five groups with dif-
ferent battery capacities. The battery capacity of the five
groups is n times the original battery capacity Q3, where
n ∈ {1, 1.3, 1.5, 1.7, 2}. Set 6 contains 25 instances, which
are divided into five groups with different fixed costs of
the EVs. The fixed costs of the five groups are u2 ∈
{100, 200, 300, 400, 500}. The other parameters were the
same as before.

In Sets 5 and 6, we fixed the numbers of the depot, satel-
lites, and recharging stations for each instance. However, we
varied the number of recharging stations nr in the different
groups of Set 4. For each instance of Set 4, we added the
additional recharging stations in the graph when nr changes.
Suppose the x-coordinates of all the vertices (depot, satel-
lites, and recharging stations) are in the interval [xmin, xmax ]
and the y-coordinates are in the interval [ymin, ymax ]. We
randomly located the additional recharging stations in the
rectangular area [xmin, xmax ]×[ymin, ymax ]. Figure 2 depicts
the relationship between the number of recharging stations
and the total cost. Figure 3 shows the changes in the total cost
concerning the battery capacity. Figure 4 shows the impacts
of thefixed cost of theEVson the transport cost (transport dis-

Fig. 3 Impact of battery capacity on the total cost

Fig. 4 Impact of fixed cost on the transport cost

tance). The “Gap” in Figs. 2 and 3means the percentage gaps
between the total costs with and without the battery capacity
restriction. Since the total cost consists of the transport and
fixed costs, changing the fixed cost directly affects the total
cost, which cannot show the impact on the transport cost.
Therefore, the “Gap” in Fig. 4 is the percentage gap between
the transport costs with and without the vehicle fixed cost.
In Fig. 2, the points on each line n ∈ {1,2,3,4,5} represent
the five instances with nr = {2,4,6,8,10}, which are derived
from instance n. Overall, the percentage gap decreases with
the recharging station density, but the decline is slower as the
recharging station density becomes larger. In other words,
the total cost will decrease with increasing recharging sta-
tion density. However, when the recharging station density
reaches a certain level, adding new recharging stations will
result in a slower decline in the total cost.
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In addition, there is no significant change in the percentage
gaps on the line 4 and line 5, i.e., the recharging stations den-
sity has a slight impact on the total cost. This is because the
optimal values of instance 4 and instance 5 with nr = 2 are
very close to their corresponding optimal values without the
battery capacity restriction. When new recharging stations
are added, there is no better option that can significantly nar-
row the gap. Thus, the location of the recharging stations is
very important. If the recharging stations are located at appro-
priate positions, the BP algorithm can generate promising
solutions even if the recharging station density is very low.

In Fig. 3, the points on each line n ∈ {1,2,3,4,5} repre-
sent the five instances with different battery capacity, which
are derived from instance n. When the battery capacity is
small, a slight increase in the battery capacity can consider-
ably reduce the transport cost. When the battery capacity is
large, increasing the battery capacity has a small impact on
the total cost. Moreover, when the recharging stations den-
sity is high, the effect of increasing the battery capacity to
save cost is not obvious. In other words, when the recharging
infrastructure is adequate, the battery capacity has a small
impact on the transport cost.

In Fig. 4, the points on each line n ∈ {1,2,3,4,5} represent
the five instanceswith different fixed costs, which are derived
from instance n. Figure 4 shows the impact of the fixed costs
of the EVs on the transport cost in the line 1 and line 3.
When the fixed cost increases to a certain extent, the vehicle
will change from the original distribution route to visiting
more customers, so the number of vehicles used is reduced.
However, the fixed cost has no impact on the transport cost
in the other three lines. This is mainly caused by one or more
of the following reasons:

(i) The high loading rates of the EVs make it impossible
for the EVs to access more customers.

(ii) The distribution of customers in each region is rel-
atively centralized, so the distances between the different
regions are long.

(iii) The battery capacity of the EVs is small and there is
no available recharging station nearby, which makes the EVs
unable to undertake more distribution tasks.

Conclusions

In this paper, motivated by the express and e-commerce com-
panies’ distribution practices, we study the 2E-EVRP, which
is an extension of the 2E-VRP considering battery capacity
and en-route recharging.We propose a BP algorithm to solve
the problem, which uses enumeration to generate feasible
routes for the first echelon and the labeling algorithm for the
second echelon. Conducting computational experiments to
evaluate the effectiveness of the BP algorithm, we show that
the algorithm can find the optimal solutions efficiently. We

demonstrate the effectiveness of theBPalgorithmbycompar-
ing it with CPLEX for solving small-scale test instances. We
further assess the performance of the BP algorithm in solving
middle-scale test instances. We also explore the impacts of
recharging station density, battery capacity, and fixed cost of
the EVs on the optimal solution.

Based on our study, we suggest some topics worthy of
future research. In practice, a host of other factors, e.g., time
windows, the limited number of EVs, nonlinear recharging,
and discharging characteristics, need to be considered when
manager vehicle schedules. Extending our model and algo-
rithm to consider other factors is a topic worth studying in the
future. In this paper, we propose a BP algorithm to solve the
problem. Other solution algorithms, be they exact or approx-
imate, could be devised to solve the problem.
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