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Abstract
The current study is related to present a novel neuro-swarming intelligent heuristic for nonlinear second-order Lane–Emden 
multi-pantograph delay differential (NSO-LE-MPDD) model by applying the approximation proficiency of artificial neural 
networks (ANNs) and local/global search capabilities of particle swarm optimization (PSO) together with efficient/quick 
interior-point (IP) approach, i.e., ANN-PSOIP scheme. In the designed ANN-PSOIP scheme, a merit function is proposed 
by using the mean square error sense along with continuous mapping of ANNs for the NSO-LE-MPDD model. The train-
ing of these nets is capable of using the integrated competence of PSO and IP scheme. The inspiration of the ANN-PSOIP 
approach instigates to present a reliable, steadfast, and consistent arrangement relates the ANNs strength for the soft com-
puting optimization to handle with such inspiring classifications. Furthermore, the statistical soundings using the different 
operators certify the convergence, accurateness, and precision of the ANN-PSOIP scheme.

Keywords Pantograph · Lane–Emden · Artificial neural networks · Interior-point · Multiple delays · Particle swarm 
optimization

Introduction

The delay differential model is one of the historical and 
prominent differential model discovered four centuries 
ago and has numerous applications in scientific areas like 

economical states, population dynamics, communica-
tion networks, transport, and engineering models [1–4]. 
Beretta et al.[5] used the delay-dependent factors to func-
tion the geometric consistency based on the delay dif-
ferential model. To solve the delay differential systems, 
Frazier [6] used the wavelet Galerkin scheme along with 
the Taylor series, Rangkuti et al. [7] applied the coupled 
variation iteration scheme and Chapra [8] implemented 
the Runge–Kutta method. The current study is about the 
pantograph differential model that is a form of delay dif-
ferential system and has a variety of applications in medi-
cine, chemical kinetics, light absorption, ships controlling, 
biology, chemistry, engineering, physics, electrodynamics, 
quantum mechanics, infectious diseases, electronic mod-
els, physiological kinetics and control problems [9, 10]. 
Due to the paramount significance of these models, a vari-
ety of analytical/numerical schemes has been proposed. 
To mention a few of them are the Dirichlet series that is 
applied to get the analytical solutions of the multi-panto-
graph (MP) delay differential system [11]. For higher order 
MP nonlinear delay differential system, one-dimensional 
approach based on differential transforms has been pro-
posed [12]. The Taylor polynomials technique and numeri-
cal differential transform scheme are implemented to the 
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solutions of the MP delay differential system [13]. Some 
more potential recent studies of delay differential system 
arising in different fields solved with numerical or analyti-
cal schemes can be seen in [14–17].

The study of the historical Lane–Emden model that 
involves singularity at the origin is considered very 
important for the researchers due to the numerous appli-
cations in the cooling of the radiators, system of the gas 
cloud, cluster galaxies, and polytrophic star models. The 
Lane–Emden systems used to model the dusty fluids [18], 
physical forms of the science systems [19], density state 
of gasiform star [20], catalytic diffusion reactions [21], 
stellar configuration [22], the electromagnetic theory [23], 
mathematical physics [24], quantum/classical mechanics 
[25], oscillating magnetic areas [26], isotropic continuous 
media [27] and stellar structure systems [28]. It is always 
difficult to solve the Lane–Emden model due to a singular 
point, hard and grim nature. Some existing techniques that 
have been used to solve the singular problems shown in 
the ref [29–31]. The standard notation of the Lane–Emden 
system is shown as [32]:

where Ω ≥ 1 is the value of shape factor and � = 0 repre-
sents the singular point at the origin. The motive of the cur-
rent work is to solve numerically nonlinear second-order 
Lane–Emden multi-pantograph delay differential (NSO-LE-
MPDD) model along with a grander system understanding 
by applying the stochastic methods through the artificial 
neural networks (ANNs), optimized with both global and 
local search competences, particle swarm optimization 
(PSO) and interior-point (IP) approach, i.e., ANN-PSOIP 
algorithm. Some well-known submissions are HIV infec-
tion model [33], nonlinear Bratu’s systems [34], heat con-
duction dynamics based on singular nonlinear human head 
model [35], singular three-point model [36], Thomas–Fermi 
model [37], multi-singular nonlinear models [38], model 
of heartbeat dynamics [39], singular periodic model [40], 
prey-predator models [41] and nonlinear singular functional 
differential model [42, 43]. The generic form of the NSO-
LE-MPDD model is shown as [44]:

where a is the constant and the pantographs appear twice 
in the first and second derivative terms of the Eq. (2). The 
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system model represented in Eq. (2) is a type of functional 
differential equations with multi-pantograph delays, i.e., 
a kind of proportional delay that exists in more than one 
terms. This Lane–Emden pantograph model has not solved 
before using the stochastic ANN-PSOIP algorithm. Some 
main topographies of the proposed integrated computational 
heuristic of ANN-PSOIP method are concisely provided as:

• A mathematical NSO-LE-MPDD system is numerically 
solved by applying the integrated heuristic of neuro-
swarming computing intelligent ANN-PSOIP algorithm.

• The matching/overlapping of the numerical results from 
the designed approach with the reference solutions of the 
NSO-LE-MPDD system established the worth/value of 
the ANN-PSOIP algorithm.

• Certification of the performance is ratified via statistical 
explorations to find the solutions for multiple execution 
of the ANN-PSOIP algorithm in terms of Theil’s inequal-
ity coefficient (TIC), variance account for (VAF), semi-
interquartile (SI) range and Nash Sutcliffe efficiency 
(NSE) performance operators.

• Beside the precise/practical outcomes for the nonlinear 
Lane–Emden pantograph second-order delay differen-
tial system, easy understanding, extensive applicability, 
consistency, smooth operations and robustness are other 
significant advantages.

The remaining portions of this work are planned as: In 
the next section, the suggested framework is presented using 
the ANN-PSOIP algorithm. In the folowing section, the 
mathematical formulation of the performance measures is 
described. In the next section, the detailed discussions of the 
numerical results are provided. In the last section, the con-
clusions together with future research guidance are listed.

Design methodology

The proposed ANN-PSOIP algorithm for numerical results 
of the NSO-LE-MPDD model is categorized into two steps.

• Introduced an objective function using the differential 
system and associated boundary/initial conditions.

• The optimal combination of PSO and IP algorithm, i.e., 
PSOIP algorithm is provided in the form of preliminary 
material along with pseudocode.

ANN modeling

Mathematical models of the NSO-LE-MPDD system are 
accumulated with the strength of feed-forward ANNs, which 
designate the continuous mapping for an approximate solu-
tion Û(𝜒) and its derivatives up to second order based on 
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the log-sigmoid H(�) = (1 + exp(−�))−1 activation func-
tions given respectively as follows:

where b = [b1, b2, b3, ..., bm], c = [c1, c2, c3, ..., cm] and 
a = [a1, a2, a3, ..., am] are the weight vectors. The log-sig-
moid activation function is normally used exhaustively for 
the hidden layers due to established strength of stability, 
efficiency, and accuracy in the majority of the applications 
in diversified fields.

For solving the NSO-LE-MPDD system, an error-based 
merit function is written as:

where �Fit - 1 is the merit functions related to the differential 
model and �Fit - 2 represents the initial conditions, respec-
tively, shown as:

where hN = 1, Fm = F(𝜒m), Ûm = Û(𝜒m) and 𝜒m = mh. , 
while h be the step size.

Optimization procedure: PSO‑IP algorithm

A kind of memetic computing paradigm through hybrid 
computational heuristics of global search efficacy of par-
ticle swarm optimization (PSO) aided with rapid local 
refinements with efficient interior-point (IP) algorithm, i.e., 
PSOIP, is ratified for the parameter optimization for NSO-
LE-MPDD system due to their established strength of accu-
racy, convergence, and stability over the standalone tech-
niques based on global and local search methodologies [45].

PSO is a global search optimization process in which 
the process of search space, a candidate single result 
relating the procedure of optimization is represented as 
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a particle. For the PSO optimization, preliminary swarms 
spread into the larger. To modify PSO parameters, the 
scheme delivers optimal outcomes iteratively PΦ−1

LB
 and 

P
Φ−1
GB

 , that is the position and velocity of swarm, math-
ematically shown as:

where Xi and Vi are ith position and velocity of the particle, 
respectively, Φ be the flight index or cycle of the algorithm, 
Ψ ∈ [0, 1][0, 1] is the inertia weight, Φ1 and Φ2 are cogni-
tive and social acceleration constants, respectively, while  r1 
and  r2 are the random positive real number between 0 and 1.

PSO is a global search optimization process represented 
in Eqs. (7–8) used as an operational alternate of the genetic 
algorithms [46] for NSO-LE-MPDD system. Kennedy and 
Eberhart suggested PSO, i.e., a famous global search easy 
implementation algorithm introduced at the last of the 
previous century and required short requirements of the 
memory [47]. Few recent applications of the PSO are fuel 
ignition model [48], balancing stochastic U-lines problems 
[49], nonlinear physical systems [50], feature classification 
[51] and operation scheduling of microgrids [52].

The PSO rapidly converges to hybrid with an appropri-
ate local search approach by using the PSO values as a pri-
mary weight. Therefore, a rapid and operative local search 
approach based on interior-point (IP) algorithm is imple-
mented to adjust the solutions attained by the designed 
optimization algorithm. Few recent submissions of the 
IP algorithm are active noise control systems [53], mixed 
complementarity monotone systems [54], simulation of 
aircraft parts riveting [55], nonlinear system identification 
[56] and economic load dispatch model [57].

The pseudo code for the combination of PSOIP algo-
rithm trains the ANN along with the essential parameter 
settings of PSO and IP algorithm are given in Table 1. The 
scheme based on optimization becomes impulsive by a 
slight change to set the parameters, thus, it needs numer-
ous experiences, repetitions, and information on neces-
sary optimization imitations of suitable settings using the 
hybrid of PSO-IP algorithm.

Performance procedures

In the current study, the statistical forms of the Nash 
Sutcliffe efficiency (NSE), Theil’s inequality coefficient 
(TIC), semi-interquartile (SI) range, and variance account 
for (VAF) are presented to nonlinear Lane–Emden panto-
graph second-order delay differential system.
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Table 1  Pseudo code based on the optimization operator PSOIP algorithm to achieve the ANNs weights
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The mathematical formulations of TIC is presented as:

where Ui and Ûi be the reference and estimation solutions for 
the ith input of nonlinear Lane–Emden pantograph second-
order delay differential system. The desire/optimal value of 
TIC is 0 for the perfect scenarios.

The mathematical formulations of VAF and error in VAF 
(EVAR) are presented as:

here ‘var’ stands for variance operator, and the desire/opti-
mal values of VAF and EVAF are 100 and 0 for the perfect 
modelling scenarios.

Mathematical expression for SIR metric is given as 
follows:

The mathematical based definition of NSE and error in 
NSE (ENSE) are given respectively as follows

The desire/optimal values of NSE and ENSE are o and 1 
for the perfect scenario, respectively.

Results and discussions

In this section, the details for solving three problems of the 
NSO-LE-MPDD system are provided.

Problem‑I

Consider a NSO-LE-MPDD model based equation is writ-
ten as:
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Q3 = 3rd quartile, Q1 = 1st quartile.
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The true result of the Eq. (13) is 1 + �4 and the merit 
function is given as:

Problem‑II

 Consider a NSO-LE-MPDD model based equation involv-
ing trigonometric values in its forcing factor is given as:

The exact solution of the Eq. (15) is cos(�) and the fitness 
function becomes as:

Problem‑III

Consider a NSO-LE-MPDD model based equation is writ-
ten as:

The exact form of the solution of the Eq. (17) is 1 + �3 
and the merit function is given as:
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dÛ0

d𝜒m

�2⎞⎟⎟⎠
.

(15)

⎧⎪⎪⎨⎪⎪⎩

1

2

d
2

d�2
U

�
1

2
�

�
+

3

�

d

d�
U

�
1

2
�

�
+ U

−2 = −
1

2
cos

�
1

2
�

�
+ sec2(�) −

3

�
sin

�
1

2
�

�
,

U(0) = 1,
dU(0)

d�
= 0.

(16)

𝜁Fit =
1

N

N�
m=1

⎛⎜⎜⎜⎝

1

2

d
2

d𝜒2
m

Û
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Û

�
1

2
𝜒m

�
+ Û−2
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The optimization of the NSO-LE-MPDD model-based 
problems I–III is accomplished by the hybrid of PSOIP 
algorithm for 60 independent executions to get the ANN 
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parameters for 10 neurons. The values of the ANN-PSOIP 
algorithm using the best values of the weight vector are plot-
ted in Fig. 1 and the mathematical illustrations of the pro-
posed numerical solutions are shown as:

(19)

Û1(𝜒) =
1.5160

1 + e−(1.867𝜒−4.688)
+

1.1578

1 + e−(−3.586𝜒+6.613)

−
2.5214

1 + e−(−6.906𝜒+9.005)
+⋯ +

1.4091

1 + e−(1.608𝜒+0.007)
,

Fig. 1  Best weights set and comparison of the reference, mean and exact form of the results based on NSO-LE-MPDD model for problems I–III
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Optimization is performed for solving the NSO-LE-
MPDD model-based problems I-III using the ANN-PSOIP 
algorithm for 60 independent executions. In Fig. 1, a set of 
best weight vectors and comparison of the reference, mean 
and obtained results of the NSO-LE-MPDD model-based 
problems I-III using 10 neurons is presented. It is indicated 
that the reference, mean and proposed results overlapped 
over one another for all the examples of the NSO-LE-MPDD 
model. This overlapping of the outcomes designates the 
accomplishment and excellence of the ANN-PSOIP algo-
rithm. Figure 2 represents the absolute error (AE) values and 
performance investigations of the ANN-PSOIP approach 
for the NSO-LE-MPDD model-based problems I–III. The 
Fig. 2a shows the AE plots for all the problems of the model. 
It is resulted that the AE values exist around  10−04 to  10−07, 
 10−04 to  10−05 and  10−05 to  10−07 for the problems I-III, 
respectively. The Fig. 2b represents the performance meas-
ures for all the problems in terms of the fitness, TIC, EVAF 
and ENSE. It is observed that the fitness values exist around 
 10−10 to  10−11 for Problem-I, while the fitness lie around 
 10−09 to  10−10 for Problems II and III. The values of the TIC 
gages for all the Problems lie  10−08 to  10−09 ranges. Further-
more, the EVAF and ENSE gages values for Problem I lie 
 10−07 to  10−08 range, while the EVAF and ENSE values for 
Problems II and III lie around  10−08–10−09.

(20)
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Û3(𝜒) =
1.3590

1 + e−(−3.903𝜒−7.407)
+

4.7087

1 + e−(−0.215𝜒+1.035)

−
0.1978

1 + e−(−3.214𝜒−5.136)
+⋯ +

11.2505

1 + e−(2.331𝜒−4.023)
.

The statistical soundings for the designed ANN-PSOIP 
algorithm through the Fitness, TIC, EVAF and ENSE values 
using the boxplots and histogram values for the NSO-LE-
MPDD model-based problems I-III are presented in Figs. 3, 
4, 5 and 6. It is indicated that maximum fitness, TIC, EVAF 
and ENSE values are found to be around  10−06 to  10−08, 
 10−04 to  10−08,  10−02 to  10−08 and  10−04–10−06, respectively. 
One may realize from these solutions that most of the inde-
pendent executions got specific and reasonable accuracy for 
the statistical values of TIC, EVAF and ENSE.

To find the statistical measures, minimum (Min), median 
(Med), Mean, and SI operatives are performed for 60 inde-
pendent runs using the ANN-PSOIP algorithm for solving 
the NSO-LE-MPDD model-based problems I–III. The sta-
tistic values using these gages are presented in Table 2 for 
solving all the problems. These numerical values are calcu-
lated adequate and adequate, which designates the precision 
and accuracy of the designed ANN-PSOIP scheme. Further 
analysis of performance is conducted by the implementation 
of the proposed integrated heuristic ANN-PSOIP for opti-
mization problem based on multiple neurons in the hidden 
layers, i.e., 5, 10, and 15 neuron-based network models. It 
is shown that with the increase of the number of neurons the 
accuracy and stability of the ANN-PSOIP increase but at 
the cost of more computations. Therefore, there is always a 
trade-off between the complexity and accuracy, so increasing 
the neurons more than 10 in the networks, the complexity of 
the algorithm increases rather more rapidly while very little 
advantage or gain in the accuracy and convergence.

Conclusion

In this study, a novel submission of stochastic numeri-
cal computing solvers is proposed to solve the NSO-LE-
MPDD model-based equations using 10 numbers of neu-
rons optimized with the global/local search proficiencies 
of particle swarm optimization enhanced with the rapid 

Fig. 2  AE and performance measures of the ANN-PSOIP scheme for NSO-LE-MPDD model-based problems I–III
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refinement of decision variables by manipulating the local 
search strength via interior-point algorithm. An objective 
function is designed using the differential system/initial 
conditions and then optimization is performed by the 
hybrid of local/global competencies of particle swarm 
optimization and interior-point algorithm, respectively. 
The accuracy and exactness of the designed scheme are 
certified by finding identical solutions with the exact/ref-
erence results having 5–7 decimal places of precision for 
solving all the problems of the NSO-LE-MPDD model. 
Statistical interpretation through performance measures 
of TIC, ENSE and EVAF based on 60 trials/executions for 

obtaining the solution of NSO-LE-MPDD model-based 
equations in terms of semi-interquartile range, mean and 
median authenticate the robustness, accurateness and 
trustworthiness of the proposed scheme.

In the future, the proposed ANN-PSOIP algorithm 
can be used as an accurate/efficient stochastic numerical 
approach for singular higher order models [58–60], bio-
logical models [61, 62], prediction differential model [63], 
dynamical investigations of computational fluid models 
[64–68] and stiff nonlinear systems [69–75]. Moreover, the 
polynomial, radial, wavelet, support vector machine-based 

Fig. 3  Statistical measures for the designed ANN-PSOIP algorithm through Fitness using the values of boxplots/histograms for NSO-LE-MPDD 
model-based problems I–III
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Fig. 4  Statistical measures for the designed ANN-PSOIP algorithm through TIC using the values of boxplots/histograms for NSO-LE-MPDD 
model-based problems I–III
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Fig. 5  Statistical measures for the designed ANN-PSOIP algorithm through EVAF using the values of boxplots/histograms for NSO-LE-MPDD 
model-based problems I–III
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Fig. 6  Statistical measures for the designed ANN-PSOIP algorithm through ENSE using the values of boxplots/histograms for NSO-LE-MPDD 
model-based problems I–III
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neural networks looks promising to be exploited in future 
for the improved performance [76].
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