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Abstract
With the generalization of the concept of set, more comprehensive structures could be constructed in topological spaces. In this
way, it is easier to express many relationships on existing mathematical models in a more comprehensive way. In this paper,
the topological structure of virtual fuzzy parametrized fuzzy soft sets is analyzed by considering the virtual fuzzy parametrized
fuzzy soft set theory, which is a hybrid set model that offers very practical approaches in expressing themembership degrees of
decision makers, which has been introduced to the literature in recent years. Thus, it is aimed to contribute to the development
of virtual fuzzy parametrized fuzzy soft set theory. To construct a topological structure on virtual fuzzy parametrized fuzzy
soft sets, the concepts of point, quasi-coincident and mapping are first defined for this set theory and some of its characteristic
properties are investigated. Then, virtual fuzzy parametrized fuzzy soft topological spaces are defined and concepts such as
open, closed, closure, Q-neighborhood, interior, base, continuous, cover and compact are given. In addition, some related
properties of these concepts are analyzed. Finally, many examples are given to make the paper easier to understand.

Keywords Virtual fuzzy parametrized fuzzy soft set · Virtual fuzzy parametrized fuzzy soft mapping · Virtual fuzzy
parametrized fuzzy soft topology

Mathematics Subject Classification 03E72 · 11B05 · 54A05

Introduction

Vagueness and uncertainty are important characteristics
which have to be dealt with during a data analysis to increase
the robustness of the results. However, it is in general not
so straightforward to decompose the vagueness of the data.
Therefore, many mathematical approaches, which are based
on the analysis of certain data, might be inadequate to cap-
ture this component. Many theories have been introduced to
handle with the vagueness involved in data. To name a few,
we can think of the theory of fuzzy sets (briefly FSs) [41],
the theory of rough sets [31] and the theory of intuitionistic
FSs [5]. Among these theories, Zadeh’s FS theory [41] is the
most popular one. Although these theories have brought sev-
eral novelties into the classical theories, they all have some
kind of drawbacks. In 1999, Molodtsov [29] introduced the
soft set (briefly SS) theory and he further stated that this new
theory is exempt from the difficulties seen in other theories,
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since it has sufficient parametrization tools. The fact that
SSs offer a better approach than other mathematical mod-
els enabled this theory to be applied in various fields such
as smoothness of functions, perron integrations, game the-
ory and so on. Moreover, researchers who have studied this
theory have applied this mathematical model to topological
spaces [1–4,6,19,34], decision-making problems [12–14,16–
18,21,42], and also ring and group theories [24,25,38].

Especially recently, there has been an increase in the
number of studies that deal with FSs and SSs, which are
two successful mathematical models in combating uncer-
tainty. The first combination of these sets are fuzzy soft sets
given by Maji and et al [28]. For these sets, a membership
degree of the objects in the universe set is mentioned, so
that a better approach to uncertainty is presented. As with
SSs, this theory has been applied to various aspects such
as decision making [7,8,20,32,33,40], algebraic structures
[35,39] and topology [22,23,26,27,30,36,37]. Another com-
bination of FSs and SSs are fuzzy parametrized soft sets
given by Çaǧman et al. [10]. In this set theory, unlike [28],
a membership degree of the elements in the parameter set is
mentioned. Handling these two cases together, Çaǧman et al.
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[9] introduced the fuzzy parametrized fuzzy soft sets express-
ing the membership degrees of the elements in both object
and parameter sets to the literature. However, this mathemat-
ical model cannot express uncertainty very well. Because
determining the membership degrees depends on the deci-
sion maker and it is a very difficult task to express this in the
range of [0, 1]. Another important reason is that how many
mistakes the decision maker can make in determining the
membership degrees of parameters and objects in the most
accurate way is another uncertainty. In order to overcome
these problems, Dalkılıç [11] allowed the decision maker
to express a lower limit and an upper limit for each mem-
bership value and thus proposed virtual fuzzy parametrized
fuzzy soft sets (briefly VFP-fuzzy soft sets or VFPFSS), a
new hybrid set type of FSs and SSs with the combination of
three different fuzzy parametrized fuzzy soft sets. The pur-
pose of this paper is to analyze the topological structure of
virtual fuzzy parametrized fuzzy soft sets, which facilitates
the job of the decision maker in expressing the membership
degrees in an uncertainty problem more accurately. In this
way, it is aimed to express many relationships on existing
mathematical models in a better way.

The presentation of the rest of this paper is structured
as follows: In the second section, the framework of VFPF-
SSs are introduced. In the third section, some concepts
required to construct a topological structure based on VFPF-
SSs have been defined and some related properties are given.
In the third section, VFP-fuzzy soft topological spaces are
analyzed. Moreover, some concepts of VFP-fuzzy soft topo-
logical spaces such as VFP-fuzzy soft open, VFP-fuzzy
soft closed, VFP-fuzzy soft closure, VFP-fuzzy soft Q-
neighborhood, VFP-fuzzy soft interior, base, VFP-fuzzy soft
continuous, cover, VFP-fuzzy soft compact and pear have
been given and some related properties have been analyzed.
In addition, some examples are given to better understand the
defined concepts. The final section consists of the conclusion
of the paper.

Preliminaries

In this section, some definitions and results for set theories
associated with this paper are reminded. Detailed explana-
tions especially forVFPFSS among the reminded set theories
can be found in [11].

Throughout this paper, R = {r1, r2, . . .} is an initial uni-
verse, 2R is the power set of R and P = {p1, p2, . . .} is
a set of parameters. In this case, the lower virtual parame-
ter set and the upper virtual parameter set are expressed as
P = {pα1

1 , p
α2

2 , . . .} and P = {pα1
1 , pα2

2 , . . .},respectively.
Definition 2.1 [41] A FS X over R is a set defined by a func-
tion μX representing a mapping μX : R → [0, 1]. μX is

called the membership function of X and the value μX (r) is
called the grade of membership of r in X . Thus, a FS X over
R can be represented as follows:

X = {〈μX (r)/r〉 : r ∈ R} .

Then,

(i) A fuzzy point in R, whose value is a (0 < η ≤ 1) at
the support r ∈ R; is denoted by rη.

(ii) A fuzzy point rη ∈ X , where X is FS in R iff η ≤
μX (r).

(iii) A is called empty FS if μX (r) = 0 for all r ∈ R,
denoted by 0. If μX (r) = 1 for all r ∈ R, X is denoted
by 1.

State that the set of all the FSs over R will be denoted by
2F(R).

Definition 2.2 [29] A pair (F, P) is called a SS over U ,
where F is a mapping given by F : P → 2R .

In other words, a SS over U is a parameterized family of
subsets ofU . For p ∈ P , F(p)maybe considered as the set of
p-elements of the SS (F, P), or as the set of p-approximate
elements of the SS, i.e.

(F, P) =
{
(p, F(p)) : p ∈ P, F : P → 2R

}
.

Definition 2.3 [11] Let X , X , X be a FS over P , P , P , respec-
tively. A VFPFSS �V

X on R is defined as follows:

�V
X = �X ∪ �X ∪ �X

such that

�X =
{(

μX (pα)

pα
, γX

(
pα
)) : pα ∈ P, γX

(
pα
)

∈ 2F(R); μX (p), μX (pα) ∈ [0, 1], 0 ≤ α < μX (p)
}

,

�X =
{(

μX (p)

p
, γX (p)

)
: p ∈ P, γX (p)

∈ 2F(R), μX ∈ [0, 1]
}

,

�X =
{(

μX (pα)

pα
, γX

(
pα
))

: pα ∈ P, γX

(
pα
)

∈ 2F(R); μX (p), μX (pα) ∈ [0, 1], 0 ≤ α ≤ 1 − μX (p)
}

where the functions γX : P → 2F(R), γX : P → 2F(R), γX :
P → 2F(R) are called lower approximate function, approxi-
mate function, upper approximate function, respectively, and
the function μX : P → [0, 1] is called membership function
of the X , such that ”γX (pα) = 0 ifμX (pα) = 0”, ”γX (p) =
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0 if μX (p) = 0” and ”γX
(
pα
) = 0 if μX (pα) = 0”. Here

μX (pα) = μX (p) − α and μX (pα) = μX (p) + α.

From now on, VFPFSS(R, P) denotes the family of all
VFPFSSs over R with P as the set of parameters.

Definition 2.4 [11] Let �V
X ∈ VFPFSS(R, P). Then,

(i) �V
X is called the empty-VFPFSS if μX (pα) = 0 and

γX (pα) = 0; ∀pα ∈ P , denoted by �V
∅ .

(ii) �V
X is called the X -universal-VFPFSS if μX (pα) = 1

and γX (pα) = 1; ∀pα ∈ P , denoted by �V
X̃
. If X = P ,

then X -universal-VFPFSS is called universal-VFPFSS,
denoted by �V

P̃
.

Definition 2.5 [11] Let �V
X , �V

Y ∈ VFPFSS(R, P). Then,

(i) �V
X is called a subset of �V

Y if

• μX (pα) ≤ μY (pβ) and γX (pα) ⊆ γY (pβ); ∀pα, pβ ∈
P ,

• μX (p) ≤ μY (p) and γX (p) ⊆ γY (p); ∀p ∈ P ,
• μX (pα) ≤ μY (pβ) and γX (pα) ⊆ γY (pβ); ∀pα, pβ ∈

P
and we write �V

X ⊆̃�V
Y .

(ii) �V
X and �V

Y are said to be equal, denoted by �V
X = �V

Y
if �V

X ⊆̃�V
Y and �V

Y ⊆̃�V
X .

(iii) The complement of �V
X , denoted by

[
�V
X

]c
, is the

VFPFSS, defined by

• μc
X (pα) = 1 − μX (pα) and γ c

X (pα) = 1 − γX (pα);
∀pα ∈ P ,

• μc
X (p) = 1− μX (p) and γ c

X (p) = 1− γX (p); ∀p ∈ P ,
• μc

X
(pα) = 1 − μX (pα) and γ c

X (pα) = 1 − γX (pα);

∀pα ∈ P . Clearly,
[[

�V
X

]c]c = �V
X ,
[
�V
P̃

]c = γ V
∅ and[

�V
∅
]c = �V

P̃
.

(iv) The union of �V
X and �V

X , denoted by �V
X ∪̃�V

Y , is the
VFPFSS, defined by the membership and approximate
functions

• μX∪Y (pδ) = max
{
μX (pα), μY (pβ)

}
and γX∪Y (pδ) =

γX (pα) ∨ γY (pβ); ∀pα, pβ, pδ ∈ P ,
• μX∪Y (p) = max {μX (p), μY (p)} and γX∪Y (p) =

γX (p) ∨ γY (p); ∀p ∈ P ,

• μX∪Y (pδ) = max
{
μX (pα), μY (pβ)

}
and γX∪Y (pδ) =

γX (pα) ∨ γY (pβ); ∀pα, pβ, pδ ∈ P , respectively.

(v) The intersection of �V
X and �V

X , denoted by �V
X ∩̃�V

Y , is
the VFPFSS, defined by the membership and approxi-
mate functions

• μX∩Y (pδ) = min
{
μX (pα), μY (pβ)

}
and γX∩Y (pδ) =

γX (pα) ∧ γY (pβ); ∀pα, pβ, pδ ∈ P ,
• μX∩Y (p) = min {μX (p), μY (p)} and γX∩Y (p) =

γX (p) ∧ γY (p); ∀p ∈ P ,

• μX∩Y (pδ) = min
{
μX (pα), μY (pβ)

}
and γX∩Y (pδ) =

γX (pα) ∧ γY (pβ); ∀pα, pβ, pδ ∈ P , respectively.

Proposition 2.6 [11] Let �V
X , �V

Y , �V
Z ∈ VFPFSS(R, P).

Then,

((i) �V
X ∪̃�V

P̃
= �V

P̃
, �V

X ∪̃�V
∅ = �V

X .

(ii) �V
X ∩̃�V

P̃
= �V

X , �V
X ∩̃�V

∅ = �V
∅ .

(iii)
[
�V
X ∪̃�V

Y

]c = [
�V
X

]c ∩̃ [�V
Y

]c
,
[
�V
X ∩̃�V

Y

]c = [
�V
X

]c
∪̃ [�V

Y

]c
.

(iv) �V
X ∪̃ (�V

Y ∪̃�V
Z

) = (
�V
X ∪̃�V

Y

) ∪̃�V
Z , �V

X ∩̃ (�V
Y ∩̃�V

Z

)
= (�V

X ∩̃�V
Y

) ∩̃�V
Z .

(v) �V
X ∪̃ (�V

Y ∩̃�V
Z

) = (
�V
X ∪̃�V

Y

) ∩̃ (�V
X ∪̃�V

Z

)
, �V

X ∩̃(
�V
Y ∪̃�V

Z

) = (�V
X ∩̃�V

Y

) ∪̃ (�V
X ∩̃�V

Z

)
.

Some properties of VFPFSSs and VFP-fuzzy
soft mappings

In this section, first, the concepts of union and intersection
of more than two VFPFSSs, which are required in the con-
struction of VFP-fuzzy soft topological spaces, are defined.
Then, some concepts such as VFP-fuzzy soft point, VFP-
fuzzy soft quasi-coincident and VFP-fuzzy soft mapping set
are analyzed and some related properties are given.

Definition 3.1 Let I be an arbitrary index set and �V
Xi

∈
VFPFSS(R, P); ∀i ∈ I . Then,

(i) The union of �V
Xi

∈ V FPFSS(R, P)’s, denoted by⋃̃
i∈I�V

Xi
, is the VFPFSS, defined by

• μ∪i∈I Xi (p
α) = supi∈I

{
μXi (p

αi )
}
and γ∪i∈I Xi (p

α) =∨
i∈I γXi (p

αi ); ∀pα, pαi ∈ P ,

• μ∪i∈I Xi (p) = supi∈I
{
μXi (p)

}
and γ∪i∈I Xi (p) =∨

i∈I γXi (p); ∀p ∈ P ,

• μ∪i∈I Xi
(pα) = supi∈I

{
μXi

(pαi )
}
and γ∪i∈I Xi (p

α) =∨
i∈I γXi (p

αi ); ∀pα, pαi ∈ P .

(ii) The intersection of �V
Xi

∈ VFPFSS(R, P)’s, denoted by⋂̃
i∈I�V

Xi
, is the VFPFSS, defined by
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• μ∩i∈I Xi (p
α) = inf i∈I

{
μXi (p

αi )
}
and γ∩i∈I Xi (p

α) =∧
i∈I γXi (p

αi ); ∀pα, pαi ∈ P ,

• μ∩i∈I Xi (p) = inf i∈I
{
μXi (p)

}
and γ∩i∈I Xi (p) =∧

i∈I γXi (p); ∀p ∈ P ,

• μ∩i∈I Xi
(pα) = inf i∈I

{
μXi

(pαi )
}
and γ∩i∈I Xi (p

α) =∧
i∈I γXi (p

αi ); ∀pα, pαi ∈ P .

Proposition 3.2 Let I be an arbitrary index set and �V
Xi

∈
VFPFSS(R, P); ∀i ∈ I . Then,

(i)
[⋃̃

i∈I�V
Xi

]c = ⋂̃i∈I
[
�V
Xi

]c
.

(ii)
[⋂̃

i∈I�V
Xi

]c = ⋃̃i∈I
[
�V
Xi

]c
.

Proof (i) Let�V
Y =

[⋃̃
i∈I�V

Xi

]c
and�V

Z = ⋂̃i∈I
[
�V
Xi

]c
.

Then ∀pα, pαi ∈ P , ∀p ∈ P , ∀pα, pαi ∈ P;

μY (pα) = 1 − μ∪i∈I Xi (p
α) = 1 − supi∈I

{
μXi (p

αi )
}

= inf i∈I
{
1 − μXi (p

αi )
}

= inf i∈I
{
μc
Xi

(pαi )
}

= μZ (pα),

μY (p) = 1 − μ∪i∈I Xi (p) = 1 − supi∈I
{
μXi (p)

}

= inf i∈I
{
1 − μXi (p)

}

= inf i∈I
{
μc
Xi

(p)
}

= μZ (p),

μY (pα) = 1 − μ∪i∈I Xi
(pα) = 1 − supi∈I

{
μXi

(pαi )
}

= inf i∈I
{
1 − μXi

(pαi )
}

= inf i∈I
{
μc
Xi

(pαi )
}

= μZ (pα)

and

γY (pα) = 1 − γ∪i∈I Xi (p
α)

= 1 −
∨
i∈I

γXi (p
αi )

=
∧
i∈I

(
1 − γXi (p

αi )
)

=
∧
i∈I

γ c
Xi

(pαi )

= γ c
∩i∈I Xi

(pαi )

= γZ (pα),

γY (p) = 1 − γ∪i∈I Xi (p) = 1 −
∨
i∈I

γXi (p)

=
∧
i∈I

(
1 − γXi (p)

)

=
∧
i∈I

γ c
Xi

(p) = γ c
∩i∈I Xi

(p) = γZ (p),

γY (pα) = 1 − γ∪i∈I Xi (p
α) = 1 −

∨
i∈I

γXi (p
αi )

=
∧
i∈I

(
1 − γXi (p

αi )
)

=
∧
i∈I

γ c
Xi

(pαi )

= γ c
∩i∈I Xi

(pαi )

= γZ (pα).

Therefore, the proof is completed.
(ii) It can be proved similar way (i).

Definition 3.3 Let �V
Xi

∈ VFPFSS(R, P). �V
Xi

is called

VFP-fuzzy soft point if X , X , X are fuzzy points in P ,
P , P , respectively, and γX (pα), γX (p), γX (pα) are fuzzy

points in R for pα, p, pα ∈ suppX . If X = {pα}, X = {p},
X = {pα}, μX (pα) = θ1, μX (p) = θ1, μX (pα) = θ

1
and

μγX (pα)(r) = θ2,μγX (p)(r) = θ2,μγX (pα)(r) = θ
2
, then we

denote this VFP-fuzzy soft point by p
rθ̈
θ̇
for θ̇ =

(
θ1, θ1, θ

1
)

and θ̈ =
(
θ2, θ2, θ

2
)
.

Here, μγX (pα), μγX (p), μγX (pα) are the membership func-
tions of γX , γX , γX , respectively.

Definition 3.4 Let p
rθ̈
θ̇

, �V
X ∈ VFPFSS(R, P). We say that

p
rθ̈
θ̇

∈̃�V
X read as p

rθ̈
θ̇

belongs to �V
X if and θ1 ≤ μX (pα),

θ1 ≤ μX (p), θ
1 ≤ μX (pα) and θ2 ≤ μγX (pα)(r), θ2 ≤

μγX (p)(r), θ
2 ≤ μγX (pα)(r).

Proposition 3.5 Every non-empty VFPFSS �V
X can be exp-

resssed as the union of all the VFP-fuzzy soft points which
belong to �V

X .

Proof Straighforward.

Definition 3.6 Let �V
X , �V

Y ∈ VFPFSS(R, P). �V
X is said

to be VFP-fuzzy soft quasi-coincident with �V
Y , denoted by

�V
X q �V

Y , if there exists pα, pβ ∈ P such that μX (pα) +
μY (pβ) > 1 or there exists r ∈ R such that μγX (pα)(r) +
μ

γY (pβ)
(r) > 1. If�V

X is notVFP-fuzzy soft quasi-coincident

with �V
Y , then we write �V

X q �V
Y .

Definition 3.7 Let �V
X , p

rθ̈
θ̇

∈ VFPFSS(R, P). p
rθ̈
θ̇

is said

to be VFP-fuzzy soft quasi-coincident with �V
X , denoted by

p
rθ̈
θ̇

q �V
X , if θ

1 + μX (pα) > 1 or θ
2 + μγX (pα)(r) > 1. If

p
rθ̈
θ̇
is not VFP-fuzzy soft quasi-coincident with �V

X , then we

write p
rθ̈
θ̇
q �V

X .
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Proposition 3.8 Let �V
X , �V

Y ∈ VFPFSS(R, P). Then,

(i) �V
X ⊆̃�V

Y ⇒ �V
X q
[
�V
Y

]c
.

((ii)) �V
X q
[
�V
X

]c
.

(iii) �V
X q�V

Y ⇔ there exists an p
rθ̈
θ̇

∈̃�V
X such that p

rθ̈
θ̇
q �V

Y .

(iv) �V
X ⊆̃�V

Y ⇒ if p
rθ̈
θ̇

q �V
X , then p

rθ̈
θ̇

q �V
Y ; ∀prθ̈

θ̇
∈

VFPFSS(R, P).
(v) �V

X q�V
Y ⇒ �V

X ∩̃�V
Y �= �V

∅ .

(vi) p
rθ̈
θ̇

∈̃ [�V
X

]c ⇔ p
rθ̈
θ̇
q �V

X ; ∀prθ̈
θ̇

∈ VFPFSS(R, P).

Proof (i)

�V
X ⊆̃�V

Y ⇒ μX

(
pα
)

≤ μY

(
pβ
)
and γX

(
pα
)

⊆ γY

(
pβ
)

; ∀pα, pβ ∈ P

⇒ μX

(
pα
)

≤ μY

(
pβ
)
and μγX (pα)(r)

≤ μ
γY

(
pβ
)(r); ∀pα, pβ ∈ P, r ∈ R

⇒ μX

(
pα
)

− μY

(
pβ
)

≤ 0 and μγX (pα)(r)

−μ
γY

(
pβ
)(r) ≤ 0; ∀pα, pβ ∈ P, r ∈ R

⇒ μX

(
pα
)

+ 1 − μY

(
pβ
)

≤ 1 and μγX (pα)(r)

+1 − μ
γY

(
pβ
)(r) ≤ 1; ∀pα, pβ ∈ P, r ∈ R

⇒ �V
X q
[
�V
Y

]c
.

(ii) Let �V
X q
[
�V
X

]c
. Then there exists pα, pβ ∈ P and

r ∈ R such thatμX (pα)+1−μY (pβ) > 1orμγX (pα)+
1 − μ

γY (pβ)
> 1, i.e., the contradiction is obtained.

(iii) If �V
X q�V

Y , then there exist an pα, pβ ∈ P and r ∈
R such that μX (pα) + μY (pβ) > 1 or μγX (pα)(r) +
μ

γY (pβ)
(r) > 1. Let μX (pα) = θ̇ and μγX (pα)(r) = θ̈ .

Thus we have p
rθ̈
θ̇

∈̃�V
X and p

rθ̈
θ̇
q �V

Y .

Now, let p
rθ̈
θ̇

∈̃�V
X and p

rθ̈
θ̇

q �V
Y . Then θ̇ ≤ μX (pα)

and θ̈ ≤ μγX (pα)(r). Also, since p
rθ̈
θ̇

q �V
Y , then θ̇ +

μY (pβ) > 1 or θ̈μ
γY (pβ)

(r) > 1. Thus the proof is
complete.

(iv) Let p
rθ̈
θ̇

, �V
X ∈ VFPFSS(R, P). Since p

rθ̈
θ̇

q �V
X , then

θ̇ + μX (pα) > 1 or θ̈ + μγX (pα)(r) > 1. Also, since

�V
X ⊆̃�V

Y , then θ̇ +μY (pβ) > 1 or θ̈ +μ
γY (pβ)

(r) > 1.

Thus, we have p
rθ̈
θ̇
q �V

Y .

(v) Since �V
X q�V

Y , then there exists an pα, pβ ∈ P and

r ∈ R such thatμX (pα)+μY (pβ) > 1 orμγX (pα)(r)+
μγX (pα)(r) > 1. If

• μX (pα) + μY (pβ) > 1, then X ∧ Y �= 0,
• μγX (pα)(r) + μγX (pα)(r) > 1, then γX (pα) ∧ γX (pα) �=
0. Hence �V

X ∩̃�V
Y �= �V

∅ .

(vi) It is obvious from (i).

Proposition 3.9 Let
{
�V
Xi

: i ∈ I
}
be a family of VFPFSSs

in VFPFSS(R, P) where I is an index set. Then, p
rθ̈
θ̇

a is

quasi-coincident with
⋃̃

i∈I�V
Xi

if and only if there exists

some �V
Xi

∈
{
�V
Xi

: i ∈ I
}
such that p

rθ̈
θ̇
q �V

Xi
.

Proof Straighforward.

Definition 3.10 Let VFPFSS(R, P) and VFPFSS(M, N ) be
families of all VFPFSSs over R and M , respectively. Let
ρ : P → N , ρ : P → N , ρ : P → N and 
 : R → M .
Then, a VFP-fuzzy soft mapping γ
,ρ : VFPFSS(R, P) →
V FPFSS(M, N ) is defined as:

(i) for �V
X ∈ VFPFSS(R, P), then the image of �V

X under
the γ
,ρ is the VFPFSS �V

S over M defined by; ∀nβ ∈
N , ∀n ∈ N , ∀nβ ∈ N ,

μ
λS(n

β
)
(m) =

⎧⎨
⎩

∨
r∈
−1(m) μw(r), if 
−1(m) �= ∅ and
pα ∈ ρ−1(nβ) ∩ limsuppX̃ �= ∅,

0, otherwise.
,

μλS(n)(m) =
⎧
⎨
⎩

∨
r∈
−1(m) μw(r), if
−1(m) �= ∅ and
ρ−1(n) ∩ limsuppX̃γX (p) �= ∅,

0, otherwise.
,

μ
λS(nβ)

(m) =

⎧⎪⎨
⎪⎩

∨
r∈
−1(m) μw(r), if
−1(m) �= ∅ and

pα ∈ ρ−1(nβ) ∩ limsuppX̃ �= ∅,

0, otherwise.
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where

w =
∨

pα∈ρ−1(nβ
)∩limsuppX̃

γX (pα),

w =
∨

p∈ρ−1(n)∩limsuppX̃

γX (p),

w =
∨

pα∈ρ−1(nβ)∩limsuppX̃

γX (pα)

and ρ(X) = S, ρ(X) = S, ρ(X) = S are FSs in N , N ,

N ; respectively.
(ii) for�V

S ∈ VFPFSS(M, N ), the pre-image of�V
S under

theγ
,ρ is theVFPFSS�V
X over R definedby;∀pα ∈ P ,

∀p ∈ P , ∀pα ∈ P ,

μγX (pα)(r) = μ
λS

(
ρ(pα)

)(
(r)),

μγX (p)(r) = μλS(ρ(p))(
(r)),

μγX (pα)(r) = μλS(ρ(pα))(
(r))

where X = ρ−1(S), X = ρ−1(S), X = ρ−1(S) are

FSs in P , P P , respectively.

Here, if ρ, ρ, ρ and 
 are injective (surjective, constant),
then the VFP-fuzzy soft mapping γ
,ρ is injective (surjective,
constant).

Theorem 3.11 Let �V
X , �V

Xi
∈ VFPFSS(R, P), �V

S ,�V
Si

∈
VFPFSS(M, N ); ∀i ∈ I where I is an index set. Let
γ
,ρ : VFPFSS(R, P) → VFPFSS(M, N ) be a VFP-fuzzy
soft mapping. Then,

(i) γ
,ρ is injective⇒ �V
X ⊆̃γ −1


,ρ (γ
,ρ(�V
X )).

(ii) γ
,ρ is surjective⇒ γ −1

,ρ (γ
,ρ(�V

S ))⊆̃�V
S .

(iii) γ
,ρ is injective⇒ γ
,ρ

(⋂̃
i∈I�V

Xi

)
⊆̃⋂̃i∈Iγ
,ρ(�V

Xi
).

(iv) γ
,ρ is surjective⇒ γ
,ρ

(
�V
P̃

)
⊆̃�V

Ñ
.

(v) �V
S1

⊆̃�V
S2

⇒ γ −1

,ρ (�V

S1
)⊆̃γ −1


,ρ (�V
S2

).

(vi) �V
X1

⊆̃�V
X2

⇒ γ
,ρ(�V
X1

)⊆̃γ
,ρ(�V
X2

).

(vii)
⋃̃

i∈Iγ −1

,ρ (�V

Si
) = γ −1


,ρ

(⋃̃
i∈I�V

Si

)
.

(viii)
⋂̃

i∈Iγ −1

,ρ (�V

Si
) = γ −1


,ρ

(⋂̃
i∈I�V

Si

)
.

(ix)
⋃̃

i∈Iγ
,ρ(�V
Xi

) = γ
,ρ

(⋃̃
i∈I�V

Xi

)
.

(x) γ −1

,ρ

([
�V

Si

]c) =
[
γ −1

,ρ (�V

S )
]c
.

(xi) �V
P̃

= γ −1

,ρ

(
�V

Ñ

)
.

(xii) �V
∅ = γ −1


,ρ

(
�V

∅
)
.

(xiii) �V
∅ = γ
,ρ

(
�V

∅
)
.

Proof We only prove (i), (vii), (x), (xi) and (xii). The remain-
ing items can be proved similarly.

(i) Let �V
S = γ
,ρ(�V

X ) and �V
Y = γ −1


,ρ (�V
S ). Since

X ⊆ ρ−1
(
ρ(X)

)
= ρ−1(S) = Y , X ⊆ ρ−1(ρ(X)) =

ρ−1(S) = Y and X ⊆ ρ−1
(
ρ(X)

) = ρ−1(S) = Y ,

then it is sufficient to show γX (pα) ⊆ γY

(
pβ
)
,

γX (p) ⊆ γY (p), γX
(
pα
) ⊆ γY

(
pβ
)
; ∀pα, pβ ∈ P ,

∀p ∈ P , ∀pα, pβ ∈ P r ∈ R,

μγY (pα)(r) = μλS(ρ(pα))(
(r))

=
∨

r∈
−1(
(r))

μq(r) ≥ μγX (pα)(r),

μγY (p)(r) = μλS(ρ(p))(
(r))

=
∨

r∈
−1(
(r))

μq(r) ≥ μγX (p)(r),

and

μγY (pα)(r) = μλS(ρ(pα))(
(r))

=
∨

r∈
−1(
(r))

μq(r) ≥ μγX (pα)(r),

where

q =
∨

pα∈ρ−1
(
ρ(pα)

)
∩limsuppX̃

,

q =
∨

p∈ρ−1(ρ(p))∩limsupp]X̃
,

q =
∨

pα∈ρ−1(ρ(pα))∩limsuppX̃

Thus, the proof is complete.

(vii) If �V
Xi

= γ −1

,ρ (�V

Si
) and �V

X = γ −1

,ρ

(
∪̃i∈I�V

Si

)
,

then X = ρ−1(∨Si ) = ∨ρ−1(Si ) = ∨Xi , X =
ρ−1(∨Si ) = ∨ρ−1(Si ) = ∨Xi , X = ρ−1(∨Si ) =
∨ρ−1(Si ) = ∨Xi ; ∀pα ∈ P , ∀p ∈ P , ∀pα ∈ P and
r ∈ R,

μγX (pα)(r) =
∨
i∈I

μλSi (ρ(pα))(
(r)) =
∨
i∈I

μγXi (p
α)(r),

μγX (p)(r) =
∨
i∈I

μλSi (ρ(p))(
(r)) =
∨
i∈I

μγXi (p)
(r),

μγX (pα)(r) =
∨
i∈I

μλSi (ρ(pα))(
(r)) =
∨
i∈I

μγXi (p
α)(r).

Thus, the proof is complete.
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(x) If γ −1

,ρ (�V

S ) = �V
X and γ −1


,ρ ([�S]c) = �V
Y , then∀pα ∈

P , ∀p ∈ P , ∀pα ∈ P and r ∈ R,

μγY (pα)(r) = μγ
ρ−1(Sc)

(pα)(r) = μγ
(ρ−1(S))

(pα)(r)

= μγXc (pα)(r),

μγY (p)(r) = μγ
ρ−1(Sc)

(p)(r)

= μγ
(ρ−1(S))

(p)(r) = μγXc (p)(r),

μγY (pα)(r)7μγ
ρ−1(Sc)

(pα)(r)

= μγ
(ρ−1(S))

(pα)(r)

= μγXc (pα)(r),

where ρ−1(S), ρ−1(S), ρ−1(S) and ρ−1(Sc), ρ−1(Sc),

ρ−1(S
c
) are FSs in P , P , P; respectively, i.e.,

[
�V
X

]c
and �V

Y are equal. Thus, the proof is complete.

(xi) If �V
X = γ −1


,ρ

(
�V

Ñ

)
, then ∀pα ∈ P and r ∈ R,

μγX (pα)(r) = μλÑ (ρ(pα))(
(r)) = 1, i.e., �V
P̃

= �V
X .

(xii) Here, since ρ−1(N ) is empty FS, then the proof is clear.

VFP-fuzzy soft topological spaces

In this section, an introduction to topological spaces has
been made using the concepts given in the previous section.
Some concepts of VFP-fuzzy soft topological spaces such
as VFP-fuzzy soft open, VFP-fuzzy soft closed, VFP-fuzzy
soft closure, VFP-fuzzy soft Q-neighborhood, VFP-fuzzy
soft interior, base, VFP-fuzzy soft continuous, cover and
VFP-fuzzy soft compact have been given and some related
properties have been analyzed. In addition, some examples
are given to better understand the defined concepts.

Definition 4.1 A VFP-fuzzy soft topological space is a pair
(R, τ ) where R is a nonempty set and τ is a family of VFPF-
SSs over R satisfying the following properties:

(i) �V
∅ , �V

P̃
∈ τ .

(ii) If �V
X , �V

Y ∈ τ , then �V
X ∩̃�V

Y ∈ τ .
(iii) If �V

Xi
∈ τ ; ∀i ∈ I , then

⋃̃
i∈I�V

Xi
∈ τ .

Then, τ is called a VFP-fuzzy soft topology on R. Every
member of τ is called VFP-fuzzy soft open in (R, τ ). �V

Y is
called VFP-fuzzy soft closed in (R, τ ) if

[
�V
Y

]c ∈ τ .

Example 4.2 The families τindiscrete = {�V
∅ , �V

P̃
} and τdiscrete

= VFPFSS(R, P) are VFP-fuzzy soft topology on R.

Example 4.3 Let R = {r1, r2, r3, r4} and P = {p1, p2}. If

�V
X1

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
0.2/p1, {0.67/r2, 0.6/r3, 0.55/r4, 0.5/r5}

)
,(

0.5/p2, {0.4/r1, 0.6/r3, 0.6/r4, 0.75/r7}
)
,(

0.45/p1, {0.4/r2, 0.4/r3, 0.3/r4, 0.3/r5}
)
,(

0.45/p2, {0.2/r1, 0.2/r3, 0.3/r4, 0.4/r7}
)
,(

0.6/p1, {0.25/r2, 0.2/r3, 0.15/r4}
)
,(

0.9/p2, {0.1/r1, 0.25/r4, 0.2/r7}
)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

�V
X2

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
0.3/p1, {0.67/r2, 0.7/r3, 0.6/r4, 0.5/r5}

)
,(

0.5/p2, {0.5/r1, 0.6/r3, 0.6/r4, 0.75/r7}
)
,(

0.45/p1, {0.6/r2, 0.4/r3, 0.5/r4, 0.3/r5}
)
,(

0.6/p2, {0.3/r1, 0.2/r3, 0.5/r4, 0.4/r7}
)
,(

0.7/p1, {0.4/r2, 0.2/r3, 0.3/r4}
)
,(

0.9/p2, {0.1/r1, 0.3/r4, 0.2/r7}
)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

�V
X3

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
0.2/p1, {0.7/r2, 0.6/r3, 0.55/r4, 0.58/r5}

)
,(

0.6/p2, {0.4/r1, 0.7/r3, 0.8/r4, 0.95/r7}
)
,(

0.5/p1, {0.4/r2, 0.5/r3, 0.3/r4, 0.5/r5}
)
,(

0.45/p2, {0.2/r1, 0.5/r3, 0.3/r4, 0.5/r7}
)
,(

0.6/p1, {0.25/r2, 0.4/r3, 0.15/r4}
)
,(

0.95/p2, {0.1/r1, 0.25/r4, 0.3/r7}
)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

�V
X4

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
0.3/p1, {0.7/r2, 0.7/r3, 0.6/r4, 0.58/r5}

)
,(

0.6/p2, {0.5/r1, 0.7/r3, 0.8/r4, 0.95/r7}
)
,(

0.5/p1, {0.6/r2, 0.5/r3, 0.5/r4, 0.5/r5}
)
,(

0.6/p2, {0.3/r1, 0.5/r3, 0.5/r4, 0.5/r7}
)
,(

0.7/p1, {0.4/r2, 0.4/r3, 0.3/r4}
)
,(

0.95/p2, {0.1/r1, 0.3/r4, 0.3/r7}
)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

then τ =
{
�V

∅ , �V
X1

, �V
X2

, �V
X3

, �V
X4

, �V
P̃

}
is a VFP-fuzzy

soft topology on R.

Theorem 4.4 Let (R, τ ) be a VFP-fuzzy soft topological
space and τ̃ be family of allVFP-fuzzy soft closed sets. Then,

(i) �V
∅ , �V

P̃
∈ τ̃ .

(ii) If �V
X , �V

Y ∈ τ̃ , then �V
X ∪̃�V

Y ∈ τ̃ .
(iii) If �V

Xi
∈ τ̃ ; ∀i ∈ I , then

⋂̃
i∈I�V

Xi
∈ τ̃ .

Proof Straighforward.

Definition 4.5 Let (R, τ ) be a VFP-fuzzy soft topological
space and�V

X ∈ VFPFSS(R, P). TheVFP-fuzzy soft closure
of �V

X in (R, τ ), denoted by cls
[
�V
X

]
, is the intersection of

all VFP-fuzzy soft closed supersets of �V
X , i.e., cls

[
�V
X

] =
∩̃ {�V

Y : �V
Y ∈ τ̃ , �V

X ⊆̃�V
Y

}
. Clearly, cls

[
�V
X

]
is the smallest

VFP-fuzzy soft closed set over R which contains �V
X .

Theorem 4.6 Let (R, τ ) be a VFP-fuzzy soft topological
space and �V

X , �V
Y ∈ VFPFSS(R, P). Then,

(i) �V
X is a VFP-fuzzy soft closed set ⇔ �V

X = cls
[
�V
X

]
.

(ii) cls
[
�V
X ∪̃�V

Y

] = cls
[
�V
X

] ∪̃ cls
[
�V
Y

]
.

(iii) cls
[
�V

∅
] = �V

∅ and cls
[
�V
P̃

]
= �V

P̃
.
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(iv) �V
X ⊆̃ cls

[
�V
X

]
.

(v) cls
[
cls
[
�V
X

]] = cls
[
�V
X

]
.

(vi) �V
X ⊆̃�V

Y ⇒ cls
[
�V
X

] ⊆̃ cls
[
�V
Y

]
.

Proof The items (i i i), (iv), (v) and (vi) are obvious from
the Definition 4.5.

(i) Let�V
X be aVFP-fuzzy soft closed set. Since cls

[
�V
X

]
is

the smallest VFP-fuzzy soft closed set which contains
�V
X , then cls

[
�V
X

] ⊆̃�V
X . The opposite is clear. Thus,

�V
X = cls

[
�V
X

]
.

(ii) Since �V
X ⊆̃�V

X ∪̃�V
Y and �V

Y ⊆̃�V
X ∪̃�V

Y by (vi), then
cls
[
�V
X

] ⊆̃ cls
[
�V
X ∪̃�V

Y

]
, cls

[
�V
Y

] ⊆̃ cls
[
�V
X ∪̃�V

Y

]
,

i.e., cls
[
�V
X

] ∪̃ cls
[
�V
Y

] ⊆̃ cls
[
�V
X ∪̃�V

Y

]
.

Conversely, since �V
X = cls

[
�V
X

]
and �Y = cls

[
�V
Y

]
,

then cls
[
�V
X

] ∪̃ cls
[
�V
Y

]
is a VFP-fuzzy soft closed

set. Also, since�V
X ∪̃�V

Y ⊆̃ cls
[
�V
X

] ∪̃ cls
[
�V
Y

]
by (vi),

then

cls
[
�V
X ∪̃�V

Y

]
⊆̃ cls

[
�V
X

]
∪̃ cls

[
�V
Y

]
.

Definition 4.7 Let (R, τ ) be a VFP-fuzzy soft topological
space. A �V

X in VFPFSS(R, P) is called VFP-fuzzy soft Q-
neighborhood of a VFPFSS �V

Y if there exists a VFP-fuzzy
soft open set �V

Z in τ such that �V
Y q�V

Z and �V
Z ⊆̃�V

X .

Theorem 4.8 Let p
rθ̈
θ̇

, �V
X ∈ VFPFSS(R, P). Then, p

rθ̈
θ̇

∈̃ cls
[
�V
X

]
if andonly if eachVFP-fuzzy softQ-neighborhood

of p
rθ̈
θ̇
is VFP-fuzzy soft quasi-coincident with �V

X .

Proof (⇒) Assume that �c
Z is VFP-fuzzy soft Q-neighbor-

hood of p
rθ̈
θ̇

and �Zq�V
X . Then, there exists a VFP-fuzzy

soft open set �V
Y such that p

rθ̈
θ̇
q �V

Y ⊆̃�c
Z . Since �V

Z q�V
X by

Proposition 3.8 (i), then �V
X ⊆̃ [�V

Z

]c ⊆̃ [�V
Y

]c
. Also, since

p
rθ̈
θ̇
q �V

Y , then p
rθ̈
θ̇

/̃∈ [�V
Y

]c
, that is, contradiction is obtained.

(⇐)Assume that p
rθ̈
θ̇

/̃∈cls [�V
X

]
. Then there exists a VFP-

fuzzy soft closed set �V
Y which is containing �V

X such that
p
rθ̈
θ̇

/̃∈�V
Y . ByProposition3.8 (i) and (vi),wehave p

rθ̈
θ̇
q
[
�V
Y

]c
and

[
�V
Y

]c
is a VFP-fuzzy soft Q-neighborhood of p

rθ̈
θ̇
, thus

�V
X q

[
�V
Y

]c
. That is, contradiction is obtained.

Definition 4.9 Let (R, τ ) be a VFP-fuzzy soft topologi-
cal space and �V

X ∈ V FPFSS(R, P). The VFP-fuzzy
soft interior of �V

X , denoted by int
[
�V
X

]
, is the union of

all VFP-fuzzy soft open subsets of �V
X , i.e., int

[
�V
X

] =
∪̃ {�V

Y : �V
Y ∈ τ, �V

Y ⊆̃�V
X

}
. Clearly, int

[
�V
X

]
is the largest

VFP-fuzzy soft open set contained in �V
X .

Theorem 4.10 Let (R, τ ) be a VFP-fuzzy soft topological
space and �V

X , �V
Y ∈ VFPFSS(R, P). Then,

(i) �V
X is a VFP-fuzzy soft open set ⇔ �V

X = int
[
�V
X

]
.

(ii) int
[
�V
X ∩̃�V

Y

] = int
[
�V
X

] ∩̃ int
[
�V
Y

]
.

(iii) int
[
�V

∅
] = �V

∅ and int
[
�V
P̃

]
= �V

P̃
.

(iv) int
[
�V
X

] ⊆̃�V
X .

(v) int
[
int
[
�V
X

]] = int
[
�V
X

]
.

(vi) �V
X ⊆̃�V

Y ⇒ int
[
�V
X

] ⊆̃ int
[
�V
Y

]
.

Proof It can be proved similar to Theorem 4.6.

Theorem 4.11 Let (R, τ ) be a VFP-fuzzy soft topological
space and �V

X ∈ V FPFSS(R, P). Then,

(i)
[
int
[
�V
X

]]c = cls
[[

�V
X

]c]
.

(ii)
[
cls
[
�V
X

]]c = int
[[

�V
X

]c]
.

Proof (i)

[
int
[
�V
X

]]c =
[
∪̃
{
�V
Y : �V

Y ∈ τ, �V
Y ⊆̃�V

X

}]c

= ∩̃
{[

�V
Y

]c : �V
Y ∈ τ, �V

Y ⊆̃�V
X

}

= ∩̃
{[

�V
Y

]c :
[
�V
Y

]c ∈ τ̃ ,
[
�V
X

]c ⊆̃
[
�V
Y

]c}

= cls
[[

�V
X

]c]

(ii) It is obvious from (i).

Definition 4.12 Let (R, τ ) be a VFP-fuzzy soft topological
space. A subcollection B of τ is called a base for τ if every
member of τ can be expressed as a union of members ofB.

Example 4.13 Consider Example 4.3. Then, the familyB ={
�V

∅ , �V
X1

, �V
X2

, �V
X3

, �V
P̃

}
is a basis for τ .

Proposition 4.14 Let (R, τ ) be a VFP-fuzzy soft topological
space and B is subfamily of τ . B is a base for τ if and
only if for each VFP-fuzzy soft open Q-neighborhood �V

X

of p
rθ̈
θ̇
, there exists a �V

Y ∈ B such that p
rθ̈
θ̇

q �V
Y ⊆̃�V

X ;

∀prθ̈
θ̇

∈ VFPFSS(R, P).

Proof (⇒) There exists a subfamily B̃ of B such that
�V
X = ⋃̃ {

�V
Y : �V

Y ∈ B̃
}
. If p

rθ̈
θ̇
q�V

Y ; ∀�V
Y ∈ B̃, then

θ
1 + μY (pβ) ≤ 1 and θ

2 + μ
γY (pβ)

(r) ≤ 1; ∀�V
Y ∈ B̃.

That is, contradiction with

μX (pα) = sup{μY (pβ) : �V
Y ∈ B̃}

and

μγX (pα)(r) = sup
{
μ

γY (pβ)
(r) : �V

Y ∈ B̃
}

is obtained.
(⇐) If B is not a base for τ , then �Z = ⋃̃

{
�V
Y ∈ B : �V

Y ⊆̃�V
X

} �= �V
X ; ∃�V

X ∈ τ . Here, since �V
Z �=
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�V
X , then ”μZ (pδ) < μX (pα), μZ (p) < μX (p), μZ (pδ) <

μX (pα)” or ”μγZ (pδ)(r) < μγX (pα)(r), μγZ (p)(r) <

μγX (p)(r), μ
γZ (pδ)

(r) < μγX (pα)(r)”; ∃pα, pδ ∈ P , ∃p ∈
P , ∃pα, pδ ∈ P and ∃r ∈ R. In this case, since θ

1 =
1 − μZ (pδ) or θ

2 = 1 − μ
γZ (pδ)

(r), then p
rθ̈
θ̇

q �V
X and

p
rθ̈
θ̇

q �V
Z . Thus, p

rθ̈
θ̇

q �V
Y ; ∀�V

Y ∈ B which contained in

�V
X , that is, contradiction is obtained.

Definition 4.15 Let (R, τ1) and (M, τ2) be two VFP-fuzzy
soft topological spaces. A VFP-fuzzy soft mapping γ
,ρ :
(R, τ1) → (M, τ2) is called VFP-fuzzy soft continuous if
γ −1

,ρ (�V

S ) ∈ τ1; ∀�V
S ∈ τ2.

Example 4.16 Let R = {r1, r2, r3, r4}, M = {m1,m2,m3,

m4}, P = {pα1

1 , p
α2

2 }, P = {p1, p2}, P = {pα1
1 , pα2

2 },
N = {nβ1

1 , n
β2

2 }, N = {n1, n2}, N = {nβ1
1 , nβ2

2 } and

τ1 =
{
�V

∅ , �V
X , �V

P̃

}
, τ2 =

{
�V

∅ ,�V
S ,�V

Ñ

}
be VFP-fuzzy

soft topologies on R and M respectively, where

�V
X =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
0.18/p1, {0.72/r1, 0.65/r3, 0.75/r4}

)
,(

0.34/p2, {0.42/r2, 0.5/r3, 0.6/r4}
)
,(

0.5/p1, {0.4/r1, 0.5/r3, 0.43/r4}
)
,(

0.57/p2, {0.2/r2, 0.4/r3, 0.3/r4}
)
,(

0.7/p1, {0.25/r1, 0.3/r3, 0.2/r4}
)
,(

0.85/p2, {0.1/r2, 0.25/r3, 0.15/r4}
)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

and

�V
S =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
0.25/n1, {0.8/m1, 0.6/m3, 0.7/m4}

)
,(

0.4/n2, {0.67/m2, 0.55/m3, 0.45/m4}
)
,(

0.55/n1, {0.65/m1, 0.5/m3, 0.6/m4}
)
,(

0.7/n2, {0.5/m2, 0.35/m3, 0.2/m4}
)
,(

0.8/n1, {0.4/m1, 0.45/m3, 0.2/m4}
)
,(

0.9/n2, {0.3/m2, 0.15/m3, 0.1/m4}
)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Define ρ : P → N , ρ : P → N , ρ : P → N and 
 :
R → M as ρ

(
p

α1

1

)
= n

β2

2 , ρ
(
p

α2

2

)
= n

β1

1 , ρ(p1) = n2,

ρ(p2) = n1, ρ
(
pα1
1

)
= nβ2

2 , ρ
(
pα2
2

)
= nβ1

1 and 
(r1) =
m2, 
(r2) = m3, 
(r3) = m4, 
(r4) = m1. Then the VFP-
fuzzy soft mapping γ
,ρ : (R, τ1) → (M, τ2) is VFP-fuzzy
soft continuous.

Note that the VFP-fuzzy soft constant mapping γ
,ρ :
(R, τ1) → (M, τ2) is not VFP-fuzzy soft continuous in gen-
eral.

Example 4.17 Let R = {r1, r2, r3, r4}, M = {m1,m2,m3,

m4}, P = {pα1

1 , p
α2

2 }, P = {p1, p2}, P = {pα1
1 , pα2

2 },
N = {nβ1

1 , n
β2

2 }, N = {n1, n2}, N = {nβ1
1 , nβ2

2 } and

τ1 =
{
�V

∅ , �V
P̃

}
, τ2 =

{
�V

∅ ,�V
S ,�V

Ñ

}
be VFP-fuzzy soft

topologies on R and M respectively, where

�V
S =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
0.25/n1, {0.8/m1, 0.6/m3, 0.7/m4}

)
,(

0.4/n2, {0.67/m2, 0.55/m3, 0.45/m4}
)
,(

0.55/n1, {0.65/m1, 0.5/m3, 0.6/m4}
)
,(

0.7/n2, {0.5/m2, 0.35/m3, 0.2/m4}
)
,(

0.8/n1, {0.4/m1, 0.45/m3, 0.2/m4}
)
,(

0.9/n2, {0.3/m2, 0.15/m3, 0.1/m4}
)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Define ρ : P → N , ρ : P → N , ρ : P → N and


 : R → M as ρ
(
p

α1

1

)
= ρ

(
p

α2

2

)
= n

β1

1 , ρ(p1) =
ρ(p2) = n1, ρ

(
pα1
1

)
= ρ

(
pα2
2

)
= nβ1

1 and 
(r1) =

(r2) = 
(r3) = 
(r4) = m1. Then, the VFP-fuzzy soft
mapping γ
,ρ : (R, τ1) → (M, τ2) is a VFP-fuzzy soft con-
stant mapping and is not VFP-fuzzy soft continuous.

Note that, a constant FS on P taking value θ ∈ [0, 1] will be
denoted by θP .

Definition 4.18 Let �V
X ∈ V FPFSS(R, P). �V

X is called
θ̇ , θ̈ − X−universal VFPFSS if μX (pα) = θ1, μX (p) =
θ1, μX (pα) = θ

1
and μγX (pα)(r) = θ2, μγX (p)(r) = θ2,

μγX (pα)(r) = θ
2
; ∀pα ∈ P , ∀p ∈ P , ∀pα ∈ P and θ̇ =(

θ1, θ1, θ
1
)
, θ̈ =

(
θ2, θ2, θ

2
)
; denoted by

[
�V
X

]
˜θ̇ ,θ̈

.

Definition 4.19 AVFP-fuzzy soft topology is called enriched

if
[
�V
X

]
˜θ̇ ,θ̈

∈ τ ; θ1, θ1, θ
1
, θ2, θ2, θ

2 ∈ (0, 1] and θ̇ =(
θ1, θ1, θ

1
)
, θ̈ =

(
θ2, θ2, θ

2
)
.

Theorem 4.20 İf (M, τ2) be a VFP-fuzzy soft topological
space, (R, τ1)be a enrichedVFP-fuzzy soft topological space
and γ
,ρ : VFPFSS(R, P) → VFPFSS(M, N ) be a con-
stant VFP-fuzzy soft mapping, then γ
,ρ is VFP-fuzzy soft
continuous.

Proof Let ρ : P → N , ρ : P → N , ρ : P → N and


 : R → M be constant mapping defined as ρ(pα) = n
β

0 ,

ρ(p) = n0, ρ(pα) = nβ
0 and �V

S ∈ τ2, γ −1

,ρ (�V

S ) = �V
X .

Then, X = ρ−1(S) = θ1P , X = ρ−1(S) = θ1P , X =
ρ−1(S) = θ

1
P where μS(n

β) = θ1, μS(n) = θ1, μS(n
β) =

θ
1
and μγX (pα)(r) = μ

λS(ρ(pβ
))
(
(r)) = μ

λS(n
β

0 )
(m0) =

θ2, μγX (p)(r) = μλS(ρ(p))(
(r)) = μλS(n0)(m0) = θ2,

μγX (pα)(r) = μ
λS(ρ(pβ))

(
(r)) = μ
λS(n

β
0 )

(m0) = θ
2
;

∀nβ, pα ∈ P , ∀p ∈ P , ∀nβ, pα ∈ P . Thus, since �V
X =[

�V
P

]
˜θ̇ ,θ̈

∈ τ1, then γ
,ρ : (R, P) → (M, N ) is VFP-fuzzy

soft continuous.

Theorem 4.21 Let (R, τ1) and (M, τ2) be twoVFP-fuzzy soft
topological spaces and γ
,ρ : (R, P) → (M, N ) be a VFP-
fuzzy soft mapping. Then, the following are equivalent:
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(i) γ
,ρ

(
cls
[
�V
X

]) ⊆̃ cls
[
γ
,ρ

(
�V
X

)]
; ∀�V

X ∈ V FPF
SS(R, P),

(ii) cls
[
γ −1

,ρ

(
λV
S

)] ⊆̃γ −1

,ρ

(
cls
[
�V

S

])
; ∀�V

S ∈ V F

PFSS(M, N ),

(iii) γ −1

,ρ

(
int
[
�V

S

]) ⊆̃ int
[
γ −1

,ρ

(
�V

S

)]
; ∀�V

S ∈ V FP

FSS(M, N ),
(iv) γ
,ρ is VFP-fuzzy soft continuous,
(v) γ −1


,ρ (�V
S ) is VFP-fuzzy soft closed; ∀�V

S ∈ τ̃2.

Proof (i) ⇒ (ii) If �V
X = γ −1


,ρ

(
�V

S

)
, then γ
,ρ(

cls
[
γ −1

,ρ

(
�V

S

)]) ⊆̃ cls
[
γ
,ρ

(
γ −1

,ρ

(
�V

S

))] ⊆̃ cls
[
�V

S

]
.

Thus by Theorem 3.11 (i), cls
[
γ −1

,ρ

(
�V

S

)] ⊆̃ γ −1

,ρ(

γ
,ρ

(
cls
[
γ −1

,ρ

(
�V

S

)])) ⊆̃ γ −1

,ρ

(
cls
[
�V

S

])
.

(ii) ⇔ (iii) It is obvious from Theorem 3.11 (x) and The-
orem 4.11.

(iii) ⇒ (iv) Since �V
S ∈ τ2, then γ −1


,ρ (�V
S )γ −1


,ρ(
int
[
�V

S

]) ⊆̃γ −1

,ρ (λV

S ), i.e., γ −1

,ρ (�V

S ) is a VFP-fuzzy soft
open and so γ
,ρ is VFP-fuzzy soft continuous.

(iv) ⇒ (v) It is obvious from Theorem 3.11 (x).
(v) ⇒ (i) Since �V

X ⊆̃γ −1

,ρ

(
γ
,ρ(�V

X )
)
, i.e, �V

X ⊆̃γ −1

,ρ(

cls
[
γ
,ρ(�V

X )
]) ∈ τ̃1, then

cls
[
�V
X

]
⊆̃γ −1


,ρ

(
cls
[
γ
,ρ(�V

X )
])

.

By Theorem 3.11 (i i), we have γ
,ρ

(
cls
[
�V
X

]) ⊆̃γ
,ρ(
γ −1

,ρ

(
cls
[
γ
,ρ(�V

X )
])) ⊆̃ cls

[
γ
,ρ(�V

X )
]
.

Theorem 4.22 Let γ
,ρ : (R, P) → (M, N ) be a VFP-fuzzy
soft mapping andB be a base for τ2. Then γ
,ρ is VFP-fuzzy
soft continuous ⇔ γ −1


,ρ (�V
S ) ∈ τ1; ∀�V

S ∈ B.

Proof Straightforward.

Definition 4.23 A family S of VFPFSSs is a cover of a

VFPFSS�V
X if�V

X ⊆̃ ⋃̃
{
�V
Xi

: �V
Xi

∈ S , i ∈ I
}
. It is aVFP-

fuzzy soft open cover if each member of S is a VFP-fuzzy
soft open set. A subcover of S is a subfamily of S which
is also a cover.

Definition 4.24 A VFP-fuzzy soft topological space (R, τ )

is VFP-fuzzy soft compact if eachVFP-fuzzy soft open cover
of �V

P̃
has a finite subcover.

Example 4.25 Let P = {pα1

1 , p
α2

2 , ...}, P = {p1, p2, ...},
P = {pα1

1 , pα2
2 , ...} and R = {r1, r2, ...}. If

�V
Xk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
(1/4)/p

α1

1 , {1/r1}
)
,
(
(1/8)/p

α2

2 , {1/r1, (1/2)/r2}
)
,

...,
(
(1/4k)/p

αk

k , {1/r1, (1/2)/r2, ..., (1/k)/rk}
)
,(

(1/2)/p1, {(1/2)/r1}
)
,
(
(1/4)/p2, {(1/2)/r1, (1/4)/r2}

)
,

...,
(
(1/2k)/pk, {(1/2)/r1, (1/4)/r2, ..., (1/2k)/rk}

)
,(

1/pα1
1 , {(1/4)/r1}

)
,
(
(1/2)/pα2

2 , {(1/4)/r1, (1/8)/r2}
)
,

...,
(
(1/k)/pαk

k , {(1/4)/r1, (1/8)/r2, ..., (1/4k)/rk}
)

: k = 1, 2, ...

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

then τ =
{
�V
Xk

: k = 1, 2, ...
}

∪
{
�V

∅ , �V
P̃

}
a VFP-fuzzy

soft topology on R and (R, τ ) is VFP-fuzzy soft compact.

Definition 4.26 A familyS of VFPFSSs has the finite inter-
section property if the intersection of the members of each
finite subfamily of S is not empty VFPFSS.

Theorem 4.27 A VFP-fuzzy soft topological space is VFP-
fuzzy soft compact if and only if each family of VFP-fuzzy
soft closed sets with the finite intersection property has a
non-empty VFP-fuzzy soft intersection.

Proof If S is a family of VFPFSSs in a VFP-fuzzy soft
topological space (R, τ ), then S is a cover of �V

P̃
if and

only if one of the following conditions holds:

(i)
⋃̃ {

�V
Xi

: �V
Xi

∈ S , i ∈ I
}

= �V
P̃
.

(ii)
[⋃̃ {

�V
Xi

: �V
Xi

∈ S , i ∈ I
}]c =

[
�V
P̃

]c = �c
∅.

(iii)
⋂̃ {[

�V
Xi

]c : �V
Xi

∈ S , i ∈ I
}

= �V
∅ .

Hence, this shows that VFP-fuzzy soft topological space is
VFP-fuzzy soft compact.

Theorem 4.28 Let (R, τ1) and (M, τ2) be VFP-fuzzy soft
topological spaces and γ
,ρ : V FPFSS(R, P) → V FP-
FSS(M, N ) be a VFP-fuzzy soft mapping. If (R, τ1) is
VFP-fuzzy soft compact and γ
,ρ is VFP-fuzzy soft continu-
ous surjection, then (M, τ2) is VFP-fuzzy soft compact.

Proof IfS =
{
�V

Si
: �V

Si
∈ τ2, i ∈ I

}
is a cover of�V

Ñ
, then{

γ −1

,ρ

(
�V

Si

)
: �V

Si
∈ S

}
is a cover of�V

P̃
byVFP-fuzzy soft

continuous γ
,ρ . Since (R, τ1) is VFP-fuzzy soft compact,

then
{
γ −1

,ρ

(
�V

Si

)
: i ∈ I0

}
covers �V

P̃
; ∃I0 ∈ I . Moreover,

we have γ
,ρ

(⋃̃ {
γ −1

,ρ

(
�V

Si

)
: i ∈ I0

})
= γ
,ρ

(
�V
P̃

)
and

so
⋃̃ {

�V
Si

: i ∈ I0
}

= �V
Ñ
. Hence, (M, τ2) is VFP-fuzzy

soft compact.
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Conclusion

To express many relationships on mathematical models, var-
ious topological structures have been built on many different
set types that have been introduced to the literature. In gen-
eral, more general topological structures can be obtained
thanks to the generalization of set types, and thus the rela-
tionships on mathematical models are expressed better. The
virtual fuzzy parametrized fuzzy soft set theory, which is
one of the most important hybrid set types put forward in
recent years, enables a decision maker to express member-
ship degrees more accurately, and thanks to this feature, it
has managed to attract the attention of many researchers.
Therefore, the purpose of this paper is to generalize the con-
cept of topology in expressing the relationships in a better
way by establishing a topological structure on virtual fuzzy
parametrized fuzzy soft sets. For this, first, some concepts
such as point, quasi-coincident andmappingwere defined for
the virtual fuzzy parametrized fuzzy soft set. Then, with the
help of these auxiliary concepts, virtual fuzzy parametrized
fuzzy soft topological spaces are defined and analyzed in
detail. Moreover, for virtual fuzzy parametrized fuzzy soft
topological spaces, concepts such as open, closed, closure,
Q-neighborhood, interior, base, continuous, cover and com-
pact are defined and some related properties are given. In
addition, many examples have been added to make the con-
cepts given throughout the paper easier to understand.

In an environment of uncertainty, it is very important for
the decision maker to be able to express the membership
degrees in the most accurate way. The topological structure
built on virtual fuzzy parametrized fuzzy soft sets, which
is one of the mathematical approaches put forward for this,
can also be re-evaluated for mathematical models such as
virtual fuzzy parametrized soft set [14], virtual neutrosophic
parametrized soft set [15]. We hope that the many concepts
and many characteristic properties given in this paper will
be useful for researchers to further advance and promote in
virtual fuzzy parametrized fuzzy soft set theory.
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4. Al-shami TM, Kočinac LD, Asaad BA (2020) Sum of soft topo-
logical spaces. Mathematics 8(6):990

5. Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst
20:87–96

6. Bayramov S, Gunduz C (2018) A new approach to separability and
compactness in soft topological spaces. TWMS J Pure Appl Math
9(21):82–93

7. Bhardwaj N, Sharma P (2021) An advanced uncertainty measure
using fuzzy soft sets: application to decision-making problems. Big
Data Min Anal 4(2):94–103

8. Chinram R, Hussain A, Ali MI, Mahmood T (2021) Some geo-
metric aggregation operators under q-rung orthopair fuzzy soft
information with their applications in multi-criteria decision mak-
ing. IEEE Access 9:31975–31993
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