
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2022) 8:361–392
https://doi.org/10.1007/s40747-021-00368-z

ORIGINAL ARTICLE

Multi‑objective fault‑tolerant optimization algorithm for deployment
of IoT applications on fog computing infrastructure

Yaser Ramzanpoor1 · Mirsaeid Hosseini Shirvani2 · Mehdi Golsorkhtabaramiri1

Received: 24 November 2020 / Accepted: 1 April 2021 / Published online: 6 May 2021
© The Author(s) 2021

Abstract
Nowadays, fog computing as a complementary facility of cloud computing has attracted great attentions in research com-
munities because it has extraordinary potential to provide resources and processing services requested for applications at the
edge network near to users. Recent researchers focus on how efficiently engage edge networks capabilities for execution and
supporting of IoT applications and associated requirement. However, inefficient deployment of applications’ components
on fog computing infrastructure results bandwidth and resource wastage, maximum power consumption, and unpleasant
quality of service (QoS) level. This paper considers reduction of bandwidth wastage in regards to application components
dependency in their distributed deployment. On the other hand, the service reliability is declined if an application’s compo-
nents are deployed on a single node for the sake of power consumption management viewpoint. Therefore, a mechanism for
tackling single point of failure and application reliability enhancement against failure are presented. Then, the components
deployment is formulated to a multi-objective optimization problem with minimization perspective of both power consump-
tion and total latency between each pair of components associated to applications. To solve this combinatorial optimization
problem, a multi-objective cuckoo search algorithm (MOCSA) is presented. To validate the work, this algorithm is assessed
in different conditions against some state-of the arts. The simulation results prove the amount 42%, 29%, 46%, 13%, and 5%
improvement of proposed MOCSA in terms of average overall latency respectively against MOGWO, MOGWO-I, MOPSO,
MOBA, and NSGA-II algorithms. Also, in term of average total power consumption the improvement is about 43%, 28%,
41%, 30%, and 32% respectively.

Keywords  Internet of things (IoT) · Fog computing · Fault tolerance · Traffic-aware deployment · Component deployment

Introduction

Recently, fog computing joint with cloud computing to
cover its deficit such as intrinsic latency and to serve dif-
ferent industries. Since a fog server can process data gath-
ered by IoT devices independently from cloud computing,
it can efficiently save network communication bandwidth,
cloud storage space, and reserving resources for mission-
critical applications [1]. Also, fog supports unifying edge
and cloud resources for customers. Fog computing facilitates

deployment of IoT applications in vicinity of source data.
Therefore, it reduces network load and guarantees on-time
service delivery. However, deployment, management, and
updating of IoT application lead new challenges in such lay-
ered environment. Fog computing in larger scale includes
numerous heterogeneous computing nodes with separate
processing, memory, and storage. In addition to, workload
on each node is completely dynamic. Also, each IoT appli-
cation has its own requirement in terms of sensitivity on
latency, computing requirement, and privacy constraints.
Therefore, the deployment of application components must
be properly done on fog nodes; at the same time the applica-
tion requirement, software and hardware features, bandwidth
and tolerable latency between components on fog infra-
structure must be taken into account [2]. Deployment of an
application components on a single node yields maximize
resource utilization, decrease in power consumption, and
optimizing network bandwidth as well. Nevertheless, when

 *	 Mirsaeid Hosseini Shirvani
	 mirsaeid_hosseini@yahoo.com;

mirsaeid_hosseini@iausari.ac.ir

1	 Department of Computer Engineering, Babol Branch,
Islamic Azad University, Babol, Iran

2	 Department of Computer Engineering, Sari Branch, Islamic
Azad University, Sari, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00368-z&domain=pdf

362	 Complex & Intelligent Systems (2022) 8:361–392

1 3

a fog node which hosts all of the components associated with
an application crashes, the application cannot work properly
in which it affects the reliability of customer applications.
For this reason, it is clear-cut to take an efficient policy for a
suitable and reliable components deployment scheme.

There are miscellaneous mapping possibilities in distri-
bution of application components on fog nodes in which
one of the most appropriate and optimal amongst them
should be selected. For a small application with low num-
ber of components, there are several feasible solutions to
deploy components on different fog nodes. Therefore, with
the increase the number of application components and the
number of fog nodes regarding to its heterogeneity, finding
the optimal deployment scheme is computationally com-
plex and there is not any exact solution for this. So, this
problem belongs to NP-Hard class [3]. Recently, researches
have been done in literature in regards to component distri-
bution over fog and cloud computing nodes. A unified fog
computing platform was proposed by Hong et al. [4] in year
2018 for dynamic component deployment on fog devices.
In their proposed approach, it paid on distribution of com-
ponent over more than one fog node to avoid single point of
failure. Another algorithm for distribution of IoT applica-
tion components with regards to application sensitivity on
latency and efficient network resource usage viewpoints has
been proposed by Taneja et al. [5] in year 2017. A general
and extensible description model was proposed to specify
QoS-aware IoT application deployment on fog infrastructure
proposed by Brogi et al. [6] in 2017. Review on literature
reveals that there are clear lack in component placement
of IoT applications with two different viewpoints at the
same time. In the other words, this paper presents power-
aware and latency-aware algorithm for reliable component
deployment on fog infrastructure. The former awareness is
for provider as a prominent stakeholder and latter aware-
ness is considered for service customer as another promi-
nent stakeholder side viewpoints. To this end, this paper
presents two new models in IoT-Fog environment in regards
to application modules deployment viewpoint. The accurate
models indicate whether the proposed algorithm is effective
or not. So, after presenting two intricate new models namely
power and reliability models for IoT components deploy-
ment on fog platforms, the multi-objective cuckoo search
algorithm is extended which exploits Pareto dominance and
crowding distance concepts for both gaining the set of non-
dominated solutions and diversity in search space. Since the
stated problem is a discrete optimization in nature, the CSA
algorithm that permutes search space efficiently has been
selected. Also, its operators are conducted in such a way
that the good adjustment and balance between exploration
and exploitation is achieved in which the final simulation
results endorse it although there is no guarantee in stochastic
approaches to reach optimal point.

Therefore, the main contributions of the current paper
are as follow:

1.	 To reach the optimal power consumption, a Fullmesh
sub networks is extracted from whole fog network by a
proposed heuristic algorithm; among Fullmesh sub net-
works, the most appropriate one is selected for distribu-
tion of application components.

2.	 To mitigate the effect of single point of failure in appli-
cation components deployment, the fault tolerance pol-
icy against failure is provided for each application to
improve reliability; to this end, the minimum number of
fog nodes for components deployment can be bounded
to the maximum number of existing nodes in Fullmesh
sub network.

3.	 The overall latency concept is modeled. In the process of
application components deployment, efficient utilization
of fog bandwidth resource is increased by minimizing
overall latency. This can be potentially decrease resource
wastage and power consumption.

4.	 The deployment of application components over fog
nodes is formulated to a multi-objective optimization
problem with minimization of both power consump-
tion and overall latency viewpoints. To solve this com-
binatorial problem, a multi-objective cuckoo search
optimization algorithm (MOCSA) is presented which
compromises objectives and considers reliability in its
constraints.

The rest of the paper is structured as follows. Related
works are placed in Sect. “Related works”. Some models
associated to problem statement are presented in Sect. “Pro-
posed framework and models”. Section “Problem statement”
states the problem under study. Proposed MOCSA is pre-
sented in Sect. “Proposed MOCSA algorithm for component
deployment problem”. This algorithm is validated in simula-
tion and evaluation section which is placed in Sect. “Simula-
tion and evaluation”. Section “Conclusion and future direc-
tion” concludes this paper along with future direction.

Related works

This section investigates related works to find research gap
in component deployment problem. A cloud service man-
agement standard named TOSCA was proposed for IoT com-
ponent placement [7]. The main objective of this paper was
to deploy components automatically by using application
components description commensurate with fog nodes. The
aid of this standard was to improve portability of applica-
tions in heterogeneous environment such as in cloud and
fog environment. In proposed standard, a model for descrip-
tion of service structure and service process management

363Complex & Intelligent Systems (2022) 8:361–392	

1 3

was presented. In this model, placement of application
components is automatically done by applying conceptual
description of components topology and related application
deployment.

An approach has been propounded in literature for
latency-aware application component management in fog
environment [8]. In this work, latency of service access,
service delivery time, and internal communication latency
have been considered. The objective was to guarantee the
service delivery deadline and efficient resource utilization
in fog environment. To optimize the number of utilized fog
nodes for hosting application components, this exploits for-
ward and reallocation strategy for application components.
In addition, to cope with limitations of fog environment such
as management overhead, single point of failure, redundant
communications, and latency in decision, the decentralized
organizing is proposed for substitution and forwarding the
components.

A platform was proposed for a dynamic distribution of
application components on fog sub networks [4]. In pro-
posed approach, all requests are submitted to a server; then,
the requests are registered in a database. Each request is
split to multiple components which are encapsulated to a
Docker or Container. Afterwards, a heuristic algorithm is
run to determine components placement plan. The obtained
plan is sent to fog platform for component distribution. The
main goal is to maximize of generating successful placement
plans for user applications.

A DIANE framework has been presented by Vogler et al.
[9] in 2015 for producing optimal deployment topology of
cloud-based IoT applications commensurate with existing
infrastructures. To increase the flexibility of application
that their deployment topologies undergo evolution during
the time, separation of executing components is necessary.
The application deployment topology changes may be for
deployment requirement of new application, changes in edge
network physical infrastructure such as add/remove sensors
and gateways, environmental changes such as customer
request patterns, and evolutionary changes in business logic
during its life cycle. In production process of deployment
topology, some parameters such as time needed for deploy-
ment, time and bandwidth request for application running,
and exploitation of edge devices are evaluated.

A distributed programming interface was presented for
colony of fog computing nodes so-called Foglets by Saurez
et al. [10] in 2016. Foglets automatically detect fog comput-
ing resources in network hierarchy and deploys application
components on fog nodes with tolerable latency requirement
of each component.

An approach was devised for component deployment of
IoT services on M2M platform to reduce traffic from the net-
work to cloud datacenter because IoT application are made
on M2M platforms [11].

A network-aware algorithm in regarding to optimal utiliz-
ing of resource was presented by Taneja et al. [5] in 2017.
This algorithm detects fog nodes based on their capacity and
application components requirement. If requirement is met,
the mapping of components over fog nodes is done.

To facilitate deployment of applications on cloud2fog
environment, a platform as a service (PaaS) architecture
was propounded by Yangui et al. [12] in year 2016. In this
architecture, engaging and execution of application compo-
nents, SLA meeting evaluation and component migration
via management interface are met. Accordingly, exploitation
and execution of application components with regards to the
objectives are detected, configured, and initiated.

Table 1 summarizes comparison of related works associ-
ated to IoT application component deployment on fog and a
cloud infrastructure.

Review of literate illustrates that published works have
been formulated to optimization problems with different
viewpoints. Generally, optimization problems are catego-
rized in two classes: single objective and multi-objective
problems. Since the majority of optimization problems
belong to NP-Hard category problems, the heuristics (or
exact algorithms) and the meta-heuristic algorithms are
engaged to solve these kind of problems. In single objective
problems, only one objective function must be optimized.
For instance, Refs. [13–17] were presented in literature to
solve single objective engineering problems with heuris-
tic and exact approaches. Some meta-heuristics GA-based
[18–23], PSO-based [3, 24, 25], SA-based [26–28] have
been developed to solve optimization problems in engi-
neering domain. In addition, multi-objective optimization
algorithms such as NSGA-II [29], MOPSO [30], MOGA
[18, 31], MOBA [32], and MOGWO [33] among others have
been extended in literature to solve multi-objective optimiza-
tion problems which need to make a trade-off between con-
flicting objectives at the same time. In this line, several tech-
niques were presented in literature to improve the quality of
multi-objective optimization problems [34–38]. Specially,
these methods were tested in some famous and applicable
engineering benchmarks [34–38]. Since the modules place-
ment associated to IoT application in fog environment is a
discrete optimization problem, it urges to utilize an efficient
discrete optimization algorithm this the reason to select CSA
algorithm which permutes search space efficiently.

Overall investigation of reviewed literature also reveals
that the majority of published works scarcely have paid
on single point of failure avoidance and its effect on how
to distribute application components over fog nodes and
at the same time how to optimize bandwidth utilization.
The distinction point of the current paper in comparison
to other literatures revolves around the fact that the current
paper strives in enhancement of user application’s reli-
ability in regards to tolerance against failure and to present

364	 Complex & Intelligent Systems (2022) 8:361–392

1 3

traffic-aware deployment to optimize network bandwidth
utilization in component distribution process.

It is worth noting that presenting the accurate models
indicate whether the proposed algorithm is effective or not.
So, this paper presents two intricate new models namely
power and reliability models for IoT components deployment
on fog platforms to cover literature shortcomings. Then, it is
formulated to multi-objective optimization problem.

Proposed framework and models

This section presents system framework and associated mod-
els. Then, all of them are engaged in problem statement. For
the sake of simplicity, Table 2 illustrates utilized nomencla-
ture in presented models.

Table 1   Summary of the literature study

Author/Ref Deployment aims Advantages Disadvantages

Distributed Fault tolerant Resource
aware

Latency
Aware

Traffic aware Energy
efficient

Mahmud et al. (2018)
[8]

✓ ✖ ✓ ✓ ✖ ✓ Deployed time-sensi-
tive applications at
proximity of source
data

Lack of considering the
chain of dependency
during distribution
process

Hong et al. (2016) [4] ✓ ✖ ✓ ✓ ✖ ✓ Component distribu-
tion on the mini-
mum number of
computing nodes

It does not elaborate
how to distribute
components against
one point of failure

Vögler et al. (2015)
[9]

✓ ✖ ✓ ✖ ✖ ✓ A framework pre-
sented for generat-
ing optimal deploy-
ment topology

A descriptive model
presented for com-
ponent deployment

It does not elaborate
how to distribute
components

Saurez et al. (2016)
[10]

✓ ✖ ✖ ✖ ✖ ✖ A programming
infrastructure for
development and
deployment of
components

An approach pre-
sented for compo-
nents migration

It does not dependency
challenges between
components

Chen et al. (2017)
[11]

✓ ✖ ✖ ✖ ✖ ✖ Component distribu-
tion with minimum
latency

QoS degradation with
increase the number
of components

Lack of elaboration
between components’
dependency

A single point of fail-
ure problem

Taneja et al. (2017)
[5]

✓ ✖ ✓ ✓ ✖ ✓ Supporting different
netwrok topologies

Lack of elaboration
between components’
dependency

A single point of fail-
ure problem

Yangui et al. (2016)
[12]

✓ ✖ ✖ ✓ ✖ ✖ Automated PaaS for
componentt deploy-
ment

It does not guarantee
optimal deployment

A single point of fail-
ure problem

Current article ✓ ✓ ✓ ✓ ✓ ✓ Reliability enhance-
ment

Traffic-aware deploy-
ment

Although it is not a
weakness, it depends
on sub full mesh
derived from whole
network

365Complex & Intelligent Systems (2022) 8:361–392	

1 3

System framework

The proposed target system framework is depicted in Fig. 1.
As this figure shows, an organizer is placed in top level of
fog layer. One of its most missions is to extract Fullmesh
sub networks of fog nodes known as a Mega Node. The
Mega Node architecture is similar to wireless mesh network
(WMN) presented by Akyildiz et al. [39] in year 2005. Its
computing pattern differs from traditional mesh networks
in which it utilizes network of fog nodes such as switches
and routers in distribution operation of inside the network.
After the Mega Nodes extraction, the suitable Mega Node
is adopted and organizer makes decision for component
deployment in selected Mega Node in regards to applica-
tion components features and requirements. Conceptually,
the organizer is centralized, but it can be distributedly

implemented for the sake of avoidance from the single point
of failure phenomenon.

In the proposed framework, the high priority is to extract
deployment plan based on selected Mega Node; then, the
components are distributed based on extracted plan. Only
the components which are not time-sensitive or are executed
periodically for information processing are deployed on
cloud infrastructure. In this regards, a deployment planner
framework is used to manage and run suitable application
components deployment regarding to system performance.

As Fig. 2 demonstrates, planner module contains appli-
cation component manager and associated collaborative
components. Beside deployment planner, some modules are
placed for storage and retrieval of information associated to
the network and other Mega Node’s resources.

Table 2   Nomenclature utilized
in proposed models

Notation Description

F Fog network
Mega node A fullmesh sub network including fog nodes
N Number of fog nodes in Mega Node
M Number of Applications Components
fni Fog node i, where i = 1, 2,..,N
Id Fog node identifier
H Fog node hardware specification
S Fog node software specification
HWfn Computing, memory, and storage capacity of a fog node
SWMega Node Software capacity of Mega Node
SMega Node Sensor capacity of Mega Node
sensorlist Sensor list associated to a fog node
B Bandwidth of communication link
L Latency of communication link
Bmn Communication Bandwidth between nodes m and n
Lmn Communication latency between nodes m and n
dmn Distance between nodes m and n
nL Serving fog nodes to application i
UApp User application
Mi Number of components in Application i
cmplisti List of Components associated to application i
cmpk k-th component of an application
h Hardware requested for a component
s Software requested for a component
mi A component of an application i deployed on a fog node L
bij Favorite Communication Bandwidth between component i and j
lij Favorite Communication latency between component i and j
hwcmp Computing, memory, and storage capacity requested for application components
swcmp Software resource requested for application components
scmp Sensor resource requested for application components
tij traffic between component i and j
xcmp,fn Decision variable which determines a component is deployed on a fog node or not
yfn Decision variable which determines a fog node is active or not

366	 Complex & Intelligent Systems (2022) 8:361–392

1 3

The integrated information is used for management of
application components and presenting favorite deployment
plan via deployment planner. In the following, the proposed
framework’s modules are clarified.

Application component manager This is a main module
amongst others, which decides how to deploy application
components on fog or cloud nodes. In a multi-component
application, for the sake of dependency between its com-
ponents, decision of deployment strongly depend on sev-
eral issues such as resource availability, network structure,
QoS requirement of applications, load sharing and etc. the
deployment of components can be done based on objectives
such as power consumption reduction, minimizing commu-
nication and reduction of overall traffic owing to running of
applications.

Component resource information It extracts processing and
memory requirement associated to application components
from user submitted request. Then, it delivers this informa-
tion to application component manager for decision making
on deployment plan.

Components communication information Since communica-
tion plays a major role in resource consumption of fog nodes
in running IoT applications, the management of application
components on fog nodes includes optimizing usage of com-
puting resources, memory, and communications at the same
time. To this end, this section extracts communication infor-
mation of application components from user requests and
delivers it to application component manager.

Mega node resource discovery This module manipulates
Mega Node’s information repository which is obtained via
application component manager. Then, it sends back the
information of favorite Mega Node for application compo-
nents deployment.

Fig. 1   Proposed system framework and associated mega nodes

Fig. 2   Management framework
for application components

Fog Compu�ng Zone

Mega Node
 Manager

Mega Node
Informa�on
Repository De

pl
oy

m
en

t P
la

nn
er

Mega Node
Resource Discovery

Users Request
(Applica�on)

Applica�on
Component

Manager

Desired Deployment Plan

Components
Communica�on

Informa�on

Components
Resource

Informa�on

367Complex & Intelligent Systems (2022) 8:361–392	

1 3

Mega node manager Based on information received from fog
nodes, the Fullmesh sub networks of fog nodes are extracted;
then, information of Fullmesh sub networks, known as Mega
Nodes, are saved in a repository. In addition to, it validates
status of existing Mega Nodes by periodically monitoring
of fog infrastructure.

Fog model

This article assumes there exists a network of N number of
fog nodes which are heterogeneous in terms of processing
capacity and power consumption; all of them are enable to
store and execute application components. These fog nodes
belong to one or more Mega Node sets. Each node in a Mega
Node can directly or indirectly access to different kind of
sensors via wired or wireless connections. A fog node
fn ∈ F is introduced by a vector ( id, mid,H, S, sensorlist )
where id, mid,H, S, and sensorlist are fog node identifier,
Mega Node id, hardware, software, and available sensors
respectively. The components which are distributed among
Mega Node’s processors can avail to the software and sen-
sors of that same Mega Node. In this regards, the commu-
nication link can be modeled by a vector (L,B) where L and
B are latency and bandwidth respectively. The details of a
Mega Node is elaborated in Fig. 3.

In this line, the communication network is modeled by a
graph G =  < FN,D > where FN = { fn1, fn2,… , fnN } is a set
of fog nodes and edge dij ∈ D shows distance between nodes
fni and fnj . Matrix D in Eq. (1) is dedicated for distance
between each pair of fog nodes. In each Mega Node, if all
components are placed on single node, then, dij = 0 ; other-
wise dij = 1 . In addition, the Fig. 4 illustrates a communica-
tion network in a Mega Node with three different fog nodes.

Application model

In recent years, regarding to the nature of users requests
and new expectations on internet-based services, the design
of applications which manipulate users’ data is constantly
fluctuated based on changing requests; then, to meet user
requirement, the multi-component structure approach is uti-
lized [40]. So, application components are dependent and
cooperate with each other to meet users’ requirements. For
instance, take a company that serves a smart health care
service in a small IoT application for surveillance of aged
people. This application includes three different components
that Fig. 5 illustrates.

(1)

Fig. 3   Mega node specification and its belonged fog nodes

Fig. 4   Communication network
in a mega node

Fig. 5   Specification of application components

368	 Complex & Intelligent Systems (2022) 8:361–392

1 3

Status manager (cmp1) This component monitors aged and
disabled people; it alarms the nearest medical and health-
care center once it detects a disorder in physical or mental
behavior.

Control center (cmp2) This component is used for interpret
of integrated data and manual control of the system.

Machine Learning (cm3) This component is utilized to save
data history of individuals and to estimate future wellbeing
and health provided it is not latency-sensitive which can be
deployed on cloud datacenter or fog infrastructure.

Figure 5 also depicts hardware resources along with soft-
ware capabilities required for each component. Communi-
cation between components are drawn by special links. To
manage on time status of aged people, component cmp1
must avail to needed sensors (physical state controller sen-
sors) and an actuator which activates initial operation mech-
anism and announcement to medicine centers; this must be
done during 10 ms. from deployed component cmp3 to the
place of installed sensors and actuators. Furthermore, it is
expected that the fog or cloud nodes can remotely access to
existing neighbor things via APIs provided by fog middle-
ware [41]. The problem that should be solved for application
components deployment is how to place components so that
the requested resources are met. Even for this simple exam-
ple, different deployment plans must be evaluated for finding
an optimal component mapping for this application because
more than one component can be deployed on a fog node
based on existing resources. Finding favorite and optimal
deployment is impractical when the number of components
and fog nodes are significantly increased. Then, this combi-
natorial problem must be solved by intricate meta-heuristic
algorithms.

This paper assumes that there are R number of IoT appli-
cations each of r ∈ R is shown by a vector (M,cmplist).
Each application has M number of components listed
in cmplist. Also, each component is shown by a vector
( k, h, s, sensorlist ) (see Fig. 5).

User applications are modeled by a graph G = (cmplist, T)
where cmplist =

{

cmp1, cmp2,… , cmpm
}

 and T = tij shows
the traffic matrix (TM) between components cmpi and cmpj .
Equation (2) demonstrates traffic matrix and the Fig. 6 illus-
trates components communication graph.

(2)

Reliability model

Deployment of an application’s components on the mini-
mum number of fog nodes leads to reach the goals such as
reduction in power consumption and efficient utilization of
cloud computing resources, but one of the confronting chal-
lenges is the acceleration of the single point of failure phe-
nomenon in users’ applications. Therefore, for the sake of
meeting both optimization objective functions of cloud com-
puting owners and to decrease the degree of applications’
vulnerability in centralized distribution in fog infrastructure,
the threshold parameter is considered for the number of fog
nodes in distribution of applications’ components. To this
end, in the worst case, at most number of needed nodes for
components distribution is bounded to the number of avail-
able nodes in selected Mega Node. In the other words, the
best effort is bounded to Mega Node capacity.

Deployment model

To deploy components, one of the Mega Nodes regarding to
claimed requirement is selected among the list of extracted
Mega Nodes. In each Mega Node, if all components are
placed on single node, then, dij = 0 ; otherwise dij = 1 . Fog
nodes in a Mega Node meet all of components resource
requirements in terms of latency, bandwidth, and sensors. In
this paper, we assume that all of sensors or software request
for application components cab be shared by fog nodes asso-
ciated to Mega Node. In distribution process of application
components on fog nodes, the computing resources, fog
nodes distance, and QoS parameter requested for applica-
tion components must be taken into consideration. To reduce
traffic load, the distance matrix which is used for each pair
of fog nodes in network graph and also traffic pattern matrix
between each pair of components must be calculated. Note
that, communication links between fog nodes fnm and fnn
have constant capacity in terms of latency and bandwidth.
Therefore, traffic rate between application components is
bounded to fog nodes’ capacity. So, this limitation is shown
in Eq. (3).

Fig. 6   Components communication graph

369Complex & Intelligent Systems (2022) 8:361–392	

1 3

where bij and lij are favorite bandwidth and latency between
components cmpi and cmpj . Also, parameters Bmn and Lmn
are bandwidth and latency between fog nodes fnm and fnn
respectively. Note that, a component can be deployed on a
fog node provided this node is active. For this reason, deci-
sion variable yfn is set to one when fog node fn is an active
node to adopt a component. Equation (4) shows this decision
variable.

Furthermore, the requested hardware associated to com-
ponents cannot exceed the capacity of underlying fog nodes.
Therefore, Eq. (5) is used to show this constraints.

In Eq. (5), parameter HWfn is relevant to fog node capac-
ity in term of hardware and hwcmp is requetsed resources
relevant to components.

As assumed all software resources are available for each
node in Mega Node, the software limitation is drwan in
Eq. (6).

where the term SWMega Node is software capacity of Mega
Node and swcmp is the requested software by application
components. Also, another constraint on requetsed sen-
sors for application components cannot exceed from Mega
Node’s capacity in term of number of its availabe sensors.
This is elaborated in Eq. (7).

A decision variable xcmp,fn is used to determine whether
component cmp is placed on fog node fn or nor. Equation (8)
is dedicated to this issue.

Furthermore, each component is only placed on one fog
node in which Eq. (9) depicts.

(3)
∑

cmpi∈fnm

∑

cmpj∈fnn

bij × lij < Bmn × Lmn

(4)xcmp,fn ≤ yfn,∀cmp ∈ UApp, fn ∈ F

(5)
∑

cmp∈UApp

xcmp,fn ⋅ hwcmp ≤ HWfn, ∀fn ∈ F

(6)

∑

cmp∈UApp

xcmp,fn ⋅ swcmp ≤ SWMega Node,∀Mega Node ∈ F

(7)
∑

cmp∈UApp

xcmp,fn ⋅ scmp ≤ SMega Node,∀Mega Node ∈ F

(8)

xcmp,fn =

{

1 application’s cmp is placed on fog node fn

0 otherwise

(9)
∑

fn∈F

xcmp,fn = 1, ∀cmp ∈ UApp

Problem statement

In this paper, deployment of IoT application components is
formulated to a multi-objective optimization problem. To
address the issue, two objective functions and problem for-
mulation are presented.

Overall latency

One of the most prominent objective functions of deploy-
ment problem is to minimize system overall latency which
has drastic impact on average QoS degradation. So, the
amount of latency owing to dependent components of an
application which are placed on two different fog nodes in a
Mega Node, is calculated via Eq. (10).

The latency between each pair of dependent components
depends on latency between fog nodes which are hosting
separate components. Note that, the amount of latency is
ignored when two dependent components are placed on
the same node. The overall latency of the system, owing to
deployment of all applications and related components, is
measured via Eq. (11).

Power consumption

The effective subjects on fog nodes’ power consumption are
load of computation, communication technology, the trans-
fer data traffic volume, distance between nodes and etc. To
calculate the power consumption of a fog node, power con-
sumption owing to both application’s components process-
ing and data transfer between nodes should be taken into
account. Literature review proves that the power consump-
tion of a processing node has linearly relation to its resource
utilization [42]. So, the average normalized resource utiliza-
tion associated to each fog node is measured via Eqs. (12).

where parameters W1 and W2 are two coefficients that show
the importance of them in fog node’s power consump-
tion. Note that, their values are 0 ≤ W1 ≤ 1, 0 ≤ W2 ≤ 1, and
W1 + W2 = 1. Since the power consumption of processing
units outwieghts versus the main memory, the processor uti-
lization is taken for power consumption; consequently, the

(10)Latencymn =
∑

cmpi∈fnm

∑

cmpj∈fnn

Lmn

(11)UApplatency =
∑

fnm,n∈Mega Node

Latencymn

(12)
URes

fni
=

W1 ⋅
∑fni

j

RCPU
Comj

RCPU
fni

+W2 ⋅
∑fni

j

RRAM
Comj

RRAM
fni

2

370	 Complex & Intelligent Systems (2022) 8:361–392

1 3

parameters are set as W1 = 0.9 and W2 = 0.1 [42]. The Eq. (13)
measures the power consumption owing to utilized resources
relevant to each node that hosts different components.

where parameters Pmin and Pmax are used to indicate the
minimum and maximum power consumption of each pro-
cessing node in the minimum and maximum utilization con-
ditions respectively. In addition to, decision binary varibale
yfn is used to show whether the processing node is active or
not. Moreover, the power consumption owing to data transfer
via communication links are obtained by Eq. (14).

The parameter PTr is of prower consumption unit for traf-
fic trasfer. Note that, this power is taken in case the compo-
nents are placed on different computing nodes. Cosequently,
the total power consumption is obtained via Eq. (15). The
first section is for resource utilization and the second section
is for traffic transfering power consumption.

Problem formulation

The deployment of IoT application components by distribut-
ing over fog nodes is formulated to a multi-objective optimi-
zation problem. After definition of objective functions, this
formulation is brought in Eqs. (16)–(24).

Subject to:

(13)PRes
fn

= yfn ×
(

Pmax − Pmin

)

× URes
fn

+ Pmin

(14)PTr
fn
=

∑

fni≠fnj

tComi,Comj
× PTr

(15)Pfn = PRes
fn

+ PTr
fn

(16)min TPC = Min
∑

fn∈F

Pfn

(17)min UApplatency = Min
∑

fnm,n∈Mega Node

Latencymn

(18)
∑

cmpi∈fnm

∑

cmpj∈fnn

bij × lij < Bmn × Lmn

(19)
∑

cmp∈UApp

xcmp,fn ⋅ hwcmp ≤ HWfn, ∀fn ∈ F

(20)

∑

cmp∈UApp

xcmp,fn ⋅ swcmp ≤ SWMega Node, ∀Mega Node ∈ F

(21)

∑

cmp∈UApp

xcmp,fn ⋅ scmp ≤ SMega Node, ∀Mega Node ∈ F

In the aforementioned problem formulation, the Eqs. (16,
17) are objective functions to be minimized at the same time
the constraints drawn in Eqs. (18–24) must be met. To solve
this combinatorial optimization problem, an intricate multi-
objective optimization algorithm is presented.

Proposed MOCSA algorithm for component
deployment problem

As the stated problem is a multi-objective optimization prob-
lem, we extend a multi-objective optimization algorithm in
regards to two equal important objectives. A multi-objective
optimization algorithm differs from a single objective opti-
mization algorithm because in multi-objective optimization
algorithm a trade-off between objectives must be done. To
this end, the dominance concept is utilized [24, 31, 42]. The
multi-objective optimization algorithm must be conducted
in search space to find non-dominated solutions known as
Pareto front [31]. Regarding to the discrete nature of the
search space associated to stated problem, the cuckoo search
algorithm (CSA) is adopted for the sake of its performance
and adaptation with discrete search space. The CSA was
firstly introduced in literature by Yang and Deb [43] at year
2009. It had successful outcome in different optimization
domains such as in [44–46]. To solve deployment prob-
lem, a multi-objective version of CSA known (MOCSA) is
extended which inherits strength of both CSA and NSGA-II
algorithms [29].

The CSA mimics its behavior from cuckoo birds. This
kind of bird has an aggressive attitude in which it even lays
eggs in the other birds’ nests along with throwing away their
eggs. In CSA, every egg in a nest is a candidate solution.
When a cuckoo lays one egg in a nest in fact it produces a
new solution. In this regards, a single objective CSA utilizes
three rules:

At first, each cuckoo lays one egg in a randomly selected
nest.

Secondly, better nests holding eggs (solutions) with better
quality remain for next generation.

Thirdly, number of existing nests are fix; and a host
nest, a cuckoo can detect strange egg with the probability
pa ∈ [0,1] ; in this case, the host bird can either smash the
egg or leave the nest for constructing completely new nest
in the new place.

(22)xcmp,fn ≤ yfn,∀cmp ∈ UApp, fn ∈ F

(23)
∑

fn∈F

xcmp,fn = 1, ∀cmp ∈ UApp

(24)xcmp,fn ∈ {0, 1}, yfn ∈ {0, 1}

371Complex & Intelligent Systems (2022) 8:361–392	

1 3

To construct MOCSA with k objective functions, three
mentioned rules of canonical CSA needs to be customized
in regards to objective functions. New rules are:

In each iteration, each cuckoo lays k eggs in a randomly
selected nest in which the i-th egg is representative of the
i-th objective function. In regard to similarity and discrep-
ancy between eggs, each nest is left with probability pa
and the new nest is constructed with k new eggs. In addi-
tion to, some operations can be defined to permute search
space efficiently. Mathematically, the first rule can utilize
Random Walk or Levy flight approaches (c.f. Eqs. (25, 26)
to uniformly permute (traverse) search space for generating
new solutions. The second rule is an elitism based approach
so that better solutions remain in next generation. In this
line, selection of better solutions generates the suitable

convergence of algorithm. The third rule can be taken as a
mutation approach so the worse solutions are probabilisti-
cally omitted and the new solutions are generated in regards
to similarities the solutions with other solutions. This muta-
tion approach is done by vector operator via combined Levy
flight and quality differential of solutions. Figure 7 draws
block diagram of proposed algorithm.

This algorithm receives problem specifications and
execution’s settings as input such as information about
requested resources for applications, number of components
and their communication details, number of fog nodes and
associated network information, number of initial solutions,
and number of maximum iterations. Then, it returns a set of
non-dominated solutions as deployment plans.

Fig. 7   Block diagram of pro-
posed algorithm

372	 Complex & Intelligent Systems (2022) 8:361–392

1 3

Problem encoding

One of the most important issues in CSA algorithm is the
concept of nest which is a candidate solution. Encoding on
nest has intensive impact on algorithm performance. There
are miscellaneous encoding viewpoint for different prob-
lems. The art is to find the most appropriate one. Each nest
is a possible solution for IoT application components deploy-
ment on fog nodes. A nest contains |M| number of eggs each
of which is representative of a component. The number
assigned to each egg is drawn from [1...|N|] interval which
indicates the fog node number hosting that component. Fig-
ure 8 depicts encoding of an example for deployment of 10
components on 3 fog nodes.

Proposed MOCSA

In single objective optimization cuckoo search algorithm,
the population is partitioned into two superior and inferior
nests with predetermined probability based on their fitness
value. In the other words, the determined parameter Pa is the
fraction of population which are placed in the inferior nests
whereas the rest are placed in the superior nests after sorting
population based on their fitness values. In each generation,
iteration, the algorithm works in two stages. At first stage,
for each individual of inferior nests, each new position is
generated by Levy Flight distribution; then, the old individ-
ual is directly constituted by the new generated one. At the
second stage, for each individual in superior nests, each new
position is generated by Levy Flight distribution; if the new
generated individual is better than the old version in term of
fitness value, the old version is substituted by the new gener-
ated one. Since the multi-objective optimization algorithm
differs from a single objective, we have customized CSA to
MOCSA algorithm to gain non-dominated solutions. The
general behavior is the same, but the differences are in the
ranking and partitioning processes. For ranking, we utilize
non-dominated and crowding distance concepts. Once it is
needed to partition population into two parts, we utilize non-
dominated sorting strategy based on Algorithm 6; then from
the worst ranking to best ranking, the solutions are directly
copied to inferior nests; in this direction according to the
probability Pa, if the solutions associated to the k-th rank-
ing value overflows the inferior nests, the crowding distance

values are considered. In the other words, the rest individu-
als with the worst crowding distance values are selected to
be copied to fulfill the rest of inferior nests. Afterwards, the
rest populations are copied to superior nests. It is worth men-
tioning that, in the second stage when the new individual
is generated for each individual in the superior nests, if the
new individual dominates the old version in regards to two
objective functions, the old individual is substituted by the
new generated solution.

The proposed MOCSA algorithm is elaborated in Algo-
rithm 1 which deploys IoT application components efficiently
on fog nodes in regards to objective functions. As mentioned
earlier, Algorithm 1 receives the problem specifications as
input and returns non-dominated solutions in regards to two
prominent objective functions. It is iterated until the termi-
nation criterion is met. Here, the condition of termination
is to execute MaxIteration times. Before the Algorithm 1
starts in its main loop which is between lines 14 through
27, it performs preprocessing stages. Algorithms 2 and 3 are
dedicated to extract Mega Nodes and desired Mega Nodes
which are explained in preprocessing stages. New solutions
are generated in line 5 from extracted desired Mega Nodes.
In line 7, Algorithm 4 is called to check and correct infeasible
solutions. Then, the associated Data Structure is updated in
line 8. Algorithm 5 is called to assign two fitness values to
each individual based on Eqs. (16, 17) since it is a multi-
objective problem. The main loop of proposed MOCSA starts
in line 14 and ends in line 27. In the proposed algorithm in
each generation the population is partitioned into two inferior
and superior nests. As explained earlier, the main loop runs
two stages. At first, the worst solutions in inferior nests are
updated and at the second stage the better solutions in supe-
rior nests are updated provided the new generated solutions
dominate the old version otherwise no update is done. In line
9, all fitness values associated to all solutions are assigned
by calling Algorithm 5. In lines 10–11 the Algorithms 6–7
are called to make Pareto fronts and crowding distance for
current solutions. In the main loop, Pa percent of solutions
associated to the worst ranking is copied in the inferior nests
by utilizing Pareto front and crowding distance values and the
rest is copied to superior nests. Before algorithm plummets
into the main loop, in line 12 the current solutions are sorted
based on ranking concepts. Then, the first ranking solutions
are kept in Pareto-Set repository in line 13. As mentioned

Eggs(components) cmp1 cmp2 cmp7 cmp8 cmp4 cmp6 cmp9 cmp3 cmp5 cmp10

Fog Nodes n1 n2 n3

cmp1 cmp2 cmp3 cmp4 cmp5 cmp6 cmp7 cmp8 cmp9 cmp10
Nest 1 1 3 2 3 2 1 1 2 3

Fig. 8   An example for deployment encoding and associated Nest

373Complex & Intelligent Systems (2022) 8:361–392	

1 3

earlier, in line 15, the Algorithm 8 is called to update solu-
tions in inferior nests; afterwards, the second stage is started
where the solutions pertained to superior nests are to be
updated. If the new changes dominate the old version, the
old version is substituted by the new generated solution in
superior nests. This change is done by calling Algorithm 9
in line 16. In line 17, Algorithm 4 is called to check and
correct infeasible solutions. Then, the associated Data Struc-
ture is updated in line 18. In line 19, the fitness values of
all updated solutions are calculated by calling Algorithm 5;
then, the non-dominated solutions and crowding distance are

calculated by calling Algorithms 6 and 7 respectively. The
current solution is then sorted by their rank values. The tem-
porary solutions are made by merging the current solutions
and the last Pareto-Set values. The temporary solutions are
sorted based on rank values. From the first ranking to the
last are copied to the current solutions variable by consider-
ing crowding distance values if needed. In addition, the first
rank is directly copied in Pareto-Set variable. After the last
iteration is done. The final values in Pareto-Set containing the
first ranking solutions of the last operation is return as final
non-dominated solutions.

MOCSA

374	 Complex & Intelligent Systems (2022) 8:361–392

1 3

Preprocessing

In this stage, the preprocessing is performed to extract
desired Mega Nodes. Algorithm 2 selects different Mega
Nodes from input fog network. The Mega Node character-
istics was clarified earlier which is abstracted to clique in
graph theory. It returns all cliques with K-nodes. Mega Node
extraction brings some merits; firstly the search space reduc-
tion for finding optimal deployment plan; secondly, provid-
ing common sensors and software associated to Mega Node

for requested components. In Algorithm 2, in the while-loop
between lines 3 through 11, firstly all nodes which are con-
nected are extracted; each pair of connected nodes is placed
in a row in Mega_Nodes array. In lines 13 through 20, in
the for-loop, each fog node i is compared with each row in
Mega_Nodes array that does not containing node i. If node
i is connected with all nodes in that row, then the node i is
added to that row. In each iteration, the repeated row is omit-
ted. The main loop is iterated until the last array of Mega_
Nodes which contains the set of Mega Nodes is delivered.

After Mega Nodes extraction, some Mega Nodes are
selected by Algorithm 3 in regards to meeting of constraints
in Eqs. (18–21) in the stated problem. In this algorithm, if
latency and bandwidth are provisioned by the Mega Node
in the current row, then, Latency_BW_status variable is set

to true. In addition to, if hardware, software, and sensors
can be provided by the current Mega Node, the amount of
HW_Status, SW_Status, and S_Status are set to true. If a
current Mega Node can fulfill all required resources, it is
added to selected Mega Node list.

375Complex & Intelligent Systems (2022) 8:361–392	

1 3

The termination criterion of Algorithm 2 is the num-
ber of desired clique size (K). In the other words, the main
loop is iterated K times. Since the effective statements of
Algorithm 2 are in the while-loop, its time complexity is O

(K∙N2 ) where K < N. Also, Algorithm 3’s time complexity
is O (N + M) because the main work is done in the for-loop
between lines 1 through 9.

Initialization step

Similar to other meta-heuristic algorithms, the CSA
starts with initialization phase in which line 5 of Algo-
rithm 1 performs this. It randomly generates individuals
from search space. To reduce MOCSA’s time complex-
ity, the value domain of eggs are confined to the proposed

encoding approach. Since some solutions may violate
problem constraints during the individual productions, the
Check&Correct algorithm is designed which Algorithm 4
shows. Indeed, Algorithm 4 is presented to exploit maxi-
mum benefit from produced population for utilizing them
in optimal solutions.

376	 Complex & Intelligent Systems (2022) 8:361–392

1 3

fitness functions in regards to problem’s objective func-
tions. In this paper, fitness function is adjusted based on
total power consumption and overall latency which are in
Eqs. (16) and (17). The proposed fitness function is depicted
in Algorithm 5.

Time complexity of Algorithm 4 is O (N∙PopSize)
because two nested for-loop are the most effective
statements.

Fitness function

Generally, one of the most important things in evolution-
ary computation is to evaluate solutions. This is done by

377Complex & Intelligent Systems (2022) 8:361–392	

1 3

It is clear-cut that its time complexity of Algorithm 5 is
O (PopSize).

Non‑dominated sorting

In multi-objective optimization algorithms the goal is to
omit unfavorable solutions and to select superlative solu-
tions with special strategy in such a way that solutions in
lower levels are omitted at the same time the better solutions
are remained until the final solution is obtained step by step.

In the proposed MOCSA, we apply non-dominated sorting
algorithm to find Pareto front. This algorithm investigates
the state of current solutions in term of dominance concept
regarding to objective functions. In fact, it classifies solu-
tions in different Pareto levels so that all solutions in the
same ranking level cannot dominate each other whereas the
solutions in upper levels dominate solutions in downer level.
The favorable non-dominated solutions belong to the first
ranking level. Algorithm 6 finds non-dominated solutions.

378	 Complex & Intelligent Systems (2022) 8:361–392

1 3

Since the effective statements of Algorithm 6 are in
nested For-loop, its time complexity is O ( PopSize2).

Crowding distance

Finding efficient solutions strongly depends on the strategy
that the algorithm takes. The best strategy must be con-
ducted in such a way that explore search space efficiently.

More distribution in search space, more contingent to gain
better and logical solutions. Diverse solutions in larger dis-
trict are preferable against denser solutions in smaller region
the reason why we apply crowding distance algorithm to
investigate solutions in term of density in a district search
area. This way avoids to integrate solutions locally. Algo-
rithm 7 elaborates crowding distance procedure.

It is clear that the time complexity of Algorithm 7 is O
(PopSize).

Inferior nests update

In this process, the fraction of worse solutions by probabil-
ity Pa are detected and amended. This operation is similar

to mutation in GA [43–46]. Since our algorithm works in
multi-objective domain, the worst solutions are selected
from the worst ranking frontier; also, the crowding distance
is called where needed. The modification of worse solutions
are done by walking around approach. Algorithm 8 is dedi-
cated to do so. In line 4, the invalid solutions are amended.
Then, updated solutions as new solutions are returned.

379Complex & Intelligent Systems (2022) 8:361–392	

1 3

Time complexity of Algorithm 8 is θ (Pa∙PopSize); there-
fore is O (PopSize) because of its only one for-loop and the
fact that Pa < 1.

Superior nests possibly updates

To produce next generation solutions, the elitism mecha-
nism is applied so the better solutions are transferred to the
next generation. The favorable trait of each meta-heuristic
algorithm is how to make balance between exploration and
exploitation in search space, but some of them fail to make a
balance; for instance, PSO suffers from earlier convergence
[24, 25] or simulated annealing (SA) suffers from not to be
strong in exploration phase [26–28]. Fortunately, our pro-
posed MOCSA makes a good adjustment between exploita-
tion and exploration. Once it exchanges a random solution
with the best so far if it is better, it tries in exploitation phase
such as in Algorithm 9. For exploration, it utilizes uniform
distribution in search space to explore search space glob-
ally such as in Algorithm 8. A prominent part of CSA is to
utilize Levy Flight for both local and global searching; it
uses random walk which is characterized by probabilistically
instantaneous jumping in search space [47]. To do so, by
utilizing Levy Flight approach [44], the new generation indi-
viduals are produced in line 2; if each new generated indi-
vidual dominates the previous generation individual then the
old generation is substituted by new one. It is well depicted
in lines 4–6 of Algorithm 9. As the obtained values in new
solutions are continuous, these values are amended commen-
surate with the problem conditions in line 3 of Algorithm 9.

Table 3   Different scenarios of
simulation

Scenarios # 1 2 3 4 5 6 7 8

Fog nodes # 10 15 20 25 40 55 70 100
Appcmp # 20 25 30 40 60 75 100 150

Table 4   Fog nodes resources

FN# 1 2 3 4 5

CPU(GHz) 1.02 1.15 1.38 1.46 1.06
RAM(GB) 1.3 1.6 1.2 1.4 1.3
CPU_Thr 0.98 0.93 0.96 0.94 0.92
RAM_Thr 1.00 0.99 0.91 0.92 0.98
P_min 94 82 99 81 91
P_max 133 132 133 147 142
Sensor 1.2 1.2 1.2 2 0
Software 0 1.2 2 0 1.2
P_tr 0.2 0.2 0.2 0.1 0.1

Table 5   Bandwidth between fog nodes

FN# 1 2 3 4 5

1 1 0.98 0.80 0.89 0.97
2 0.84 1 0.82 0.94 0.92
3 0.93 0.94 1 0.97 0
4 0.88 0.92 0.91 1 1.00
5 0.92 0.99 0 0.90 1

Table 6   Latency between fog nodes

FN# 1 2 3 4 5

1 0 0.17 0.19 0.10 0.10
2 0.12 0 0.10 0.11 0.18
3 0.18 0.14 0 0.12 1
4 0.16 0.19 0.14 0 0.14
5 0.11 0.14 1 0.16 0

Table 7   Resource requested for application components

Appcmp# 1 2 3 4 5

CPU 0.15 0.19 0.24 0.26 0.29
RAM 0.2 0.2 0.1 0.2 0.1
Sensors 1 0 2 0 2
Software 0 1 0 1.2 1

Table 8   Bandwidth requested for application components

Appcmp# 1 2 3 4 5

1 1 0 0 0 0
2 0 1 0.33 0 0.32
3 0 0 1 0.31 0.20
4 0 0 0 1 0.39
5 0 0 0 0 1

Table 9   Latency requested for application components

Appcmp# 1 2 3 4 5

1 0 1 1 1 1
2 0 0 0.20 1 0.28
3 0 0 0 0.24 0.21
4 0 0 0 0 0.20
5 0 0 0 0 0

380	 Complex & Intelligent Systems (2022) 8:361–392

1 3

Ta
bl

e 
10

  
Se

tti
ng

 p
ar

am
et

er
s o

f d
iff

er
en

t a
lg

or
ith

m
s i

n
si

m
ul

at
io

n

Pa
, d

is
co

ve
ry

 ra
te

 o
f a

lie
n

eg
gs

/s
ol

ut
io

ns
; C

2,
 S

w
ar

m
 c

on
fid

en
ce

 fa
ct

or
; A

lp
ha

, g
rid

 in
fla

tio
n

pa
ra

m
et

er
; A

L,
 lo

ud
ne

ss
 p

ar
am

et
er

 u
pd

at
e

in
 It

er
at

io
ns

; B
et

a,
 ll

ea
de

r s
el

ec
tio

n
pr

es
su

re
 p

ar
am

et
er

;
r,

 p
ul

se
 e

m
is

si
on

 ra
te

 p
ar

am
et

er
 u

pd
at

e
in

 It
er

at
io

ns
; G

am
m

a,
 e

xt
ra

 re
po

si
to

ry
 m

em
be

r s
el

ec
tio

n
pr

es
su

re
; a

lp
ha

1,
 c

on
st

an
t u

se
d

to
 u

pd
at

e
A

L;
 a

rc
hi

ve
 s

iz
e,

 re
po

si
to

ry
 s

iz
e;

 g
am

m
a1

, c
on

st
an

t
us

ed
 to

 u
pd

at
e

 r
; n

G
rid

, n
um

be
r o

f g
rid

s
pe

r e
ac

h
di

m
en

si
on

; m
in

f,
 fr

eq
ue

nc
y

us
ed

 to
 v

el
oc

ity
 u

pd
at

e;
 m

ax
ve

l,
m

ax
m

iu
m

 v
el

oc
ity

 in
 p

er
ce

nt
ag

e(
se

ar
ch

 s
pa

ce
 p

er
ce

nt
ag

e)
; m

ax
f,

fr
eq

ue
nc

y
us

ed
 to

 v
el

oc
ity

 u
pd

at
e;

 u
_m

ut
, u

ni
fo

rm
 m

ut
at

io
n

pe
rc

en
ta

ge
; p

C
ro

ss
ov

er
, c

ro
ss

ov
er

 p
er

ce
nt

ag
e;

 W
, i

ne
rti

a
w

ei
gh

t;
pM

ut
at

io
n,

 m
ut

at
io

n
pe

rc
en

ta
ge

; C
1,

 In
di

vi
du

al
 c

on
fid

en
ce

 fa
ct

or

Sp
ec

ifi
c

pa
ra

m
et

er
s

N
um

be
r o

f o
bj

ec
tiv

e
Po

pu
la

tio
n

si
ze

M
ax

 it
er

at
io

ns

M
O

C
SA

Pa
:

0.
25

2
10

0
10

0
M

O
G

W
O

A
rc

hi
ve

 si
ze

10
0

A
lp

ha
0.

1
nG

rid
10

B
et

a
4

G
am

m
a

2
M

O
PS

O
nG

rid
20

W
0.

4
m

ax
ve

l
5

C
1

2
u_

m
ut

0.
5

C
2

2
M

O
BA

A
L

0.
9

m
in

f
0

r
0.

9
m

ax
f

1
A

lp
ha

1
0.

9
G

am
m

a1
0.

9
N

SG
A

-I
I

pC
ro

ss
ov

er
0.

7
pM

ut
at

io
n

0.
4

381Complex & Intelligent Systems (2022) 8:361–392	

1 3

Then, the new obtained solution is added to the list of next
generation solutions.

different fog nodes. Furthermore, the Pareto front relevant
to each algorithm are compared. Also, final deployment that
MOCSA gives is dawn.

Note that, Mirjalili et al. [33] in year 2016 added two
new modules to canonical GWO algorithm to make multi-
objective version of GWO algorithm. The first is Archive
module that is used to save non-dominated solutions so far
and the second is for leader wolf to select alpha, beta, and
delta wolves; this is used for updating position of omega
wolves in the course of optimization. The aforementioned
features are utilized to keep current solutions and gradually
update them toward final Pareto front. In this line, Coello
et al. [30] proposed MOPSO which utilizes history record
for saving the best solution experienced by an particle and
save it for non-dominated solutions of previous rounds. This
mechanism works similar to elitism of evolutionary compu-
tation. It also use a global repository so that each particle
keeps experience during its flight. This repository is used
for leader selection to guide other particles in search space.
Accordingly, each particle can select different leaders. The
MOPSO works based on generating different hypercube
which divide search space in several sections [30]. One of
the most successful meta-heuristic algorithm is bat optimiza-
tion algorithm (BOA) which was firstly introduced by Yang
[48] in 2010. Afterwards, in 2011, he proposed multi-objec-
tive bat optimization algorithm by incorporating dominance
concepts to solve multi-objective optimization problems
[32]. One of the famous and applicable multi-objective opti-
mizer which is based on genetic algorithm is NSGA-II that
was firstly introduced by Deb et al. [29] in 2002. NSGA-II
generates population then calls fast non-dominated sorting
algorithm to place solutions in different ranks. All solutions

In line 2, Algorithm 9 produces a number y as a random
nest number from Levy distribution based on Eq. (25).

where the variable u is a uniform variable in [0...1] inter-
val and the parameter � is obtained by Eq. (26).

where the parameter G is the generation number [44].
After that, line 3 updates the obtained solutions according
to boundary of problem domain. Time complexity of Algo-
rithm 9 is O(PopSize) because of its only for-loop.

Simulation and evaluation

To assess the effectiveness of proposed MOCSA algorithm
in solving multi-objective optimization problem of compo-
nents deployment on fog nodes, experiments are defined,
executed and evaluated. To reach concrete results different
scenarios are conducted. Also, the performance of proposed
MOCSA is compared with four prominent and successful
multi-objective optimization algorithms, namely, MOGWO
[33], MOPSO [30], MOBA [32] and NSGA-II [29]. In this
comparison, the evaluation metrics are total power consump-
tion and overall latency which are relevant to stated prob-
lem’s objective functions. As mentioned earlier, the total
power consumption is sum of processing power consumption
owing to resource utilization and power consumption owing
to data transfer between fog nodes via communication links.
In addition to, the overall latency is sum of latency obtained
from communication components which are placed on

(25)y = (1 − u)−
1

�

(26)� = G1∕6

For Each Solution [i] in Solutions do

382	 Complex & Intelligent Systems (2022) 8:361–392

1 3

in the same rank cannot dominate each other, but they can
dominate the solutions placed in lower ranks. By utilizing
canonical crossover and mutation, the new generated solu-
tions may dominate the solutions associated to previous
solutions. In this case, the dominated solutions are omitted.
This procedure is repeated until the termination criteria is
met. Finally, the non-dominated solution of the first rank is
returned.

Experimental settings

To evaluate the proposed approach, different scenarios are
conducted in which the number of requested components
and fog nodes increase gradually. Table 3 elaborates sce-
narios in details. Note that, the scenarios (5–8) are defined
for scalability testing of comparative algorithms where the
size of inputs are significantly increased. All experiments are
executed on a dual core Intel Corei3 380 M platform with
2.53 GHZ clock rate, four logical processors, and 8 GB as
main memory.

Since fog computing is ad-hoc and there is not abun-
dant datasets in literature, we produce dataset by uniform

distribution fashion such as in Tables 4, 5, 6, 7, 8 and 9. In
addition to, the fog is completely heterogeneous in terms
of resources and their speed the reason why we consider
fluctuations in produced dataset. Tables 4, 5 and 6 gives
underlying fog computing specifications for an example with
5 fog nodes. In this regards, Table 4 shows fog nodes speci-
fications in terms of CPU clock rate, main memory and their
threshold, minimum and maximum power consumption (idle
vs full-loaded), kind of supported sensors and software, and
power consumption of data transfer. In this table, the zero
value indicates lack of support. The value 1 and 2 indicates
the type of sensors. Tables 5 and 6 show bandwidth and
latency between direct communications of fog nodes. The
values was normalized in [0...1] interval. In Table 5, the
value zero means that there is not any connection between
nodes whereas the value one indicates the nodes are the
same; this concept is reverse in Table 6.

In this regards, Tables 7, 8, and 9 draw an example of
resources requested for applications containing 5 different
components. Table 7 is used for CPU, RAM, kind of sen-
sors, and software requests for components. Table 8 is used
for bandwidth requested for each pair of components. Also,

Fig. 9   Performance comparison of different algorithms in scenario with 20 components on 10 fog nodes

383Complex & Intelligent Systems (2022) 8:361–392	

1 3

Table 9 is utilized for the least latency tolerable between
each pair of components.

For simulations and comparisons, parameter settings
of algorithms MOCSA, MOGWO, MOPSO, MOBA, and
NSGA-II are brought in Table 10.

Experimental results

In this section, the comparison between proposed MOCSA
and other algorithms are based on Pareto front, two objective
functions values, and elapsed time. Also, we utilize another
versions of MOGWO algorithms known as MOGWO-I. In
the second version, two operators crossover and mutation
of genetic algorithm are applied for exploring the search
space. In addition to, optimal deployment plan is drawn and
the hosting node of application components is drawn in red
color.

First scenario: 10 fog nodes and 20 application components

Figure 9 demonstrates performance comparison of differ-
ent algorithms in a scenario with 20 requested components
to be placed on 10 underlying fog nodes. Figure 9a draws
Pareto frontiers derived from different algorithms. As this
figure shows, MOCSA outperforms against others. Mega
Node which MOCSA extracts is depicted in Fig. 9b; it shows
the optimal deployment plan and the selected fog nodes are
1, 4, 5, 9, and 10. In addition to, Fig. 9c and d depict com-
parison of different algorithms’ performance in terms of the
first objective (total power consumption based on Eq. (16))
and the second objective (overall latency based on Eq. (17)).

Table 11 compares algorithms’ performance in term of
elapsed time. This Table shows that MOCSA falls in the
second place after MOPSO that is the fastest between all,
but the quality of non-dominated solutions of MOCSA are
better than others.

Second scenario: 15 fog nodes and 25 application
components

Figure 10 demonstrates performance comparison of different
algorithms in a scenario with 25 requested components to be
placed on 15 underlying fog nodes. Figure 10a draws Pareto
frontiers derived from different algorithms. As this figure
shows, MOCSA outperforms against others. Mega Node
which MOCSA extracts is depicted in Fig. 10b; it shows the
optimal deployment plan and the selected fog nodes are 3,

5, 9, 10, and 13. In addition to, Fig. 10c and d depict com-
parison of different algorithms’ performance in terms of the
first objective (total power consumption based on Eq. (16))
and the second objective (overall latency based on Eq. (17)).

Table 12 compares algorithms’ performance in term of
elapsed time. This Table shows that MOCSA falls in the
second place after MOPSO that is the fastest between all,
but the quality of non-dominated solutions of MOCSA are
better than others. In term of execution time, the proposed
MOCSA competes marginally with NSGA-II that is in the
third place.

Third scenario: 20 fog nodes and 30 application
components

Figure 11 demonstrates performance comparison of differ-
ent algorithms in a scenario with 30 requested components
to be placed on 20 underlying fog nodes. Figure 11a draws
Pareto frontiers derived from different algorithms. As this
figure shows, MOCSA outperforms against others. Mega
Node which MOCSA extracts is depicted in Fig. 11b; it
shows the optimal deployment plan and the selected fog
nodes are 6, 7, 11, 16, and 17. In addition to, Fig. 11c and d
depict comparison of different algorithms’ performance in
terms of the first objective (total power consumption based
on Eq. (16)) and the second objective (overall latency based
on Eq. (17)).

Table 13 compares algorithms’ performance in term of
elapsed time. This Table shows that MOCSA falls in the
third place after MOPSO and NSGA-II that are the fastest
and the second fastest between all, but the quality of non-
dominated solutions of MOCSA are better than others.

Fourth scenario: 25 fog nodes and 40 application
components

Figure 12 demonstrates performance comparison of differ-
ent algorithms in a scenario with 40 requested components
to be placed on 25 underlying fog nodes. Figure 12a draws
Pareto frontiers derived from different algorithms. As this
figure shows, MOCSA outperforms against others. Mega
Node which MOCSA extracts is depicted in Fig. 12b; it
shows the optimal deployment plan and the selected fog
nodes are 1, 4, 7, 9, 11, 16 and 21. In addition to, Fig. 12c
and d depict comparison of different algorithms’ perfor-
mance in terms of the first objective (total power consump-
tion based on Eq. (16)) and the second objective (overall
latency based on Eq. (17)).

Table 14 compares algorithms’ performance in term of
elapsed time. This Table shows that MOCSA falls in the
third place after NSGA-II and MOPSO that is the fastest and
second fastest between all, but the quality of non-dominated
solutions of MOCSA are better than others.

Table 11   Performance comparison of algorithms in term of elapsed
time

MOCSA 238.41 s MOGWO 266.4 s MOBA 548.98 s
MOPSO 210.2 s MOGWO-I 985.56 s NSGA-II 276.07 s

384	 Complex & Intelligent Systems (2022) 8:361–392

1 3

Fifth scenario: 40 fog nodes and 60 application components

Figure 13 demonstrates performance comparison of different
algorithms in a scenario with 60 requested components to be
placed on 40 underlying fog nodes. Figure 13a draws Pareto
frontiers derived from different algorithms. As this figure
shows, MOCSA outperforms against others. Mega Node
which MOCSA extracts is depicted in Fig. 13b; it shows
the optimal deployment plan and the selected fog nodes are
1, 2, 3, 7, 9, 12, 14, 15, 16, 19, 24, 28, 31, 33 and 37. In
addition to, Fig. 13c and d depict comparison of different

algorithms’ performance in terms of the first objective (total
power consumption based on Eq. (16)) and the second objec-
tive (overall latency based on Eq. (17)).

Table 15 compares algorithms’ performance in term of
elapsed time. This Table shows that MOCSA falls in the

Fig. 10   Performance comparison of different algorithms in scenario with 25 components on 15 fog nodes

Table 12   Performance comparison of algorithms in term of elapsed
time

MOCSA 269.77 s MOGWO 293.16 s MOBA 301.02 s
MOPSO 241.55 s MOGWO-I 1156.3 s NSGA-II 270.01 s

385Complex & Intelligent Systems (2022) 8:361–392	

1 3

second place after MOPSO that is the fastest between all, but
the quality of non-dominated solutions of MOCSA are better
than others. In term of execution time, the proposed MOCSA
competes marginally with NSGA-II that is in the third place.

Sixth scenario: 55 fog nodes and 75 application
components

Figure 14 demonstrates performance comparison of different
algorithms in a scenario with 75 requested components to be
placed on 55 underlying fog nodes. Figure 14a draws Pareto
frontiers derived from different algorithms. As this figure

shows, MOCSA outperforms against others. Mega Node
which MOCSA extracts is depicted in Fig. 14b; it shows the
optimal deployment plan and the selected fog nodes are 3,
6, 8, 9, 22, 24, 28, 29, 31, 32, 39, 43, 45 and 55. In addition
to, Fig. 14c and d depict comparison of different algorithms’
performance in terms of the first objective (total power con-
sumption based on Eq. (16)) and the second objective (over-
all latency based on Eq. (17)).

Table 16 compares algorithms’ performance in term of
elapsed time. This Table shows that MOCSA falls in the
second place after NSGA-II that is the fastest between all,
but the quality of non-dominated solutions of MOCSA are
better than others. In term of execution time, the proposed
MOCSA competes marginally with MOPSO that is in the
third place.

Seventh scenario: 70 fog nodes and 100 application
components

Figure 15 demonstrates performance comparison of differ-
ent algorithms in a scenario with 100 requested components

Fig. 11   Performance comparison of different algorithms in scenario with 30 components on 20 fog nodes

Table 13   Performance comparison of algorithms in term of elapsed
time

MOCSA 298.03 s MOGWO 332.02 s MOBA 342.39 s
MOPSO 275.62 s MOGWO-I 1264.3 s NSGA-II 290.87 s

386	 Complex & Intelligent Systems (2022) 8:361–392

1 3

to be placed on 70 underlying fog nodes. Figure 15a draws
Pareto frontiers derived from different algorithms. As this
figure shows, MOCSA outperforms against others. Mega
Node which MOCSA extracts is depicted in Fig. 15b; it
shows the optimal deployment plan and the selected fog
nodes are 8, 10, 13, 17, 18, 19, 20, 24, 30, 35, 38, 39, 40, 42,
45, 49, 51, 52, 53, 58, 64 and 66. In addition to, Fig. 15c and
d depict comparison of different algorithms’ performance in
terms of the first objective (total power consumption based

on Eq. (16)) and the second objective (overall latency based
on Eq. (17)).

Table 17 compares algorithms’ performance in term of
elapsed time. This Table shows that MOCSA falls in the
second place after NSGA-II that is the fastest between all,
but the quality of non-dominated solutions of MOCSA are
better than others. In term of execution time, the proposed
MOCSA competes marginally with MOPSO that is in the
third place.

Eighth scenario: 100 fog nodes and 150 application
components

Figure 16 demonstrates performance comparison of different
algorithms in a scenario with 150 requested components to
be placed on 100 underlying fog nodes. Figure 16a draws

Fig. 12   Performance comparison of different algorithms in scenario with 40 components on 25 fog nodes

Table 14   Performance comparison of algorithms in term of elapsed
time

MOCSA 446.99 s MOGWO 463.06 s MOBA 469.16 s
MOPSO 401.48 s MOGWO-I 1804.02 s NSGA-II 379.46 s

387Complex & Intelligent Systems (2022) 8:361–392	

1 3

Pareto frontiers derived from different algorithms. As this
figure shows, MOCSA outperforms against others. Mega
Node which MOCSA extracts is depicted in Fig. 16b; it
shows the optimal deployment plan and the selected fog
nodes are 1, 9, 16, 17, 19, 21, 24, 28, 39, 40, 51, 53, 56,
57, 59, 60, 62, 63, 65, 72, 73, 78, 84, 86, 88, 89 and 93. In
addition to, Fig. 16c and d depict comparison of different
algorithms’ performance in terms of the first objective (total
power consumption based on Eq. (16)) and the second objec-
tive (overall latency based on Eq. (17)).

Table 18 compares algorithms’ performance in term of
elapsed time. This Table shows that MOCSA falls in the
second place after NSGA-II that is the fastest between all,
but the quality of non-dominated solutions of MOCSA are
better than others. In term of execution time, the proposed
MOCSA competes marginally with MOBA that is in the
third place.

For the sake of data analysis statistically, the proposed
MOCSA outperforms 43%, 28%, 41%, 30% and 32%
improvement against MOGWO, MOGWO-I, MOPSO,
MOBA and NSGA-II in term of average reduction in power
consumption; also, in the minimum value gained by solu-
tions, the proposed MOCSA outperforms 26%, 36%, 23%,
39% and 43% improvement against MOGWO, MOGWO-
I, MOPSO, MOBA and NSGA-II in term of minimum

Fig. 13   Performance comparison of different algorithms in scenario with 60 components on 40 fog nodes

Table 15   Performance comparison of algorithms in term of elapsed
time

MOCSA 666.82 s MOGWO 760.19 s MOBA 743.96 s
MOPSO 659.77 s MOGWO-I 3401.5 s NSGA-II 676.16 s

388	 Complex & Intelligent Systems (2022) 8:361–392

1 3

value of power consumption. In addition to, the proposed
MOCSA outperforms 42%, 29%, 46%, 13% and 5% improve-
ment against MOGWO, MOGWO-I, MOPSO, MOBA and
NSGA-II in term of average reduction in overall latency;
also, in the minimum value gained by solutions, the pro-
posed MOCSA outperforms 40%, 33%, 37%, 17% and 6%
improvement against MOGWO, MOGWO-I, MOPSO,
MOBA and NSGA-II in term of minimum value of overall
latency.

Time complexity

Now that, time complexity of all sub algorithms have been
determined, the time complexity of Algorithm 1 is now
calculated. The preprocessing takes K∙N2+M + N which
belongs to O(M + K∙N2 ). Also, the main loop iterates Max-
Iteration times. For the main loop, we have MaxIteration
×(N∙PopSize + PopSize2 ). If we consider N < PopSize,
Algorithm 1’s time complexity is O(M + K.N2 + Max-
Iteration∙PopSize2 ) which is relatively acceptable time
complexity.

Fig. 14   Performance comparison of different algorithms in scenario with 75 components on 55 fog nodes

Table 16   Performance comparison of algorithms in term of elapsed
time

MOCSA 835.23 s MOGWO 1024.2 s MOBA 1072.8 s
MOPSO 867.71 s MOGWO-I 3690.06 s NSGA-II 770.96 s

389Complex & Intelligent Systems (2022) 8:361–392	

1 3

Conclusion and future direction

In this paper, an algorithm for the deployment of IoT appli-
cation components on fog nodes has been presented to meet
reliable deployment for user requests. To address this issue,
this deployment problem was modeled to a multi-objective
optimization problem with total power consumption and
overall latency perspectives. To solve this combinatorial
optimization problem, a multi-objective optimization algo-
rithm based on cuckoo search meta-heuristic algorithm
known MOCSA was extended. To reach concrete results,
different scenarios were conducted and the effectiveness
of proposed MOCSA was compared with well-reputed
meta-heuristic algorithms MOGWO, MOPSO, MOBA,
and NSGA-II in fair experimental conditions. The results
obtained from simulations prove the significant superiority
of proposed algorithm in terms of average overall latency

and average total power consumption against other state-
of-the-arts in objective functions. The merit of the current
paper is to deliver users reliable services along with meeting
objective functions. Also, the simulation proved the pro-
posed MOCSA is potentially scalable. The limitation of the
current work is to know the resource request in advance.
For future work, we intend to present a dynamic model for
mobile IoT applications in chain of fog computing nodes
with QoS and economic perspectives to reach equilibrium
in desired objectives.

Fig. 15   Performance comparison of different algorithms in scenario with 100 components on 70 fog nodes

Table 17   Performance comparison of algorithms in term of elapsed
time

MOCSA 1139.4 s MOGWO 1769.6 s MOBA 1299.9 s
MOPSO 1236.2 s MOGWO-I 4552.2 s NSGA-II 1082.1 s

390	 Complex & Intelligent Systems (2022) 8:361–392

1 3

Declarations 

Conflic of interest  There is not any conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Foukalas F (2020) Cognitive IoT platform for fog computing
industrial applications. Comput Electr Eng 87:1–13. https://​doi.​
org/​10.​1016/j.​compe​leceng.​2020.​106770

	 2.	 OpenFog. An OpenFog Architecture Overview (2017) https://​
www.​iicon​sorti​um.​org/​pdf/​OpenF​og_​Refer​ence_​Archi​tectu​re_2_​
09_​17.​pdf. Accessed Feb 2017

	 3.	 Azimi SH, Pahl C, Hosseini-Shirvani M (2020) Particle swarm
optimization for performance management in multi-cluster IoT
edge architectures. Int Cloud Comput Conf CLOSER. 2020:328–
337. https://​doi.​org/​10.​5220/​00093​91203​280337

	 4.	 Hong HJ, Tsai PH, Hsu CH (2016) Dynamic module deployment
in a fog computing platform. In: 18th Asia-Pacific network opera-
tions and management symposium (APNOMS), pp 1–6. https://​
doi.​org/​10.​1109/​APNOMS.​2016.​77372​02

	 5.	 Taneja M, Davy A (2017) Resource-aware placement of IoT
application modules in fog-cloud computing paradigm. In: Proc.
of the IFIP/IEEE symposium on integrated network and service

Table 18   Performance comparison of algorithms in term of elapsed
time

MOCSA 2199 s MOGWO 2392.4 s MOBA 2294.5 s
MOPSO 2434 s MOGWO-I 7104.7 s NSGA-II 2038s

Fig. 16   Performance comparison of different algorithms in scenario with 150 components on 100 fog nodes

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.compeleceng.2020.106770
https://doi.org/10.1016/j.compeleceng.2020.106770
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://doi.org/10.5220/0009391203280337
https://doi.org/10.1109/APNOMS.2016.7737202
https://doi.org/10.1109/APNOMS.2016.7737202

391Complex & Intelligent Systems (2022) 8:361–392	

1 3

management, IM ’15, IEEE, pp 1222–1228. https://​doi.​org/​10.​
23919/​INM.​2017.​79874​64

	 6.	 Brogi A, Forti A (2017) QoS-aware deployment of IoT appli-
cations through the fog. IEEE Internet Things J 4:1185–1192.
https://​doi.​org/​10.​1109/​JIOT.​2017.​27014​08

	 7.	 Li F, Vogler M, Claeßens M, Dustdar S (2013) Towards automated
IoT application deployment by a cloud-based approach. In: 6th
international conference on service-oriented computing and appli-
cations, IEEE, pp 61–68. https://​doi.​org/​10.​1109/​SOCA.​2013.​12

	 8.	 Mahmud R, Ramamohanarao K, Buyya R (2018) Latency-aware
application module management for fog computing environments.
ACM Trans Internet Technol 2018:1–21. https://​doi.​org/​10.​1145/​
31865​92

	 9.	 Vögler M, Schleicher JM, Inzinger C, Dustdar S (2015) DIANE—
Dynamic IoT Application Deployment. In: IEEE international
conference on mobile services, pp 298–305. https://​doi.​org/​10.​
1109/​MobSe​rv.​2015.​49

	10.	 Saurez E, Hong K, Lillethun D, Ramachandran U, Ottenwalder B
(2016) Incremental deployment and migration of geo-distributed
situation awareness applications in the fog. In: DEBS, pp 258–
269. https://​doi.​org/​10.​1145/​29332​67.​29333​17

	11.	 Chen BL, Huang SC, Luo YC, Chung YC, Chou J (2017) A
dynamic module deployment framework for M2M platforms. In:
IEEE 7th international symposium on cloud and service computing
(SC2). IEEE, pp 194–200. https://​doi.​org/​10.​1109/​SC2.​2017.​37

	12.	 Yangui S, Ravindran P, Bibani O, Glitho R. H, Hadj-Alouane
NB, Morrow MJ, Polakos PA (2016) A platform as-a-service for
hybrid cloud/fog environments. In: 2016 IEEE international sym-
posium on local and metropolitan area networks (LANMAN), pp
1–7. https://​doi.​org/​10.​1109/​LANMAN.​2016.​75488​53

	13.	 Babu R, Bhattacharyya B (2019) Strategic placements of PMUs
for power network observability considering redundancy measure-
ment. Measurement 134:606–623. https://​doi.​org/​10.​1016/j.​measu​
rement.​2018.​11.​001

	14.	 Babu R, Bhattacharyya B (2018) An approach for optimal place-
ment of phasor measurement unit for power network observability
considering various contingencies. Iran J Sci Technol Trans Electr
Eng 42(2):161–183. https://​doi.​org/​10.​1007/​s40998-​018-​0063-7

	15.	 Babu R, Bhattacharyya B (2016) Optimal allocation of phasor
measurement unit for full observability of the connected power
network. Int J Electr Power Energy Syst 79:89–97. https://​doi.​org/​
10.​1016/j.​ijepes.​2016.​01.​011

	16.	 Babu R, Bhattacharyya B (2017) Weak bus-oriented installa-
tion of phasor measurement unit for power network observabil-
ity. Int J Emerg Electr Power Syst 18:5. https://​doi.​org/​10.​1515/​
ijeeps-​2017-​0073

	17.	 Babu R, Bhattacharyya B (2020) Optimal placement of PMU for
complete observability of the interconnected power network con-
sidering zero-injection bus. Int J Appl Power Eng 9(2):135–146.
https://​doi.​org/​10.​11591/​ijape.​v9.​i2.​pp135-​146

	18.	 Hosseini Shirvani M (2018) Web service composition in multi-
cloud environment: a bi-objective genetic optimization algorithm.
In: 2018 IEEE (SMC) international conference on innovations
in intelligent systems and applications. https://​doi.​org/​10.​1109/​
INISTA.​2018.​84662​67

	19.	 Hosseini Shirvani M, Gorji AB (2020) Optimization of automatic
web services composition using genetic algorithm. Int J Cloud
Comput 9(4):397–411. https://​doi.​org/​10.​1504/​IJCC.​2020.​112313

	20.	 Hosseini-Shirvani M (2018) A new shuffled genetic-based task
scheduling algorithm in heterogeneous distributed systems. J Adv
Comput Res 2018:19–36

	21.	 Hosseinzadeh S, Hosseini SM (2015) Optimizing energy con-
sumption in clouds by using genetic algorithm. J Multidiscipl Eng
Sci Technol 2(6):1431–1434

	22.	 Razavi F, Zabihi F, Hosseini SM (2016) Multi-layer perceptron
neural network training based on improved of stud GA. J Adv
Comput Res 7(3):1–14

	23.	 Javadian Kootanaee A, Poor Aghajan A, Hosseini SM (2021) A
hybrid model based on machine learning and genetic algorithm
for detecting fraud in financial statements. J Optim Ind Eng
14(2):180–201. https://​doi.​org/​10.​22094/​joie.​2020.​18774​55.​1685

	24.	 Hosseini-Shirvani M (2020) Bi-objective web service composition
problem in multi-cloud environment: a bi-objective time-varying
particle swarm optimisation algorithm. J Exp Theor Artif Intell
2020:1–24. https://​doi.​org/​10.​1080/​09528​13X.​2020.​17256​52

	25.	 Hosseini-Shirvani M (2019) A hybrid meta-heuristic algorithm
for scientific workflow scheduling in heterogeneous distributed
computing systems. Eng Appl Artif Intell 2019:90. https://​doi.​
org/​10.​1016/j.​engap​pai.​2020.​103501

	26.	 Saeedi P, Hosseini SM (2021) An improved thermodynamic simu-
lated annealing-based approach for resource-skewness-aware and
power-efficient virtual machine consolidation in cloud datacent-
ers. Soft Comput. https://​doi.​org/​10.​1007/​s00500-​020-​05523-1

	27.	 Noorian Talooki R, Hosseini Shirvani M, Motameni H (2021) A
Hybrid Meta-heuristic scheduler algorithm for optimization of
workflow scheduling in cloud heterogeneous computing environ-
ment. J Eng Design Technol Emerald Publ (In Press)

	28.	 Tanha M, Hosseini Shirvani M, Rahmani AM (2020) GATSA: a
hybrid meta-heuristic task scheduling algorithm based on genetic
and thermodynamic simulated annealing algorithms in cloud com-
puting environment. Neural Comput Appl Springer Publ (In Press)

	29.	 Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elit-
ist multi objective genetic algorithm: Nsga-II. IEEE Trans Evol
Comput 6(2):182–197. https://​doi.​org/​10.​1109/​4235.​996017

	30.	 Coello CAC, Lechuga MS (2002) MOPSO: a proposal for mul-
tiple objective particle swarm optimization. In: Proceedings of
the 2002 congress on evolutionary computation (CEC’02). USA:
IEEE Publications. https://​doi.​org/​10.​1109/​CEC.​2002.​10043​88

	31.	 Hosseini-Shirvani M, Rahmani AM, Sahafi A (2018) An iterative
mathematical decision model for cloud migration: a cost and secu-
rity risk approach. Softw Pract Exp Homepage 48(3):449–485.
https://​doi.​org/​10.​1002/​spe.​2528

	32.	 Yang XS (2011) Bat algorithm for multiobjective optimization. Int
J Bio-Inspired Comput 3(5):267–274. https://​arxiv.​org/​abs/​1203.​
6571v1

	33.	 Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-
objective grey wolf optimizer: a novel algorithm for multi-cri-
terion optimization. J Expert Syst Appl Elsevier 47:106–119.
https://​doi.​org/​10.​1016/j.​eswa.​2015.​10.​039

	34.	 Wang Z, Ong Y, Ishibuchi H (2019) On scalable multiobjective
test problems with hardly dominated boundaries. IEEE Trans Evol
Comput 23(2):217–231. https://​doi.​org/​10.​1109/​TEVC.​2018.​
28442​86

	35.	 Wang Z, Ong Y, Sun J, Gupta A, Zhang Q (2019) A generator
for multiobjective test problems with difficult-to-approximate
pareto front boundaries. IEEE Trans Evol Comput 23(4):556–571.
https://​doi.​org/​10.​1109/​TEVC.​2018.​28724​53

	36.	 Wang Z, Zhang Q, Zhou A, Gong M, Jiao L (2016) Adap-
tive replacement strategies for MOEA/D. IEEE Trans Cybern
46(2):474–486. https://​doi.​org/​10.​1109/​TCYB.​2015.​24038​49

	37.	 Wang Z, Zhang Q, Li H, Shibuchi H, Jiao L (2017) On the use
of two reference points in decomposition based multiobjective
evolutionary algorithms. Swarm Evol Comput 34:89–102. https://​
doi.​org/​10.​1016/j.​swevo.​2017.​01.​002

	38.	 Ali LB, Helaoui M, Naanaa W (2019) Pareto-based soft arc con-
sistency for multi-objective valued CSPs. ICAART. 2019:294–305

	39.	 Akyildiz IF, Wang X, Wang W (2005) Wireless mesh networks:
asurvey. Comput Netw 47(4):445–487. https://​doi.​org/​10.​1016/j.​
comnet.​2004.​12.​001

https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.1109/JIOT.2017.2701408
https://doi.org/10.1109/SOCA.2013.12
https://doi.org/10.1145/3186592
https://doi.org/10.1145/3186592
https://doi.org/10.1109/MobServ.2015.49
https://doi.org/10.1109/MobServ.2015.49
https://doi.org/10.1145/2933267.2933317
https://doi.org/10.1109/SC2.2017.37
https://doi.org/10.1109/LANMAN.2016.7548853
https://doi.org/10.1016/j.measurement.2018.11.001
https://doi.org/10.1016/j.measurement.2018.11.001
https://doi.org/10.1007/s40998-018-0063-7
https://doi.org/10.1016/j.ijepes.2016.01.011
https://doi.org/10.1016/j.ijepes.2016.01.011
https://doi.org/10.1515/ijeeps-2017-0073
https://doi.org/10.1515/ijeeps-2017-0073
https://doi.org/10.11591/ijape.v9.i2.pp135-146
https://doi.org/10.1109/INISTA.2018.8466267
https://doi.org/10.1109/INISTA.2018.8466267
https://doi.org/10.1504/IJCC.2020.112313
https://doi.org/10.22094/joie.2020.1877455.1685
https://doi.org/10.1080/0952813X.2020.1725652
https://doi.org/10.1016/j.engappai.2020.103501
https://doi.org/10.1016/j.engappai.2020.103501
https://doi.org/10.1007/s00500-020-05523-1
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/CEC.2002.1004388
https://doi.org/10.1002/spe.2528
https://arxiv.org/abs/1203.6571v1
https://arxiv.org/abs/1203.6571v1
https://doi.org/10.1016/j.eswa.2015.10.039
https://doi.org/10.1109/TEVC.2018.2844286
https://doi.org/10.1109/TEVC.2018.2844286
https://doi.org/10.1109/TEVC.2018.2872453
https://doi.org/10.1109/TCYB.2015.2403849
https://doi.org/10.1016/j.swevo.2017.01.002
https://doi.org/10.1016/j.swevo.2017.01.002
https://doi.org/10.1016/j.comnet.2004.12.001
https://doi.org/10.1016/j.comnet.2004.12.001

392	 Complex & Intelligent Systems (2022) 8:361–392

1 3

	40.	 Arcangeli JP, Boujbel R, Leriche S (2015) Automatic deployment
of distributed software systems: definitions and state of the art. J
Syst Softw 3:198–218. https://​doi.​org/​10.​1016/j.​jss.​2015.​01.​040

	41.	 Bonomi F, Milito R, Natarajan P, Zhu J (2014) Fog computing:
a platform for internet of things and analytics. In: Big data and
internet of things: a roadmap for smart environments, Springer,
pp 169–186. https://​doi.​org/​10.​1007/​978-3-​319-​05029-4_7

	42.	 Farzai S, Hosseini-Shirvani M, Rabbani M (2020) Multi-objective
communication-aware optimization for virtual machine placement
in cloud datacenters. Sustain Comput Inf Syst 2020:28. https://​doi.​
org/​10.​1016/j.​suscom.​2020.​100374

	43.	 Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: Pro-
ceedings of world congress on nature & biologically inspired com-
puting, pp 210–214. https://​doi.​org/​10.​1109/​NABIC.​2009.​53936​
90

	44.	 Sait SM, Bala A, El-Maleh AH (2016) Cuckoo search based
resource optimization of datacenters. Appl Intell 44:489–506.
https://​doi.​org/​10.​1007/​s10489-​015-​0710-x

	45.	 Tavana M, Shahdi-Pashaki S, Teymourian E, Santos-Arteaga FJ,
Komaki M (2017) A discrete cuckoo optimization algorithm for
consolidation in cloud computing. Comput Ind Eng 115:495–511.
https://​doi.​org/​10.​1016/j.​cie.​2017.​12.​001

	46.	 Hosseini Shirvani M, Farzai S (2020) Optimal deployment of
IoT application components on hybrid fog2cloud infrastructure
for reduction of power consumption toward green computing by

cuckoo search algorithm. In: The first national conference of New
Development in Green Studies, Computations, Applications, and
Challenges, NGIS01

	47.	 Walton S, Hassan O, Morgan K, Brown MR (2011) Modified
cuckoo search: a new gradient free optimisation algorithm. Chaos
Solitons Fractals 44(9):710–718. https://​doi.​org/​10.​1016/j.​chaos.​
2011.​06.​004

	48.	 Yang XS (2010) A new metaheuristic bat-inspired algo-
rithm, in nature inspired cooperative strategies for optimiza-
tion. Stud Comput Intell 284:65–74. https://​doi.​org/​10.​1007/​
978-3-​642-​12538-6_6

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jss.2015.01.040
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1016/j.suscom.2020.100374
https://doi.org/10.1016/j.suscom.2020.100374
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1007/s10489-015-0710-x
https://doi.org/10.1016/j.cie.2017.12.001
https://doi.org/10.1016/j.chaos.2011.06.004
https://doi.org/10.1016/j.chaos.2011.06.004
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/978-3-642-12538-6_6

	Multi-objective fault-tolerant optimization algorithm for deployment of IoT applications on fog computing infrastructure
	Abstract
	Introduction
	Related works
	Proposed framework and models
	System framework
	Fog model
	Application model
	Reliability model
	Deployment model

	Problem statement
	Overall latency
	Power consumption
	Problem formulation

	Proposed MOCSA algorithm for component deployment problem
	Problem encoding
	Proposed MOCSA
	Preprocessing
	Initialization step
	Fitness function
	Non-dominated sorting
	Crowding distance
	Inferior nests update
	Superior nests possibly updates

	Simulation and evaluation
	Experimental settings
	Experimental results
	First scenario: 10 fog nodes and 20 application components
	Second scenario: 15 fog nodes and 25 application components
	Third scenario: 20 fog nodes and 30 application components
	Fourth scenario: 25 fog nodes and 40 application components
	Fifth scenario: 40 fog nodes and 60 application components
	Sixth scenario: 55 fog nodes and 75 application components
	Seventh scenario: 70 fog nodes and 100 application components
	Eighth scenario: 100 fog nodes and 150 application components

	Time complexity

	Conclusion and future direction
	References

