
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2022) 8:361–392 
https://doi.org/10.1007/s40747-021-00368-z

ORIGINAL ARTICLE

Multi‑objective fault‑tolerant optimization algorithm for deployment 
of IoT applications on fog computing infrastructure

Yaser Ramzanpoor1 · Mirsaeid Hosseini Shirvani2 · Mehdi Golsorkhtabaramiri1

Received: 24 November 2020 / Accepted: 1 April 2021 / Published online: 6 May 2021 
© The Author(s) 2021

Abstract
Nowadays, fog computing as a complementary facility of cloud computing has attracted great attentions in research com-
munities because it has extraordinary potential to provide resources and processing services requested for applications at the 
edge network near to users. Recent researchers focus on how efficiently engage edge networks capabilities for execution and 
supporting of IoT applications and associated requirement. However, inefficient deployment of applications’ components 
on fog computing infrastructure results bandwidth and resource wastage, maximum power consumption, and unpleasant 
quality of service (QoS) level. This paper considers reduction of bandwidth wastage in regards to application components 
dependency in their distributed deployment. On the other hand, the service reliability is declined if an application’s compo-
nents are deployed on a single node for the sake of power consumption management viewpoint. Therefore, a mechanism for 
tackling single point of failure and application reliability enhancement against failure are presented. Then, the components 
deployment is formulated to a multi-objective optimization problem with minimization perspective of both power consump-
tion and total latency between each pair of components associated to applications. To solve this combinatorial optimization 
problem, a multi-objective cuckoo search algorithm (MOCSA) is presented. To validate the work, this algorithm is assessed 
in different conditions against some state-of the arts. The simulation results prove the amount 42%, 29%, 46%, 13%, and 5% 
improvement of proposed MOCSA in terms of average overall latency respectively against MOGWO, MOGWO-I, MOPSO, 
MOBA, and NSGA-II algorithms. Also, in term of average total power consumption the improvement is about 43%, 28%, 
41%, 30%, and 32% respectively.
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Introduction

Recently, fog computing joint with cloud computing to 
cover its deficit such as intrinsic latency and to serve dif-
ferent industries. Since a fog server can process data gath-
ered by IoT devices independently from cloud computing, 
it can efficiently save network communication bandwidth, 
cloud storage space, and reserving resources for mission-
critical applications [1]. Also, fog supports unifying edge 
and cloud resources for customers. Fog computing facilitates 

deployment of IoT applications in vicinity of source data. 
Therefore, it reduces network load and guarantees on-time 
service delivery. However, deployment, management, and 
updating of IoT application lead new challenges in such lay-
ered environment. Fog computing in larger scale includes 
numerous heterogeneous computing nodes with separate 
processing, memory, and storage. In addition to, workload 
on each node is completely dynamic. Also, each IoT appli-
cation has its own requirement in terms of sensitivity on 
latency, computing requirement, and privacy constraints. 
Therefore, the deployment of application components must 
be properly done on fog nodes; at the same time the applica-
tion requirement, software and hardware features, bandwidth 
and tolerable latency between components on fog infra-
structure must be taken into account [2]. Deployment of an 
application components on a single node yields maximize 
resource utilization, decrease in power consumption, and 
optimizing network bandwidth as well. Nevertheless, when 
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a fog node which hosts all of the components associated with 
an application crashes, the application cannot work properly 
in which it affects the reliability of customer applications. 
For this reason, it is clear-cut to take an efficient policy for a 
suitable and reliable components deployment scheme.

There are miscellaneous mapping possibilities in distri-
bution of application components on fog nodes in which 
one of the most appropriate and optimal amongst them 
should be selected. For a small application with low num-
ber of components, there are several feasible solutions to 
deploy components on different fog nodes. Therefore, with 
the increase the number of application components and the 
number of fog nodes regarding to its heterogeneity, finding 
the optimal deployment scheme is computationally com-
plex and there is not any exact solution for this. So, this 
problem belongs to NP-Hard class [3]. Recently, researches 
have been done in literature in regards to component distri-
bution over fog and cloud computing nodes. A unified fog 
computing platform was proposed by Hong et al. [4] in year 
2018 for dynamic component deployment on fog devices. 
In their proposed approach, it paid on distribution of com-
ponent over more than one fog node to avoid single point of 
failure. Another algorithm for distribution of IoT applica-
tion components with regards to application sensitivity on 
latency and efficient network resource usage viewpoints has 
been proposed by Taneja et al. [5] in year 2017. A general 
and extensible description model was proposed to specify 
QoS-aware IoT application deployment on fog infrastructure 
proposed by Brogi et al. [6] in 2017. Review on literature 
reveals that there are clear lack in component placement 
of IoT applications with two different viewpoints at the 
same time. In the other words, this paper presents power-
aware and latency-aware algorithm for reliable component 
deployment on fog infrastructure. The former awareness is 
for provider as a prominent stakeholder and latter aware-
ness is considered for service customer as another promi-
nent stakeholder side viewpoints. To this end, this paper 
presents two new models in IoT-Fog environment in regards 
to application modules deployment viewpoint. The accurate 
models indicate whether the proposed algorithm is effective 
or not. So, after presenting two intricate new models namely 
power and reliability models for IoT components deploy-
ment on fog platforms, the multi-objective cuckoo search 
algorithm is extended which exploits Pareto dominance and 
crowding distance concepts for both gaining the set of non-
dominated solutions and diversity in search space. Since the 
stated problem is a discrete optimization in nature, the CSA 
algorithm that permutes search space efficiently has been 
selected. Also, its operators are conducted in such a way 
that the good adjustment and balance between exploration 
and exploitation is achieved in which the final simulation 
results endorse it although there is no guarantee in stochastic 
approaches to reach optimal point.

Therefore, the main contributions of the current paper 
are as follow:

1.	 To reach the optimal power consumption, a Fullmesh 
sub networks is extracted from whole fog network by a 
proposed heuristic algorithm; among Fullmesh sub net-
works, the most appropriate one is selected for distribu-
tion of application components.

2.	 To mitigate the effect of single point of failure in appli-
cation components deployment, the fault tolerance pol-
icy against failure is provided for each application to 
improve reliability; to this end, the minimum number of 
fog nodes for components deployment can be bounded 
to the maximum number of existing nodes in Fullmesh 
sub network.

3.	 The overall latency concept is modeled. In the process of 
application components deployment, efficient utilization 
of fog bandwidth resource is increased by minimizing 
overall latency. This can be potentially decrease resource 
wastage and power consumption.

4.	 The deployment of application components over fog 
nodes is formulated to a multi-objective optimization 
problem with minimization of both power consump-
tion and overall latency viewpoints. To solve this com-
binatorial problem, a multi-objective cuckoo search 
optimization algorithm (MOCSA) is presented which 
compromises objectives and considers reliability in its 
constraints.

The rest of the paper is structured as follows. Related 
works are placed in Sect. “Related works”. Some models 
associated to problem statement are presented in Sect. “Pro-
posed framework and models”. Section “Problem statement” 
states the problem under study. Proposed MOCSA is pre-
sented in Sect. “Proposed MOCSA algorithm for component 
deployment problem”. This algorithm is validated in simula-
tion and evaluation section which is placed in Sect. “Simula-
tion and evaluation”. Section “Conclusion and future direc-
tion” concludes this paper along with future direction.

Related works

This section investigates related works to find research gap 
in component deployment problem. A cloud service man-
agement standard named TOSCA was proposed for IoT com-
ponent placement [7]. The main objective of this paper was 
to deploy components automatically by using application 
components description commensurate with fog nodes. The 
aid of this standard was to improve portability of applica-
tions in heterogeneous environment such as in cloud and 
fog environment. In proposed standard, a model for descrip-
tion of service structure and service process management 
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was presented. In this model, placement of application 
components is automatically done by applying conceptual 
description of components topology and related application 
deployment.

An approach has been propounded in literature for 
latency-aware application component management in fog 
environment [8]. In this work, latency of service access, 
service delivery time, and internal communication latency 
have been considered. The objective was to guarantee the 
service delivery deadline and efficient resource utilization 
in fog environment. To optimize the number of utilized fog 
nodes for hosting application components, this exploits for-
ward and reallocation strategy for application components. 
In addition, to cope with limitations of fog environment such 
as management overhead, single point of failure, redundant 
communications, and latency in decision, the decentralized 
organizing is proposed for substitution and forwarding the 
components.

A platform was proposed for a dynamic distribution of 
application components on fog sub networks [4]. In pro-
posed approach, all requests are submitted to a server; then, 
the requests are registered in a database. Each request is 
split to multiple components which are encapsulated to a 
Docker or Container. Afterwards, a heuristic algorithm is 
run to determine components placement plan. The obtained 
plan is sent to fog platform for component distribution. The 
main goal is to maximize of generating successful placement 
plans for user applications.

A DIANE framework has been presented by Vogler et al. 
[9] in 2015 for producing optimal deployment topology of 
cloud-based IoT applications commensurate with existing 
infrastructures. To increase the flexibility of application 
that their deployment topologies undergo evolution during 
the time, separation of executing components is necessary. 
The application deployment topology changes may be for 
deployment requirement of new application, changes in edge 
network physical infrastructure such as add/remove sensors 
and gateways, environmental changes such as customer 
request patterns, and evolutionary changes in business logic 
during its life cycle. In production process of deployment 
topology, some parameters such as time needed for deploy-
ment, time and bandwidth request for application running, 
and exploitation of edge devices are evaluated.

A distributed programming interface was presented for 
colony of fog computing nodes so-called Foglets by Saurez 
et al. [10] in 2016. Foglets automatically detect fog comput-
ing resources in network hierarchy and deploys application 
components on fog nodes with tolerable latency requirement 
of each component.

An approach was devised for component deployment of 
IoT services on M2M platform to reduce traffic from the net-
work to cloud datacenter because IoT application are made 
on M2M platforms [11].

A network-aware algorithm in regarding to optimal utiliz-
ing of resource was presented by Taneja et al. [5] in 2017. 
This algorithm detects fog nodes based on their capacity and 
application components requirement. If requirement is met, 
the mapping of components over fog nodes is done.

To facilitate deployment of applications on cloud2fog 
environment, a platform as a service (PaaS) architecture 
was propounded by Yangui et al. [12] in year 2016. In this 
architecture, engaging and execution of application compo-
nents, SLA meeting evaluation and component migration 
via management interface are met. Accordingly, exploitation 
and execution of application components with regards to the 
objectives are detected, configured, and initiated.

Table 1 summarizes comparison of related works associ-
ated to IoT application component deployment on fog and a 
cloud infrastructure.

Review of literate illustrates that published works have 
been formulated to optimization problems with different 
viewpoints. Generally, optimization problems are catego-
rized in two classes: single objective and multi-objective 
problems. Since the majority of optimization problems 
belong to NP-Hard category problems, the heuristics (or 
exact algorithms) and the meta-heuristic algorithms are 
engaged to solve these kind of problems. In single objective 
problems, only one objective function must be optimized. 
For instance, Refs. [13–17] were presented in literature to 
solve single objective engineering problems with heuris-
tic and exact approaches. Some meta-heuristics GA-based 
[18–23], PSO-based [3, 24, 25], SA-based [26–28] have 
been developed to solve optimization problems in engi-
neering domain. In addition, multi-objective optimization 
algorithms such as NSGA-II [29], MOPSO [30], MOGA 
[18, 31], MOBA [32], and MOGWO [33] among others have 
been extended in literature to solve multi-objective optimiza-
tion problems which need to make a trade-off between con-
flicting objectives at the same time. In this line, several tech-
niques were presented in literature to improve the quality of 
multi-objective optimization problems [34–38]. Specially, 
these methods were tested in some famous and applicable 
engineering benchmarks [34–38]. Since the modules place-
ment associated to IoT application in fog environment is a 
discrete optimization problem, it urges to utilize an efficient 
discrete optimization algorithm this the reason to select CSA 
algorithm which permutes search space efficiently.

Overall investigation of reviewed literature also reveals 
that the majority of published works scarcely have paid 
on single point of failure avoidance and its effect on how 
to distribute application components over fog nodes and 
at the same time how to optimize bandwidth utilization. 
The distinction point of the current paper in comparison 
to other literatures revolves around the fact that the current 
paper strives in enhancement of user application’s reli-
ability in regards to tolerance against failure and to present 
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traffic-aware deployment to optimize network bandwidth 
utilization in component distribution process.

It is worth noting that presenting the accurate models 
indicate whether the proposed algorithm is effective or not. 
So, this paper presents two intricate new models namely 
power and reliability models for IoT components deployment 
on fog platforms to cover literature shortcomings. Then, it is 
formulated to multi-objective optimization problem.

Proposed framework and models

This section presents system framework and associated mod-
els. Then, all of them are engaged in problem statement. For 
the sake of simplicity, Table 2 illustrates utilized nomencla-
ture in presented models.

Table 1   Summary of the literature study

Author/Ref Deployment aims Advantages Disadvantages

Distributed Fault tolerant Resource 
aware

Latency 
Aware

Traffic aware Energy 
efficient

Mahmud et al. (2018) 
[8]

✓ ✖ ✓ ✓ ✖ ✓ Deployed time-sensi-
tive applications at 
proximity of source 
data

Lack of considering the 
chain of dependency 
during distribution 
process

Hong et al. (2016) [4] ✓ ✖ ✓ ✓ ✖ ✓ Component distribu-
tion on the mini-
mum number of 
computing nodes

It does not elaborate 
how to distribute 
components against 
one point of failure

Vögler et al. (2015) 
[9]

✓ ✖ ✓ ✖ ✖ ✓ A framework pre-
sented for generat-
ing optimal deploy-
ment topology

A descriptive model 
presented for com-
ponent deployment

It does not elaborate 
how to distribute 
components

Saurez et al. (2016) 
[10]

✓ ✖ ✖ ✖ ✖ ✖ A programming 
infrastructure for 
development and 
deployment of 
components

An approach pre-
sented for compo-
nents migration

It does not dependency 
challenges between 
components

Chen et al. (2017) 
[11]

✓ ✖ ✖ ✖ ✖ ✖ Component distribu-
tion with minimum 
latency

QoS degradation with 
increase the number 
of components

Lack of elaboration 
between components’ 
dependency

A single point of fail-
ure problem

Taneja et al. (2017) 
[5]

✓ ✖ ✓ ✓ ✖ ✓ Supporting different 
netwrok topologies

Lack of elaboration 
between components’ 
dependency

A single point of fail-
ure problem

Yangui et al. (2016) 
[12]

✓ ✖ ✖ ✓ ✖ ✖ Automated PaaS for 
componentt deploy-
ment

It does not guarantee 
optimal deployment

A single point of fail-
ure problem

Current article ✓ ✓ ✓ ✓ ✓ ✓ Reliability enhance-
ment

Traffic-aware deploy-
ment

Although it is not a 
weakness, it depends 
on sub full mesh 
derived from whole 
network
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System framework

The proposed target system framework is depicted in Fig. 1. 
As this figure shows, an organizer is placed in top level of 
fog layer. One of its most missions is to extract Fullmesh 
sub networks of fog nodes known as a Mega Node. The 
Mega Node architecture is similar to wireless mesh network 
(WMN) presented by Akyildiz et al. [39] in year 2005. Its 
computing pattern differs from traditional mesh networks 
in which it utilizes network of fog nodes such as switches 
and routers in distribution operation of inside the network. 
After the Mega Nodes extraction, the suitable Mega Node 
is adopted and organizer makes decision for component 
deployment in selected Mega Node in regards to applica-
tion components features and requirements. Conceptually, 
the organizer is centralized, but it can be distributedly 

implemented for the sake of avoidance from the single point 
of failure phenomenon.

In the proposed framework, the high priority is to extract 
deployment plan based on selected Mega Node; then, the 
components are distributed based on extracted plan. Only 
the components which are not time-sensitive or are executed 
periodically for information processing are deployed on 
cloud infrastructure. In this regards, a deployment planner 
framework is used to manage and run suitable application 
components deployment regarding to system performance.

As Fig. 2 demonstrates, planner module contains appli-
cation component manager and associated collaborative 
components. Beside deployment planner, some modules are 
placed for storage and retrieval of information associated to 
the network and other Mega Node’s resources.

Table 2   Nomenclature utilized 
in proposed models

Notation Description

F Fog network
Mega node A fullmesh sub network including fog nodes
N Number of fog nodes in Mega Node
M Number of Applications Components
fni Fog node i, where i = 1, 2,..,N
Id Fog node identifier
H Fog node hardware specification
S Fog node software specification
HWfn Computing, memory, and storage capacity of a fog node
SWMega Node Software capacity of Mega Node
SMega Node Sensor capacity of Mega Node
sensorlist Sensor list associated to a fog node
B Bandwidth of communication link
L Latency of communication link
Bmn Communication Bandwidth between nodes m and n
Lmn Communication latency between nodes m and n
dmn Distance between nodes m and n
nL Serving fog nodes to application i
UApp User application
Mi Number of components in Application i
cmplisti List of Components associated to application i
cmpk k-th component of an application
h Hardware requested for a component
s Software requested for a component
mi A component of an application i deployed on a fog node L
bij Favorite Communication Bandwidth between component i and j
lij Favorite Communication latency between component i and j
hwcmp Computing, memory, and storage capacity requested for application components
swcmp Software resource requested for application components
scmp Sensor resource requested for application components
tij traffic between component i and j
xcmp,fn Decision variable which determines a component is deployed on a fog node or not
yfn Decision variable which determines a fog node is active or not
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The integrated information is used for management of 
application components and presenting favorite deployment 
plan via deployment planner. In the following, the proposed 
framework’s modules are clarified.

Application component manager This is a main module 
amongst others, which decides how to deploy application 
components on fog or cloud nodes. In a multi-component 
application, for the sake of dependency between its com-
ponents, decision of deployment strongly depend on sev-
eral issues such as resource availability, network structure, 
QoS requirement of applications, load sharing and etc. the 
deployment of components can be done based on objectives 
such as power consumption reduction, minimizing commu-
nication and reduction of overall traffic owing to running of 
applications.

Component resource information It extracts processing and 
memory requirement associated to application components 
from user submitted request. Then, it delivers this informa-
tion to application component manager for decision making 
on deployment plan.

Components communication information Since communica-
tion plays a major role in resource consumption of fog nodes 
in running IoT applications, the management of application 
components on fog nodes includes optimizing usage of com-
puting resources, memory, and communications at the same 
time. To this end, this section extracts communication infor-
mation of application components from user requests and 
delivers it to application component manager.

Mega node resource discovery This module manipulates 
Mega Node’s information repository which is obtained via 
application component manager. Then, it sends back the 
information of favorite Mega Node for application compo-
nents deployment.

Fig. 1   Proposed system framework and associated mega nodes

Fig. 2   Management framework 
for application components
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Mega node manager Based on information received from fog 
nodes, the Fullmesh sub networks of fog nodes are extracted; 
then, information of Fullmesh sub networks, known as Mega 
Nodes, are saved in a repository. In addition to, it validates 
status of existing Mega Nodes by periodically monitoring 
of fog infrastructure.

Fog model

This article assumes there exists a network of N number of 
fog nodes which are heterogeneous in terms of processing 
capacity and power consumption; all of them are enable to 
store and execute application components. These fog nodes 
belong to one or more Mega Node sets. Each node in a Mega 
Node can directly or indirectly access to different kind of 
sensors via wired or wireless connections. A fog node 
fn ∈ F is introduced by a vector ( id, mid,H, S, sensorlist ) 
where id, mid,H, S, and sensorlist are fog node identifier, 
Mega Node id, hardware, software, and available sensors 
respectively. The components which are distributed among 
Mega Node’s processors can avail to the software and sen-
sors of that same Mega Node. In this regards, the commu-
nication link can be modeled by a vector (L,B) where L and 
B are latency and bandwidth respectively. The details of a 
Mega Node is elaborated in Fig. 3.

In this line, the communication network is modeled by a 
graph G =  < FN,D > where FN = { fn1, fn2,… , fnN } is a set 
of fog nodes and edge dij ∈ D shows distance between nodes 
fni and fnj . Matrix D in Eq. (1) is dedicated for distance 
between each pair of fog nodes. In each Mega Node, if all 
components are placed on single node, then, dij = 0 ; other-
wise dij = 1 . In addition, the Fig. 4 illustrates a communica-
tion network in a Mega Node with three different fog nodes.

Application model

In recent years, regarding to the nature of users requests 
and new expectations on internet-based services, the design 
of applications which manipulate users’ data is constantly 
fluctuated based on changing requests; then, to meet user 
requirement, the multi-component structure approach is uti-
lized [40]. So, application components are dependent and 
cooperate with each other to meet users’ requirements. For 
instance, take a company that serves a smart health care 
service in a small IoT application for surveillance of aged 
people. This application includes three different components 
that Fig. 5 illustrates.

(1)

Fig. 3   Mega node specification and its belonged fog nodes

Fig. 4   Communication network 
in a mega node

Fig. 5   Specification of application components
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Status manager (cmp1) This component monitors aged and 
disabled people; it alarms the nearest medical and health-
care center once it detects a disorder in physical or mental 
behavior.

Control center (cmp2) This component is used for interpret 
of integrated data and manual control of the system.

Machine Learning (cm3) This component is utilized to save 
data history of individuals and to estimate future wellbeing 
and health provided it is not latency-sensitive which can be 
deployed on cloud datacenter or fog infrastructure.

Figure 5 also depicts hardware resources along with soft-
ware capabilities required for each component. Communi-
cation between components are drawn by special links. To 
manage on time status of aged people, component cmp1 
must avail to needed sensors (physical state controller sen-
sors) and an actuator which activates initial operation mech-
anism and announcement to medicine centers; this must be 
done during 10 ms. from deployed component cmp3 to the 
place of installed sensors and actuators. Furthermore, it is 
expected that the fog or cloud nodes can remotely access to 
existing neighbor things via APIs provided by fog middle-
ware [41]. The problem that should be solved for application 
components deployment is how to place components so that 
the requested resources are met. Even for this simple exam-
ple, different deployment plans must be evaluated for finding 
an optimal component mapping for this application because 
more than one component can be deployed on a fog node 
based on existing resources. Finding favorite and optimal 
deployment is impractical when the number of components 
and fog nodes are significantly increased. Then, this combi-
natorial problem must be solved by intricate meta-heuristic 
algorithms.

This paper assumes that there are R number of IoT appli-
cations each of r ∈ R is shown by a vector (M,cmplist). 
Each application has M number of components listed 
in cmplist. Also, each component is shown by a vector 
( k, h, s, sensorlist ) (see Fig. 5).

User applications are modeled by a graph G = (cmplist, T) 
where cmplist =

{

cmp1, cmp2,… , cmpm
}

 and T = tij shows 
the traffic matrix (TM) between components cmpi and cmpj . 
Equation (2) demonstrates traffic matrix and the Fig. 6 illus-
trates components communication graph.

(2)

Reliability model

Deployment of an application’s components on the mini-
mum number of fog nodes leads to reach the goals such as 
reduction in power consumption and efficient utilization of 
cloud computing resources, but one of the confronting chal-
lenges is the acceleration of the single point of failure phe-
nomenon in users’ applications. Therefore, for the sake of 
meeting both optimization objective functions of cloud com-
puting owners and to decrease the degree of applications’ 
vulnerability in centralized distribution in fog infrastructure, 
the threshold parameter is considered for the number of fog 
nodes in distribution of applications’ components. To this 
end, in the worst case, at most number of needed nodes for 
components distribution is bounded to the number of avail-
able nodes in selected Mega Node. In the other words, the 
best effort is bounded to Mega Node capacity.

Deployment model

To deploy components, one of the Mega Nodes regarding to 
claimed requirement is selected among the list of extracted 
Mega Nodes. In each Mega Node, if all components are 
placed on single node, then, dij = 0 ; otherwise dij = 1 . Fog 
nodes in a Mega Node meet all of components resource 
requirements in terms of latency, bandwidth, and sensors. In 
this paper, we assume that all of sensors or software request 
for application components cab be shared by fog nodes asso-
ciated to Mega Node. In distribution process of application 
components on fog nodes, the computing resources, fog 
nodes distance, and QoS parameter requested for applica-
tion components must be taken into consideration. To reduce 
traffic load, the distance matrix which is used for each pair 
of fog nodes in network graph and also traffic pattern matrix 
between each pair of components must be calculated. Note 
that, communication links between fog nodes fnm and fnn 
have constant capacity in terms of latency and bandwidth. 
Therefore, traffic rate between application components is 
bounded to fog nodes’ capacity. So, this limitation is shown 
in Eq. (3).

Fig. 6   Components communication graph
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where bij and lij are favorite bandwidth and latency between 
components cmpi and cmpj . Also, parameters Bmn and Lmn 
are bandwidth and latency between fog nodes fnm and fnn 
respectively. Note that, a component can be deployed on a 
fog node provided this node is active. For this reason, deci-
sion variable yfn is set to one when fog node fn is an active 
node to adopt a component. Equation (4) shows this decision 
variable.

Furthermore, the requested hardware associated to com-
ponents cannot exceed the capacity of underlying fog nodes. 
Therefore, Eq. (5) is used to show this constraints.

In Eq. (5), parameter HWfn is relevant to fog node capac-
ity in term of hardware and  hwcmp is requetsed resources 
relevant to components.

As assumed all software resources are available for each 
node in Mega Node, the software limitation is drwan in 
Eq. (6).

where the term SWMega Node is software capacity of Mega 
Node and swcmp is the requested software by application 
components. Also, another constraint on requetsed sen-
sors for application components cannot exceed from Mega 
Node’s capacity in term of number of its availabe sensors. 
This is elaborated in Eq. (7).

A decision variable xcmp,fn is used to determine whether 
component cmp is placed on fog node fn or nor. Equation (8) 
is dedicated to this issue.

Furthermore, each component is only placed on one fog 
node in which Eq. (9) depicts.

(3)
∑

cmpi∈fnm

∑

cmpj∈fnn

bij × lij < Bmn × Lmn

(4)xcmp,fn ≤ yfn,∀cmp ∈ UApp, fn ∈ F

(5)
∑

cmp∈UApp

xcmp,fn ⋅ hwcmp ≤ HWfn, ∀fn ∈ F

(6)

∑

cmp∈UApp

xcmp,fn ⋅ swcmp ≤ SWMega Node,∀Mega Node ∈ F

(7)
∑

cmp∈UApp

xcmp,fn ⋅ scmp ≤ SMega Node,∀Mega Node ∈ F

(8)

xcmp,fn =

{

1 application’s cmp is placed on fog node fn

0 otherwise

(9)
∑

fn∈F

xcmp,fn = 1, ∀cmp ∈ UApp

Problem statement

In this paper, deployment of IoT application components is 
formulated to a multi-objective optimization problem. To 
address the issue, two objective functions and problem for-
mulation are presented.

Overall latency

One of the most prominent objective functions of deploy-
ment problem is to minimize system overall latency which 
has drastic impact on average QoS degradation. So, the 
amount of latency owing to dependent components of an 
application which are placed on two different fog nodes in a 
Mega Node, is calculated via Eq. (10).

The latency between each pair of dependent components 
depends on latency between fog nodes which are hosting 
separate components. Note that, the amount of latency is 
ignored when two dependent components are placed on 
the same node. The overall latency of the system, owing to 
deployment of all applications and related components, is 
measured via Eq. (11).

Power consumption

The effective subjects on fog nodes’ power consumption are 
load of computation, communication technology, the trans-
fer data traffic volume, distance between nodes and etc. To 
calculate the power consumption of a fog node, power con-
sumption owing to both application’s components process-
ing and data transfer between nodes should be taken into 
account. Literature review proves that the power consump-
tion of a processing node has linearly relation to its resource 
utilization [42]. So, the average normalized resource utiliza-
tion associated to each fog node is measured via Eqs. (12).

where parameters W1 and W2 are two coefficients that show 
the importance of them in fog node’s power consump-
tion. Note that, their values are 0 ≤ W1 ≤ 1, 0 ≤ W2 ≤ 1, and 
W1 + W2 = 1. Since the power consumption of processing 
units outwieghts versus the main memory, the processor uti-
lization is taken for power consumption; consequently, the 

(10)Latencymn =
∑

cmpi∈fnm

∑

cmpj∈fnn

Lmn

(11)UApplatency =
∑

fnm,n∈Mega Node

Latencymn

(12)
URes

fni
=

W1 ⋅
∑fni

j

RCPU
Comj

RCPU
fni

+W2 ⋅
∑fni

j

RRAM
Comj

RRAM
fni

2
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parameters are set as W1 = 0.9 and W2 = 0.1 [42]. The Eq. (13) 
measures the power consumption owing to utilized resources 
relevant to each node that hosts different components.

where parameters Pmin and Pmax are used to indicate the 
minimum and maximum power consumption of each pro-
cessing node in the minimum and maximum utilization con-
ditions respectively. In addition to, decision binary varibale 
yfn is used to show whether the processing node is active or 
not. Moreover, the power consumption owing to data transfer 
via communication links are obtained by Eq. (14).

The parameter PTr is of prower consumption unit for traf-
fic trasfer. Note that, this power is taken in case the compo-
nents are placed on different computing nodes. Cosequently, 
the total power consumption is obtained via Eq. (15). The 
first section is for resource utilization and the second section 
is for traffic transfering power consumption.

Problem formulation

The deployment of IoT application components by distribut-
ing over fog nodes is formulated to a multi-objective optimi-
zation problem. After definition of objective functions, this 
formulation is brought in Eqs. (16)–(24).

Subject to:

(13)PRes
fn

= yfn ×
(

Pmax − Pmin

)

× URes
fn

+ Pmin

(14)PTr
fn
=

∑

fni≠fnj

tComi,Comj
× PTr

(15)Pfn = PRes
fn

+ PTr
fn

(16)min TPC = Min
∑

fn∈F

Pfn

(17)min UApplatency = Min
∑

fnm,n∈Mega Node

Latencymn

(18)
∑

cmpi∈fnm

∑

cmpj∈fnn

bij × lij < Bmn × Lmn

(19)
∑

cmp∈UApp

xcmp,fn ⋅ hwcmp ≤ HWfn, ∀fn ∈ F

(20)

∑

cmp∈UApp

xcmp,fn ⋅ swcmp ≤ SWMega Node, ∀Mega Node ∈ F

(21)

∑

cmp∈UApp

xcmp,fn ⋅ scmp ≤ SMega Node, ∀Mega Node ∈ F

In the aforementioned problem formulation, the Eqs. (16, 
17) are objective functions to be minimized at the same time 
the constraints drawn in Eqs. (18–24) must be met. To solve 
this combinatorial optimization problem, an intricate multi-
objective optimization algorithm is presented.

Proposed MOCSA algorithm for component 
deployment problem

As the stated problem is a multi-objective optimization prob-
lem, we extend a multi-objective optimization algorithm in 
regards to two equal important objectives. A multi-objective 
optimization algorithm differs from a single objective opti-
mization algorithm because in multi-objective optimization 
algorithm a trade-off between objectives must be done. To 
this end, the dominance concept is utilized [24, 31, 42]. The 
multi-objective optimization algorithm must be conducted 
in search space to find non-dominated solutions known as 
Pareto front [31]. Regarding to the discrete nature of the 
search space associated to stated problem, the cuckoo search 
algorithm (CSA) is adopted for the sake of its performance 
and adaptation with discrete search space. The CSA was 
firstly introduced in literature by Yang and Deb [43] at year 
2009. It had successful outcome in different optimization 
domains such as in [44–46]. To solve deployment prob-
lem, a multi-objective version of CSA known (MOCSA) is 
extended which inherits strength of both CSA and NSGA-II 
algorithms [29].

The CSA mimics its behavior from cuckoo birds. This 
kind of bird has an aggressive attitude in which it even lays 
eggs in the other birds’ nests along with throwing away their 
eggs. In CSA, every egg in a nest is a candidate solution. 
When a cuckoo lays one egg in a nest in fact it produces a 
new solution. In this regards, a single objective CSA utilizes 
three rules:

At first, each cuckoo lays one egg in a randomly selected 
nest.

Secondly, better nests holding eggs (solutions) with better 
quality remain for next generation.

Thirdly, number of existing nests are fix; and a host 
nest, a cuckoo can detect strange egg with the probability 
pa ∈ [0,1] ; in this case, the host bird can either smash the 
egg or leave the nest for constructing completely new nest 
in the new place.

(22)xcmp,fn ≤ yfn,∀cmp ∈ UApp, fn ∈ F

(23)
∑

fn∈F

xcmp,fn = 1, ∀cmp ∈ UApp

(24)xcmp,fn ∈ {0, 1}, yfn ∈ {0, 1}
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To construct MOCSA with k objective functions, three 
mentioned rules of canonical CSA needs to be customized 
in regards to objective functions. New rules are:

In each iteration, each cuckoo lays k eggs in a randomly 
selected nest in which the i-th egg is representative of the 
i-th objective function. In regard to similarity and discrep-
ancy between eggs, each nest is left with probability  pa 
and the new nest is constructed with k new eggs. In addi-
tion to, some operations can be defined to permute search 
space efficiently. Mathematically, the first rule can utilize 
Random Walk or Levy flight approaches (c.f. Eqs. (25, 26) 
to uniformly permute (traverse) search space for generating 
new solutions. The second rule is an elitism based approach 
so that better solutions remain in next generation. In this 
line, selection of better solutions generates the suitable 

convergence of algorithm. The third rule can be taken as a 
mutation approach so the worse solutions are probabilisti-
cally omitted and the new solutions are generated in regards 
to similarities the solutions with other solutions. This muta-
tion approach is done by vector operator via combined Levy 
flight and quality differential of solutions. Figure 7 draws 
block diagram of proposed algorithm.

This algorithm receives problem specifications and 
execution’s settings as input such as information about 
requested resources for applications, number of components 
and their communication details, number of fog nodes and 
associated network information, number of initial solutions, 
and number of maximum iterations. Then, it returns a set of 
non-dominated solutions as deployment plans.

Fig. 7   Block diagram of pro-
posed algorithm
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Problem encoding

One of the most important issues in CSA algorithm is the 
concept of nest which is a candidate solution. Encoding on 
nest has intensive impact on algorithm performance. There 
are miscellaneous encoding viewpoint for different prob-
lems. The art is to find the most appropriate one. Each nest 
is a possible solution for IoT application components deploy-
ment on fog nodes. A nest contains |M| number of eggs each 
of which is representative of a component. The number 
assigned to each egg is drawn from [1...|N|] interval which 
indicates the fog node number hosting that component. Fig-
ure 8 depicts encoding of an example for deployment of 10 
components on 3 fog nodes.

Proposed MOCSA

In single objective optimization cuckoo search algorithm, 
the population is partitioned into two superior and inferior 
nests with predetermined probability based on their fitness 
value. In the other words, the determined parameter Pa is the 
fraction of population which are placed in the inferior nests 
whereas the rest are placed in the superior nests after sorting 
population based on their fitness values. In each generation, 
iteration, the algorithm works in two stages. At first stage, 
for each individual of inferior nests, each new position is 
generated by Levy Flight distribution; then, the old individ-
ual is directly constituted by the new generated one. At the 
second stage, for each individual in superior nests, each new 
position is generated by Levy Flight distribution; if the new 
generated individual is better than the old version in term of 
fitness value, the old version is substituted by the new gener-
ated one. Since the multi-objective optimization algorithm 
differs from a single objective, we have customized CSA to 
MOCSA algorithm to gain non-dominated solutions. The 
general behavior is the same, but the differences are in the 
ranking and partitioning processes. For ranking, we utilize 
non-dominated and crowding distance concepts. Once it is 
needed to partition population into two parts, we utilize non-
dominated sorting strategy based on Algorithm 6; then from 
the worst ranking to best ranking, the solutions are directly 
copied to inferior nests; in this direction according to the 
probability Pa, if the solutions associated to the k-th rank-
ing value overflows the inferior nests, the crowding distance 

values are considered. In the other words, the rest individu-
als with the worst crowding distance values are selected to 
be copied to fulfill the rest of inferior nests. Afterwards, the 
rest populations are copied to superior nests. It is worth men-
tioning that, in the second stage when the new individual 
is generated for each individual in the superior nests, if the 
new individual dominates the old version in regards to two 
objective functions, the old individual is substituted by the 
new generated solution.

The proposed MOCSA algorithm is elaborated in Algo-
rithm 1 which deploys IoT application components efficiently 
on fog nodes in regards to objective functions. As mentioned 
earlier, Algorithm 1 receives the problem specifications as 
input and returns non-dominated solutions in regards to two 
prominent objective functions. It is iterated until the termi-
nation criterion is met. Here, the condition of termination 
is to execute MaxIteration times. Before the Algorithm 1 
starts in its main loop which is between lines 14 through 
27, it performs preprocessing stages. Algorithms 2 and 3 are 
dedicated to extract Mega Nodes and desired Mega Nodes 
which are explained in preprocessing stages. New solutions 
are generated in line 5 from extracted desired Mega Nodes. 
In line 7, Algorithm 4 is called to check and correct infeasible 
solutions. Then, the associated Data Structure is updated in 
line 8. Algorithm 5 is called to assign two fitness values to 
each individual based on Eqs. (16, 17) since it is a multi-
objective problem. The main loop of proposed MOCSA starts 
in line 14 and ends in line 27. In the proposed algorithm in 
each generation the population is partitioned into two inferior 
and superior nests. As explained earlier, the main loop runs 
two stages. At first, the worst solutions in inferior nests are 
updated and at the second stage the better solutions in supe-
rior nests are updated provided the new generated solutions 
dominate the old version otherwise no update is done. In line 
9, all fitness values associated to all solutions are assigned 
by calling Algorithm 5. In lines 10–11 the Algorithms 6–7 
are called to make Pareto fronts and crowding distance for 
current solutions. In the main loop, Pa percent of solutions 
associated to the worst ranking is copied in the inferior nests 
by utilizing Pareto front and crowding distance values and the 
rest is copied to superior nests. Before algorithm plummets 
into the main loop, in line 12 the current solutions are sorted 
based on ranking concepts. Then, the first ranking solutions 
are kept in Pareto-Set repository in line 13. As mentioned 

 
Eggs(components) cmp1 cmp2 cmp7 cmp8 cmp4 cmp6 cmp9 cmp3 cmp5 cmp10

Fog Nodes n1 n2 n3

cmp1 cmp2 cmp3 cmp4 cmp5 cmp6 cmp7 cmp8 cmp9 cmp10
Nest 1 1 3 2 3 2 1 1 2 3

Fig. 8   An example for deployment encoding and associated Nest
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earlier, in line 15, the Algorithm 8 is called to update solu-
tions in inferior nests; afterwards, the second stage is started 
where the solutions pertained to superior nests are to be 
updated. If the new changes dominate the old version, the 
old version is substituted by the new generated solution in 
superior nests. This change is done by calling Algorithm 9 
in line 16. In line 17, Algorithm 4 is called to check and 
correct infeasible solutions. Then, the associated Data Struc-
ture is updated in line 18. In line 19, the fitness values of 
all updated solutions are calculated by calling Algorithm 5; 
then, the non-dominated solutions and crowding distance are 

calculated by calling Algorithms 6 and 7 respectively. The 
current solution is then sorted by their rank values. The tem-
porary solutions are made by merging the current solutions 
and the last Pareto-Set values. The temporary solutions are 
sorted based on rank values. From the first ranking to the 
last are copied to the current solutions variable by consider-
ing crowding distance values if needed. In addition, the first 
rank is directly copied in Pareto-Set variable. After the last 
iteration is done. The final values in Pareto-Set containing the 
first ranking solutions of the last operation is return as final 
non-dominated solutions.

MOCSA
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Preprocessing

In this stage, the preprocessing is performed to extract 
desired Mega Nodes. Algorithm 2 selects different Mega 
Nodes from input fog network. The Mega Node character-
istics was clarified earlier which is abstracted to clique in 
graph theory. It returns all cliques with K-nodes. Mega Node 
extraction brings some merits; firstly the search space reduc-
tion for finding optimal deployment plan; secondly, provid-
ing common sensors and software associated to Mega Node 

for requested components. In Algorithm 2, in the while-loop 
between lines 3 through 11, firstly all nodes which are con-
nected are extracted; each pair of connected nodes is placed 
in a row in Mega_Nodes array. In lines 13 through 20, in 
the for-loop, each fog node i is compared with each row in 
Mega_Nodes array that does not containing node i. If node 
i is connected with all nodes in that row, then the node i is 
added to that row. In each iteration, the repeated row is omit-
ted. The main loop is iterated until the last array of Mega_
Nodes which contains the set of Mega Nodes is delivered.

After Mega Nodes extraction, some Mega Nodes are 
selected by Algorithm 3 in regards to meeting of constraints 
in Eqs. (18–21) in the stated problem. In this algorithm, if 
latency and bandwidth are provisioned by the Mega Node 
in the current row, then, Latency_BW_status variable is set 

to true. In addition to, if hardware, software, and sensors 
can be provided by the current Mega Node, the amount of 
HW_Status, SW_Status, and S_Status are set to true. If a 
current Mega Node can fulfill all required resources, it is 
added to selected Mega Node list.
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The termination criterion of Algorithm 2 is the num-
ber of desired clique size (K). In the other words, the main 
loop is iterated K times. Since the effective statements of 
Algorithm 2 are in the while-loop, its time complexity is O 

(K∙N2 ) where K < N. Also, Algorithm 3’s time complexity 
is O (N + M) because the main work is done in the for-loop 
between lines 1 through 9.

Initialization step

Similar to other meta-heuristic algorithms, the CSA 
starts with initialization phase in which line 5 of Algo-
rithm 1 performs this. It randomly generates individuals 
from search space. To reduce MOCSA’s time complex-
ity, the value domain of eggs are confined to the proposed 

encoding approach. Since some solutions may violate 
problem constraints during the individual productions, the 
Check&Correct algorithm is designed which Algorithm 4 
shows. Indeed, Algorithm 4 is presented to exploit maxi-
mum benefit from produced population for utilizing them 
in optimal solutions.
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fitness functions in regards to problem’s objective func-
tions. In this paper, fitness function is adjusted based on 
total power consumption and overall latency which are in 
Eqs. (16) and (17). The proposed fitness function is depicted 
in Algorithm 5.

Time complexity of Algorithm  4 is O (N∙PopSize) 
because two nested for-loop are the most effective 
statements.

Fitness function

Generally, one of the most important things in evolution-
ary computation is to evaluate solutions. This is done by 
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It is clear-cut that its time complexity of Algorithm 5 is 
O (PopSize).

Non‑dominated sorting

In multi-objective optimization algorithms the goal is to 
omit unfavorable solutions and to select superlative solu-
tions with special strategy in such a way that solutions in 
lower levels are omitted at the same time the better solutions 
are remained until the final solution is obtained step by step. 

In the proposed MOCSA, we apply non-dominated sorting 
algorithm to find Pareto front. This algorithm investigates 
the state of current solutions in term of dominance concept 
regarding to objective functions. In fact, it classifies solu-
tions in different Pareto levels so that all solutions in the 
same ranking level cannot dominate each other whereas the 
solutions in upper levels dominate solutions in downer level. 
The favorable non-dominated solutions belong to the first 
ranking level. Algorithm 6 finds non-dominated solutions.
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Since the effective statements of Algorithm 6 are in 
nested For-loop, its time complexity is O ( PopSize2).

Crowding distance

Finding efficient solutions strongly depends on the strategy 
that the algorithm takes. The best strategy must be con-
ducted in such a way that explore search space efficiently. 

More distribution in search space, more contingent to gain 
better and logical solutions. Diverse solutions in larger dis-
trict are preferable against denser solutions in smaller region 
the reason why we apply crowding distance algorithm to 
investigate solutions in term of density in a district search 
area. This way avoids to integrate solutions locally. Algo-
rithm 7 elaborates crowding distance procedure.

It is clear that the time complexity of Algorithm 7 is O 
(PopSize).

Inferior nests update

In this process, the fraction of worse solutions by probabil-
ity Pa are detected and amended. This operation is similar 

to mutation in GA [43–46]. Since our algorithm works in 
multi-objective domain, the worst solutions are selected 
from the worst ranking frontier; also, the crowding distance 
is called where needed. The modification of worse solutions 
are done by walking around approach. Algorithm 8 is dedi-
cated to do so. In line 4, the invalid solutions are amended. 
Then, updated solutions as new solutions are returned.
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Time complexity of Algorithm 8 is θ (Pa∙PopSize); there-
fore is O (PopSize) because of its only one for-loop and the 
fact that Pa < 1.

Superior nests possibly updates

To produce next generation solutions, the elitism mecha-
nism is applied so the better solutions are transferred to the 
next generation. The favorable trait of each meta-heuristic 
algorithm is how to make balance between exploration and 
exploitation in search space, but some of them fail to make a 
balance; for instance, PSO suffers from earlier convergence 
[24, 25] or simulated annealing (SA) suffers from not to be 
strong in exploration phase [26–28]. Fortunately, our pro-
posed MOCSA makes a good adjustment between exploita-
tion and exploration. Once it exchanges a random solution 
with the best so far if it is better, it tries in exploitation phase 
such as in Algorithm 9. For exploration, it utilizes uniform 
distribution in search space to explore search space glob-
ally such as in Algorithm 8. A prominent part of CSA is to 
utilize Levy Flight for both local and global searching; it 
uses random walk which is characterized by probabilistically 
instantaneous jumping in search space [47]. To do so, by 
utilizing Levy Flight approach [44], the new generation indi-
viduals are produced in line 2; if each new generated indi-
vidual dominates the previous generation individual then the 
old generation is substituted by new one. It is well depicted 
in lines 4–6 of Algorithm 9. As the obtained values in new 
solutions are continuous, these values are amended commen-
surate with the problem conditions in line 3 of Algorithm 9. 

Table 3   Different scenarios of 
simulation

Scenarios # 1 2 3 4 5 6 7 8

Fog nodes # 10 15 20 25 40 55 70 100
Appcmp # 20 25 30 40 60 75 100 150

Table 4   Fog nodes resources

FN# 1 2 3 4 5

CPU(GHz) 1.02 1.15 1.38 1.46 1.06
RAM(GB) 1.3 1.6 1.2 1.4 1.3
CPU_Thr 0.98 0.93 0.96 0.94 0.92
RAM_Thr 1.00 0.99 0.91 0.92 0.98
P_min 94 82 99 81 91
P_max 133 132 133 147 142
Sensor 1.2 1.2 1.2 2 0
Software 0 1.2 2 0 1.2
P_tr 0.2 0.2 0.2 0.1 0.1

Table 5   Bandwidth between fog nodes

FN# 1 2 3 4 5

1 1 0.98 0.80 0.89 0.97
2 0.84 1 0.82 0.94 0.92
3 0.93 0.94 1 0.97 0
4 0.88 0.92 0.91 1 1.00
5 0.92 0.99 0 0.90 1

Table 6   Latency between fog nodes

FN# 1 2 3 4 5

1 0 0.17 0.19 0.10 0.10
2 0.12 0 0.10 0.11 0.18
3 0.18 0.14 0 0.12 1
4 0.16 0.19 0.14 0 0.14
5 0.11 0.14 1 0.16 0

Table 7   Resource requested for application components

Appcmp# 1 2 3 4 5

CPU 0.15 0.19 0.24 0.26 0.29
RAM 0.2 0.2 0.1 0.2 0.1
Sensors 1 0 2 0 2
Software 0 1 0 1.2 1

Table 8   Bandwidth requested for application components

Appcmp# 1 2 3 4 5

1 1 0 0 0 0
2 0 1 0.33 0 0.32
3 0 0 1 0.31 0.20
4 0 0 0 1 0.39
5 0 0 0 0 1

Table 9   Latency requested for application components

Appcmp# 1 2 3 4 5

1 0 1 1 1 1
2 0 0 0.20 1 0.28
3 0 0 0 0.24 0.21
4 0 0 0 0 0.20
5 0 0 0 0 0
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Then, the new obtained solution is added to the list of next 
generation solutions.

different fog nodes. Furthermore, the Pareto front relevant 
to each algorithm are compared. Also, final deployment that 
MOCSA gives is dawn.

Note that, Mirjalili et al. [33] in year 2016 added two 
new modules to canonical GWO algorithm to make multi-
objective version of GWO algorithm. The first is Archive 
module that is used to save non-dominated solutions so far 
and the second is for leader wolf to select alpha, beta, and 
delta wolves; this is used for updating position of omega 
wolves in the course of optimization. The aforementioned 
features are utilized to keep current solutions and gradually 
update them toward final Pareto front. In this line, Coello 
et al. [30] proposed MOPSO which utilizes history record 
for saving the best solution experienced by an particle and 
save it for non-dominated solutions of previous rounds. This 
mechanism works similar to elitism of evolutionary compu-
tation. It also use a global repository so that each particle 
keeps experience during its flight. This repository is used 
for leader selection to guide other particles in search space. 
Accordingly, each particle can select different leaders. The 
MOPSO works based on generating different hypercube 
which divide search space in several sections [30]. One of 
the most successful meta-heuristic algorithm is bat optimiza-
tion algorithm (BOA) which was firstly introduced by Yang 
[48] in 2010. Afterwards, in 2011, he proposed multi-objec-
tive bat optimization algorithm by incorporating dominance 
concepts to solve multi-objective optimization problems 
[32]. One of the famous and applicable multi-objective opti-
mizer which is based on genetic algorithm is NSGA-II that 
was firstly introduced by Deb et al. [29] in 2002. NSGA-II 
generates population then calls fast non-dominated sorting 
algorithm to place solutions in different ranks. All solutions 

In line 2, Algorithm 9 produces a number y as a random 
nest number from Levy distribution based on Eq. (25).

where the variable u is a uniform variable in [0...1] inter-
val and the parameter � is obtained by Eq. (26).

where the parameter G is the generation number [44]. 
After that, line 3 updates the obtained solutions according 
to boundary of problem domain. Time complexity of Algo-
rithm 9 is O(PopSize) because of its only for-loop.

Simulation and evaluation

To assess the effectiveness of proposed MOCSA algorithm 
in solving multi-objective optimization problem of compo-
nents deployment on fog nodes, experiments are defined, 
executed and evaluated. To reach concrete results different 
scenarios are conducted. Also, the performance of proposed 
MOCSA is compared with four prominent and successful 
multi-objective optimization algorithms, namely, MOGWO 
[33], MOPSO [30], MOBA [32] and NSGA-II [29]. In this 
comparison, the evaluation metrics are total power consump-
tion and overall latency which are relevant to stated prob-
lem’s objective functions. As mentioned earlier, the total 
power consumption is sum of processing power consumption 
owing to resource utilization and power consumption owing 
to data transfer between fog nodes via communication links. 
In addition to, the overall latency is sum of latency obtained 
from communication components which are placed on 

(25)y = (1 − u)−
1

�

(26)� = G1∕6

For Each Solution [i] in Solutions do 
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in the same rank cannot dominate each other, but they can 
dominate the solutions placed in lower ranks. By utilizing 
canonical crossover and mutation, the new generated solu-
tions may dominate the solutions associated to previous 
solutions. In this case, the dominated solutions are omitted. 
This procedure is repeated until the termination criteria is 
met. Finally, the non-dominated solution of the first rank is 
returned.

Experimental settings

To evaluate the proposed approach, different scenarios are 
conducted in which the number of requested components 
and fog nodes increase gradually. Table 3 elaborates sce-
narios in details. Note that, the scenarios (5–8) are defined 
for scalability testing of comparative algorithms where the 
size of inputs are significantly increased. All experiments are 
executed on a dual core Intel Corei3 380 M platform with 
2.53 GHZ clock rate, four logical processors, and 8 GB as 
main memory.

Since fog computing is ad-hoc and there is not abun-
dant datasets in literature, we produce dataset by uniform 

distribution fashion such as in Tables 4, 5, 6, 7, 8 and 9. In 
addition to, the fog is completely heterogeneous in terms 
of resources and their speed the reason why we consider 
fluctuations in produced dataset. Tables 4, 5 and 6 gives 
underlying fog computing specifications for an example with 
5 fog nodes. In this regards, Table 4 shows fog nodes speci-
fications in terms of CPU clock rate, main memory and their 
threshold, minimum and maximum power consumption (idle 
vs full-loaded), kind of supported sensors and software, and 
power consumption of data transfer. In this table, the zero 
value indicates lack of support. The value 1 and 2 indicates 
the type of sensors. Tables 5 and 6 show bandwidth and 
latency between direct communications of fog nodes. The 
values was normalized in [0...1] interval. In Table 5, the 
value zero means that there is not any connection between 
nodes whereas the value one indicates the nodes are the 
same; this concept is reverse in Table 6.

In this regards, Tables 7, 8, and 9 draw an example of 
resources requested for applications containing 5 different 
components. Table 7 is used for CPU, RAM, kind of sen-
sors, and software requests for components. Table 8 is used 
for bandwidth requested for each pair of components. Also, 

Fig. 9   Performance comparison of different algorithms in scenario with 20 components on 10 fog nodes
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Table 9 is utilized for the least latency tolerable between 
each pair of components.

For simulations and comparisons, parameter settings 
of algorithms MOCSA, MOGWO, MOPSO, MOBA, and 
NSGA-II are brought in Table 10.

Experimental results

In this section, the comparison between proposed MOCSA 
and other algorithms are based on Pareto front, two objective 
functions values, and elapsed time. Also, we utilize another 
versions of MOGWO algorithms known as MOGWO-I. In 
the second version, two operators crossover and mutation 
of genetic algorithm are applied for exploring the search 
space. In addition to, optimal deployment plan is drawn and 
the hosting node of application components is drawn in red 
color.

First scenario: 10 fog nodes and 20 application components

Figure 9 demonstrates performance comparison of differ-
ent algorithms in a scenario with 20 requested components 
to be placed on 10 underlying fog nodes. Figure 9a draws 
Pareto frontiers derived from different algorithms. As this 
figure shows, MOCSA outperforms against others. Mega 
Node which MOCSA extracts is depicted in Fig. 9b; it shows 
the optimal deployment plan and the selected fog nodes are 
1, 4, 5, 9, and 10. In addition to, Fig. 9c and d depict com-
parison of different algorithms’ performance in terms of the 
first objective (total power consumption based on Eq. (16)) 
and the second objective (overall latency based on Eq. (17)).

Table 11 compares algorithms’ performance in term of 
elapsed time. This Table shows that MOCSA falls in the 
second place after MOPSO that is the fastest between all, 
but the quality of non-dominated solutions of MOCSA are 
better than others.

Second scenario: 15 fog nodes and 25 application 
components

Figure 10 demonstrates performance comparison of different 
algorithms in a scenario with 25 requested components to be 
placed on 15 underlying fog nodes. Figure 10a draws Pareto 
frontiers derived from different algorithms. As this figure 
shows, MOCSA outperforms against others. Mega Node 
which MOCSA extracts is depicted in Fig. 10b; it shows the 
optimal deployment plan and the selected fog nodes are 3, 

5, 9, 10, and 13. In addition to, Fig. 10c and d depict com-
parison of different algorithms’ performance in terms of the 
first objective (total power consumption based on Eq. (16)) 
and the second objective (overall latency based on Eq. (17)).

Table 12 compares algorithms’ performance in term of 
elapsed time. This Table shows that MOCSA falls in the 
second place after MOPSO that is the fastest between all, 
but the quality of non-dominated solutions of MOCSA are 
better than others. In term of execution time, the proposed 
MOCSA competes marginally with NSGA-II that is in the 
third place.

Third scenario: 20 fog nodes and 30 application 
components

Figure 11 demonstrates performance comparison of differ-
ent algorithms in a scenario with 30 requested components 
to be placed on 20 underlying fog nodes. Figure 11a draws 
Pareto frontiers derived from different algorithms. As this 
figure shows, MOCSA outperforms against others. Mega 
Node which MOCSA extracts is depicted in Fig. 11b; it 
shows the optimal deployment plan and the selected fog 
nodes are 6, 7, 11, 16, and 17. In addition to, Fig. 11c and d 
depict comparison of different algorithms’ performance in 
terms of the first objective (total power consumption based 
on Eq. (16)) and the second objective (overall latency based 
on Eq. (17)).

Table 13 compares algorithms’ performance in term of 
elapsed time. This Table shows that MOCSA falls in the 
third place after MOPSO and NSGA-II that are the fastest 
and the second fastest between all, but the quality of non-
dominated solutions of MOCSA are better than others.

Fourth scenario: 25 fog nodes and 40 application 
components

Figure 12 demonstrates performance comparison of differ-
ent algorithms in a scenario with 40 requested components 
to be placed on 25 underlying fog nodes. Figure 12a draws 
Pareto frontiers derived from different algorithms. As this 
figure shows, MOCSA outperforms against others. Mega 
Node which MOCSA extracts is depicted in Fig. 12b; it 
shows the optimal deployment plan and the selected fog 
nodes are 1, 4, 7, 9, 11, 16 and 21. In addition to, Fig. 12c 
and d depict comparison of different algorithms’ perfor-
mance in terms of the first objective (total power consump-
tion based on Eq. (16)) and the second objective (overall 
latency based on Eq. (17)).

Table 14 compares algorithms’ performance in term of 
elapsed time. This Table shows that MOCSA falls in the 
third place after NSGA-II and MOPSO that is the fastest and 
second fastest between all, but the quality of non-dominated 
solutions of MOCSA are better than others.

Table 11   Performance comparison of algorithms in term of elapsed 
time

MOCSA 238.41 s MOGWO 266.4 s MOBA 548.98 s
MOPSO 210.2 s MOGWO-I 985.56 s NSGA-II 276.07 s
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Fifth scenario: 40 fog nodes and 60 application components

Figure 13 demonstrates performance comparison of different 
algorithms in a scenario with 60 requested components to be 
placed on 40 underlying fog nodes. Figure 13a draws Pareto 
frontiers derived from different algorithms. As this figure 
shows, MOCSA outperforms against others. Mega Node 
which MOCSA extracts is depicted in Fig. 13b; it shows 
the optimal deployment plan and the selected fog nodes are 
1, 2,  3, 7, 9, 12, 14, 15, 16, 19, 24, 28, 31, 33 and 37. In 
addition to, Fig. 13c and d depict comparison of different 

algorithms’ performance in terms of the first objective (total 
power consumption based on Eq. (16)) and the second objec-
tive (overall latency based on Eq. (17)).

Table 15 compares algorithms’ performance in term of 
elapsed time. This Table shows that MOCSA falls in the 

Fig. 10   Performance comparison of different algorithms in scenario with 25 components on 15 fog nodes

Table 12   Performance comparison of algorithms in term of elapsed 
time

MOCSA 269.77 s MOGWO 293.16 s MOBA 301.02 s
MOPSO 241.55 s MOGWO-I 1156.3 s NSGA-II 270.01 s
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second place after MOPSO that is the fastest between all, but 
the quality of non-dominated solutions of MOCSA are better 
than others. In term of execution time, the proposed MOCSA 
competes marginally with NSGA-II that is in the third place.

Sixth scenario: 55 fog nodes and 75 application 
components

Figure 14 demonstrates performance comparison of different 
algorithms in a scenario with 75 requested components to be 
placed on 55 underlying fog nodes. Figure 14a draws Pareto 
frontiers derived from different algorithms. As this figure 

shows, MOCSA outperforms against others. Mega Node 
which MOCSA extracts is depicted in Fig. 14b; it shows the 
optimal deployment plan and the selected fog nodes are 3, 
6, 8, 9, 22, 24, 28, 29, 31, 32, 39, 43, 45 and 55. In addition 
to, Fig. 14c and d depict comparison of different algorithms’ 
performance in terms of the first objective (total power con-
sumption based on Eq. (16)) and the second objective (over-
all latency based on Eq. (17)).

Table 16 compares algorithms’ performance in term of 
elapsed time. This Table shows that MOCSA falls in the 
second place after NSGA-II that is the fastest between all, 
but the quality of non-dominated solutions of MOCSA are 
better than others. In term of execution time, the proposed 
MOCSA competes marginally with MOPSO that is in the 
third place.

Seventh scenario: 70 fog nodes and 100 application 
components

Figure 15 demonstrates performance comparison of differ-
ent algorithms in a scenario with 100 requested components 

Fig. 11   Performance comparison of different algorithms in scenario with 30 components on 20 fog nodes

Table 13   Performance comparison of algorithms in term of elapsed 
time

MOCSA 298.03 s MOGWO 332.02 s MOBA 342.39 s
MOPSO 275.62 s MOGWO-I 1264.3 s NSGA-II 290.87 s
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to be placed on 70 underlying fog nodes. Figure 15a draws 
Pareto frontiers derived from different algorithms. As this 
figure shows, MOCSA outperforms against others. Mega 
Node which MOCSA extracts is depicted in Fig. 15b; it 
shows the optimal deployment plan and the selected fog 
nodes are 8, 10, 13, 17, 18, 19, 20, 24, 30, 35, 38, 39, 40, 42, 
45, 49, 51, 52, 53, 58, 64 and 66. In addition to, Fig. 15c and 
d depict comparison of different algorithms’ performance in 
terms of the first objective (total power consumption based 

on Eq. (16)) and the second objective (overall latency based 
on Eq. (17)).

Table 17 compares algorithms’ performance in term of 
elapsed time. This Table shows that MOCSA falls in the 
second place after NSGA-II that is the fastest between all, 
but the quality of non-dominated solutions of MOCSA are 
better than others. In term of execution time, the proposed 
MOCSA competes marginally with MOPSO that is in the 
third place.

Eighth scenario: 100 fog nodes and 150 application 
components

Figure 16 demonstrates performance comparison of different 
algorithms in a scenario with 150 requested components to 
be placed on 100 underlying fog nodes. Figure 16a draws 

Fig. 12   Performance comparison of different algorithms in scenario with 40 components on 25 fog nodes

Table 14   Performance comparison of algorithms in term of elapsed 
time

MOCSA 446.99 s MOGWO 463.06 s MOBA 469.16 s
MOPSO 401.48 s MOGWO-I 1804.02 s NSGA-II 379.46 s
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Pareto frontiers derived from different algorithms. As this 
figure shows, MOCSA outperforms against others. Mega 
Node which MOCSA extracts is depicted in Fig. 16b; it 
shows the optimal deployment plan and the selected fog 
nodes are 1, 9, 16, 17, 19, 21, 24, 28, 39, 40, 51, 53, 56, 
57, 59, 60, 62, 63, 65, 72, 73, 78, 84, 86, 88, 89 and 93. In 
addition to, Fig. 16c and d depict comparison of different 
algorithms’ performance in terms of the first objective (total 
power consumption based on Eq. (16)) and the second objec-
tive (overall latency based on Eq. (17)).

Table 18 compares algorithms’ performance in term of 
elapsed time. This Table shows that MOCSA falls in the 
second place after NSGA-II that is the fastest between all, 
but the quality of non-dominated solutions of MOCSA are 
better than others. In term of execution time, the proposed 
MOCSA competes marginally with MOBA that is in the 
third place.

For the sake of data analysis statistically, the proposed 
MOCSA outperforms 43%, 28%, 41%, 30% and 32% 
improvement against MOGWO, MOGWO-I, MOPSO, 
MOBA and NSGA-II in term of average reduction in power 
consumption; also, in the minimum value gained by solu-
tions, the proposed MOCSA outperforms 26%, 36%, 23%, 
39% and 43% improvement against MOGWO, MOGWO-
I, MOPSO, MOBA and NSGA-II in term of minimum 

Fig. 13   Performance comparison of different algorithms in scenario with 60 components on 40 fog nodes

Table 15   Performance comparison of algorithms in term of elapsed 
time

MOCSA 666.82 s MOGWO 760.19 s MOBA 743.96 s
MOPSO 659.77 s MOGWO-I 3401.5 s NSGA-II 676.16 s
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value of power consumption. In addition to, the proposed 
MOCSA outperforms 42%, 29%, 46%, 13% and 5% improve-
ment against MOGWO, MOGWO-I, MOPSO, MOBA and 
NSGA-II in term of average reduction in overall latency; 
also, in the minimum value gained by solutions, the pro-
posed MOCSA outperforms 40%, 33%, 37%, 17% and 6% 
improvement against MOGWO, MOGWO-I, MOPSO, 
MOBA and NSGA-II in term of minimum value of overall 
latency.

Time complexity

Now that, time complexity of all sub algorithms have been 
determined, the time complexity of Algorithm 1 is now 
calculated. The preprocessing takes K∙N2+M + N which 
belongs to O(M + K∙N2 ). Also, the main loop iterates Max-
Iteration times. For the main loop, we have MaxIteration 
×(N∙PopSize + PopSize2 ). If we consider N < PopSize, 
Algorithm  1’s time complexity is O(M + K.N2 + Max-
Iteration∙PopSize2 ) which is relatively acceptable time 
complexity.

Fig. 14   Performance comparison of different algorithms in scenario with 75 components on 55 fog nodes

Table 16   Performance comparison of algorithms in term of elapsed 
time

MOCSA 835.23 s MOGWO 1024.2 s MOBA 1072.8 s
MOPSO 867.71 s MOGWO-I 3690.06 s NSGA-II 770.96 s
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Conclusion and future direction

In this paper, an algorithm for the deployment of IoT appli-
cation components on fog nodes has been presented to meet 
reliable deployment for user requests. To address this issue, 
this deployment problem was modeled to a multi-objective 
optimization problem with total power consumption and 
overall latency perspectives. To solve this combinatorial 
optimization problem, a multi-objective optimization algo-
rithm based on cuckoo search meta-heuristic algorithm 
known MOCSA was extended. To reach concrete results, 
different scenarios were conducted and the effectiveness 
of proposed MOCSA was compared with well-reputed 
meta-heuristic algorithms MOGWO, MOPSO, MOBA, 
and NSGA-II in fair experimental conditions. The results 
obtained from simulations prove the significant superiority 
of proposed algorithm in terms of average overall latency 

and average total power consumption against other state-
of-the-arts in objective functions. The merit of the current 
paper is to deliver users reliable services along with meeting 
objective functions. Also, the simulation proved the pro-
posed MOCSA is potentially scalable. The limitation of the 
current work is to know the resource request in advance. 
For future work, we intend to present a dynamic model for 
mobile IoT applications in chain of fog computing nodes 
with QoS and economic perspectives to reach equilibrium 
in desired objectives.

Fig. 15   Performance comparison of different algorithms in scenario with 100 components on 70 fog nodes

Table 17   Performance comparison of algorithms in term of elapsed 
time

MOCSA 1139.4 s MOGWO 1769.6 s MOBA 1299.9 s
MOPSO 1236.2 s MOGWO-I 4552.2 s NSGA-II 1082.1 s



390	 Complex & Intelligent Systems (2022) 8:361–392

1 3

Declarations 

Conflic of interest  There is not any conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 

need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Foukalas F (2020) Cognitive IoT platform for fog computing 
industrial applications. Comput Electr Eng 87:1–13. https://​doi.​
org/​10.​1016/j.​compe​leceng.​2020.​106770

	 2.	 OpenFog. An OpenFog Architecture Overview (2017) https://​
www.​iicon​sorti​um.​org/​pdf/​OpenF​og_​Refer​ence_​Archi​tectu​re_2_​
09_​17.​pdf. Accessed Feb 2017

	 3.	 Azimi SH, Pahl C, Hosseini-Shirvani M (2020) Particle swarm 
optimization for performance management in multi-cluster IoT 
edge architectures. Int Cloud Comput Conf CLOSER. 2020:328–
337. https://​doi.​org/​10.​5220/​00093​91203​280337

	 4.	 Hong HJ, Tsai PH, Hsu CH (2016) Dynamic module deployment 
in a fog computing platform. In: 18th Asia-Pacific network opera-
tions and management symposium (APNOMS), pp 1–6. https://​
doi.​org/​10.​1109/​APNOMS.​2016.​77372​02

	 5.	 Taneja M, Davy A (2017) Resource-aware placement of IoT 
application modules in fog-cloud computing paradigm. In: Proc. 
of the IFIP/IEEE symposium on integrated network and service 

Table 18   Performance comparison of algorithms in term of elapsed 
time

MOCSA 2199 s MOGWO 2392.4 s MOBA 2294.5 s
MOPSO 2434 s MOGWO-I 7104.7 s NSGA-II 2038s

Fig. 16   Performance comparison of different algorithms in scenario with 150 components on 100 fog nodes

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.compeleceng.2020.106770
https://doi.org/10.1016/j.compeleceng.2020.106770
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://doi.org/10.5220/0009391203280337
https://doi.org/10.1109/APNOMS.2016.7737202
https://doi.org/10.1109/APNOMS.2016.7737202


391Complex & Intelligent Systems (2022) 8:361–392	

1 3

management, IM ’15, IEEE, pp 1222–1228. https://​doi.​org/​10.​
23919/​INM.​2017.​79874​64

	 6.	 Brogi A, Forti A (2017) QoS-aware deployment of IoT appli-
cations through the fog. IEEE Internet Things J 4:1185–1192. 
https://​doi.​org/​10.​1109/​JIOT.​2017.​27014​08

	 7.	 Li F, Vogler M, Claeßens M, Dustdar S (2013) Towards automated 
IoT application deployment by a cloud-based approach. In: 6th 
international conference on service-oriented computing and appli-
cations, IEEE, pp 61–68. https://​doi.​org/​10.​1109/​SOCA.​2013.​12

	 8.	 Mahmud R, Ramamohanarao K, Buyya R (2018) Latency-aware 
application module management for fog computing environments. 
ACM Trans Internet Technol 2018:1–21. https://​doi.​org/​10.​1145/​
31865​92

	 9.	 Vögler M, Schleicher JM, Inzinger C, Dustdar S (2015) DIANE—
Dynamic IoT Application Deployment. In: IEEE international 
conference on mobile services, pp 298–305. https://​doi.​org/​10.​
1109/​MobSe​rv.​2015.​49

	10.	 Saurez E, Hong K, Lillethun D, Ramachandran U, Ottenwalder B 
(2016) Incremental deployment and migration of geo-distributed 
situation awareness applications in the fog. In: DEBS, pp 258–
269. https://​doi.​org/​10.​1145/​29332​67.​29333​17

	11.	 Chen BL, Huang SC, Luo YC, Chung YC, Chou J (2017) A 
dynamic module deployment framework for M2M platforms. In: 
IEEE 7th international symposium on cloud and service computing 
(SC2). IEEE, pp 194–200. https://​doi.​org/​10.​1109/​SC2.​2017.​37

	12.	 Yangui S, Ravindran P, Bibani O, Glitho R. H, Hadj-Alouane 
NB, Morrow MJ, Polakos PA (2016) A platform as-a-service for 
hybrid cloud/fog environments. In: 2016 IEEE international sym-
posium on local and metropolitan area networks (LANMAN), pp 
1–7. https://​doi.​org/​10.​1109/​LANMAN.​2016.​75488​53

	13.	 Babu R, Bhattacharyya B (2019) Strategic placements of PMUs 
for power network observability considering redundancy measure-
ment. Measurement 134:606–623. https://​doi.​org/​10.​1016/j.​measu​
rement.​2018.​11.​001

	14.	 Babu R, Bhattacharyya B (2018) An approach for optimal place-
ment of phasor measurement unit for power network observability 
considering various contingencies. Iran J Sci Technol Trans Electr 
Eng 42(2):161–183. https://​doi.​org/​10.​1007/​s40998-​018-​0063-7

	15.	 Babu R, Bhattacharyya B (2016) Optimal allocation of phasor 
measurement unit for full observability of the connected power 
network. Int J Electr Power Energy Syst 79:89–97. https://​doi.​org/​
10.​1016/j.​ijepes.​2016.​01.​011

	16.	 Babu R, Bhattacharyya B (2017) Weak bus-oriented installa-
tion of phasor measurement unit for power network observabil-
ity. Int J Emerg Electr Power Syst 18:5. https://​doi.​org/​10.​1515/​
ijeeps-​2017-​0073

	17.	 Babu R, Bhattacharyya B (2020) Optimal placement of PMU for 
complete observability of the interconnected power network con-
sidering zero-injection bus. Int J Appl Power Eng 9(2):135–146. 
https://​doi.​org/​10.​11591/​ijape.​v9.​i2.​pp135-​146

	18.	 Hosseini Shirvani M (2018) Web service composition in multi-
cloud environment: a bi-objective genetic optimization algorithm. 
In: 2018 IEEE (SMC) international conference on innovations 
in intelligent systems and applications. https://​doi.​org/​10.​1109/​
INISTA.​2018.​84662​67

	19.	 Hosseini Shirvani M, Gorji AB (2020) Optimization of automatic 
web services composition using genetic algorithm. Int J Cloud 
Comput 9(4):397–411. https://​doi.​org/​10.​1504/​IJCC.​2020.​112313

	20.	 Hosseini-Shirvani M (2018) A new shuffled genetic-based task 
scheduling algorithm in heterogeneous distributed systems. J Adv 
Comput Res 2018:19–36

	21.	 Hosseinzadeh S, Hosseini SM (2015) Optimizing energy con-
sumption in clouds by using genetic algorithm. J Multidiscipl Eng 
Sci Technol 2(6):1431–1434

	22.	 Razavi F, Zabihi F, Hosseini SM (2016) Multi-layer perceptron 
neural network training based on improved of stud GA. J Adv 
Comput Res 7(3):1–14

	23.	 Javadian Kootanaee A, Poor Aghajan A, Hosseini SM (2021) A 
hybrid model based on machine learning and genetic algorithm 
for detecting fraud in financial statements. J Optim Ind Eng 
14(2):180–201. https://​doi.​org/​10.​22094/​joie.​2020.​18774​55.​1685

	24.	 Hosseini-Shirvani M (2020) Bi-objective web service composition 
problem in multi-cloud environment: a bi-objective time-varying 
particle swarm optimisation algorithm. J Exp Theor Artif Intell 
2020:1–24. https://​doi.​org/​10.​1080/​09528​13X.​2020.​17256​52

	25.	 Hosseini-Shirvani M (2019) A hybrid meta-heuristic algorithm 
for scientific workflow scheduling in heterogeneous distributed 
computing systems. Eng Appl Artif Intell 2019:90. https://​doi.​
org/​10.​1016/j.​engap​pai.​2020.​103501

	26.	 Saeedi P, Hosseini SM (2021) An improved thermodynamic simu-
lated annealing-based approach for resource-skewness-aware and 
power-efficient virtual machine consolidation in cloud datacent-
ers. Soft Comput. https://​doi.​org/​10.​1007/​s00500-​020-​05523-1

	27.	 Noorian Talooki R, Hosseini Shirvani M, Motameni H (2021) A 
Hybrid Meta-heuristic scheduler algorithm for optimization of 
workflow scheduling in cloud heterogeneous computing environ-
ment. J Eng Design Technol Emerald Publ (In Press)

	28.	 Tanha M, Hosseini Shirvani M, Rahmani AM (2020) GATSA: a 
hybrid meta-heuristic task scheduling algorithm based on genetic 
and thermodynamic simulated annealing algorithms in cloud com-
puting environment. Neural Comput Appl Springer Publ (In Press)

	29.	 Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elit-
ist multi objective genetic algorithm: Nsga-II. IEEE Trans Evol 
Comput 6(2):182–197. https://​doi.​org/​10.​1109/​4235.​996017

	30.	 Coello CAC, Lechuga MS (2002) MOPSO: a proposal for mul-
tiple objective particle swarm optimization. In: Proceedings of 
the 2002 congress on evolutionary computation (CEC’02). USA: 
IEEE Publications. https://​doi.​org/​10.​1109/​CEC.​2002.​10043​88

	31.	 Hosseini-Shirvani M, Rahmani AM, Sahafi A (2018) An iterative 
mathematical decision model for cloud migration: a cost and secu-
rity risk approach. Softw Pract Exp Homepage 48(3):449–485. 
https://​doi.​org/​10.​1002/​spe.​2528

	32.	 Yang XS (2011) Bat algorithm for multiobjective optimization. Int 
J Bio-Inspired Comput 3(5):267–274. https://​arxiv.​org/​abs/​1203.​
6571v1

	33.	 Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-
objective grey wolf optimizer: a novel algorithm for multi-cri-
terion optimization. J Expert Syst Appl Elsevier 47:106–119. 
https://​doi.​org/​10.​1016/j.​eswa.​2015.​10.​039

	34.	 Wang Z, Ong Y, Ishibuchi H (2019) On scalable multiobjective 
test problems with hardly dominated boundaries. IEEE Trans Evol 
Comput 23(2):217–231. https://​doi.​org/​10.​1109/​TEVC.​2018.​
28442​86

	35.	 Wang Z, Ong Y, Sun J, Gupta A, Zhang Q (2019) A generator 
for multiobjective test problems with difficult-to-approximate 
pareto front boundaries. IEEE Trans Evol Comput 23(4):556–571. 
https://​doi.​org/​10.​1109/​TEVC.​2018.​28724​53

	36.	 Wang Z, Zhang Q, Zhou A, Gong M, Jiao L (2016) Adap-
tive replacement strategies for MOEA/D. IEEE Trans Cybern 
46(2):474–486. https://​doi.​org/​10.​1109/​TCYB.​2015.​24038​49

	37.	 Wang Z, Zhang Q, Li H, Shibuchi H, Jiao L (2017) On the use 
of two reference points in decomposition based multiobjective 
evolutionary algorithms. Swarm Evol Comput 34:89–102. https://​
doi.​org/​10.​1016/j.​swevo.​2017.​01.​002

	38.	 Ali LB, Helaoui M, Naanaa W (2019) Pareto-based soft arc con-
sistency for multi-objective valued CSPs. ICAART. 2019:294–305

	39.	 Akyildiz IF, Wang X, Wang W (2005) Wireless mesh networks: 
asurvey. Comput Netw 47(4):445–487. https://​doi.​org/​10.​1016/j.​
comnet.​2004.​12.​001

https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.1109/JIOT.2017.2701408
https://doi.org/10.1109/SOCA.2013.12
https://doi.org/10.1145/3186592
https://doi.org/10.1145/3186592
https://doi.org/10.1109/MobServ.2015.49
https://doi.org/10.1109/MobServ.2015.49
https://doi.org/10.1145/2933267.2933317
https://doi.org/10.1109/SC2.2017.37
https://doi.org/10.1109/LANMAN.2016.7548853
https://doi.org/10.1016/j.measurement.2018.11.001
https://doi.org/10.1016/j.measurement.2018.11.001
https://doi.org/10.1007/s40998-018-0063-7
https://doi.org/10.1016/j.ijepes.2016.01.011
https://doi.org/10.1016/j.ijepes.2016.01.011
https://doi.org/10.1515/ijeeps-2017-0073
https://doi.org/10.1515/ijeeps-2017-0073
https://doi.org/10.11591/ijape.v9.i2.pp135-146
https://doi.org/10.1109/INISTA.2018.8466267
https://doi.org/10.1109/INISTA.2018.8466267
https://doi.org/10.1504/IJCC.2020.112313
https://doi.org/10.22094/joie.2020.1877455.1685
https://doi.org/10.1080/0952813X.2020.1725652
https://doi.org/10.1016/j.engappai.2020.103501
https://doi.org/10.1016/j.engappai.2020.103501
https://doi.org/10.1007/s00500-020-05523-1
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/CEC.2002.1004388
https://doi.org/10.1002/spe.2528
https://arxiv.org/abs/1203.6571v1
https://arxiv.org/abs/1203.6571v1
https://doi.org/10.1016/j.eswa.2015.10.039
https://doi.org/10.1109/TEVC.2018.2844286
https://doi.org/10.1109/TEVC.2018.2844286
https://doi.org/10.1109/TEVC.2018.2872453
https://doi.org/10.1109/TCYB.2015.2403849
https://doi.org/10.1016/j.swevo.2017.01.002
https://doi.org/10.1016/j.swevo.2017.01.002
https://doi.org/10.1016/j.comnet.2004.12.001
https://doi.org/10.1016/j.comnet.2004.12.001


392	 Complex & Intelligent Systems (2022) 8:361–392

1 3

	40.	 Arcangeli JP, Boujbel R, Leriche S (2015) Automatic deployment 
of distributed software systems: definitions and state of the art. J 
Syst Softw 3:198–218. https://​doi.​org/​10.​1016/j.​jss.​2015.​01.​040

	41.	 Bonomi F, Milito R, Natarajan P, Zhu J (2014) Fog computing: 
a platform for internet of things and analytics. In: Big data and 
internet of things: a roadmap for smart environments, Springer, 
pp 169–186. https://​doi.​org/​10.​1007/​978-3-​319-​05029-4_7

	42.	 Farzai S, Hosseini-Shirvani M, Rabbani M (2020) Multi-objective 
communication-aware optimization for virtual machine placement 
in cloud datacenters. Sustain Comput Inf Syst 2020:28. https://​doi.​
org/​10.​1016/j.​suscom.​2020.​100374

	43.	 Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: Pro-
ceedings of world congress on nature & biologically inspired com-
puting, pp 210–214. https://​doi.​org/​10.​1109/​NABIC.​2009.​53936​
90

	44.	 Sait SM, Bala A, El-Maleh AH (2016) Cuckoo search based 
resource optimization of datacenters. Appl Intell 44:489–506. 
https://​doi.​org/​10.​1007/​s10489-​015-​0710-x

	45.	 Tavana M, Shahdi-Pashaki S, Teymourian E, Santos-Arteaga FJ, 
Komaki M (2017) A discrete cuckoo optimization algorithm for 
consolidation in cloud computing. Comput Ind Eng 115:495–511. 
https://​doi.​org/​10.​1016/j.​cie.​2017.​12.​001

	46.	 Hosseini Shirvani M, Farzai S (2020) Optimal deployment of 
IoT application components on hybrid fog2cloud infrastructure 
for reduction of power consumption toward green computing by 

cuckoo search algorithm. In: The first national conference of New 
Development in Green Studies, Computations, Applications, and 
Challenges, NGIS01

	47.	 Walton S, Hassan O, Morgan K, Brown MR (2011) Modified 
cuckoo search: a new gradient free optimisation algorithm. Chaos 
Solitons Fractals 44(9):710–718. https://​doi.​org/​10.​1016/j.​chaos.​
2011.​06.​004

	48.	 Yang XS (2010) A new metaheuristic bat-inspired algo-
rithm, in nature inspired cooperative strategies for optimiza-
tion. Stud Comput Intell 284:65–74. https://​doi.​org/​10.​1007/​
978-3-​642-​12538-6_6

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jss.2015.01.040
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1016/j.suscom.2020.100374
https://doi.org/10.1016/j.suscom.2020.100374
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1007/s10489-015-0710-x
https://doi.org/10.1016/j.cie.2017.12.001
https://doi.org/10.1016/j.chaos.2011.06.004
https://doi.org/10.1016/j.chaos.2011.06.004
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/978-3-642-12538-6_6

	Multi-objective fault-tolerant optimization algorithm for deployment of IoT applications on fog computing infrastructure
	Abstract
	Introduction
	Related works
	Proposed framework and models
	System framework
	Fog model
	Application model
	Reliability model
	Deployment model

	Problem statement
	Overall latency
	Power consumption
	Problem formulation

	Proposed MOCSA algorithm for component deployment problem
	Problem encoding
	Proposed MOCSA
	Preprocessing
	Initialization step
	Fitness function
	Non-dominated sorting
	Crowding distance
	Inferior nests update
	Superior nests possibly updates


	Simulation and evaluation
	Experimental settings
	Experimental results
	First scenario: 10 fog nodes and 20 application components
	Second scenario: 15 fog nodes and 25 application components
	Third scenario: 20 fog nodes and 30 application components
	Fourth scenario: 25 fog nodes and 40 application components
	Fifth scenario: 40 fog nodes and 60 application components
	Sixth scenario: 55 fog nodes and 75 application components
	Seventh scenario: 70 fog nodes and 100 application components
	Eighth scenario: 100 fog nodes and 150 application components

	Time complexity

	Conclusion and future direction
	References




