
Complex & Intelligent Systems (2022) 8:13–27
https://doi.org/10.1007/s40747-021-00332-x

ORIG INAL ART ICLE

Temporal network embedding using graph attention network

Anuraj Mohan1 · K V Pramod2

Received: 9 November 2020 / Accepted: 9 March 2021 / Published online: 30 March 2021
© The Author(s) 2021

Abstract
Graph convolutional network (GCN) has made remarkable progress in learning good representations from graph-structured
data. The layer-wise propagation rule of conventional GCN is designed in such a way that the feature aggregation at each
node depends on the features of the one-hop neighbouring nodes. Adding an attention layer over the GCN can allow the
network to provide different importance within various one-hop neighbours. These methods can capture the properties of
static network, but is not well suited to capture the temporal patterns in time-varying networks. In this work, we propose
a temporal graph attention network (TempGAN), where the aim is to learn representations from continuous-time temporal
network by preserving the temporal proximity between nodes of the network. First, we perform a temporal walk over the
network to generate a positive pointwisemutual informationmatrix (PPMI)which denote the temporal correlation between the
nodes. Furthermore, we design a TempGAN architecture which uses both adjacency and PPMI information to generate node
embeddings from temporal network. Finally, we conduct link prediction experiments by designing a TempGAN autoencoder
to evaluate the quality of the embedding generated, and the results are compared with other state-of-the-art methods.

Keywords Network embedding · Graph convolution · Graph autoencoder · Temporal networks

Introduction

Learning from non-euclidean data [1] has gained a lot of sci-
entific attention in recent years. Among those data, learning
from network structured data is one challenging direction
which has diverse applications in fields like recommender
systems [2], computational social systems [3], text mining
[4], service oriented and content delivery networks [5,6], and
systems biology [7].With the success of deep learning in var-
ious domains, those methods became prominent and fruitful
in learning network representations which eventually lead to
the development of subdomain in machine learning named
as network embedding or network representation learning
(NRL) [8–11]. Initial works in this domain were based
on unsupervised learning using skip-gram neural network

B Anuraj Mohan
anurajmohan@gmail.com

K V Pramod
pramodkv4@gmail.com

1 Research Scholar, Artificial Intelligence Lab, Department of
Computer Applications, Cochin University of Science and
Technology, Kerala 682022, India

2 Department of Computer Applications, Cochin University of
Science and Technology, Kerala 682022, India

architectures, followed by deep neural networks. Another
research directionwas to use conventional convolutional neu-
ral network architectures to learn network representations.
Applying the traditional convolution operation on graphs is
found to generate sub-optimal results as the network struc-
ture is highly irregular. Substantial developments in the field
of NRL occurred with the proposal of graph convolutions
which is very effective when the input is highly irregular.
A plethora of works [12–15] has been proposed based on
graph convolutions which can be mainly classified into spec-
tral and spatial graph convolution-based methods. Among
those methods, our work particularly focus on the direction
of graph convolutional network [13] because of its wide pop-
ularity and effectiveness.

The basic principle of GCN is to learn the representations
of each node by aggregating the features of its first-order
neighbours through a parameterized learning mechanism.
The receptive field of each node includes the immediate one-
hop neighbours, which is shown for node A in Fig. 1. GCN
has proved to be very successful in many state-of-the-art
network mining tasks like node classification and link pre-
diction. Some variants have been already proposed for GCN
which makes the model more robust and scalable.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00332-x&domain=pdf
http://orcid.org/0000-0002-1044-9368

14 Complex & Intelligent Systems (2022) 8:13–27

Fig. 1 Receptive field of Node A

The basic GCN model is designed only to work with
static networks, where the time-varying nature of the net-
work is not considered. However, in real world, most of the
networks are either evolving in nature or they carry tem-
poral information in their edges. We call them either as a
dynamic network which is represented as network snapshots
where the importance is given to their evolving nature, or
a temporal network which is represented as network with
time-stamped edges where the importance is given to the
change in their connectivity patterns w.r.t. time. In this work,
we focus on the temporal aspect where the input graph is
represented with edges which carry temporal information.
Telephone call networks, email communication networks,
disease spread networks, etc. are some typical examples for
a temporal network. The notion of temporal edge is highly
sensitive when we model virus spread as a network, because
the temporal ordering of contacts is an important factor to
be considered while modelling the spread of disease from
one person to other. The temporal relationships between the
nodes are an important property to be preservedwhile embed-
ding the nodes in a temporal network to the vector space.

Someworks [16–18] focused on network embedding from
dynamic networks which consider network snapshots at con-
secutive time-steps as input. However, network embedding
from temporal network has received less attention apart from
a few works [19] which used unsupervised approaches using
random walk and skip-gram neural architectures. As graph
convolutional network being the most prominent and effec-
tive method for network embedding, we aim to develop a
method based on GCN which can learn node embeddings
by considering the temporal information present in the net-
work. A temporal network and the receptive field of node A
(given in circle) are shown in Fig. 2. For node A, the recep-
tive field includes the one-hop neighbours (B, C, D, E) along
the nodes (H, I) which are in the temporal neighbourhood
(time ordered path exist) of A. Nodes F and G are ignored as
temporal neighbours as they cannot be reached using a time-

Fig. 2 A temporal network

respecting walk from A. Considering this temporal receptive
fieldwhile learning node embeddings can generatemore use-
ful representations, which is the primary motivation of this
research.

In GCN, the feature aggregation at each node assumes
that all neighbours have same importance which may reduce
the model capacity. Graph attention network (GAT) [20] is
an approach which showed that, by providing attention to
neighbours which can be learned by end-to-end training, we
may build a more robust model. In this work, we follow
the attention mechanism as suggested by GAT so to include
the hypothesis that different temporal neighbours may con-
tribute differently during the aggregation process. Both GCN
and GAT consider the edge distribution of the network to
be static and are not well suited for representation learn-
ing from temporal network whose edge distributions vary
over time. Moreover, they focus on preserving the first-order
neighbourhood while generating embeddings. In the case
of temporal networks, temporal order proximity is another
important property to be preserved while generating node
embeddings.
The main contributions of the paper are as follows.
The work addresses the problem of generating node embed-
ding from temporal networks.
The work provides a methodology to incorporate temporal
information into a graph attention network for generating
time-aware node embeddings.
A graph autoencoder based on proposed method is designed
which can perform link prediction on real-world temporal
networks .
To the best of our knowledge, this is the first work which
apply GCN concepts over temporal network data represented
as edge streams.
The rest of the paper is organized as follows. “Related
works” and “Definitions and preliminaries” cover the related
works and preliminary concepts, respectively. “Methodol-
ogy” presents the proposed methodology. “Experimental

123

Complex & Intelligent Systems (2022) 8:13–27 15

setup” and “Result and analysis” discuss the experimen-
tal setup and the results, respectively. Finally, “Conclusion”
presents the conclusion and future works.

Related works

Machine learning has made tremendous improvements in
various areas like speech recognition [21,22], object detec-
tion [23,24], and text mining [25,26]. With the rise of
large-scale social networks, a substantial amount of research
has been conducted around machine learning with network
or graph-structured data. As feature (representation) learning
being an important task in machine learning pipeline, meth-
ods for learning good representations of nodes in a network
gained importance. The emergence of deep learning accel-
erated the growth of this typical research area, and various
methods were proposed for network representation learning
based on neural architectures. It includesworks based on skip
gram architectures [27,28], deep neural networks [29,30],
and graph neural networks [31]. In this work, we particularly
focus on graph neural networks (GNN) which has its roots
in the field of signal processing with graphs [32].

The basic GNN aimed to extend the traditional neural
network concepts to work with data represented in net-
work domain. Among the variants of GNN, works based
on graph convolutions [33,34] gained wide popularity. They
can be mainly classified into spectral and spatial graph
convolution-based methods [15]. Spectral methods include
graph filtering-based approaches [35] alongwith somemeth-
ods to reduce the computational complexity [12]. Spatial
methods [14,37] perform feature aggregation using the
local neighbourhood of every node which is relatively sim-
pler compared to spectral methods. The authors of GCN
[13] provided a simplified method to compute the spectral
graph convolution by computing its first-order approxima-
tion which can be considered as the most practical approach
towards the problem. GCN has proved to be very effective in
various domains like text classification [36], recommender
systems [37], relational datamodeling [38], and image recog-
nition [39], along with various other scientific areas [40,41].
FASTGCN [42] is modification over GCN which attempts
to reduce the training time of GCN. Graph attention net-
work (GAT) [20] is enhancement over GCN which uses
an additional attention layer to learn the importance of
node neighbourhood during feature aggregation. Another
direction of research on GCN was to efficiently design con-
volutions that can reach higher order neighbours [43,44].
Researchers developed different variants to GCN which can
work with more complex settings like heterogeneous net-
works [45,46], signed networks [47], and hypergraphs [48].

All the works discussed above focus on static network
where the nodes and edges do not change over time. Some

works are already done on time-varying network embedding
where most of them aimed at embeddings network snap-
shots that evolved with time. Deep Embedding Method for
Dynamic Graphs (DynGEM) [17] used as stacked denois-
ing autoencoder that can incrementally learn the temporal
dynamics of a dynamic network. Tempnode2vec [49] gen-
erates PPMI matrices from individual network snapshots,
factorizes the PPMImatrices, and optimizes a joint loss func-
tion to align the node embeddings and captures temporal
stability. Dynnode2vec [50] extends the skip-gram archi-
tecture of node2vec so as to work with dynamic network
snapshots. DyRep [51] considers both topological evolution
and temporal interactions, and aims to develop embeddings
which encode both structural and temporal information.
EvolveGCN[18] extendsGCN todynamic networks bymod-
elling the evolution of GCN parameters using a recurrent
neural network. Combining graph convolution layers with
LSTMlayers [52] is another direction for generatingdynamic
node embeddings. A brief survey on modelling of dynamic
networks using dynamic graph neural networks can be found
on [53]. On the other hand, temporal network [54,55] whose
edge connectivity varies over continuous time has been less
studied from a network embedding perspective. One state-
of-the-art work in this direction is continuous-time dynamic
network embeddings (CTDNE) [19,56] which is a frame-
work to adapt randomwalk and skip-gram-based approaches
like deepwalk to temporal networks. CTDNE optimizes a
skip-gram objective, so that the node that is closer in the tem-
poral walk occupies closer when mapped to the vector space.
In the proposed work, the concept of temporal random walk
[56,57] is used to capture the temporal information of the
network and positive pointwise mutual information (PPMI)
[58] to compute the temporal proximity between vertex pairs.

Various approaches [59–61] were proposed to perform
link prediction on dynamic networks. Recent studies [18,
19,62,63] show that the link prediction performance can be
improved to a great extend using network embedding meth-
ods. A graph autoencoder [64] designed using GCN as the
encoder is particularly effective in reconstructing the original
network and therebypredicting themissing links.A summary
of some related works is presented in Table 1. In the context
of temporal networks discussed in this work, the link predic-
tion task is to predict the links that may occur as edge streams
at a later point of time.

Definitions and preliminaries

In the section, we provide the various definitions used in this
work along with the problem definition of temporal network
embedding. We also review the preliminary design of GCN
and GAT.

123

16 Complex & Intelligent Systems (2022) 8:13–27

Table 1 Summary of related works

Method Network type Input Architecture used Applications

Node2vec [28] Static network Edge list Skip-gram with
negative sampling

Node classification,
link prediction

Chebyshev [12] Static network Adjacency matrix Graph convolutions Text classification

GCN [13] Static network Adjacency and feature matrix Graph convolutions Node classification

GraphSAGE [14] Static network Adjacency and feature matrix Graph sampling and
aggregation

Node classification

GAT [20] Static network Adjacency and feature matrix Graph convolutions
and attention

Node classification

hpGAT [44] Static network Adjacency and feature matrix Graph convolutions,
attention and
matrix
factorization

Node classification

Graph Autoencoder [64] Static network Adjacency and feature matrix Deep autoencoder Link prediction

DynGem [17] Dynamic network
represented as
snapshots

Edge list Stacked autoencoder Link prediction

Dynnode2vec [50] Dynamic network
represented as
snapshots

Edge list Skip-gram Node classification,
link prediction

Tempnode2vec [49] Dynamic network
represented as
snapshots

Adjacency matrix Matrix factorization Node classification,
edge prediction

EvolveGCN [18] Dynamic network
represented as
snapshots

Adjacency and feature matrix Graph convolutions
and LSTM

Link prediction

CTDNE [19,56] Temporal network
represented as
edge streams

Edge list Skip-gram with
negative sampling

Link prediction

Definitions

Temporal network [54] It is a graph G = (V , ET , T), where
V is a set of vertices, ET is the set of time-stamped edges
between vertices in V , and T is the set of possible time-steps.
Each instance of the network can be represented as the con-
tact between the vertices as a function of time: a set of triplets
(vi , v j , t)where t is the time of interaction between vertex vi
and v j , with t ∈ T . At the finest granularity level, each edge
may be labeled with a distinct time-stamp. Also, there can
be multiple edges between nodes representing the interac-
tion between vertices at different time-stamps. For example,
an email communication may occur between two people at
different time-stamps.

Temporal walk [56]: A temporal walk exists from node
vi to v j if there exist a stream of edges E = (vi , vk, t1),
(vk, vl , t2), . . . , (vn, v j , tn) from vi to v jm such that with
t1 ≤ t2 ≤ · · · ≤ tn . Informally if we have two edges
(v1, v2, t1) and (v2, v3, t2), a temporal walk starts at v1 can
reach v3 only of t1 ≤ t2. We can say that two vertices u and
v are temporally close if there exists a time-respecting walk
from u to v.Wemay also define the temporal order proximity

between any two vertices vi to v j as length of the minimal
length temporal walk between the vertices vi and v j

Therefore, in the case of temporal networks, a walk sequence
is valid only if the edges are traversed in the increasing
order of interaction time. If each edge represents an interac-
tion (e.g., phone call communication) between two objects,
then a temporal random walk represents an optimal path for
an information transfer through the temporal network. For
example, suppose we have two phone calls ei = (v1, v2, t1)
from v1 to v2 at time t1 and e j = (v2, v3, t2) from v2 to v3
at time t2; then if t1 ≤ t2, the call e j = (v2, v3) may reflect
the information received during the call ei = (v1, v2). How-
ever, if t1 > t2, the call e j = (v2, v3) cannot contain any
information communicated between v1 and v2.
Temporal network embedding: Given a temporal network
G = (V , ET , T), the task is to learn a transformation func-
tion f : Vi → Ki ∈ Rd , where d � |V |, which map the
nodes of the network to a low-dimensional space by preserv-
ing the network structure and the temporal order proximity
of nodes in the network. Two nodes occupy closer in the vec-
tor space if they are topologically closer in the network and
there exists a high temporal closeness between the nodes.

123

Complex & Intelligent Systems (2022) 8:13–27 17

Graph convolutional network (GCN) [13]

Convolutional neural network is a widely used concept to
learn good feature representations from data that can be
represented in a euclidean space. Network are inherently
irregular or non-Euclidean and the traditional convolution
operation as applicable in images is not directly applicable to
networks. The concept of graph convolution has been evolved
from the field of graph signal processing where we clas-
sify the whole domain into spectral and spacial-based graph
convolutions. Under spectral domain, the node features or
attributes of the graph are considered as graph signals and
the Chebyshev polynomials of the diagonal matrix of Lapla-
cian eigenvalues are considered as the graph kernel. Spectral
convolutions are defined as the product of a graph signal by
a kernel. The kernel defined by the Chebyshev uses the sum
of all Chebyshev polynomial kernels applied to the diagonal
matrix of scaled Laplacian eigenvalues for first-order to k-
order (largest order) neighbourhood. GCN can be considered
as a first-order approximation of spectral graph convolution
as described by Chebyshev. Given a graph represented as an
adjacency matrix A with n number of nodes and k number
of features, the goal of GCN is to learn a function from the
network which takes as input: i) an n x k feature matrix H ;
ii) an adjacency matrix A, and to produce an output Z which
is an n x d matrix, where d is the number of dimensions per
node. GCN uses the layer-wise propagation rule:

H(l+1) = σ(D̂− 1
2 ÂD̂− 1

2 H(l)W(l)), (1)

whereWl denote theweightmatrix of lth network, Â = A+ I
and D is the diagonal node degree matrix of Â. Initially,
the node feature matrix F can be considered as the embed-
ding matrix, i.e., H0 = F . At each convolutional layer l,
the embedding matrix gets updated by following three steps
which include a feaure propagation, a linear transformation,
and a non-linear activation.

During feature propagation, the new features of each node
become the sum of the features from the node’s first-order
neighbourhoods. This is followed by multiplying the result
with the weight matrix which can linearly transform the fea-
ture representations to another latent space. The last step is to
apply a non-linear activation function. The results of the con-
volutions may be fed into a softmax layer and weights can be
learned using application-specific tasks like link prediction
or node classification.

Graph attention network (GAT) [20]

GCN assumes equal importance to all the nodes in the same
neighbourhood and, therefore, have limitations in model
capacity. AGAT is designed to be amore robustmodel which
uses an attention mechanism to assign different weights to

nodes in the same neighbourhood. Moreover, the attention
weights can be learned using end-to-end training which can
improve the model performance. In addition to the steps fol-
lowed in GCN, the core of the GAT is an attention layer
which learns self-attention weights that indicate the impor-
tance of node j features to node i . GAT also takes as input an
n x k feature matrix represented as F , an adjacency matrix
A, and produces Z , an n x d embedding matrix. Like GCN,
the initial step is to apply a linear transformation parame-
terized by a weight matrix w over all nodes to generate a
high-level latent representation. The next step is to perform
a self-attention, parameterized by a weight vector −→a over
all nodes and learns an attention coefficient between every
pair of vertices. Given the feature matrix H ={h1, h2, ...hn}
(initially H = F) where each row hi represents the feature
vector of node i , the attention coefficient Ei j between every
node pair i and j can be computed as:

Ei j = −→a (Whi ,Wh j). (2)

GAT only considers Ei j for those nodes j ∈ Ni , where
Ni represent the first-order neighbourhood of node i in the
graph. GAT uses a leaky relu function to introduce some non-
linearity and a softmax function to normalize the attention
coefficients. The coefficients thus computed can be repre-
sented as:

Ei j = exp(leakyRELU (
−→
aT (Whi ||Wh j))

∑
l∈Ni

exp(leakyRELU (
−→
aT (Whi ||Whl))

, (3)

where || represent the concat operation. The matrix Ei j

constitutes the attention matrix. Furthermore, the link infor-
mation in the adjacency matrix is replaced by the learned
attention coefficients from the attention matrix and the fea-
tures from the first-order neighbourhood are aggregated. A
typical feature aggregation at node i can be represented as:

h′
i = σ

⎛

⎝
∑

j∈Ni

Ei jWh j

⎞

⎠ . (4)

Methodology

In this section, we discuss amethodology to incorporate tem-
poral information to a graph convolutional network so as to
generate time-aware node embeddings from a temporal net-
work.

Extracting temporal proximity information

The first step of the process is to extract the temporal neigh-
bourhood information of every node in the network. Here, we

123

18 Complex & Intelligent Systems (2022) 8:13–27

Fig. 3 Flow diagram for PPMI matrix generation

Fig. 4 Temporal Hops w.r.t.
node A

propose a temporal walk and PMMI-based method to effi-
ciently represent the temporal neighbourhood of each node.
A flow diagram of the method is shown in Fig. 3. We per-
form a temporal random walk starting at various nodes on
the network to generate walk sequences. Furthermore, we
compute the co-occurrence statistics of every pair of nodes
to generate the pointwise mutual information(PMI) matrix.
The negative entries of PMI matrix are set to zero to form
positive pointwise mutual information (PPMI) matrix.

Computing the temporal co-occurrence information
between the nodes from a temporal network with large num-
ber of discrete time-steps is computationally intensive. Here,
we adopt a sampling-based technique where we approximate
the co-occurrence information using the walk sequences
generated from a temporal random walk. A temporal walk
sequence is a sequences of nodes generated from a temporal
walk where l is the length of the random walk. The walk
is similar to that of the truncated random walk as defined
by [27], but it follows the temporal ordering as given in the
definition of temporal walk.The length of the walk is a hyper-

parameter which can influence order to which the temporal
neighbourhood of each node is captured. For example, from
Fig. 4, it can be observed that walk length l determines tem-
poral neighbourhood of node A.

To generate walk sequences, we follow the sampling strat-
egy as discussed in [56]. A sampling distribution based on
time-steps is precomputed from the graph and is used for
initial edge selection. We use a linear sampling distribution
where the probability of selecting edge e ∈ ET as initial edge
can be computed as:

P(e) = γ (e)
∑

k∈ET
γ (k)

; (5)

γ is a function that sorts the edges in the ascending order of
time and maps each edge to an index with γ (e) = 1 for the
earliest edge e. After initial edge selection, the next step is
to select a temporal neighour which will be the next node in
the random walk. Here, also, we use a linear sampling dis-
tribution to provide temporal bias to the next node selection,

123

Complex & Intelligent Systems (2022) 8:13–27 19

Fig. 5 A two-layer TempGAN architecture

so that walks that exhibit smaller in-between time for con-
secutive edges will get more bias. If β is a function that sorts
the temporal neighbours in the decreasing order of time, the
probability of selecting the temporal neighbour n ∈ Tt (u) as
the next node of node u in time t in the walk can be repre-
sented as:

P(n) = β(n)
∑

l∈Tt (u) β(l)
. (6)

Once the walk sequences are generated, the next step is to
compute point wise mutual information between the nodes
which can be approximated as the co-occurrence statistics of
nodes. The PMI is computed as:

PMI(vi , v j) = log(
P(vi , v j)

P(vi)P(v j)
). (7)

The negative entries in the PMI matrix are replaced by zero
to form the PPMI matrix:

PPMI(vi , v j) = max(PMI (vi , v j), 0). (8)

Each entry in the PMMI matrix can be used to measure the
temporal co-relation between the vertex pairs vi and v j . The
value will be high when there exist more time-respecting
paths between vi and v j and will be low if they co-occur
very few times in a temporal random walk.

TempGAN

The proposed neural architecture (TempGAN) takes as input,
the adjacency matrix A, the node feature matrix F , and
PMMI matrix M , and generates the embedding matrix E .
A two-layer TempGAN is shown in Fig. 5. First, we discuss
the theoretical intuition followed by an example for a bet-
ter understanding. Like GAT, TempGAN also follows two
mechanisms, convolution and attention at each hidden layer
of the neural network. Given an initial n x k feature matrix
H (H0 = F), where n is the number of nodes and k is the
number of features at each node, the first step is to apply a
linear transformation parameterised byweightW to generate
high-level features, which can be represented as:

H ′ = (WH). (9)

The next step is to apply self-attention over the nodes
parameterized by a shared attention weight −→a that can com-
pute the attention coefficient matrix E as:

E = (
−→a H ′). (10)

TempGAN also uses a leaky relu function to provide non-
linearity and a softmax function to normalize the attention
coefficients:

Ei j = so f tmax j (leakyRelu(Ei j)). (11)

Each entry Ei j of E contains the attention coefficient w.r.t.
every pair of vertices. We need to consider the Ei j of nodes

123

20 Complex & Intelligent Systems (2022) 8:13–27

Fig. 6 Operation of tempGAN w.r.t. node A

j ∈ Ti , where Ti is the temporal neighbourhood of nodes i in
the graph. The temporal neighbourhood of each node can be
inferred from the PPMI matrix M . We can redefine attention
matrix as:

Êi j =
{
Ei j , if Mi j + Ai, j > 0

0, otherwise; (12)

i.e., for every node i , we need to consider the atten-
tion coefficient for those nodes which are in the temporal
neighbourhood of i for further propagation and aggregation
process. Finally, the propagation step can be represented as:

Hl = σ(ÊW Hl−1). (13)

For each node i , the model propagates the transformed
features f from the temporal neighbourhood Ti to i , and the
learned attention weights help to differentiate the temporal
neighbours based on their importance in connectivity, i.e., a
distant temporal neighbour will be given lesser importance
during aggregation process which will help to build a more
robust model.

The operations of tempGAN across two layers can be
explained using Fig. 5. The nodes which are coloured denote
temporal connections (other than first-order neighbours) to
the source, which can be inferred from the PPMI matrix. The
nodes within the temporal proximity of A are B, C, and E.
Therefore, the features of the nodes A(self), B, C, and E are
used in the convolution and attention process, and are used
in generating the latent representation of node A. Similarly,
in layer 2, for generating representations for nodes A, B, C,
and E, the features of the nodes which are in their temporal
proximity are used. For better understanding, the convolution

and attention operations done at node A are shown in detail
in Fig. 6. The features of the nodes A, B, C, and E are first
fed into a linear transformation layer and the latent represen-
tations are learned. Further, they are passed to an attention
and softmax layer to learn the attention coefficients. Finally,
the transformed features from the temporal neighbours A,
B C, and E parameterized by the attention coefficients are
aggregated to learn the latent representation of node A. The
same process happens for all the nodes in the graph.

Application

Various networkmining problems are used in the literature to
evaluate the quality of the embeddings generated using rep-
resentation learning methods. In this work, we use the link
prediction problem [66] of temporal networks as the bench-
mark application. The task is to predict the possibility of link
existence between nodes at future time intervals, given the
existing links between nodes at known time intervals.We fol-
low a variational graph autoencoder architecture to conduct
experimentswith linkpredictionproblem.WeuseTempGAN
architecture as the encoding layers and a simple inner product
operator as the decoding layer. The flow diagram for Temp-
GAN autoencoder architecture for link prediction is shown
in Fig. 7, and the pseudocode of implementation is shown
as Algorithm 1. Here, we use a two-layer TempGAN which
takes the temporal network as input and generates the mean
and log variance w.r.t. every node. The distribution thus gen-
erated will be close to N (0, 1). A random sample embedding
Z can be generated form distribution using reparameteriza-
tion trick which can be represented as:

Z = μ + σ ∗ ε, (14)

where ε ∼ N (0, 1). Furthermore, we can reconstruct the
graph information using an inner product decoder which is
represented as:

Â = σ(Z ZT), (15)

where σ is the logistic sigmoid function.

Experimental setup

In this section, we demonstrate the effectiveness of the pro-
posed system by conducting link prediction experiments
on real-world temporal network datasets. The area under
receiver-operating characteristic curve (AUC) and average
precision (AP) are the measures used for evaluation. The
results are compared with that of the baseline methods. All
experiments are conducted using a machine with Ubuntu

123

Complex & Intelligent Systems (2022) 8:13–27 21

Fig. 7 TempGAN autoencoder for Link Prediction

18.04 operating system, 16 GB RAM, hexa-core proces-
sor with 3.2 GHz speed, and Geforce GTX 1050 Ti GPU.
We used python packages for system implementation, which
include Networkx for graph processing, Pytorch, and Scikit-
learn for building the machine learning modules.

Datasets and evaluation

The temporal network datasets used in experiments are listed
below.The datasets are collected fromKoblenzNetworkCol-
lection [65].
IA-Contacts-hypertext 2009 (hypertext) It is a temporal net-
work which represents the face-to-face proximity between
people during ACM hypertext 2009 conference. Nodes rep-
resent the attendees and the time-stamped edges represent
the interaction between the people over a period of 2.5 days.
It contains 113 nodes and 20.8k time-stamped edges.
IA-Enron-Employees (enron) It is an email communication
network between employees of enron Inc. It contains 151
nodes and 50.5k time-stamped edges over a period of 1137
days.
FB Forum (FB) This is the data collected from an online
student community where the nodes represent the students
and the time-stamped edges represent the messages posted
between them at a particular time-step. It contains 899 nodes
and 33.7k time-stamped edges over a period of 164 days.
IA-Radoslaw-Email (radoslaw) It represents an email com-
munication network of a manufacturing company where
nodes represent employees and edges between themare email
communications. The graph consists of 167 vertices and
82.9k edges over a period of 271 days.
A statistics of various datasets used is shown in Table 2.
The evaluation measures used to compare the performance
of the proposed system with baselines are
AUC AUC is a widely used evaluation metric for link pre-
diction. This metric can be interpreted as the probability that
a randomly chosen missing link is given a higher score than
a randomly chosen non-existent link, provided the rank of
all the non-observed links. Among n independent compar-
isons, if there are n′ times the missing link having a higher
score and n′′ times they have the same score, AUC score is
calculated as:

AUC = n′ + 0.5n′′

n
. (16)

Average precision (AP) It estimates the precision of every
prediction and computes the average over all precisions. It is
calculated as:

AP = Σn(Rn − Rn−1)Pn, (17)

where Pn and Rn are the precision and recall at the nth thresh-
old.

Baselinemethods

A quick introduction to specific baselines is listed below:
Node2vec [28] Node2vec performs random walks on static
network to generate node sequences and uses skip gram
with negative sampling to generate node representations.
Node2vec performs a biased random walk which provides
more flexibility in exploring node neighbourhoods. The
learned representations can be used for link prediction using
vector-based similarity measures.
Graph convolutional network (GCN) [13] GCN is a variant
of graph neural network which applies a graph convolution
at each node to perform the propagation and aggregation of
node features from neighbouring nodes. As GCN has been
defined for only static networks, we consider the graph to be
static for conducting experiments.
Graph attention network (GAT) [20] GAT is an enhancement
over GCN. In addition to convolution and feature aggre-
gation, GAT uses an attention layer to learn self-attention
weights that indicate the importance of node j features to
node i . As GAT has been also defined for only static net-
works, we consider the graph to be static for conducting
experiments.
Continuous-time dynamic network embeddings (CTDNE)
[19] This work first performs truncated time-respecting ran-
dom walks over the temporal networks to generate temporal
path sequences. Furthermore, a skip-gramobjective is trained
to generate node embeddings. The learned representations
are used in predicting missing links.

Result and analysis

To evaluate the quality of the embeddings, we perform link
prediction using TempGAN autoencoder (TempGAN-AE)
architecture which is learned by end-to-end training. To

123

22 Complex & Intelligent Systems (2022) 8:13–27

Algorithm 1: TempGAN Autoencoder
Input: (Un)directed temporal network G = (V , ET , T),

which has adjacency matrix A and node feature matrix
F (initally random)

Output: Reconstructed Adjacency Matrix Â
1 Initialize corpus=[], walk=[], walk length l, walk count C,

Weight matrices W , Attention weight vectors −→a , Number of
TempGAN hidden layers L , Number of epochs ep

2 for c from 1 to C do
3 Sample edge (u, v) from ET using equation 5
4 t = T (e)
5 w = tempwalk(G, (u, v), t, l)
6 corpus.append(w)
7 end
8 PPMI Matrix M= PPMI(corpus)

9 Â=TempGANauto(A, M, F,W ,
−→a , L, ep)

1 Procedure tempwalk (G, (u, v), t, l)
2 walk= [u, v]
3 Set j = v

4 for 1 to l − 1 do
5 Tt (j) = { w|e = (j, w, t ′) ∈ ET ∧ T (j) > t}
6 select node k from Tt (j) using equation 6
7 walk.append(k)
8 t = T (j, k); j = k
9 end

10 return walk
1 Procedure PPMI(corpus)
2 for each walk in corpus do
3 for each u in walk do
4 P(u)+ = 1
5 R.append(u)

6 for each v in walk − R do
7 P(u, v)+ = 1
8 end
9 end

10 end
11 for each (u, v) pair do
12 PPMIu, v = max(log(P(u,v)

P(u)P(v)
), 0)

13 end
14 return PPMI
1 Procedure TempGANauto (A, M, H ,W ,

−→a , L, ep)
2 H0 = F
3 for 1 to ep do
4 for l from 1 to L do
5
 TempGAN Encoder
6 Ei j = (

−→a WHl−1)

7 Ei j = so f tmax j (leakyRelu(Ei j))

8 Êi j =
{
Ei j , if Mi j + Ai j > 0

0, otherwise

9 Hl = Relu(ÊW Hl−1)

10 end
11 Z = reparameteri ze(HL)

12 Â = σ(Z ZT)
 Inner Product Decoder

13 Objective Function L= cross entropy loss(A, Â)

14 stochastic gradient descent(L)

15 end
16 return Â

Table 2 Statistics of various datasets used

Dataset # of nodes # of edges Node average degree Duration (days)

Hypertext 113 20.8K 368.5 2.5

Enron 150 50.5K 669.8 1137

FB 899 33.7K 75 164

Radoslaw 167 82.9K 993.1 271

test link prediction performance with TempGAN-AE, we
hide 10–15 % of temporal links of the original network,
generate node embeddings using TempGAN encoder, and
reconstruct the original network using the inner product
decoder. Thewhole network is trained using stochastic gradi-
ent decent (SGD). Experiment with GCN is conducted using
the same procedure without considering temporal informa-
tion of the links. To test the link prediction performance using
Node2vec, the procedure is as follows. Hide 10–15% of the
links to form the training set, generate node embeddings from
the training set, use Hadamard product of the node embed-
ding to form the edge embedding, and build a classifier based
on positive and negative edges. Hidden edges are used to test
the accuracy of the classifier. To test link prediction perfor-
mancewithCTDNE,wehide 10–15%of temporal links from
time 1 to ‘t-1’, generate embeddings, and predict the links at
time ‘t’. While training the classifier, existing edges are con-
sidered as positive samples and the disconnected edges are
considered as negative samples. Now, we present the analy-
sis and comparison of results obtained from conducting link
prediction experiments on four real-world networks.

Performance

First, we discuss the various parameter settings used by the
proposed system which gained optimum performance. We
set the embedding dimension d = [128, 256, 128, 128] as
optimum for hypertext, FB, enron, and radoslaw datasets,
respectively. We set two hidden layers in TempGAN with
sizes ENRON = [256, 128], FB = [512, 256], enron = [256,
128], and radoslaw = [256, 128]. The temporal random
walk length is set as l=[6, 8, 6, 4] for hypertext, FB, enron,
and radoslaw datasets, respectively. Other hyperparameters
include dropout=[0.5, 0.4, 0.5, 0.4], epochs =[600, 750, 500,
600], initial learning rate=.005, and alpha for leaky relu=
0.1 for hypertext, FB, enron, and radoslaw datasets, respec-
tively. The neuron activations are done using relu function.
The training is done using zero grad optimizer with binary
cross-entropy as the loss function. For GCN, we use the
same parameter settings as that of the proposed system. For
node2vec and CTDNE, we set walk length = 40, negative
samples = 5, and context window size = 10. SVM classifier
is used to predict the positive and negative links.

123

Complex & Intelligent Systems (2022) 8:13–27 23

Now, we compare the performance of TempGAN with
three different static network embeddingmethods (Node2vec,
GCN, and GAT) along with one temporal network embed-
ding method (CTDNE). The performance improvement of
TempGAN for link prediction over the baseline methods
is shown in Fig. 8 and Table 2. Figure 8 depicts the AUC
comparison and it can be found that, for hypertext dataset,
the proposed system gains a performance improvement of
18.7%, 15.1%, 15.1 %, and 13.4%, and for enron dataset,
the proposed system gains a performance improvement of
15.0%, 10.5%, 6.3%, and 7.6% over node2vec, GCN, GAT,
and CTDNE, respectively. Similarly, an AUC improvement
of 11.8%, 6.2%, 3.6%, and 4.9% is obtained against the
baselines for radoslaw dataset. For FB dataset, the proposed
system gains an improvement of 2.5% and 6.5% and 2.5%
over node2vec, GCN, and GAT, and getting a comparable
performance when compared to CTDNE. We observe that

Hypertext FB Enron radoslaw

0.65

0.7

0.75

0.8

0.85

0.64

0.79

0.73

0.76

0.66

0.76 0.76

0.8

0.67

0.79 0.79

0.82

0.67

0.82

0.78

0.81

0.76

0.81

0.84
0.85

Dataset

A
U
C

Node2vec

GCN

GAT

CTDNE

TempGAN

Fig. 8 AUC comparison of proposed system with baselines

Table 3 AP comparison of proposed system with baselines

Method Hypertext FB Enron Radoslaw

Node2vec 65.5 79.4 73.9 75.3

GCN 67.1 74.2 74.9 80.4

GAT 68.4 75.4 74.2 81.8

CTDNE 70.1 81.2 76.4 82.8

TempGAN 79.2 80.0 83.1 84.4

the graph convolution-based methods have an advantage for
networks that have a higher average node degree (dense
network), whereas a truncated random walk-based strategy
like CTDNE is more useful in the case of sparse networks
like FB. Table 3 provides the average precision compari-
son of the proposed system with the baselines, which also
proves the advantage of proposed system over state-of-the-
art network embedding methods. Furthermore, we show the
effect of attentionmechanism used in the proposed system by
conducting experiments with and without attention, and the
results are shown in Table 4. Results show that the learned
attention weights can further improve the quality of node
embeddings and thereby improve the AUC score of link pre-
diction task.

Parameter analysis

In this section, we analyse the effect of various parameter set-
tings used in the experiments which include the length of the
temporal walk, number of hidden layers for the TempGAN
architecture, and the dimensionality of the node embeddings
used in TempGAN autoencoder. We also show the variations
in reconstruction loss andAUCat different epochs of network
training alongwith the training time required to complete one
epoch of training.

Length of the temporal walk

This parameter can decide the number of hops that a valid
temporal walk can cover and therefore is an important
parameter which influence the extent to which the temporal
information is considered for network embedding. A very
low value for walk length l only allows feature aggregation
fromeach nodes very close temporal neighbourswhere larger
values for l allow us to consider features from more distant
temporal neighbours. The effect of l on various datasets in
shown in Fig 9. For dense networks like enron and radoslaw,
an optimum AUC score is obtained while considering fea-
tures from four hop temporal neighbours. For FB dataset, a
walk length covering eight hops provided optimum perfor-
mance. Setting high values for l will introduce noise which
may reduce system performance. We can conclude that the
optimum value for l for each dataset depends upon connec-
tivity patterns of the network.

Table 4 Effect of attention
mechanism in the proposed
system

Method Hypertext FB Enron Radoslaw
AUC AP AUC AP AUC AP AUC AP

Proposed system without attention 0.743 72.1 0.792 78.2 0.813 80.4 0.829 80.5

TempGAN 0.762 79.2 0.819 80.0 0.842 83.1 0.856 84.4

123

24 Complex & Intelligent Systems (2022) 8:13–27

2 4 6 8 10 12

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Walk Length

A
U
C

hypertext

FB
enron

radoslaw

Fig. 9 Effect of walk length

Table 5 Effect of TempGAN hidden layers on AUC

No. of hidden layers Hypertext FB Enron Radoslaw

1 0.732 0.789 0.835 0.823

2 0.762 0.819 0.842 0.856

3 0.760 0.815 0.842 0.851

Parameters of the neural network

The effect of number of hidden layers for TempGAN archi-
tecture is shown in Table 5. We obtained the optimum values
forAUCwhile conducting experimentswith twohidden layer
TempGAN. Increasing the hidden convolution and attention
layers beyond two does not provide any improvements in the
results. The embedding dimension is a parameter which can
be tuned according to the number of nodes in the input graph.
The effect of dimensionality d onAUCw.r.t. various datasets
in shown in Fig 10. For hypertext, enron, and radoslaw, the
optimum performance is obtained when d=128, and for FB,
the value d=256 provided best AUC values.

The reduction in reconstruction loss with the increase in
the number of epochs is shown in Fig. 11 and the improve-
ment in roc score during learning is shown in Fig. 12. The
training time required to complete one epoch for each dataset
is shown in Table 6.

Conclusion

Embedding nodes of a network in vector space by pre-
serving its structural properties is a challenging research
problem. Among various network embedding methods,
graph convolution-based approaches gained more popular-
ity because of its simplicity and effectiveness. In this work,

32 64 128 256
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Node Dimensions

A
U
C

hypertext

FB
enron

radoslaw

Fig. 10 Effect of dimensionality on AUC

150 300 450 600 750

2

2.5

3

3.5

4

4.5

No of Epochs

R
ec
on

st
ru

ct
io
n
L
os
s

hypertext

FB
enron

radoslaw

Fig. 11 Effect of epochs size on reconstruction loss

150 300 450 600 750

0.7

0.75

0.8

0.85

No of Epochs

A
U
C

hypertext

FB
enron

radoslaw

Fig. 12 Effect of epochs size on AUC

123

Complex & Intelligent Systems (2022) 8:13–27 25

Table 6 Average training time per epoch (s)

No. of hidden layers Hypertext FB Enron Radoslaw

1 0.105 0.982 0.087 0.147

2 0.178 1.561 0.140 0.451

we address the problem of temporal network embedding
which aims to map the nodes of a network to vector space
by preserving the temporal information. We aim to extend
the concept of graph convolution and attention to temporal
network data so as to generate time-aware node embeddings.
We propose an neural architecture which uses both link and
temporal information of the network to generate node embed-
dings which can be used in many network mining tasks that
require end-to-end training. We design a graph autoencoder
based on the proposed architecture which performs link pre-
diction on temporal networks. We conducted experiments
with real-world temporal networks and compared the results
with state-of-the-art methods.

In future, we aim to extend the temporal network embed-
ding to more complex systems like epidemic networks
which use SIS (susceptible-infected-susceptible) and SIR
(susceptible-infected-recovered) modeling. The proposed
approach can also be applied to other network mining tasks
like node classification and anomaly detection. Extending the
work tomore complex settings like heterogeneous and signed
networks can be another interesting direction for futurework.

Funding No funds, grants, or other financial support was received.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P
(2017) Geometric deep learning: going beyond Euclidean data.
IEEE Signal Process Mag 34(4):18–42

2. MustoC, Basile P, Lops P, deGemmisM, SemeraroG (2017) Intro-
ducing linked open data in graph-based recommender systems. Inf
Process Manag 53(2):405–435

3. Mason W, Vaughan JW, Wallach H(2014) Special issue: Com-
putational social science and social computing, Mach Learn
96:257–469

4. Yadav CS, Sharan A, Joshi ML (2014) Semantic graph based
approach for text mining. In: 2014 International Conference
on Issues and Challenges in Intelligent Computing Techniques
(ICICT). IEEE, pp 596–601

5. Bhadoria RS, Chaudhari NS, Samanta S (2018) Uncertainty in
sensor data acquisition for SOA system. Neural Comput Appl
30(10):3177–3187

6. SrivastavMK,Bhadoria RS, Pramanik T (2020) Integration ofmul-
tiple cache server scheme for user-based fuzzy logic in content
delivery networks. In: Handbook of research on advanced applica-
tions of graph theory in modern society. IGI Global, pp 386–396

7. Ma’ayan A (2011) Introduction to network analysis in systems
biology. Sci Signaling 4(190):tr5

8. Hamilton WL, Ying R, Leskovec J (2017) Representation learning
on graphs: Methods and applications. arXiv:1709.05584

9. Cui P, Wang X, Pei J, Zhu W (2018) A survey on network embed-
ding. IEEE Trans Knowl Data Eng 31(5):833–852

10. Goyal P, Ferrara E (2018) Graph embedding techniques, applica-
tions, and performance: a survey. Knowl Based Syst 151:78–94

11. Cai H, Zheng VW, Chang KC-C (2018) A comprehensive survey
of graph embedding: problems, techniques, and applications. IEEE
Trans Knowl Data Eng 30(9):1616–1637

12. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional
neural networks on graphs with fast localized spectral filtering. In:
Advances in neural information processing systems, pp 3844–3852

13. Kipf TN, Welling M (2016) Semi-supervised classification with
graph convolutional networks. arXiv:1609.02907

14. Hamilton W, Ying Z, Leskovec J (2017) Inductive representation
learning on large graphs. arXiv:1706.02216.

15. Zhang S, TongH,Xu J,Maciejewski R (2019) Graph convolutional
networks: a comprehensive review. Comput Soc Netw 6(1):11

16. Zhu L, GuoD, Yin J, Ver SteegG, Galstyan A (2016) Scalable tem-
poral latent space inference for link prediction in dynamic social
networks. IEEE Trans Knowl Data Eng 28(10):2765–2777

17. Goyal P, Kamra N, He X, Liu Y (2018) Dyngem: deep embedding
method for dynamic graphs. arXiv:1805.11273

18. Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi
H, Kaler T, Leisersen CE (2019) Evolvegcn: evolving graph con-
volutional networks for dynamic graphs. arXiv:1902.10191

19. Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, Kim S (2018)
Continuous-time dynamic network embeddings. Companion Proc
Web Conf 2018:969–976

20. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio
Y (2017) Graph attention networks. arXiv:1710.10903

21. Deng L, Hinton G, Kingsbury B (2013) New types of deep neural
network learning for speech recognition and related applications:
An overview. In: 2013 IEEE international conference on acoustics,
speech and signal processing. IEEE, pp 8599–8603

22. Nassif AB, Shahin I, Attili I, Azzeh M, Shaalan K (2019) Speech
recognition using deep neural networks: a systematic review. IEEE
Access 7:19143–19165

23. Ramík DM, Sabourin C, Moreno R, Madani K (2014) A machine
learning based intelligent vision system for autonomous object
detection and recognition. Appl Intell 40(2):358–375

24. PraneelAV,RaoTS,MurtyMR (2020)A survey on accelerating the
classifier training using various boosting schemes within cascades
of boosted ensembles. In: Intelligent Manufacturing and Energy
Sustainability. Springer, pp 809–825

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1709.05584
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1805.11273
http://arxiv.org/abs/1902.10191
http://arxiv.org/abs/1710.10903

26 Complex & Intelligent Systems (2022) 8:13–27

25. KhanA,BaharudinB,LeeLH,KhanK (2010)A reviewofmachine
learning algorithms for text-documents classification. J Adv Inf
Technol 1(1):4–20

26. Allahyari M, Pouriyeh S, AssefiM, Safaei S, Trippe ED, Gutierrez
JB, Kochut K (2017) A brief survey of text mining: Classification,
clustering and extraction techniques. arXiv:1707.02919

27. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learn-
ing of social representations. In: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and
data mining, pp 701–710

28. Grover A, Leskovec J (2016) node2vec: scalable feature learning
for networks. In: Proceedings of the 22nd ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pp
855–864

29. Wang D, Cui P, ZhuW (2016) Structural deep network embedding.
In: Proceedings of the 22nd ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pp 1225–1234

30. Cao S, Lu W, Xu Q (2016) Deep neural networks for learning
graph representations. In: Thirtieth AAAI conference on artificial
intelligence

31. Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A com-
prehensive survey on graph neural networks. IEEE Trans Neural
Netw Learn Syst 32(1):4–24

32. Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P
(2013) The emerging field of signal processing on graphs: Extend-
ing high-dimensional data analysis to networks and other irregular
domains. IEEE Signal Process Mag 30(3):83–98

33. Bruna J, ZarembaW, Szlam A, LeCun Y (2013) Spectral networks
and locally connected networks on graphs. arXiv:1312.6203

34. Henaff M, Bruna J, LeCun Y (2015) Deep convolutional networks
on graph-structured data. arXiv:1506.05163

35. Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets
on graphs via spectral graph theory. Appl Comput Harmon Anal
30(2):129–150

36. Yao L, Mao C, Luo Y (2019) Graph convolutional networks for
text classification, Proceedings of the AAAI Conference on. Artif
Intell 33:7370–7377

37. Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec
J (2018) Graph convolutional neural networks for web-scale rec-
ommender systems. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Min-
ing, pp 974–983

38. Schlichtkrull M, Kipf TN, Bloem P, Van Den Berg R, Titov I,
Welling M (2018) Modeling relational data with graph convolu-
tional networks. In: European SemanticWebConference. Springer,
pp 593–607

39. Chen Z-M, Wei X-S, Wang P, Guo Y (2019) Multi-label image
recognition with graph convolutional networks. In: Proceedings of
the IEEEConference onComputerVision and PatternRecognition,
pp 5177–5186

40. Zitnik M, Agrawal M, Leskovec J (2018) Modeling polypharmacy
side effects with graph convolutional networks. Bioinformatics
34(13):i457–i466

41. Sun M, Zhao S, Gilvary C, Elemento O, Zhou J, Wang F (2020)
Graph convolutional networks for computational drugdevelopment
and discovery. Brief Bioinform 21(3):919–935

42. Chen J, Ma T, Xiao C (2018) Fastgcn: fast learning with graph con-
volutional networks via importance sampling. arXiv:1801.10247

43. Yang C, Sun M, Liu Z, Tu C (2017) Fast network embedding
enhancement via high order proximity approximation. In: IJCAI,
pp 3894–3900

44. Liu Z, Liu W, Chen P-Y, Zhuang C, Song C (2019) hpgat: high-
order proximity informed graph attention network. IEEE Access
7:123002–123012

45. Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019) Het-
erogeneous graph attention network. In: The World Wide Web
Conference, pp 2022–2032

46. Yun S, JeongM, KimR, Kang J, KimHJ (2019) Graph transformer
networks. In: Advances in neural information processing systems,
pp 11983–11993

47. Huang J, Shen H, Hou L, Cheng X (2019) Signed graph attention
networks, in: International conference on artificial neural networks.
Springer, pp 566–577

48. Yadati N, Nimishakavi M, Yadav P, Nitin V, Louis A, Talukdar P
(2019) Hypergcn: A new method for training graph convolutional
networks on hypergraphs. In: Advances in neural information pro-
cessing systems, pp 1511–1522

49. Haddad M, Bothorel C, Lenca P, Bedart D (2019) Temporaln-
ode2vec: Temporal node embedding in temporal networks. In:
International conference on complex networks and their applica-
tions. Springer, pp 891–902

50. Mahdavi S, Khoshraftar S, An A (2018) dynnode2vec: scalable
dynamic network embedding. In: 2018 IEEE International Confer-
ence on Big Data (Big Data). IEEE, pp 3762–3765

51. Trivedi R, Farajtabar M, Biswal P, Zha H (2019) Dyrep: learning
representations over dynamic graphs. In: International Conference
on Learning Representations

52. Manessi F, Rozza A, Manzo M (2020) Dynamic graph convolu-
tional networks. Pattern Recogn 97:107000

53. Skarding J, Gabrys B,Musial K (2020) Foundations andmodelling
of dynamic networks using dynamic graph neural networks: a sur-
vey. arXiv:2005.07496

54. Holme P, Saramäki J (2012) Temporal networks. Phys Rep
519(3):97–125

55. Li A, Cornelius SP, Liu Y-Y, Wang L, Barabási A-L (2017)
The fundamental advantages of temporal networks. Science
358(6366):1042–1046

56. Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, Kim S (2018)
Dynamic network embeddings: From random walks to temporal
random walks. In: 2018 IEEE International Conference on Big
Data (Big Data). IEEE, pp 1085–1092

57. StarniniM, Baronchelli A, Barrat A, Pastor-Satorras R (2012) Ran-
dom walks on temporal networks. Phys Rev E 85(5):056115

58. Levy O, Goldberg Y (2014) Neural word embedding as implicit
matrix factorization. In:Advances in neural information processing
systems, pp 2177–2185

59. Ma X, Sun P, Qin G (2017) Nonnegative matrix factorization
algorithms for link prediction in temporal networks using graph
communicability. Pattern Recogn 71:361–374

60. Ahmed NM, Chen L, Wang Y, Li B, Li Y, Liu W (2018) Deepeye:
link prediction in dynamic networks based on non-negative matrix
factorization. Big Data Min Anal 1(1):19–33

61. Yasami Y, Safaei F (2018) A novel multilayer model for missing
link prediction and future link forecasting in dynamic complex
networks. Phys A 492:2166–2197

62. Zhang M, Chen Y (2018) Link prediction based on graph neural
networks. In: Advances in neural information processing systems,
pp 5165–5175

63. Li T, Zhang J, Philip SY, Zhang Y, Yan Y (2018) Deep dynamic
network embedding for link prediction. IEEE Access 6:29219–
29230

64. Kipf TN, Welling M (2016) Variational graph auto-encoders.
arXiv:1611.07308

123

http://arxiv.org/abs/1707.02919
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1801.10247
http://arxiv.org/abs/2005.07496
http://arxiv.org/abs/1611.07308

Complex & Intelligent Systems (2022) 8:13–27 27

65. Kunegis J (2013) Konect: the koblenz network collection. In: Pro-
ceedings of the 22nd InternationalConference onWorldWideWeb,
pp 1343–1350

66. Liben-Nowell D, Kleinberg J (2007) The link-prediction problem
for social networks. JAmSoc InformSciTechnol 58(7):1019–1031

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Temporal network embedding using graph attention network
	Abstract
	Introduction
	Related works
	Definitions and preliminaries
	Definitions
	Graph convolutional network (GCN) kipf2016semi
	Graph attention network (GAT) velivckovic2017graph

	Methodology
	Extracting temporal proximity information
	TempGAN
	Application

	Experimental setup
	Datasets and evaluation
	Baseline methods

	Result and analysis
	Performance
	Parameter analysis
	Length of the temporal walk
	Parameters of the neural network

	Conclusion
	References

