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Abstract
A fuzzy dynamic-prioritization agent-based system was developed in this study to improve the forecasting of the cycle time 
of a job in a wafer fabrication plant (wafer fab). In this system, multiple fuzzy agents forecast the cycle time of a job from 
various viewpoints, after which the aggregation and evaluation agent aggregates these fuzzy cycle time forecasts using an 
innovative operator (i.e., the fuzzy weighted intersection) into a single representative value. Subsequently, the optimization 
agent varies the authority levels of the fuzzy cycle time forecasting agents to optimize the forecasting performance. A practi-
cal example was used to evaluate the effectiveness of the fuzzy dynamic-prioritization agent-based system. The experiment 
results indicated that the fuzzy dynamic-prioritization agent-based system outperformed three rival methods in improving 
forecasting accuracy. In addition, the forecasting performance could be enhanced by discriminating the authority levels of 
the fuzzy cycle time forecasting agents.

Keywords  Cycle time · Fuzzy back propagation network · Agent · Fuzzy weighted intersection · Wafer fabrication

Introduction

The cycle time, or manufacturing lead time, of a job is the 
time it takes for the job to go through a factory [25, 59]. 
Numerous studies have aimed to reduce the average cycle 
time of all jobs in a factory [12, 25, 27]. Therefore, forecast-
ing the cycle time of a job is important for production plan-
ning and control, such as internal due date assignment [14, 
24, 54, 55], job sequencing and scheduling [32, 56, 58], and 
order tracking [38, 50].

Chen [10] classified existing approaches for forecasting 
the cycle time of a job into six categories: statistical analysis 
[10, 32, 43, 54], simulation [34, 43], artificial neural net-
works (ANNs, [6, 7, 33], case-based reasoning (CBR, [5], 
fuzzy theory [6, 7], and hybrid approaches [6, 19]. Recently, 

advanced data analysis techniques, such as big-data analysis 
and deep learning, have also been used for forecasting the 
cycle time of a job [47, 53–55]. However, the cycle time of 
a job is highly uncertain [49] and unpredictable even with 
these advanced data analysis techniques. Therefore, fore-
casting also involves estimating the range of a job’s cycle 
time. In particular, the spread of a fuzzy cycle time forecast 
provides information about the range of the cycle time [7]. 
However, such forecasting is based on the prerequisite that 
a fuzzy cycle time forecast contains actual values [16]. To 
ensure this, fuzzy collaborative forecasting methods have 
been proposed to narrow the range of a cycle time forecast 
through the collaboration of multiple experts (or agents, [11, 
13, 16].

The following problems were observed in previous stud-
ies in this field:

1.	 Most studies in this field have employed only a single 
forecasting method. Combining multiple forecasting 
methods can improve the forecasting of a job’s cycle 
time [11, 15].

2.	 Although some studies have employed hybrid methods, 
each method has been used for a unique purpose, such 
as clustering and forecasting [8, 10, 55].
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3.	 Studies that employ multiple forecasting methods usu-
ally assume that the forecasts generated using these 
methods have equal reference values. However, some 
forecasting methods are more suitable than others for a 
specific forecasting task.

Therefore, to overcome these problems, this study pro-
posed a fuzzy dynamic-prioritization agent-based system for 
forecasting the job cycle time in a wafer fabrication plant 
(wafer fab). In this proposed system, multiple fuzzy agents 
construct fuzzy backpropagation networks (FBPNs) or fuzzy 
deep neural networks (FDNNs) to collaboratively forecast 
the cycle time of a job. Autonomous and intelligent agents 
are adopted because they are efficient and can collaborate 
smoothly [21, 57]. These fuzzy agents for forecasting the 
cycle time may have unequal levels of authority. Therefore, 
this system uses the fuzzy weighted intersection (FWI) oper-
ator proposed by Chen et al. [18] to aggregate the fuzzy 
cycle time forecasts made by all agents in a reasonable man-
ner. In addition, this study designed a dynamic-prioritization 
mechanism for adjusting the authority levels of agents to 
enhance forecasting performance.

The rest of this paper is organized as follows. The next 
section presents the literature review followed by which 
introduces the fuzzy dynamic-prioritization agent-based 
system, including its system architecture, operational pro-
cedure, and major parts. The subsequent section details the 
application of the system to a practical example where data 
were collected from a real wafer fab. Before the concluding 
section, the performance of the system with those of some 
existing approaches are compared. Finally, main conclusions 
are concluded and some directions for future research are 
proposed.

Literature review

Mosinski et al. [34] extended a short-term simulation system 
of a wafer fab to simulate the long-term operations of the 
wafer fab. This allowed the cycle time of a future job to be 
forecast. Various simulation techniques, such as process flow 
compression, flexible equipment dedication, model warm-
up, wafer start generation, and considerations on changes to 
fab capacity, have been implemented to the forecast of job 
cycle time.

Pfeiffer et al. [43] forecasted the cycle time of a job 
using a regression model that fit data retrieved from the 
manufacturing execution system of a factory. In addition, 
a factory simulation was conducted to validate the effec-
tiveness of the fitted regression equation. Lingitz et al. 
[32] compared the accuracy levels achieved by existing 
regression methods for forecasting the cycle time of a job 
in a wafer fab. Wang et al. [54] focused on identifying 

factors critical for forecasting the cycle time of a job. To 
this end, correlation analyses [16] have been conducted. 
Subsequently, they fitted an adaptive logistic regression 
equation to generate a job cycle time forecast. A parallel 
computing architecture was also established to improve 
the computational efficiency. However, Nielsen et al. [37] 
believed that the relationship between the cycle time of 
an order (composed of many jobs that are simultaneously 
manufactured) and the order size may not be linear. There-
fore, numerous nonlinear forecasting methods, particularly 
those including ANNs, have been proposed to forecast the 
cycle time of a job based on its attributes.

Chen and Wu [16] constructed an FBPN to generate a 
fuzzy cycle time forecast. The FBPN was efficient because 
only the threshold of the output node was fuzzified. Wang 
et al. [53] constructed a two-dimensional long short-term 
memory (LSTM) model with multiple memory units to fore-
cast the cycle time of a job in a wafer fab. An LSTM is a 
recurrent neural network in which the outputs from some 
nodes are fed back to earlier nodes. The two layers in their 
model were used to consider the correlation between lay-
ers and the correlation between wafers, respectively, owing 
to the machine dedication constraint. Wang et al. [54, 55] 
constructed a density peak-based radial basis function net-
work (RBFN) to forecast the cycle time of a job. They also 
classified jobs before forecasting the cycle times, which was 
common in previous studies [10, 14]. The experiment results 
revealed that the density peak-based RBFN outperformed 
regression methods. Murphy et al. [35] compared the per-
formances of two types of ANNs [backpropagation network 
(BPN) and H2O] and three regression methods (random for-
est, XGBoost, and Cubist) for estimating the cycle time of 
a job under various manufacturing environments governed 
by different job scheduling policies. The experiment results 
indicated that the ANNs performed better in most cases.

Methodology

The fuzzy dynamic-prioritization agent-based system is a 
client–server system [2] comprising five major parts Fig. 1: 
the central control unit, fuzzy cycle time forecasting agents, 
the aggregation and evaluation agent, the dynamic-prioriti-
zation agent, and the system database.

The operational procedure of the fuzzy dynamic-prioriti-
zation agent-based system is as follows:

Step 1 The central control unit retrieves the historical data 
of jobs from the system server and transmits the data to the 
fuzzy cycle time forecasting agents.

Step 2 Each fuzzy cycle time forecasting agent constructs 
and trains an FBPN (or FDNN) to forecast the cycle time of 
a job based on the received data.
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Step 3 Each fuzzy cycle time forecasting agent saves the 
fuzzy cycle time forecast into the system server through the 
intervention of the central system server.

Step 4 The aggregation and evaluation agent retrieves the 
fuzzy cycle time forecasts by all fuzzy cycle time forecast-
ing agents from the system server, aggregates these fuzzy 
cycle time forecasts, defuzzifies the aggregation result, and 
evaluates the forecasting performance.

Step 5 If the forecasting performance is satisfactory, go 
to Step 8; otherwise, go to Step 6.

Step 6 The optimization agent optimizes the authority 
levels of the fuzzy cycle time forecasting agents.

Step 7 Return to Step 4.
Step 8 End.
An activity diagram [23] is shown in Fig. 2, illustrating 

the operational procedure.
The parts of the fuzzy dynamic-prioritization agent-based 

system are introduced in the following sections.

Fuzzy cycle time forecasting agents

In the fuzzy dynamic-prioritization agent-based system, 
multiple fuzzy cycle time forecasting agents are employed. 
Each agent constructs an FBPN (or FDNN) to forecast 
the cycle time of a job according to the values of some 
production conditions collected when the job is released 
into a factory [9]. Such production conditions include job 
size, factory utilization, queue length on the processing 
route, bottleneck queue length, factory queue length, fac-
tory work in process, average lateness, future workload, 
and forecasting error [8, 16, 42]. In the literature, various 

techniques for select the relevant production conditions 
have been employed, such as backward-elimination-based 
regression analysis [7], backward-elimination-based 
genetic programming [4], conditional mutual-informa-
tion-based feature selection [52], and adaptive logistic 
regression correlation analysis [54, 55]. The relationship 
between job cycle time and production conditions is non-
linear [13]. An FBPN (or FDNN) is suitable for fitting 
such a nonlinear relationship [48].

Fuzzy parameters and variables in the proposed method 
are provided or approximated with triangular fuzzy numbers 
(TFNs). However, other types of fuzzy numbers are also 
applicable. In addition, all inputs to (and outputs from) the 
FBPN (or FDNN) are normalized values [15, 40]:

where ṽj is any input to (or output from) the FBPN (or 
FDNN); (+), (−), and (×) denote fuzzy addition, subtrac-
tion, and multiplication, respectively. To restore the original 
value,

FBPN

The FBPN used by each fuzzy cycle time forecasting agent 
is configured as follows Fig. 3.

1.	 Number of layers: Three layers exist in the FBPN: the 
input layer, a single hidden layer, and the output layer 
[11].

2.	 Inputs: P inputs to the FBPN, which are the values of 
production conditions for job j and are indicated by xjp ; 
p = 1 ~ P.

3.	 Number of nodes in the hidden layer: L. The value of L 
is chosen from P to 2P [45].

4.	 Transfer (or transformation) function: linear function 
applied to the input layer, and the log-sigmoid function 
applied to the other layers.

5.	 Output ( ̃oj ): fuzzy cycle time forecast of job j.

The procedure for training the FBPN is described as 
follows. First, inputs to the input layer are propagated to 
the hidden layer, then transformed, and finally output as:

where

(1)N(ṽj) =
ṽj(−)mink ṽk

maxk ṽk(−)mink ṽk
(×)0.9(+)0.1,

(2)ṽj = mink ṽk(+)
(N(ṽj)(−)0.1)(×)(maxk ṽk(−)mink ṽk)

0.9
.

(3)h̃jl =
1

1(+)e
−ñh

jl

,

Fuzzy 
Forecasting 

Agents
Optimization

Agent

System 
Database

....
....

Aggregation 
& Evaluation 

Agent

Central 
Control Unit

Fig. 1   Architecture of the fuzzy dynamic-prioritization agent-based 
system
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h̃jl is the output from hidden-layer node l, 𝜃h
l
 is the threshold 

of the hidden-layer node l, and w̃h
pl

 is the weight of the con-
nection between input node p and hidden-layer node l. h̃jl is 
passed to the output layer in the same manner. The output 
from the output node is generated as:

where

(4)ñh
jl
= Ih

jl
(−)𝜃h

l
,

(5)Ĩh
jl
=

P∑

p=1

(w̃h
pl
(×)xjp),

(6)õj =
1

1(+)e
−ño

j

,

Fig. 2   Operational procedure of 
the fuzzy dynamic-prioritization 
agent-based system
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with 𝜃o being the threshold of the output node and w̃o
l
 being 

the weight of the connection between the hidden-layer node 
l and the output node.

To simplify the network training process, Chen [11] and 
Chen and Wu [16] only fuzzified the threshold of the output 
node ( ̃𝜃o ) to ensure that the membership of actual value ( aj ) 
in the network output ( ̃oj ) is higher than a threshold (s,Fig. 4:

where s ∈ [0, 1]. Through such an approach, the forecasting 
accuracy is improved before forecasting precision is opti-
mized [17]. By contrast, most existing FBPNs only optimize 
forecasting accuracy [6, 28, 40].

Subsequently, the FBPN is treated as a crisp one and 
trained using any existing algorithm, such as the gradient 
descent (GD) algorithm, the Levenberg–Marquardt (LM) 
algorithm, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
quasi-Newton algorithm, and the resilient backpropagation 
algorithm, [41, 46, 63], to optimize the cores of all fuzzy 
parameters. The optimized values of these cores are denoted 
as wh∗

pl2
 , �h∗

l2
 , wo∗

l2
 , and �o∗

2
 , respectively. Under these condi-

tions, the following theorem holds.

Theorem 1. 

(7)ño
j
= Ĩo

j
(−)𝜃o,

(8)Ĩo
j
=

L∑

l=1

(w̃o
l
(×)h̃jl),

(9)(1 − s)oj1 + soj2 ≤ aj ≤ (1 − s)oj3 + soj2,

(10)�
o
3
≥ �

o
2
+max

j

(
ln

(
1 − s

aj − soj2
− 1

)
− ln

(
1

oj2
− 1

))
,

Proof  According to the arithmetic on TFNs [26],

Substituting Eq. (12) into Eq. (5) gives

Substituting Eq. (13) into Inequality (9) gives

which is equivalent to the following two inequalities:

Subsequently, substituting Eqs. (6) and (7) into Inequality 
(15) results in

To guarantee this,

Similarly, substituting Eqs. (6) and (7) into Inequality 
(16) results in:

Theorem 1 is proved.

To optimize the forecasting precision in terms of the aver-
age range of õj , the following theorem can be used [11].

(11)

�
o
1
≤ �

o
2
+min

j

(
ln

(
1 − s

aj − soj2
− 1

)
− ln

(
1

oj2
− 1

))
.

(12)

ño
j
= (no

j1
, no

j2
, no

j3
)

= (Io
j1
− 𝜃

o
3
, Io

j2
− 𝜃

o
2
, Io

j3
− 𝜃

o
1
)

= (Io
j2
− 𝜃

o
3
, Io

j2
− 𝜃

o
2
, Io

j2
− 𝜃

o
1
)

(13)

õj = (oj1, oj2, oj3)

=
1

1 + e
−ño

j

=

(
1

1 + e
−no

j1

,
1

1 + e
−no

j2

,
1

1 + e
−no

j3

)

=

(
1

1 + e
−(Io

j2
−𝜃o

3
)
,

1

1 + e
−(Io

j2
−𝜃o

2
)
,

1

1 + e
−(Io

j2
−𝜃o

1
)

)

(14)
(1 − s)

1 + e
−(Io

j2
−�o

3
)
+ soj2 ≤ aj ≤

(1 − s)

1 + e
−(Io

j2
−�o

1
)
+ soj2,

(15)
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1 + e
−(Io

j2
−�o

3
)
+ soj2 ≤ aj,

(16)aj ≤
(1 − s)

1 + e
−(Io

j2
−�o

1
)
+ soj2.

(17)�
o
3
≥ �

o
2
+ ln

(
1 − s

aj − soj2
− 1

)
− ln

(
1

oj2
− 1

)
.

(18)

�
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j

(
ln

(
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− 1

)
− ln

(
1

oj2
− 1

))
.

(19)

�
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1
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o
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j

(
ln

(
1 − s

aj − soj2
− 1

)
− ln

(
1

oj2
− 1

))
.

Fig. 4   Threshold for the membership of actual value in the fuzzy 
cycle time forecast
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Theorem 2. 

Proof  The proof is trivial.

Finally, the fuzzified network output is derived as follows.

Theorem 3 

Proof 

Similarly,

Theorem 3 is proved.

(20)

�
o∗
3

= �
o∗
2

+max
j

(
ln

(
1 − s

aj − soj2
− 1

)
− ln

(
1

oj2
− 1

))
,

(21)

�
o∗
1

= �
o∗
2

+min
j

(
ln

(
1 − s

aj − soj2
− 1

)
− ln

(
1

oj2
− 1

))
.

(22)
oj3 =

1

1 +
(

1

oj2
− 1

)
e
min
j

(
ln

(
1−s

aj−soj2
−1

)
−ln

(
1

oj2
−1

))

,

(23)
oj1 =

1

1 +
(

1

oj2
− 1

)
e
max

j

(
ln

(
1−s

aj−soj2
−1

)
−ln

(
1

oj2
−1

)) .

(24)

oj3 =
1

1 + e
−(Io

j2
−�o∗

1
)

=
1

1 + e
−

(
Io
j2
−(�o∗

2
+min

j

(
ln

(
1−s

aj−soj2
−1

)
−ln

(
1

oj2
−1

)))

=
1

1 + e
−(Io

j2
−�o∗

2
)
e
min
j

(
ln

(
1−s

aj−soj2
−1

)
−ln

(
1

oj2
−1

))

=
1

1 +
(

1

oj2
− 1

)
e
min
j

(
ln

(
1−s

aj−soj2
−1

)
−ln

(
1

oj2
−1

))

(25)

oj1 =
1

1 + e
−(Io

j2
−�o∗

3
)

=
1

1 + e
−

(
Io
j2
−(�o∗

2
+max

j

(
ln

(
1−s

aj−soj2
−1

)
−ln

(
1

oj2
−1

)))

=
1

1 + e
−(Io

j2
−�o∗

2
)
e
max

j

(
ln

(
1−s

aj−soj2
−1

)
−ln

(
1

oj2
−1

))

=
1

1 +
(

1

oj2
− 1

)
e
max

j

(
ln

(
1−s

aj−soj2
−1

)
−ln

(
1

oj2
−1

))

FDNN

This study extended the FBPN to an FDNN by increasing 
the number of hidden layers, as shown in Fig. 5. An FDNN 
may have the following advantages over an FBPN:

1.	 The forecasting accuracy achieved using an FDNN may 
be higher than that achieved using an FBPN [39].

2.	 An FBPN may require a fewer number of nodes than an 
FDNN to achieve the same forecasting accuracy [29].

3.	 The training process of an FDNN may be much more 
efficient than that of an FBPN [1].

However, the superiority of an FDNN over an FBPN 
depends on the nature of the forecasting problem [30].

In the network training phase, inputs to an FDNN are 
weighted and transmitted to each node of the first hidden 
layer, on which they are aggregated and then output as:

where

with h̃(1)
jl

 being the output from node l of the first hidden 
layer; l = 1 ~ L. 𝜃h(1)

l
 being the threshold of this node; w̃h(1)

kl
 

being the weight of the connection between input node k and 
this node; and h̃(1)

jl
 being passed to the second hidden layer, 

aggregated, transformed, and finally output in the same man-
ner as

(26)h̃
(1)

jl
=

1

1 + e
−ñ

h(1)

jl

,

(27)ñ
h(1)

jl
= Ĩ

h(1)

jl
(−)𝜃

h(1)

l
,

(28)Ĩ
h(1)

jl
=

P∑

p=1

w̃
h(1)

pl
zjp,

1

2

P

....

1

2

L

....

Input
Layer

xj1

xj2

xjP

1st Hidden
Layer

Output
Layer

~oj

1

2

Q

....

2nd Hidden
Layer

Fig. 5   Architecture of the FDNN
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Specifically,

where h̃(2)
jq

 is the output from node q of the second hidden 
layer; q = 1 ~ Q. 𝜃h(2)

q
 is the threshold of this node; and w̃h(2)

lq
 

is the weight of the connection between node l of the first 
hidden layer and this node. In total, there are L∙Q connec-
tions between the two hidden layers. After passing h̃(2)

jq
 to the 

output layer, the network output õj is generated as

where

with 𝜃o being the threshold of the output node and w̃o
q
 being 

the weight of the connection between node q of the second 
hidden layer and the output node.

The training process of an FDNN is similar to that of an 
FBPN. Only the threshold of the output node is fuzzified 
according to Theorems 1–3. The values of the other param-
eters are derived by training the FDNN as a crisp deep neural 
network using the commonly used GD or LM algorithm [3, 
20].

The fuzzy cycle time forecasts made by different agents 
using FBPNs or FDNNs are not equal for the following 
reasons:

1.	 The initial values of network parameters are usually ran-
domized.

2.	 The values of the threshold (s) set by different fuzzy 
cycle time forecasting agents are not the same.

Therefore, a mechanism to aggregate the agents’ time fore-
casts of the cycle time is required.

Aggregation and evaluation agent

Assuming the fuzzy cycle time forecast made by fuzzy cycle 
time forecasting agent m for job j is õj(m) for m = 1 ~ M. In 

(29)h̃
(2)

jq
=

1

1 + e
−ñ

h(2)

jq

.

(30)ñ
h(2)

jq
= Ĩ

h(2)

jq
(−)𝜃h(2)

q
,

(31)Ĩ
h(2)

jq
=

L∑

l=1

w̃
h(2)

lq
(×)h̃

(1)

jl
,

(32)õj =
1

1 + e
−ño

j

,

(33)ño
j
= Ĩo

j
(−)𝜃o,

(34)Ĩo
j
=

Q∑

q=1

w̃o
q
(×)h̃

(2)

jq
,

addition, fuzzy cycle time forecasting agents may have unequal 
authority levels [18, 22, 61]. With �m indicating the authority 
level of a fuzzy cycle time forecasting agent m, the following 
is obtained:

The FWI operator proposed by Chen et al. [18] is used to 
aggregate the fuzzy cycle time forecasts made by agents:

where

An example is given as follows. Assuming the fuzzy cycle 
time forecasts by three fuzzy cycle time forecasting agents are:

The levels of authority of fuzzy cycle time forecasting 
agents are given by the tuple ( �1 , �2 , �3) = (0.35, 0.15, 0.50). 
The corresponding aggregation result using the FWI operator 
is shown in Fig. 6. Values that were considered to be highly 
possible by either all fuzzy cycle time forecasting agents or 
only the most authoritative fuzzy cycle time forecasting agent 
had higher membership values in the FWI result.

The forecasting precision can be evaluated based on the 
aggregation result in terms of the average range [31, 62],  and 
the hit rate, respectively, as follows:

(35)
∑

m

�m = 1,

(36)�m1
≠ �m2

and ∃m1 ≠ m2.

(37)õj(all) =
�FWI({õj(m)}),

(38)

𝜇�FWI({õj(m)})
(x) = min

m
𝜇õj(m)

(x)

+
∑

m

(𝜔m −min
l

𝜔l)(𝜇õj(m)
(x)−min

l
𝜇õj(l)

(x)).

oj(1) = (1205, 1350, 1620),

oj(2) = (1150, 1240, 1495),

oj(3) = (1230, 1415, 1735).
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where

(39)Average range =

∑n

j=1
(max õj(all) −min õj(all))

n
,

(40)Hit rate =

∑n

j=1
zj

n
,

Subsequently, the center-of-gravity method [51, 60] is 
employed to defuzzify the aggregation result to arrive at 
a crisp/representative value:

Based on the result, the forecasting accuracy can be 
evaluated in terms of the

(41)zj =

{
1 if min õj(all) ≤ aj ≤ max õj(all)

0 otherwise
.

(42)oj = COG(õj(all)) =
∫ x𝜇õj(all)

(x)dx

∫ 𝜇õj(all)
(x)dx

.

(43)mean absolute error (MAE) =

∑n

j=1
�oj − aj�
n

,

(44)
mean absolute percentage error (MAPE) =

∑n

j=1

�oj−aj�
aj

n
⋅ 100%,

(45)

root mean squared error (RMSE) =

�∑n

j=1
(oj − aj)

2

n
.

Fig. 7   Operational procedure of 
the dynamic-prioritization agent
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Fig. 8   Architecture of the BPN optimizer
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Dynamic prioritization agent

The authority levels of fuzzy agents for forecasting the 
cycle time can be dynamically adjusted to improve the 
forecasting performance. The dynamic-prioritization 
agent executes the following procedure:

Step 1 Randomize the authority levels of fuzzy cycle 
time forecasting agents.

Step 2 Aggregate the fuzzy cycle time forecasts by the 
agents based on their newest authority levels.

Step 3 Evaluate the forecasting performance.
Step 4 If the forecasting performance is good enough, 

go to Step 8; otherwise, go to Step 5.
Step 5 If sufficient data are collected, retrain the BPN 

optimizer for estimating the forecasting performance from 
the authority levels of the agents; otherwise, return to Step 1.
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Step 6 Estimate the best setting of the authority levels 
of these agents.

Step 7 Return to Step 2.
Step 8 Stop.
A flowchart is shown in Fig. 7 that illustrates the pro-

cedure. The architecture of the BPN optimizer is shown 
in Fig. 8. There exist only M − 1 inputs to the BPN opti-
mizer because �M = 1 −

∑M−1

m=1
�m.

Application

The fuzzy dynamic-prioritization agent-based system was 
evaluated in a practical case featuring real data collected 
from a wafer fab located in Hsin Chu Science Park, Taiwan 
[16]. More than ten products in the wafer fab were compet-
ing for the limited fab capacity. Therefore, the cycle time of 
each product was highly uncertain. The product occupying 
the majority of the fab capacity was analyzed in this study.

The collected data included the cycle times of 120 jobs 
and the values of six production conditions when each job 
was released into the fab (shown in Fig. 9.

Three agents collaborated to fulfill the task of forecasting 
job cycle time. First, each agent configured an FBPN (or 
FDNN) to forecast the cycle time of a job. The configura-
tions of these FBPNs and FDNNs are listed in Table 1. The 
first 3/4 of the collected data were used to train each FBPN 
(or FDNN), and the remaining data were used as test data 
for evaluating the forecasting performance. The forecasting 
results are shown in Fig. 10. The forecasting results obtained 
by the agents for the test data are presented in Table 2. 
Clearly, the forecasting performances had room for improve-
ment, indicating the need for these agents to collaborate.

Subsequently, the aggregation and evaluation agent 
applied the FWI operator to aggregate the fuzzy cycle time 
forecasts of the agents. The authority levels of these agents 
were first set to 0.49, 0.31, and 0.20. Job #1 was taken as 
an example, and the aggregation result is shown in Fig. 11. 
After aggregation, the forecasting performance improved 
in terms of the MAE, MAPE, RMSE, and hit rate:

MAE = 108.3 (h),
MAPE = 8.2%,
RMSE = 137.9 (h),

Average range = 682.4 (h),
Hit rate = 100%.
The average range was slightly widened.
To enhance the forecasting performance, the optimiza-

tion agent constructed a BPN to optimize the values of the 
authority levels of agents, thereby minimizing the MAPE. 
The optimization results were �m = {0.43, 0.15, 0.42} , 
yielding a minimal MAPE of 7.6%. In addition, the MAE, 
RMSE, average range, and hit rate were 98.6 h, 120.6 h, 
642.4 h, and 100%, respectively. The forecasting perfor-
mance was considerably improved, as shown in Fig. 12.

Comparison

To further verify the effectiveness of the fuzzy dynamic-
prioritization agent-based system, three counterpart meth-
ods—the BPN method, CBR [5], and the FBPN-fuzzy 
intersection (FI) approach [16]—were applied to the col-
lected data for comparison. The BPN approach involved 
a single hidden layer. The number of hidden-layer nodes 
were chosen from two previous studies [6, 14] to mini-
mize the RMSE. Therefore, the hidden layer had 14 nodes, 
yielding a minimum RMSE of 113 h for the training data. 
In addition, four training algorithms—the LM algorithm, 
the BFGS quasi-Newton algorithm, the GD algorithm 
with momentum and an adaptive learning rate, and the 
resilient backpropagation algorithm—were used to train 
the BPN. The experimental results demonstrated that the 
BFGS algorithm achieved the highest forecasting accuracy 
in terms of the RMSE. In the CBR method, the number 
of cases was varied from 2 to 13 to observe the changes 
in forecasting performance. The MAPE was minimized 
at ten cases. In Chen and Wu’s FBPN-FI approach, the 
threshold of the output node of the FBPN was also fuzzi-
fied. However, FI, rather than FWI, was used to aggre-
gate the fuzzy cycle time forecasts of the clouds, which 
increased the forecasting precision for the training data 
but also increased the risk of missing an actual value in 
the test data.

The forecasting performances of the various methods 
operating on the test data are presented in Table 3.

The following conclusion can be drawn from the experi-
mental results:

1.	 The fuzzy dynamic-prioritization agent-based system 
outperformed three existing methods in optimizing the 
forecasting accuracy in terms of the MAE, MAPE, and 
RMSE. The BPN method exhibited the lowest perfor-
mance in comparison to the proposed method, with 
its RMSE being 45% higher than that of the proposed 
method.

Table 1   Configurations of FBPNs

Agent # Model type No. of hidden-
layer nodes ([L, 
Q])

Training 
method

Threshold (s)

1 FBPN [12, –] LM 0.6
2 FBPN [8, –] LM 0.5
3 FDNN [2, 2] LM 0.4
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2.	 Both the fuzzy dynamic-prioritization agent-based 
system and Chen and Wu’s FBPN-FI approach had a 
significantly lower MAPE than the other two methods, 
which verified the effectiveness of agent (or cloud) col-

laboration in increasing the performance of forecasting 
the cycle times of jobs.

3.	 The fuzzy dynamic-prioritization agent-based system 
also achieved satisfactory forecasting precision in terms 
of hit rate. Although the CBR method achieved a perfect 

Fig. 10   Forecasting results
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Table 2   Forecasting results 
obtained by individual agents

Agent # MAE (h) MAPE (%) RMSE (h) Average range (h) Hit rate (%)

1 120.4 9.7 145.0 538.4 95
2 184.2 14.7 233.4 593.0 80
3 109.40 8.6 137.8 606.4 100
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hit rate, it generated very wide fuzzy cycle time forecasts 
that provided no useful information.

4.	 If all fuzzy cycle time forecasting agents were of equal 
authority levels, then the forecasting performance would be

MAE = 114.3 (h),
MAPE = 8.7%,

RMSE = 147.1 (h),
Average range = 408.0 (h),
Hit rate = 76%.
These results are much worse than those for unequal 

authority levels.

Conclusions and directions for future 
research

Forecasting the cycle time of each job is critical in a wafer 
fab. Therefore, this study proposes a fuzzy dynamic-prioriti-
zation agent-based system to forecast the cycle time of each 
job. In this system, multiple fuzzy cycle time forecasting 
agents collaboratively forecast the cycle time of a job. Then, 
the aggregation and evaluation agent aggregates these fuzzy 
cycle time forecasts into a single representative value that is 
then compared with an actual value to evaluate the forecast-
ing performance, for which the FWI operator, rather than 
FI, is employed. Through such a process, agents can have 
unequal authority levels. The optimization agent improves 
the forecasting performance by varying the authority levels 
of fuzzy cycle time forecasting agents.

The fuzzy dynamic-prioritization agent-based system was 
used in a practical example featuring data collected from a 
real wafer fab. Three existing methods in this field were also 
evaluated for comparison. After analyzing the experiment 
results, the following conclusions were drawn:

1.	 This study’s system outperformed three existing meth-
ods, especially in forecasting accuracy in terms of the 
MAE, MAPE, and RMSE.

2.	 The collaboration of agents was again demonstrated to 
improve the effectiveness of forecasting the cycle time 
of a job.

3.	 The forecasting performance was considerably improved 
by discriminating the authority levels of fuzzy cycle 
time forecasting agents.

In future studies, the fuzzy dynamic-prioritization agent-
based system should be employed in various production 
environments, such as a ramping-up fab, foundry fab, or 
memory fab, to further examine its effectiveness.
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Table 3   Forecasting performances of various methods

Method MAE (h) MAPE 
(%)

RMSE 
(h)

Average 
range 
(h)

Hit rate (%)

BPN 176 13.7 220 497 95
CBR 148 11.9 182 1145 100
FBPN-FI 

[16]
105 8.1 142 452 95

The pro-
posed 
method-
ology

99 7.6 121 642 100
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