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Abstract
This study presents the modeling of the multiobjective optimization problem in an intuitionistic fuzzy environment. The
uncertain parameters are depicted as intuitionistic fuzzy numbers, and the crisp version is obtained using the ranking function
method.Also, we have developed a novel interactive neutrosophic programming approach to solvemultiobjective optimization
problems. The proposed method involves neutral thoughts while making decisions. Furthermore, various sorts of membership
functions are also depicted for the marginal evaluation of each objective simultaneously. The different numerical examples
are presented to show the performances of the proposed solution approach. A case study of the cloud computing pricing
problem is also addressed to reveal the real-life applications. The practical implication of the current study is also discussed
efficiently. Finally, conclusions and future research scope are suggested based on the proposed work.

Keywords Intuitionistic fuzzy parameters · Robust neutrosophic programming approach · Multiobjective optimization
problem · Cloud computing pricing problem

Introduction

The existence of multiobjective optimization problems is
trivial in real life. The optimization (maximization/
minimization) of more than one commensurable and/or con-
flicting objective under a set of well-defined constraints is
termed as multiobjective optimization problems (MOOPs).
Most often, many real-world applications, such as trans-
portation, supplier selection, inventory control, supply chain
planning, etc., take the form of MOOPs. There is no guar-
antee to get a single solution that satisfies all the objectives
efficiently. However, a compromise solution can be obtained
that satisfies each objective marginally. A huge amount of lit-
erature comprises various optimization techniques to solve
the MOOPs. First, Zimmermann [39] proposed the fuzzy
programming approach for MOOPs based on the fuzzy set
(FS) theory. After that, Chang [17] proposed a goal program-
ming method to solve fractional MOOPs. Ebrahimnejad [21]
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presented computational algorithm to solve multiobjective
linear programming. Tarabia et al. [34] suggested a modi-
fied approach for MOOPs. Zheng et al. [38] discussed an
efficient concept for solving MOOPs. Later on, intuitionistic
fuzzy set (IFS) is presented by Atanassov [13] and Angelov
[12] proposed an intuitionistic fuzzy programming approach
for solving MOPPs. Ahmadini and Ahmad [10] proposed a
novel preference scheme for multiobjective goal program-
ming problem under intuitionistic fuzzy environment. Singh
et al. [30] also solved the intuitionistic fuzzy MOOPs using
various membership functions. Many researchers such as
Bharati and Singh [15], Ebrahimnejad and Verdegay [22],
Jana and Roy [25], Mahajan and Gupta [27], Rani et al. [28],
and Singh and Yadav [31,32] explored the IF optimization
techniques in different real-life applications.

The extension and generalization of FS and IFS are pre-
sented by Smarandache [33] named neutrosophic set (NS).
Based on NS decision set, Ahmad and Adhami [3,4], and
Ahmad et al. [5,7] presented neutrosophic optimization tech-
niques to solve the MOOPs. Furthermore, Abdel-Basset et
al. [1] and Ye [36] also solved the neutrosophic linear pro-
gramming problems under neutrosophic numbers. Recently,
Adhami and Ahmad [2] investigated a novel Pythagorean-
hesitant fuzzy computational algorithm to solveMOOPs and
applied to transportation problem with fuzzy parameters.
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Deli and Şubaş [19] suggested a novel ranking method for
single-valued neutrosophic numbers and applied it to multi-
criteria decision-making problems. Deli [18] investigated
the linear optimization method on a single-valued neutro-
sophic set and performed its sensitivity analysis. Ahmad
et al. [8] discussed the energy–food–water nexus security
management through neutrosophic modeling and optimiz-
ing approaches. [Ahmad et al.] presented a study on supplier
selection problem with Type-2 fuzzy parameters and solved
using an interactive neutrosophic optimization algorithm.

Uncertainty measures are also pervasive. Due to real-
world complexity, uncertainty among the various parametric
values is more realistic attributes while making decisions.
Different sorts of uncertainty, such as vague, random, and
other forms, may exist in real life. Uncertainty due to vague-
ness is treated with a fuzzy set theory. A fuzzy parameter
only deals with the degree of belongingness (acceptance) of
the element into a feasible solution set. It does not consider
the degree of non-belongingness (rejections) of the element
into the same feasible solution set, an integrated part of the
decision-making processes. Furthermore, uncertainty due to
randomness is dealt with random parameters. The estimation
of parameters based on random variables according to some
specified probability distribution function ismuch dependent
on the behavior and nature of the historical data. Sometimes,
it may not be possible to have historical data for which the
random parameters are estimated. An intuitionistic fuzzy
parameter deals with the degree of belongingness (accep-
tance) and degree of non-belongingness (rejections) of the
element into the same feasible solution set, simultaneously.
Also, there is no scope for the historical data while deal-
ing with intuitionistic fuzzy parameters. Unlike fuzzy and
random parameters, uncertain parameters are depicted as tri-
angular intuitionistic fuzzy numbers. Thus, the main motive
behind the selection of intuitionistic fuzzy parameters is to
avoid the shortcomings of fuzzy and random parameters.

Optimization techniques have much importance and pop-
ularity in real life while solving optimization problems.
Despite the FS- and IFS-based optimization techniques, han-
dling vague and imprecise uncertainty in various regions
are still lagging behind the more realistic decision-making
scenarios, where the indeterminate knowledge or neutral
thoughts cannot be tackled. For instance, suppose we seek
the opinion from a research scholar regarding a journal, one
may say that the possibility in which the journal is good is
0.7, the journal is not acceptable is 0.5, and not sure about
the journal is 0.3, respectively. Such issues are beyond the
scope of FS and IFS theories and, consequently, the periph-
ery of FPA and IFPA. Therefore, managing the indeterminate
circumstances of uncertain pieces of knowledge and experi-
ences becomes a challenging task. Indeterminacy is a region
of ignorance of propositions’ values between the truth and
a falsity degree. Hence, the neutrosophic set captures the

indeterminate knowledge or neutral thoughts efficiently. A
very concise part of the literature is dedicated to the solution
approach for MOPP under the neutrosophic environment.
Therefore, a novel interactive neutrosophic programming
approach (INPA) is developed to solve the proposed intu-
itionistic fuzzy MOOPs (IFMOOPs). A continuous effort is
being made by many researchers or practitioners in the mod-
eling and optimization texture ofmultiobjective optimization
problems. Since our proposed MOOP took the form of an
IFMOOPs, the development of a novel optimization tech-
nique to solve IFMOOPs also signifies this current study’s
aimandobjective.A large part of the literature is full of fuzzy-
based optimization techniques for IFMOOPs. In the past
few years, the generalized concept of a fuzzy set is utilized
to solve the IFMOOPs. Many researchers have also imple-
mented an intuitionistic fuzzy-based optimization method
and gained a wide range of applicability and acceptabil-
ity while optimizing multiobjective optimization problems.
However, the existing approaches have some limitations or
drawbacks and can be overcome by applying the proposed
interactive neutrosophic programming approach. Addition-
ally, the following points can be regarded as a research
contribution to this study.

• Uncertainty among parameters due to vagueness is dealt
with by the intuitionistic fuzzy set theory, which is more
generalized and advanced than the fuzzy set. Therefore,
this study has considered the uncertain parameters as a
triangular intuitionistic fuzzy number that takes care of
the degree of belongingness and non-belongingness of
an element into the feasible solution set and deals with
the hesitation aspects.

• Indeterminacy/neutral thoughts are the ignorance region
of propositions’ values between the truth and falsity
degrees. This aspect can only be tackled with the neu-
trosophic optimization method.

• The existing methods of solving MOOPs Gupta and
Kumar [23], Singh et al. [30], and Zangiabadi andMaleki
[37] considered only the membership function whereas
Mahajan and Gupta [27], and Singh and Yadav [31,32]
included the membership and non-membership degrees
of each objective function. They do not cover the inde-
terminacy/neutral thoughts while making decisions. We
have successfully coped with the concept of neutrality,
and suggested indeterminacy degrees and membership
and non-membership degrees simultaneously.

• The study presented by Mahajan and Gupta [27], Singh
and Yadav [31], and Zangiabadi and Maleki [37] do
not allow the flexibility of vagueness degree (shape
parameters) in neutral thoughts, but while applying
exponential-type membership function under neutro-
sophic environment, it can be availed.
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• The proposed INPA can be considered as an extension of
Ahmad and Adhami [3], Ahmad et al. [5–7], Li and Hu
[26], and Torabi and Hassini [35].

The remaining portion of the manuscript is structured
as follows: in “Basic concepts”, some underlying concept
regarding the intuitionistic fuzzy set is discussed, while
“Intuitionistic fuzzy multiobjective programming problem”
represents the modeling of intuitionistic fuzzy MOOP. The
proposed INPA is presented in “Proposed interactive neutro-
sophic programming approach”. In “Numerical examples”,
various numerical examples and a case study are discussed to
verify and validate the suggested approach. The conclusions
and future research scope are addressed in “Conclusions”.

Basic concepts

Some basic concepts regarding intuitionistic fuzzy set (IFS)
are discussed.

Definition 1 [13] (Intuitionistic fuzzy set) Assume that there
be a universal set X . Then, an intuitionistic fuzzy set (IFS)
˜Y in X is defined by the ordered triplets as follows:

˜Y = {x, μ
˜Y (x), ν

˜Y (x) | x ∈ X},

where μ
˜Y (x) : X → [0, 1] denotes the membership func-

tion and ν
˜Y (x) : X → [0, 1] denotes the non-membership

function of the element x ∈ X into the set ˜Y , respec-
tively, with the conditions 0 ≤ μ

˜Y (x) + ν
˜Y (x) ≤ 1.

The value of φ
˜Y (x) = 1 − μ

˜Y (x) − ν
˜Y (x) is called the

degree of uncertainty of the element x ∈ X to the IFS ˜Y .
If φ

˜Y (x) = 0, an IFS changes into fuzzy set and becomes
˜Y = {x, μ

˜Y (x), 1 − μ
˜Y (x) | x ∈ X}.

Definition 2 [6] (Intuitionistic fuzzy number) An IFS ˜Y =
{x, μ

˜Y (x), ν
˜Y (x) | x ∈ X} is said to be an intuitionistic

fuzzy number if and only iff:

1. There exist a real number x0 ∈ IR for which μ
˜Y (x) = 1

and ν
˜Y (x) = 0.

2. Themembership functionμ
˜Y (x) of˜Y is fuzzy convex and

non-membership function ν
˜Y (x) of ˜Y is fuzzy concave.

3. Also, μ
˜Y (x) is upper semi-continuous and ν

˜Y (x) is lower
semi-continuous.

4. The support of ˜Y is depicted as
(

x ∈ IR : ˚
˜Y(x) ≤ 1

)

.

Definition 3 [6] (Triangular intuitionistic fuzzy number) A
triangular intuitionistic fuzzy number (TrIFN) is represented
by ˜Y = ((y1, y2, y3); (z1, y2, z3)) where z1, y1, y2, y3, z3 ∈
IR, such that z1 ≤ y1 ≤ y2 ≤ y3 ≤ z3; and its membership
functionμ

˜Y (x) and non-membership function ν
˜Y (x) is of the

form:

μ
˜Y (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x − y1
y2 − y1

, if y1 < x < y2,

1, if x = y2,
y3 − x

y3 − y2
, if y2 < x < y3,

0, if otherwise.

and ν
˜Y (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x − y2
z3 − y2

, if z1 < x < y2, ,

0, if x = y2,
y2 − x

y2 − z1
, if y2 < x < z3,

1, if otherwise.

Definition 4 [6] Consider that a TrIFN is given by ˜Y =
((y1, y2, y3); (z1, y2, z3))where z1, y1, y2, y3, z3 ∈ IR, such
that z1 ≤ y1 ≤ y2 ≤ y3 ≤ z3. Then, the parametric form

of ˜Y are u(τ ) =
(

u(τ ), u(τ )
)

and v(τ) =
(

v(τ), v(τ )
)

.

Furthermore, u(τ ) and v(τ) are the parametric form of
TrIFN corresponding to membership and non-membership
functions, such that u(τ ) = y3 − τ(y3 − y1), u(τ ) =
y1 − τ(y2 − y1) and v(τ) = y2 − (1 − τ)(y2 − z1),
v(τ) = y2 + (1 − τ)(z3 − y2), respectively. A TrIFN
˜Y = ((y1, y2, y3); (z1, y2, z3)) is said to be positive TrIFN
if z1 > 0, and hence, y1, y2, y3, z3 are all positive numbers.

Definition 5 Assume that ˜Y = ((y1, y2, y3); (z1, y2, z3))
and ˜W = ((w1, w2, w3); (v1, w2, v3)) are twoTrIFNs.Then,
addition of ˜Y and ˜W is again a TrIFN:

˜Y + ˜W =
[

(y1 + w1, y2 + w2, y3 + w3) ;

(z1 + v1, y2 + w2, z3 + v3)

]

.

Definition 6 Consider that ˜Y = ((y1, y2, y3); (z1, y2, z3))
be a TrIFN and k ∈ IR. Then, scaler multiplication of ˜Y is
again a TrIFN:

k(˜Y ) =
⎧

⎨

⎩

(ky1, ky2, ky3; kz1, ky2, kz3) k > 0
(ky3, ky2, ky1; kz3, ky2, kz1) k < 0
(0, 0, 0; 0, 0, 0), k = 0.

Property1The twoTrIFNs˜Y = ((y1, y2, y3); (z1, y2, z3))
and ˜W = ((w1, w2, w3); (v1, w2, v3)) are said to be equal
iff y1 = w1, y2 = w2, y3 = w3; z1 = v1, y2=w2 , z3 = v3.

Definition 7 (Expected interval and expected valueof TrIFNs)
The concept of expected interval and expected value was
defined by Heilpern [24]. Thus, we re-defined it for TrIFNs.
Suppose that ˜Y = ((y1, y2, y3); (z1, y2, z3)) be a TrIFN and
E Iμ and E I ν depict the expected intervals for membership
and non-membership functions, respectively. Thus, these can
be defined as follows:
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E Iμ(˜Y ) =
[∫ 1

0
u(τ )dkτ,

∫ 1

0
u(τ )dkτ

]

=
[∫ 1

0
y3−τ(y3 − y1)dkτ,

∫ 1

0
y1−τ(y2 − y1)dkτ

]

E I ν(˜Y ) =
[∫ 1

0
v(τ)dkτ,

∫ 1

0
v(τ)dkτ

]

=
[∫ 1

0
y2−(1−τ)(y2 − z1)dkτ,

∫ 1

0
y2

+ (1−τ)(z3 − y2)dkτ

]

.

Moreover, consider that EVμ(˜Y ) and EV ν(˜Y ) represent
the expected values corresponding to membership and non-
membership functions, respectively. These can be depicted
as follows:

EVμ(˜Y ) =
∫ 1
0 u(τ )dkτ +∫ 10 u(τ )dkτ

2
= y1+2y2+y3

4
(1)

EV ν(˜Y ) =
∫ 1
0 v(τ)dkτ +∫ 10 v(τ)dkτ

2
= z1+2y2+z3

4
.

(2)

The expected value EV of a TrIFN ˜Y = ((y1, y2, y3);
(z1, y2, z3)) is given as follows:

EV (˜Y ) = ψEVμ(˜Y )+(1− ψ)EV ν(˜Y ), whereψ ∈ [0, 1].

Definition 8 (Accuracy function) The expected value (EV )

for TrIFN ˜Y = ((y1, y2, y3); (z1, y2, z3)) with the help of
Eqs. (1) and (2) and for ψ = 0.5 can be represented as
follows:

EV (˜Y ) = y1 + y3 + 4y2 + z1 + z3
8

;

thus, EV (˜Y ) is also known as accuracy function of ˜Y .

Theorem 1 Suppose that ˜Y be a TrIFN. Then, for any EV :
I F(IR) → IR; the expected value EV (k˜A) = kEV (˜A) for
all k ∈ IR.

Proof Let us consider that˜Y = ((y1, y2, y3); (z1, y2, z3)) be
a TrIFN. Then, based on the nature of k, three different cases
will arise:

Case I when k = 0, there is no need to prove.

Case II when k > 0, then with the help of Prop-
erty 2, we have k˜Y = k ((y1, y2, y3); (z1, y2, z3)) =
(ky1, ky2, ky3; kz1, ky2, kz3). On applying expected value of
k˜Y , we get:

EV (k˜A) = EV (ky1, ky2, ky3; kz1, ky2, kz3)
= (ky1 + 2ky2 + ky3 + kz1 + 2ky2 + kz3)

8

= k
(y1 + 4y2 + y3 + z1 + z3)

8
= kEV (˜A).

Case III when k < 0, then with the help of Prop-
erty 2, we have k˜Y = k ((y1, y2, y3); (z1, y2, z3)) =
(ky3, ky2, ky1; kz3, ky2, kz1). On applying expected value of
k˜Y , we get:

EV (k˜A) = EV (ky3, ky2, ky1; kz3, ky2, kz1)
= (ky1 + 2ky2 + ky3 + kz1 + 2ky2 + kz3)

8

= k
(y1 + 4y2 + y3 + z1 + z3)

8
= kEV (˜A).

In each case, we have proven that EV (k˜A) = kEV (˜A).

Theorem 2 Suppose that ˜Y and ˜W be two TrIFNs. Then, the
accuracy function EV : I F(IR) → IR is a linear function,
i.e., EV (˜Y + k ˜W ) = EV (˜Y ) + kEV (˜W ) for all k ∈ IR.

Proof Let us consider that ˜Y = ((y1, y2, y3); (z1, y2, z3))
and ˜W = ((w1, w2, w3); (v1, w2, v3)) be two TrIFNs. Then,
based on the nature of k, three different cases will arise:

Case I when k = 0, there is no need to prove.

Case II when k > 0, then with the help of Property
1, we have ˜Y + ˜W = [(y1 + w1, y2 + w2, y3 + w3) ;
(z1 + v1, y2 + w2, z3 + v3)]. On applying expected value of
˜Y + k ˜W , we have:

EV (˜Y + k ˜W )

= (y1+kw1)+4(y2+kw2)+(y3+kw3)+(z1+kv1)+(z3+kv3)

8

= (y1 + z1 + 4y2 + y3 + z3) + (kw1 + kv1 + 4kw2 + kw3 + kv3)

8

= (y1 + z1 + 4y2 + y3 + z3)

8
+ (kw1 + kv1 + 4kw2 + kw3 + kv3)

8

= EV (˜Y ) + kEV (˜W ).

Case III when k < 0, we have:

EV (˜Y + k ˜W )

= (z3+kv3)+(z1+kv1)+(y3+kw3)+4(y2+kw2)+(y1+kw1)

8

= (kw1 + kv1 + 4kw2 + kw3 + kv3) + (y1 + z1 + 4y2 + y3 + z3)

8
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= (kw1 + kv1 + 4kw2 + kw3 + kv3)

8
+ (y1 + z1 + 4y2 + y3 + z3)

8

= kEV (˜W ) + EV (˜Y ).

In each case, we have proven that EV (˜Y +k ˜W ) = EV (˜Y )+
kEV (˜W ) for all k ∈ IR. Thus, (accuracy function) expected
value EV is linear.

Theorem 3 Suppose that ˜Y = ((y1, y2, y3); (z1, y2, z3)) be

aTrIFN. If z1 = y1, z3 = y3, then EV (˜Y ) = y1 + 2y2 + y3
4

,

represents the defuzzified value of triangular fuzzy number.

Proof Let us consider that˜Y = ((y1, y2, y3); (z1, y2, z3)) be
a TrIFN. Since, we have::

z1 = y1, z3 = y3. (3)

Therefore, expected value of ˜Y is given by:

EV (˜Y ) = (y1 + z1 + 4y2 + y3 + z3)

8
. (4)

Using Eqs. (3) and (4), we get:

EV (˜Y ) = (y1 + 2y2 + y3)

4
.

Theorem 4 The expected value EV (k) = k, where k ∈ IR.

Proof Let us suppose that there is real number k, such that
k = {(k, k, k); (k, k, k)}. Then:

EV (k) = k + k + 4k + k + k

8
= 8k

8
= k.

Note that, more precisely, if k = 0, then EV (k) = EV (0) =
0.

Definition 9 [3] (Neutrosophic set) Suppose x ∈ X denotes
the universal discourse. A neutrosophic set (NS) A in X can
be depicted by the truth μA(x), indeterminacy λA(x), and
a falsity νA(x) membership functions, and is expressed as
follows:

A = {< x, μA(x), λA(x), νA(x) > |x ∈ X},

where μA(x), λA(x) and νA(x) are real standard or non-
standard subsets belong to ]0−, 1+[, also given as, μA(x) :
X → ]0−, 1+[, λA(x) : X → ]0−, 1+[, and νA(x) : X →
]0−, 1+[. Also, the sum of μA(x), λA(x) and νA(x) is free
from all restrictions. Thus, we have:

0− ≤ sup μA(x) + λA(x) + sup νA(x) ≤ 3+.

Definition 10 [3] An NS is said to be single-valued neutro-
sophic set A if the following condition will hold:

A = {< x, μA(x), λA(x), νA(x) > |x ∈ X},

where μA(x), λA(x) and νA(x) ∈ [0, 1] and 0 ≤ μA(x) +
λA(x) + νA(x) ≤ 3 for each x ∈ X .

Definition 11 [6] The union of two single valued neutro-
sophic sets A and B is also a single-valued neutrosophic
setC , i.e.,C = (A∪ B)with the truthμC (x), indeterminacy
λC (x), and falsity νC (x) membership functions as follows:

μC (x) = max (μA(x), μB(x))
λC (x) = max (λA(x), λB(x))
νC (x) = min (νA(x), νB(x)) for each x ∈ X .

Definition 12 [6] The intersection of two single-valued neu-
trosophic sets A and B is also a single-valued neutrosophic
setC , i.e.,C = (A∩ B)with the truthμC (x), indeterminacy
λC (x), and falsity νC (x) membership functions as follows:

μC (x) = min (μA(x), μB(x))
λC (x) = min (λA(x), λB(x))
νC (x) = max (νA(x), νB(x)) for each x ∈ X .

Intuitionistic fuzzymultiobjective
programming problem

Most often, real-life problems exhibit optimization of more
than one objective at a time. The most promising solution
set that satisfies each objective efficiently is termed as the
best compromise solution. Hence, the conventional form of
MOOP with k objectives is given as follows (5):

Optimize (Max/Min)O(x) = [O1(x), O2(x), . . . , Ok(x)]
s.t.

∑J
j=1 ai j x j ≥ bi , i = 1, 2, . . . , I1,

∑J
j=1 ai j x j ≤ bi , i = I1 + 1, I1 + 2, . . . , I2,

∑J
j=1 ai j x j = bi , i = I2 + 1, I2 + 2, . . . , I .

x j ≥ 0, j = 1, 2, . . . , J ,

(5)

where Ok(x) = ∑K
k=1 ck j x j , ∀ k = 1, 2, . . . , K is the

kth objective function and is linear in nature, bi , ∀ i =
1, 2, . . . , I , and x j , ∀ j = 1, 2, . . . , J are the right-hand
sides and a set of decision variables, respectively.

Thus, the formulation of intuitionistic fuzzy MOOP
(IFMOOP) (6) can be summarized as follows:
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Optimize (Max/Min) ˜OI F (x) = [

˜OI F
1 (x), ˜OI F

2 (x), . . . , ˜OI F
k (x)

]

s.t.
∑J

j=1 ã
I F
i j x j ≥˜bI Fi , i = 1, 2, . . . , I1,

∑J
j=1 ã

I F
i j x j ≤˜bI Fi , i = I1 + 1, I1 + 2, . . . , I2,

∑J
j=1 ã

I F
i j x j =˜bI Fi , i = I2 + 1, I2 + 2, . . . , I .

x j ≥ 0, j = 1, 2, . . . , J ,

(6)

where ˜OI F
k (x) = ∑K

k=1

(

c̃k j
)I F

x j , ∀ k = 1, 2, . . . , K
is the kth objective function with trapezoidal intuitionistic
fuzzy parameters.

With the aid of accuracy function (Theorem 1) which is
linear, the IFMOOP (6) can be converted into the following
deterministic MOOP (7):

Optimize (max/min)O
′
(x) =

[

O
′
1(x), O

′
2(x), . . . , O

′
k(x)

]

s.t.
∑J

j=1 a
′
i j x j ≥ b

′
i , i = 1, 2, . . . , I1,

∑J
j=1 a

′
i j x j ≤ b

′
i , i = I1 + 1, I1 + 2, . . . , I2,

∑J
j=1 a

′
i j x j = b

′
i , i = I2 + 1, I2 + 2, . . . , I .

x j ≥ 0, j = 1, 2, . . . , J ,

(7)

where O
′
k(x) = EV

(

˜OI F
k (x)

) = ∑K
k=1 EV

(

(

c̃k j
)I F
)

x j ,

∀ k = 1, 2, . . . , K ; b
′
i = EV

(

˜bI Fi
)

and a
′
i j = EV

(

ã I F
i j

)

,

for all i = 1, 2, . . . , I , j = 1, 2, . . . , J are the crisp version
of all the objective functions and parameters.

Of particular interest, we have proven the existence of
an efficient solution of the IFMOOP (6) and the convexity
property of crisp MOOP (7) in Theorems 5 and 6, respec-
tively. Hence, the obtained crisp MOOP (7) can be solved
using the proposed interactive neutrosophic programming
approach (see “Proposed interactive neutrosophic program-
ming approach”) to obtain the optimal global solutions.

Definition 13 Assume that X be the set of feasible solution
for the crisp MOOP (7). Then, a point x∗ is said to be an
efficient or Pareto optimal solution of the crisp MOOP (7)
if and only iff there does not exist any x ∈ X , such that,
Ok(x∗) ≥ Ok(x), ∀ k = 1, 2, . . . , K and Ok(x∗) > Ok(x)
for all at least one ∀ k = 1, 2, . . . , K . Here, k is the number
of objective function present in the crisp MOOP (7).

Definition 14 A point x∗ ∈ X is said to be weak Pareto
optimal solution for the crisp MOOP (7) if and only iff there
does not exist any x ∈ X , such that Ok(x∗) ≥ Ok(x), ∀ k =
1, 2, . . . , K .

Theorem 5 An efficient solution of the crisp MOOP (7) is
also an efficient solution for the IFMOOP (6).

Proof Consider that x ∈ X be an efficient solutionof the crisp
MOOP (7). Then, X is also feasible for the crisp MOOP (7).
It means that the following condition will hold:

∑J
j=1 a

′
i j x j ≥ b

′
i , i = 1, 2, . . . , I1,

∑J
j=1 a

′
i j x j ≤ b

′
i , i = I1 + 1, I1 + 2, . . . , I2,

∑J
j=1 a

′
i j x j = b

′
i , i = I2 + 1, I2 + 2, . . . , I .

x j ≥ 0, j = 1, 2, . . . , J .

Since it is proven that EV is a linear function (Theorem 2),
we have:

∑J
j=1 EV

(

ã I F
i j

)

x j ≥ EV
(

˜bI Fi
)

, i = 1, 2, . . . , I1,
∑J

j=1 EV
(

ã I F
i j

)

x j ≤ EV
(

˜bI Fi
)

, i = I1 + 1, I1 + 2, . . . , I2,
∑J

j=1 EV
(

ã I F
i j

)

x j = EV
(

˜bI Fi
)

, i = I2 + 1, I2 + 2, . . . , I .

x j ≥ 0, j = 1, 2, . . . , J .

Consequently, we have:

∑J
j=1 ã

I F
i j x j ≥˜bI Fi , i = 1, 2, . . . , I1,

∑J
j=1 ã

I F
i j x j ≤˜bI Fi , i = I1 + 1, I1 + 2, . . . , I2,

∑J
j=1 ã

I F
i j x j =˜bI Fi , i = I2 + 1, I2 + 2, . . . , I .

x j ≥ 0, j = 1, 2, . . . , J .

Hence, X is a feasible solution for the IFMOOP (6).

Moreover, since X is an efficient solution for the crisp
MOOP (7), there does not exist any X∗ = (

x∗
1 , x

∗
2 , . . . , x

∗
n

)

,
such that Ok(X∗) ≤ Ok(X) ∀ k = 1, 2, . . . , K and
Ok(X∗) < Ok(X) for at least one k = 1, 2, . . . , K .
Thus, we have no X∗, such that Min

∑K
k=1 EV

(

˜Ok(X)
) ≤

Min
∑K

k=1 EV
(

˜Ok(X∗)
) ∀ k = 1, 2, . . . , K and

Min
∑K

k=1 EV
(

˜Ok(X)
)

< Min
∑K

k=1 EV
(

˜Ok(X∗)
) ∀ k =

1, 2, . . . , K for at least one k = 1, 2, . . . , K .
Since EV is a linear function (Theorem 2), we have

no X∗, such that Min
∑K

k=1 EV
(

˜Ok(X)
) ≤ Min

∑K
k=1

EV
(

˜Ok(X∗)
) ∀ k = 1, 2, . . . , K and Min

∑K
k=1 EV

(

˜Ok(X)
)

< Min
∑K

k=1 EV
(

˜Ok(X∗)
) ∀ k = 1, 2, . . . , K

for at least one k = 1, 2, . . . , K . Thus, X is an efficient
solution for the IFMOOP (6).

Definition 15 Let O1 and O2 be comonotonic functions, and
then, for any intuitionistic fuzzy parameter ˜Y , we have:

EV
[

O1(˜Y ) + O2(˜Y )
] = EV

[

O1(˜Y )
]+ EV

[

O2(˜Y )
]

.
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For the sake of simplicity, let us consider an auxiliary
model (8) which is an equivalent to the crisp MOOP (7) and
can be given as follows:

Optimize (Max/Min)EV
[

O(X ,˜Y )
] = (

EV
[

O1(X ,˜Y )
]

, . . . , EV
[

Ok(X ,˜Y )
]) ∀ k = 1, 2, 3.

subject to
∑J

j=1 a
′
i j x j ≥ b

′
i , i = 1, 2, . . . , I1,

∑J
j=1 a

′
i j x j ≤ b

′
i , i = I1 + 1, I1 + 2, . . . , I2,

∑J
j=1 a

′
i j x j = b

′
i , i = I2 + 1, I2 + 2, . . . , I .

x j ≥ 0, j = 1, 2, . . . , J ,

(8)

where EV [·] in auxiliary model (8) represents the expected
values (accuracy function) of the intuitionistic fuzzy param-
eters.

In Theorem 5, we have already proven the expected value
EV efficient solution for the IFMOOP (6). This concept is
obtained by presenting the crisp MOOP (7), which comprise
the expected value of intuitionistic fuzzy uncertain objectives
of the IFMOOP (6).

Intuitionally, if the intuitionistic fuzzy uncertain vectors
in the auxiliary model (8) degenerate into intuitionistic fuzzy
parameters, then the following convexity Theorem 6 of the
auxiliary model (8) can be proved.

Theorem 6 Suppose that the function O(X ,˜Y ) is differen-
tiable and a convex vector function with respect to X and
˜Y . Thus, for any given X1, X2 ∈ X, if Ok(X1,˜Y ) and
Ok(X2,˜Y ) are comonotonic on intuitionistic fuzzy parame-
ters ˜Y , then the auxiliary model (8) is a convex programming
problem.

Proof Since, the feasible solution set X is a convex set, intu-
itionally, it is sufficient to obtain that the auxiliary model (8)
is a convex vector function.

Note that the O(X ,˜Y ) is a convex vector function on X
for any given ˜Y , the inequality:

O
(

δX1 + (1 − δ)X2,˜Y
)

� δO(X1,˜Y ) + (1 − δ)O(X2,˜Y )

holds for any δ ∈ [0.1] and X1, X2 ∈ X , that is:

Ok
(

δX1 + (1 − δ)X2,˜Y
)

� δOk(X1,˜Y ) + (1 − δ)Ok(X2,˜Y )

holds for each k, 1 ≤ k ≤ 3.

Using the assumed condition that Ok(X1,˜Y ) and
Ok(X2,˜Y ) are comonotonic on ˜Y , it follows from Defini-
tion 13 that:

EV
[

Ok
(

δX1 + (1 − δ)X2,˜Y
)]

� δEV
[

Ok(X1,˜Y )
]

+(1 − δ)EV
[

Ok(X2,˜Y )
]

, ∀ k,

which implies that:

EV
[

O
(

δX1 + (1 − δ)X2,˜Y
)]

� δEV
[

O(X1,˜Y )
]

+(1 − δ)EV
[

O(X2,˜Y )
]

.

The above inequality shows that EV
[

O(X ,˜Y )
]

is a convex
vector function. Hence, the auxiliary model (8) is a convex
programming problem. Consequently, the crisp MOOP (7)
is also a convex programming problem. Thus, Theorem 6 is
proved.

Proposed interactive neutrosophic
programming approach

In many decision-making processes, the neutral thoughts or
indeterminacy degree may occur about elements into the
feasible decision set. Since FS and IFS can only tackle the
degrees of belonging and non-belongingness of the element,
the indeterminacy degrees cannot be managed with these
sets. To capture the neutral thoughts or indeterminacy degree,
Smarandache [33] introduced the neutrosophic set (NS).
The NS deals with the degrees of belongingness and non-
belongingness along with the indeterminacy degree of the
element. Thus, the NS inevitably involves neutral thoughts
and can be considered the FS and IFS’s generalized set. In
MOOP, the marginal evaluations of each objective function
are addressed by three different membership grades, such as
the truth (degree of belongingness), indeterminacy (degree
of belongingness up to some extent), and a falsity (degree
of non-belongingness) membership functions, respectively.
Literature reflects that a significant amount of research work
is carried out in the neutrosophic domain (see Ahmad and
Adhami [3], Ahmad et al. [5–7], and Smarandache [33]).
We have also adopted the neutrosophic-based optimiza-
tion technique for solving the MOOP. The proposed INPA
also contemplates the quantification of marginal evaluations
under the truth, indeterminacy, and falsity membership func-
tions. Thus, in dealing with neutral thoughts in the MOOP,
neutrosophic optimization techniques have the most favor-
able characteristics and significant role in making decisions.

Various membership functions

In multiobjective programming problems, each objective
function’s marginal evaluation is depicted by its respec-
tive membership functions. The linear, exponential, and
hyperbolic membership functions are constructed under the
neutrosophic environment. Each of them is defined for the
truth, indeterminacy, and a falsity membership function,
which seems more realistic.

To depict the different membership functions for the crisp
MOOP(7), theminimumandmaximumvalues of eachobjec-
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tive functions have been represented by Lk and Uk , and can
be obtained as follows:

Uk = max [Ok(x)] and Lk = min [Ok(x)] ∀ k = 1, 2, 3, . . . , K .

(9)

The bounds for kth objective function under the neutrosophic
environment can be obtained as follows:

Uμ
k = Uk , Lμ

k = Lk for truth membership (10)

Uλ
k = Lμ

k + sk , Lλ
k = Lμ

k for indeterminacy membership

(11)
U ν
k = Uμ

k , Lν
k = Lμ

k + tk for falsity membership, (12)

where sk and tk ∈ (0, 1) are predetermined real numbers
prescribed by decision-makers.

• Linear type membership functions In general, the most
extensive and widely used membership function is a
linear one due to its simple structure and more straight-
forward implications. The linear membership function
contemplates over the fixed rate of satisfactory degrees
toward an objective. The linear-type truth μL

k (Ok(x)),
indeterminacyλL

k (Ok(x)), and a falsity νL
k (Ok(x))mem-

bership functions under neutrosophic environment can be
furnished as follows:

μL
k (Ok(x)) =

⎧

⎪

⎨

⎪

⎩

1 if Ok(x) ≤ Lμ
k

Uμ
k −Ok (x)

Uμ
k −Lμ

k
if Lμ

k ≤ Ok(x) ≤ Uμ
k

0 if Ok(x) ≥ Uμ
k

(13)

λL
k (Ok(x)) =

⎧

⎪

⎨

⎪

⎩

1 if Ok(x) ≤ Lλ
k

Uλ
k −Ok (x)

Uλ
k −Lλ

k
if Lλ

k ≤ Ok(x) ≤ Uλ
k

0 if Ok(x) ≥ Uλ
k

(14)

νL
k (Ok(x)) =

⎧

⎪

⎨

⎪

⎩

0 if Ok(x) ≤ Lν
k

Ok (x)−Lν
k

U ν
k −Lν

k
if Lν

k ≤ Ok(x) ≤ U ν
k

1 if Ok(x) ≥ U ν
k ,

(15)

where L(.)
k �= U (.)

k for all k objective functions.
• Exponential typemembership functionsThe exponential-
type truth μE

k (Ok(x)), indeterminacy λE
k (Ok(x)), and a

falsity νE
k (Ok(x)) membership functions under neutro-

sophic environment can be stated as follows:

μE
k (Ok(x)) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if Ok(x) ≤ Lμ
k

e
−dk

(

Ok (x)−L
μ
k

U
μ
k −L

μ
k

)

− e−dk

1 − e−dk
if Lμ

k ≤ Ok(x) ≤ Uμ
k

0 if Ok(x) ≥ Uμ
k

(16)

λE
k (Ok(x)) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 if Ok(x) ≤ Lλ
k

e
−dk

(

Uλ
k −Ok (x)

Uλ
k −Lλ

k

)

− e−dk

1 − e−dk
if Lλ

k ≤ Ok(x) ≤ Uλ
k

0 if Ok(x) ≥ Uλ
k

(17)

νE
k (Ok(x)) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if Ok(x) ≤ Lν
k

e
−dk

(

Uν
k −Ok (x)

Uν
k −Lν

k

)

− e−dk

1 − e−dk
if Lν

k ≤ Ok(x) ≤ U ν
k

1 if Ok(x) ≥ U ν
k ,

(18)

where dk is the measures of vagueness degree (shape
parameter) and assigned by the decision-makers.

• Hyperbolic-type membership functions A hyperbolic
membership function shows the flexible characteristic
behavior concerning objective function. The hyperbolic-
type truth μH

k (Ok(x)), indeterminacy λH
k (Ok(x)), and a

falsity νH
k (Ok(x)) membership functions under neutro-

sophic environment can be depicted as follows:

μH
k (Ok(x))

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if Ok(x) ≤ Lμ
k

1

2

[

1 + tanh

(

θk

(

Uμ
k + Lμ

k

2
− Ok(x)

))]

if Lμ
k ≤ Ok(x) ≤ Uμ

k

0 if Ok(x) ≥ Uμ
k

(19)
λH
k (Ok(x))

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if Ok(x) ≤ Lλ
k

1

2

[

1 + tanh

(

θk

(

Uλ
k + Lλ

k

2
− Ok(x)

))]

if Lλ
k ≤ Ok(x) ≤ Uλ

k

0 if Ok(x) ≥ Uλ
k

(20)
νH
k (Ok(x))

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if Ok(x) ≤ Lν
k

1

2

[

1 + tanh

(

θk

(

Ok(x) − U ν
k + Lν

k

2

))]

if Lν
k ≤ Ok(x) ≤ U ν

k

1 if Ok(x) ≥ U ν
k ,

(21)

where θk = 6
Uk−Lk

, ∀ k = 1, 2, . . . , K .

First, Bellman andZadeh [14] introduced the idea of fuzzy
decision set. Later on, it has been immensely adopted and
widely used by many researchers in various real-life appli-
cations. Hence, the fuzzy decision set can be expressed as
follows:

D = O ∩ C .

Consequently, with the aid of above set, the neutrosophic
decision set DN can be expressed as follows:

DN = (∩K
k=1Ok)(∩I

i=1Ci ) = (x, μD(x), λD(x), νD(x)),
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where:

μD(x) = min

{

μO1(x), μO2(x), . . . , μOk (x)
μC1(x), μC2(x), . . . , μCi (x)

}

∀ x ∈ X

λD(x) = max

{

λO1(x), λO2(x), . . . , λOk (x)
λC1(x), λC2(x), . . . , λCi (x)

}

∀ x ∈ X

νD(x) = max

{

νO1(x), νO2(x), . . . , νOk (x)
νC1(x), νC2(x), . . . , νCi (x)

}

∀ x ∈ X ,

whereμD(x), λD(x), and νD(x) are the truth, indeterminacy,
and a falsity membership functions of neutrosophic decision
set DN , respectively.

By utilizing the concept of Bellman and Zadeh [14], we
intend to maximize the minimum truth (degree of belong-
ingness) and minimize the maximum of indeterminacy
(belongingness up to some extent) and falsity (degree of
non-belongingness) degrees at a time. Therefore, an over-
all achievement function can be defined as the differences of
truth, indeterminacy, and falsity degrees to reach each objec-
tive’s optimal solution under a neutrosophic environment.
Thus, the mathematical expression for achievement function
is defined as follows (22):

Max mink=1,2,3,...,K μ
(·)
k (Ok(x))

Min maxk=1,2,3,...,K λ
(·)
k (Ok(x))

Min maxk=1,2,3,...,K ν
(·)
k (Ok(x))

subject to
∑J

j=1 a
′
i j x j ≥ b

′
i , i = 1, 2, . . . , I1,

∑J
j=1 a

′
i j x j ≤ b

′
i , i = I1 + 1, I1 + 2, . . . , I2,

∑J
j=1 a

′
i j x j = b

′
i , i = I2 + 1, I2 + 2, . . . , I .

x j ≥ 0, j = 1, 2, . . . , J ,

(22)

where the superscript (·) in the truth μ
(·)
k (Ok(x)), inde-

terminacy λ
(·)
k (Ok(x)), and falsity ν

(·)
k (Ok(x)) membership

functions represent the different types of membership func-
tion such as linear (L), exponential (E), and hyperbolic (H),
respectively.

Using the auxiliary variables α, β and γ , the problem (22)
is converted into the following problem (23):

Max (α − β − γ )

subject to

μ
(·)
k (Ok(x)) ≥ α,

λ
(·)
k (Ok(x)) ≤ β,

ν
(·)
k (Ok(x)) ≤ γ,

α ≥ β, 0 ≤ α + β + γ ≤ 3,
α, β, γ ∈ [0, 1]
∑J

j=1 a
′
i j x j ≥ b

′
i , i = 1, 2, . . . , I1,

∑J
j=1 a

′
i j x j ≤ b

′
i , i = I1 + 1, I1 + 2, . . . , I2,

∑J
j=1 a

′
i j x j = b

′
i , i = I2 + 1, I2 + 2, . . . , I .

x j ≥ 0, j = 1, 2, . . . , J .

(23)

To solve the multiobjective programming problems, Torabi
and Hassini [35] presented a single-phase solution method
and named TH method. In Torabi and Hassin [35] approach,
the achievement function is represented by a convex combi-
nation of the lower bound for satisfactory degree of objectives
(α), and the weighted sum of these achievement degrees
(

μ
(·)
k (Ok(x))

)

to confirm the yielding an adjustably bal-

anced compromise solution. Of particular interest, the TH
method [35] deals only with each objective function’s sat-
isfaction degree and does not consider the indeterminacy
and falsity degrees, which is also an important integrated
part of the decision-making processes. Thus, the TH method
does not consider the degrees of neutrality and dissatis-
faction in real-life decision-making scenarios. To integrate
the neutrality and dissatisfaction degrees in the TH method
[35], we have re-defined a new achievement function and
consequently proposed a novel interactive neutrosophic pro-
gramming approach (hereafter the FA method) to obtain the
optimal compromise solution. The proposed INPA can be
considered the extended version of the TH method [35].
Therefore, proposed INPA (24) can be an equivalent model-
ing and optimizing approach for solving the crispMOOP (7).
Thus, the problem (23) can be transformed into an equivalent
proposed INPA (24) and can be summarized as follows:

(I N P A) Max ψ(x) = η (α − β − γ ) + (1 − η)
∑K

k=1
(

μ
(·)
k (Ok(x)) − λ

(·)
k (Ok(x)) − ν

(·)
k (Ok(x))

)

subject to

μ
(·)
k (Ok(x)) ≥ α,

λ
(·)
k (Ok(x)) ≤ β,

ν
(·)
k (Ok(x)) ≤ γ,

α ≥ β, 0 ≤ α + β + γ ≤ 3,
α, β, γ ∈ [0, 1]
∑J

j=1 a
′
i j x j ≥ b

′
i , i = 1, 2, . . . , I1,

∑J
j=1 a

′
i j x j ≤ b

′
i , i = I1 + 1, I1 + 2, . . . , I2,

∑J
j=1 a

′
i j x j = b

′
i , i = I2 + 1, I2 + 2, . . . , I .

x j ≥ 0, j = 1, 2, . . . , J .

(24)

If we assign individual weights (wk) to each objectives,
then the problem (23) can be transformed into an equiva-
lent Weighted INPA (WINPA) (25) and can be summarized
as follows:

(W I N PA)Max ψ(x) = η (α − β − γ ) + (1 − η)

K
∑

k=1

wk

(

μ
(·)
k (Ok(x)) − λ

(·)
k (Ok(x)) − ν

(·)
k (Ok(x))

)

subject to

μ
(·)
k (Ok(x)) ≥ α,

λ
(·)
k (Ok(x)) ≤ β,
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ν
(·)
k (Ok(x)) ≤ γ,

α ≥ β, 0 ≤ α + β + γ ≤ 3,

α, β, γ, k ∈ [0, 1]

J
∑

j=1

a
′
i j x j ≥ b

′
i , i = 1, 2, . . . , I1,

J
∑

j=1

a
′
i j x j ≤ b

′
i , i = I1 + 1, I1 + 2, . . . , I2,

J
∑

j=1

a
′
i j x j = b

′
i , i = I2 + 1, I2 + 2, . . . , I .

x j ≥ 0, j = 1, 2, . . . , J , (25)

where μ
(·)
k (Ok(x)), λ

(·)
k (Ok(x)) and ν

(·)
k (Ok(x)) represent

the truth, indeterminacy, and falsity degrees of kth objec-
tive function under neutrosophic environment. Also, α =
min

[

μ
(·)
k (Ok(x))

]

, β = max
[

λ
(·)
k (Ok(x))

]

and γ =
max

[

ν
(·)
k (Ok(x))

]

denote the minimum satisfaction and

maximum neutral and dissatisfaction degrees of each objec-
tives, respectively. Thus, the formulation of proposed INPA
(24) and WINPA (25) has a new achievement function,
which is elicited as a convex combination of the differ-
ence among lower and upper bounds for satisfaction and
dissatisfaction degrees of objectives (α − β − γ ), and
some of the difference between these achievement degrees
(

μ
(·)
k (Ok(x)) − λ

(·)
k (Ok(x)) − ν

(·)
k (Ok(x))

)

to make sure

generating an established balanced compromise solution.
Also, η depicts the co-efficient of compensation. Further-
more, η monitors the overall satisfaction level of objectives
and the compromise achievement degrees among the objec-
tive functions implicitly. It means that the proposed INPA
(24) and WINPA (25) are the most promising and reliable
of generating both unbalanced and balanced compromised
solution for a given problem based on the decision-maker’s
importance through tuning the value of parameter η.

Remark 1 In the current context, a greater value for η means
that more concern is offered to determine higher over-
all bounds for truth, indeterminacy, and falsity degrees of
objectives (α − β − γ ) and, consequently, more balanced
compromise solutions. On the other hand, the smaller value
for η means that more concern is shown to get a solution
with high overall satisfaction degrees for each objective func-
tion without any attention paid to the individual satisfaction
degree of other objective functions.

Definition 16 A vector x∗ ∈ X is said to be an optimal solu-
tion to proposed INPA (24) or an efficient solution to the
crisp MOOP (7) if and only iff there does not exist any
x ∈ X , such that, μk(x) ≥ μk(x∗), λk(x) ≤ λk(x∗) and
νk(x) ≤ νk(x∗), ∀ k = 1, 2, 3.

Theorem 7 A unique optimal solution of proposed INPA (24)
is also an efficient solution to the crisp MOOP (7).

Proof Consider that x∗ be a unique optimal solution of pro-
posed INPA (24) which is not an efficient solution to crisp
MOOP (7). It means that there must be an efficient solu-
tion, say x∗∗, for the crisp MOOP (7), so that we can have:
μk(x∗∗) ≥ μk(x∗), λk(x∗∗) ≤ λk(x∗), and νk(x∗∗) ≤
νk(x∗); ∀ k = 1, 2, . . . , K . Thus, for the overall satisfac-
tion level of each objective functions in x∗ and x∗∗ solutions,
we would have (α − β − γ ) (x∗∗) ≥ (α − β − γ ) (x∗), and
concerning the related objective values, we would have the
following inequalities:

ψ(x∗) = η (α − β − γ ) (x∗) + (1 − η)

×
⎡

⎣

K
∑

k=1

(

μ
(·)
k (Ok (x

∗)) − λ
(·)
k (Ok (x

∗)) − ν
(·)
k (Ok (x

∗))
)

⎤

⎦

< η (α − β − γ ) (x∗∗) + (1 − η)

×
⎡

⎣

∑

k �=t

(

μ
(·)
k (Ok (x

∗∗)) − λ
(·)
k (Ok (x

∗∗)) − ν
(·)
k (Ok (x

∗∗))
)

⎤

⎦

= ψ(x∗∗).

Hence, we have arrived at a contradiction that x∗ is not a
unique optimal solution of proposed INPA (24). This com-
pletes the proof of Theorem 7.

Theorem 8 A unique optimal solution of proposed WINPA
(25) is also an efficient solution to the crisp MOOP (7).

Proof Consider that x∗ be a unique optimal solution of
proposed WINPA (25) which is not an efficient solution
to crisp MOOP (7). It means that there must be an effi-
cient solution, say x∗∗, for crisp MOOP (7), so that we
can have: μk(x∗∗) ≥ μk(x∗), λk(x∗∗) ≤ λk(x∗), and
νk(x∗∗) ≤ νk(x∗); ∀ k = 1, 2, . . . , K . Also, there exists
t | μt (x∗∗) > μt (x∗), λt (x∗∗) < λt (x∗) and νt (x∗∗) <

νt (x∗) for at least one t . Thus, for the overall satisfaction
level of each objective functions in x∗ and x∗∗ solutions,
we would have (α − β − γ ) (x∗∗) ≥ (α − β − γ ) (x∗), and
concerning the related objective values, we would have the
following inequalities:

ψ(x∗) = η (α − β − γ ) (x∗)

+ (1 − η)
∑

k

wk

(

μ
(·)
k (Ok (x

∗))−λ
(·)
k (Ok (x

∗))−ν
(·)
k (Ok (x

∗))
)

= η (α − β − γ ) (x∗) + (1 − η)
⎡

⎣

∑

k �=t

wk

(

μ
(·)
k (Ok (x

∗)) − λ
(·)
k (Ok (x

∗)) − ν
(·)
k (Ok (x

∗))
)

+wt

(

μ
(·)
t (Ot (x

∗)) − λ
(·)
k (Ok (x

∗)) − ν
(·)
t (Ot (x

∗))
)]

< η (α − β − γ ) (x∗∗) + (1 − η)
⎡

⎣

∑

k �=t

wk

(

μ
(·)
k (Ok (x

∗∗)) − λ
(·)
k (Ok (x

∗∗)) − ν
(·)
k (Ok (x

∗∗))
)
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+wt

(

μ
(·)
t (Ot (x

∗∗)) − λ
(·)
k (Ok (x

∗∗)) − ν
(·)
t (Ot (x

∗∗))
)]

= ψ(x∗∗).

Hence, we have arrived at a contradiction that x∗ is not a
unique optimal solution of proposedWINPA (25). This com-
pletes the proof of Theorem 8.

Definition 17 [8] (Distance function) To measure the per-
formances of various approaches, the neutrosophic dis-

tance functions DN (x) =
[

∑K
k=1

{

1 − (

μ
(·)
k (Ok(x)) −

λ
(·)
k (Ok(x))−ν

(·)
k (Ok(x))

)

}2] 1
2
are presented to select a pri-

ority solution. The smaller the value of distance function is,
the better a solution will be.

Linear-type membership functions approach (LTMFA)

Assume that μL
k (Ok(x)) ≥ α, λL

k (Ok(x)) ≤ β and
νL
k (Ok(x)) ≤ γ , for all k.
Using auxiliary parameters α, β and γ , the problem (24)

can be transformed into the following problem (26):

(LT MFA) Max ψ(x) = η (α − β − γ ) + (1 − η)
∑K

k=1

×
(

μ
(L)
k (Ok(x)) − λ

(L)
k (Ok(x)) − ν

(L
k (Ok(x))

)

subject to
Ok(x) + (Uμ

k − Lμ
k )α ≤ Uμ

k ,

Ok(x) − (Uλ
k − Lλ

k )β ≤ Lλ
k ,

Ok(x) − (U ν
k − Lν

k )γ ≤ Lν
k ,

α ≥ β, α ≥ γ, α + β + γ ≤ 3
α, β, γ ∈ (0, 1)
all the constraints of (7).

(26)

Remark 2 In LT MFA (26), we try to determine a solution in
such a way that it maximizes the minimum truth degree and
minimizes the maximum indeterminacy and a falsity degrees
by taking all objectives simultaneously, to attain the optimal
compromise solution.

Theorem 9 A unique optimal solution of problem (26)
(LTMFA) is also an efficient solution for the problem (7).

Proof Suppose that
(

x̄, ᾱ, β̄, γ̄
)

be a unique optimal solu-
tion of problem (26) (LTMFA). Then,

(

ᾱ − β̄ − γ̄
)

>

(α − β − γ ) for any (x, α, β, γ ) feasible to the problem (26)
(LTMFA). On the contrary, assume that

(

x̄, ᾱ, β̄, γ̄
)

is not
an efficient solution of the problem (7). For that, there exists
x∗ (x∗ �= x̄) feasible to problem (7), such that Ok(x∗) ≤
Ok(x̄) for all k = 1, 2, . . . , K and Ok(x∗) < Ok(x̄) for at
least one k.

Therefore, we have Ok (x∗)−Lk
Uk−Lk

≤ Ok (x̄)−Lk
Uk−Lk

for all k =
1, 2, . . . , K and Ok (x∗)−Lk

Uk−Lk
<

Ok (x̄)−Lk
Uk−Lk

for at least one k.

Hence, max
k

(

Ok (x∗)−Lk
Uk−Lk

)

≤ (<) max
k

(

Ok (x̄)−Lk
Uk−Lk

)

.

Suppose that γ ∗ = max
k

(

Uk−Ok (x∗)
Uk−Lk

)

, and then, γ ∗ ≤ (<

) γ̄ .

Also, consider that β∗ = max
k

(

Uk−Ok (x∗)
Uk−Lk

)

, and then,

β∗ ≤ (<) β̄.
In the same manner, we have Uk−Ok (x∗)

Uk−Lk
≥ Uk−Ok (x̄)

Uk−Lk
for

all k = 1, 2, . . . , K and Uk−Ok (x∗)
Uk−Lk

>
Uk−Ok (x̄)
Uk−Lk

for at least
one k.

Thus, min
k

(

Uk−Ok (x∗)
Uk−Lk

)

≥ (>) min
k

(

Uk−Ok (x̄)
Uk−Lk

)

.

Assume that α∗ = min
k

(

Uk−Ok (x∗)
Uk−Lk

)

, this gives
(

ᾱ − β̄ − γ̄
)

< (α∗ − β∗ − γ ∗), which means that the
solution is not unique optimal. Thus, we have arrived at a
contradiction with the fact that

(

x̄, ᾱ, β̄, γ̄
)

is the unique
optimal solution of (LTMFA). Therefore, it is also an effi-
cient solution of the problem (26). This completes the proof
of Theorem 9.

Exponential-type membership functions approach (ETMFA)

We assume that μE
k (Ok(x)) ≥ α, λE

k (Ok(x)) ≤ β, and
νE
k (Ok(x)) ≤ γ , for all k. Using auxiliary parameters α, β

and γ , the problem (24) can be converted into the following
problem (27):

(ET MFA) Max ψ(x) = η (α − β − γ ) + (1 − η)
∑K

k=1

(

μ
(E)
k (Ok(x))

−λ
(E)
k (Ok(x)) − ν

(E)
k (Ok(x))

)

subject to

e
−dk

(

Ok (x)−L
μ
k

U
μ
k −L

μ
k

)

− e−dk

1 − e−dk
≥ α,

e
−dk

(

Uλ
k −Ok (x)

Uλ
k −Lλ

k

)

− e−dk

1 − e−dk
≤ β,

e
−dk

(

Uν
k −Ok (x)

Uν
k −Lν

k

)

− e−dk

1 − e−dk
≤ γ,

α ≥ β, α ≥ γ, α + β + γ ≤ 3
α, β, γ ∈ (0, 1)
all the constraints of (7).

(27)

Remark 3 If dk → 0, then the exponential-type member-
ship function will be reduced into linear-type membership
function.

Theorem 10 A unique optimal solution of problem (27)
(ETMFA) is also an efficient solution for the problem (7).

Proof This will be proved by arriving at a contradiction.

Suppose that
(

x̄, ᾱ, β̄, γ̄
)

be a unique optimal solution
of problem (27) (ETMFA) which is not an efficient solu-
tion for the problem (7). Then, there exists x∗ (x∗ �= x̄)
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feasible to problem (7), such that Ok(x∗) ≤ Ok(x̄) for all
k = 1, 2, . . . , K and Ok(x∗) < Ok(x̄) for at least one k.

Consequently, we have Ok (x∗)−Lk
Uk−Lk

≤ Ok (x̄)−Lk
Uk−Lk

for all k =
1, 2, . . . , K and Ok (x∗)−Lk

Uk−Lk
<

Ok (x̄)−Lk
Uk−Lk

for at least one k.
Hence, we have:

e
−dk

(

Ok (x∗)−Lk
Uk−Lk

)

−e−dk

1−e−dk
≥ e

−dk

(

Ok (x̄)−Lk
Uk−Lk

)

−e−dk

1−e−dk
for all k =

1, 2, . . . , K and

e
−dk

(

Ok (x∗)−Lk
Uk−Lk

)

−e−dk

1−e−dk
> e

−dk

(

Ok (x̄)−Lk
Uk−Lk

)

−e−dk

1−e−dk
for at least

one k.

Thus, min
k

⎛

⎝

e
−dk

(

Ok (x∗)−Lk
Uk−Lk

)

−e−dk

1−e−dk

⎞

⎠ ≥ (>) min
k

⎛

⎝

e
−dk

(

Ok (x̄)−Lk
Uk−Lk

)

−e−dk

1−e−dk

⎞

⎠.

If α∗ = min
k

⎛

⎝

e
−dk

(

Ok (x∗)−Lk
Uk−Lk

)

−e−dk

1−e−dk

⎞

⎠, then α∗ ≥ (>) ᾱ.

Similarly, we have Uk−Ok (x∗)
Uk−Lk

≥ Uk−Ok (x̄)
Uk−Lk

for all k =
1, 2, . . . , K and Uk−Ok (x∗)

Uk−Lk
>

Uk−Ok (x̄)
Uk−Lk

for at least one k.
Consequently, it gives:

e
−dk

(

Uk−Ok (x∗)

Uk−Lk

)

−e−dk

1−e−dk
≤ e

−dk

(

Uk−Ok (x̄)
Uk−Lk

)

−e−dk

1−e−dk
for all k =

1, 2, . . . , K and

e
−dk

(

Uk−Ok (x∗)

Uk−Lk

)

−e−dk

1−e−dk
< e

−dk

(

Uk−Ok (x̄)
Uk−Lk

)

−e−dk

1−e−dk
for at least

one k.

Hence, max
k

⎛

⎝

e
−dk

(

Uk−Ok (x∗)

Uk−Lk

)

−e−dk

1−e−dk

⎞

⎠ ≤ (<) max
k

⎛

⎝

e
−dk

(

Uk−Ok (x̄)
Uk−Lk

)

−e−dk

1−e−dk

⎞

⎠.

Assuming β∗ = max
k

⎛

⎝

e
−dk

(

Uk−Ok (x∗)

Uk−Lk

)

−e−dk

1−e−dk

⎞

⎠, we have

β∗ ≤ (<) β̄.

Again, by considering γ ∗ =max
k

⎛

⎝

e
−dk

(

Uk−Ok (x∗)

Uk−Lk

)

−e−dk

1−e−dk

⎞

⎠,

we get γ ∗ ≤ (<) γ̄ .
This gives

(

ᾱ − β̄ − γ̄
)

< (α∗ − β∗ − γ ∗), that contra-
dicts the fact that

(

x̄, ᾱ, β̄, γ̄
)

is the unique optimal solution
of the problem (27) (ETMFA). Hence, the Theorem 10 is
proved.

Hyperbolic-type membership functions approach (HTMFA)

Suppose that μH
k (Ok(x)) ≥ α, λH

k (Ok(x)) ≤ β and
νH
k (Ok(x)) ≤ γ , for all k. Using auxiliary parameters α, β

and γ , the problem (24) can be transformed into the following
problem (28):

Max ψ(x) = η (α − β − γ ) + (1 − η)
∑K

k=1

×
(

μ
(H)
k (Ok(x)) − λ

(H)
k (Ok(x)) − ν

(H)
k (Ok(x))

)

subject to

1

2

[

1 + tanh

(

θk

(

Uμ
k + Lμ

k
2

− Ok(x)

))]

≥ α,

1

2

[

1 + tanh

(

θk

(

Uλ
k + Lλ

k
2

− Ok(x)

))]

≤ β,

1

2

[

1 + tanh

(

θk

(

Ok(x) − Uν
k + Lν

k
2

))]

≤ γ,

α ≥ β, α ≥ γ, α + β + γ ≤ 3
α, β, γ ∈ (0, 1), θk = 6

Uk−Lk
, ∀ k = 1, 2, . . . , K

all the constraints of (7).

(28)

Equivalently, we have problem (29) as follows:

(HTMFA) Max ψ(x) = η (α − β − γ ) + (1 − η)
∑K

k=1
(

μ
(H)
k (Ok(x)) − λ

(H)
k (Ok(x)) − ν

(H)
k (Ok(x))

)

subject to
θk Ok(x) + tanh−1 (2α − 1) ≤ θk

2

(

Uμ
k + Lμ

k

)

,

θk Ok(x) − tanh−1 (2β − 1) ≤ θk
2

(

Uμ
k + Lμ

k

)

,

θk Ok(x) − tanh−1 (2γ − 1) ≤ θk
2

(

Uμ
k + Lμ

k

)

,

α ≥ β, α ≥ γ, α + β + γ ≤ 3,
α, β, γ ∈ (0, 1), θk = 6

Uk−Lk
, ∀ k = 1, 2, . . . , K

all the constraints of (7).

(29)

Theorem 11 A unique optimal solution of problem (29)
(HTMFA) is also an efficient solution for the problem (7).

Proof Let us consider that
(

x̄, ᾱ, β̄, γ̄
)

be a unique opti-
mal solution of problem (29) (HTMFA), but not an efficient
solution for the problem (7). This gives that there exists
x∗ (x∗ �= x̄) feasible to problem (7), such that Ok(x∗) ≤
Ok(x̄) for all k = 1, 2, . . . , K and Ok(x∗) < Ok(x̄) for at
least one k.

Simultaneously, tanh

(

θk

(

Uk + Lk

2
− Ok(x∗)

))

≥

tanh

(

θk

(

Uk + Lk

2
− Ok(x̄)

))

for all k = 1, 2, . . . , K and

tanh

(

θk

(

Uk + Lk

2
− Ok(x∗)

))

> tanh
(

θk

(

Uk + Lk

2
− Ok(x̄)

))

for at least one k.

Furthermore, it gives:

min
k

(

tanh

(

θk

(

Uk + Lk

2
− Ok(x∗)

)))

≥ (>) min
k

(

tanh

(

θk

(

Uk + Lk

2
− Ok(x̄)

)))

.

Ifα∗ = min
k

(

1

2
tanh

(

θk

(

Uk + Lk

2
− Ok(x∗)

))

+ 1

2

)

,

then α∗ ≥ (>) ᾱ.
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Similarly, we have β∗ = max
k

(

1

2
tanh (θk (Ok(x∗)

−Uk + Lk

2

))

+ 1

2

)

, then β∗ ≤ (<) β̄ and γ ∗ =

min
k

(

1

2
tanh

(

θk

(

Ok(x∗) − Uk + Lk

2

))

+ 1

2

)

, and then,

γ ∗ ≥ (>) γ̄ .
Thus, we get

(

ᾱ − β̄ − γ̄
)

< (α∗ − β∗ − γ ∗). This arises
a contradiction with the fact that

(

ᾱ − β̄ − γ̄
)

is the unique
optimal solution of the problem (29) (HTMFA). Hence, the
Theorem 11 is proved.

The selection of membership function solely depends on
the decision-makers based on their satisfaction level. The
linear, exponential, and hyperbolic membership function
has their importance while assessing each objective func-
tion’s marginal evaluations. Some additional parameters in
the exponential and hyperbolic membership functions make
it more flexible than the linear one. The representation of
marginal evaluations of each objective function is constant
while using a linear-type membership function. Therefore,
the use or selection of appropriate membership functions can
be made on the flexible nature of the membership functions
that will provide more opportunity to generate a variety of
compromise solutions by tuning the additional parameters.

Proposed solution algorithm

Theflowchart is also depicted in Fig. 1 based on the following
step-wise solution algorithm.

Step-1 Formulate the IFMOOP (6).

Step-2 Using accuracy function (EV ), obtain the crisp
MOOP (7).

Step-3 Solve each objective function individually and deter-
mine the upper and lower bound using Eq. (9).

Step-4 With the aid of Uk and Lk , the upper and lower
bound can be constructed for the truth, indeterminacy, and a
falsity membership Eqs. (10)–(12) under neutrosophic envi-
ronment.

Step-5 Elicit the different types of membership functions
under neutrosophic environment using Eqs. (13–15), (16–
18), and (19–21) according to decision-makers’ preference
respectively.

Step-6 Develop the proposed INPA or WINPA with linear
(LTMFA) or exponential (ETMFA) or hyperbolic (HTMFA)
membership functions under the given set of well-defined
constraints.

Step-7 Solve the proposed INPA or WINPA (26), (27), and
(29) to get the best compromise result by applying appropri-
ate solution methods or suitable optimizing softwares.

Numerical examples

Let us consider the following four numerical illustrations.
Despite that, we have also presented a cloud computing
pricing problem. All the numerical examples and cloud com-
putingoptimizationmodels are coded in theAMPL language,
and the outcomes are obtained using the solver Kintro 10.3.0
through NEOS server version 5.0 free access permitted by
University ofWisconsin inMadison Dolan [20], Server [29].
Table 1 depicts the triangular intuitionistic fuzzy parameters
for all the numerical examples.

Example 1

Min ˜OI F
1 (x) =˜1I F x1 +˜1I F x2 +˜1I F x3

Max ˜OI F
2 (x) = ˜18

I F
x1 + ˜14

I F
x2 +˜8I F x3

Max ˜OI F
3 (x) =˜1I F x3

s.t.
˜15

I F
x1 + ˜12

I F
x2 +˜7I F x3 ≤ ˜43

I F

x j ≥ 0 ∀ j = 1, 2, 3 & x3 integer .

Example 2

Min ˜OI F
1 (x) =˜1I F x1 +˜3I F x2

Max ˜OI F
2 (x) =˜1I F x1 +˜1I F x2

s.t.
˜6I F x1 +˜5I F x2 ≤ ˜27

I F

˜2I F x1 +˜5I F x2 ≤ ˜16
I F

x j ≥ 0 ∀ j = 1, 2 & x2 integer .

Example 3

Min ˜OI F
1 (x) =˜1I F x1 +˜1I F x2

Max ˜OI F
2 (x) =˜5I F x1 +˜4I F x2

s.t.
˜10

I F
x1 +˜6I F x2 ≤ ˜45

I F

˜1I F x1 +˜1I F x2 ≤˜5I F
x j ≥ 0 ∀ j = 1, 2 & integer .

Example 4

Min ˜OI F
1 (x) = ˜30

I F
x1 + ˜50

I F
x2 − ˜70

I F
x3

Max ˜OI F
2 (x) = ˜20

I F
x1 + ˜40

I F
x2 + ˜20

I F
x3 + ˜15

I F
x4 + ˜30

I F
x5

s.t.
˜8I F x1 + ˜10

I F
x2 +˜2I F x3 +˜1I F x4 + ˜10

I F
x5 ≤ ˜25

I F

˜5I F x1 +˜4I F x2 +˜3I F x2 +˜7I F x4 +˜8I F x5 ≤ ˜25
I F

˜1I F x1 +˜7I F x2 +˜9I F x3 +˜4I F x4 +˜6I F x5 ≤ ˜25
I F

x j ≥ 0 ∀ j = 1, 2 & integer .

All the solution results are shown in Table 2. For each exam-
ple, our proposed INPA outperforms the TH method [35].
A less will be a value of distance function, and the higher
will be the optimal global solution’s satisfaction level. It also
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Fig. 1 Flowchart for the
proposed solution algorithm

Table 1 Intuitionistic fuzzy parameters for all the numerical examples

˜1I F = (1, 1, 1; 1, 1, 1) ˜2I F = (1.5, 2, 2.5; 1, 2, 3) ˜3I F = (2.5, 3, 3.5; 2, 3, 4)
˜4I F = (3, 4, 5; 2, 4, 6) ˜5I F = (4, 5, 6; 3, 5, 7) ˜6I F = (4, 6, 8; 4, 6, 8)
˜7I F = (6, 7, 8; 5, 7, 9) ˜8I F = (6, 8, 10; 6, 8, 10) ˜9I F = (7, 9, 11; 6, 9, 11)
˜10

I F = (8, 10, 12; 7, 10, 13) ˜12
I F = (10, 12, 14; 9, 12, 15) ˜14

I F = (12, 14, 16; 11, 14, 17)
˜15

I F = (12, 15, 18; 11, 15, 19) ˜16
I F = (14, 16, 18; 13, 16, 19) ˜18

I F = (16, 18, 20; 15, 18, 21)
˜20

I F = (18, 20, 22; 15, 20, 25) ˜25
I F = (22, 25, 28; 20, 25, 30) ˜27

I F = (25, 27, 29; 24, 27, 30)
˜30

I F = (28, 30, 32; 25, 30, 35) ˜40
I F = (36, 40, 44; 35, 40, 45) ˜43

I F = (40, 43, 46; 38, 43, 48)
˜45

I F = (40, 45, 50; 38, 45, 52) ˜50
I F = (45, 50, 55; 40, 50, 60) ˜70

I F = (65, 70, 75; 60, 70, 80)
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Table 2 Optimal solution results of all the numerical examples

Numerical Ideal solutions Proposed INPA Torabi and Hassini [35] method

Examples Objective values Distance function Objective values Distance function

Example 1 O1 = 0 3.056 0.4901 3 0.4937

O2 = 51 25.018 24

O3 = 6 3 3

Example 2 O1 = 0 3.12 0.4965 3.569 0.5173

O2 = 4.83 3.12 1.569

Example 3 O1 = 0 2 0.4603 2 0.6462

O2 = 23 10 9

Example 4 O1 = −70 -70 0.3256 0 0.8124

O2 = 95 65 50

Fig. 2 Comparison between proposed INPA and TH method based on
distance function

ensures less deviation from the ideal solutions of the com-
promise optimal solution sets. The graphical representation
of distance functions and numerical examples is depicted in
Fig. 2.

The existing approaches have some limitations or draw-
backs, and can be overcome by applying the proposed
interactive neutrosophic programming approach. Indetermi-
nacy/neutral thoughts are the ignorance region of propo-
sitions’ values between the truth and falsity degrees. This
aspect can only be tackledwith the neutrosophic optimization
method. The methods for solving MOOPs given by Gupta
andKumar [23], Singh et al. [30], andZangiabadi andMaleki
[37] consider only the membership function, whereas Maha-
jan and Gupta [27], and Singh and Yadav [31,32] included
the membership and non-membership degrees of each objec-
tive function. They do not cover the indeterminacy/neutral
thoughts while making decisions. We have successfully
coped with the concept of neutrality and suggested inde-
terminacy degrees and membership and non-membership

degrees simultaneously. The studies presented by Mahajan
and Gupta [27], Singh and Yadav [31], and Zangiabadi and
Maleki [37] do not allow the flexibility of vagueness degree
(shape parameters) in neutral thoughts, but while applying
exponential-type membership function under neutrosophic
environment, it can be availed. The proposed INPA can
be considered as an extension of Ahmad and Adhami [3],
Ahmad et al. [5–7], Li and Hu [26], and Torabi and Hassini
[35] approaches.

Cloud computing pricing problem

A case study description based on the cloud computing
pricing problem is discussed in this section. The valid-
ity and applicability of the proposed INPA are tested by
implementing a multiobjective optimization problem with
an intuitionistic fuzzy dataset. The cloud computing mar-
ket offers the software as a service (SaaS) in the form of
cloud software resources for the customers (person, orga-
nization, and government) and utilizes infrastructure as a
service (IaaS) provided by the IaaS agency. The customers
select to utilize cloud resources and their intrinsic resources,
depending on their prices. For instance, Dropbox was devel-
oped and founded by Drew Houston and Arash Ferdowsi
in 2007. Dropbox provides the facilities to its end-users
or organization storage software resources and avails IaaS
from Amazon S3 without maintaining and managing the
necessary resources at lower prices. In this case study, we
present cloud storage software resources (SaaS) pricing prob-
lems such as box.com, GoogleDrive, Dropbox, and essential
storage resources (IaaS) such as Amazon simple storage ser-
vice (Amazon S3). The IaaS and the SaaS service facility
provider’s main motive is simultaneous to maximize their
gross profits. The customers intend to buy coherent, effec-
tive, and economical cloud storage software resources. The
decision-makers of each service provider design policies
by interacting together. The consumers’ purchases critically
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contrive the customers’ responses to the cost of the SaaS that
is fixed according to the price of the IaaS, and the end-user
purchases also strain the pricing of the IaaS facility provider.
To highlight the above inter-relationship between the SaaS
and the IaaS, and formulate the cloud computing pricing
problems, we develop the cloud computing IFMOOP model
with intuitionistic fuzzy parameters. In the proposed cloud
computing IFMOOP, the first objective is to maximize the
IaaS service provider’s profits that offer the necessary stor-
age capacity. The second objective also maximizes the SaaS
provider’s total profit that offers the facility to end-users with
software resources. Finally, the third objective is associated
with the customers who always try to minimize these service
facilities’ purchasing costs.

Step 1: The IFMOOP model for cloud computing pricing
model is depicted as follows:

Max ˜OI F
1 (PI , x) = ∑

i∈N PI xi1 −∑

i∈N ˜0.01
I F

xi1

Max ˜OI F
2 (PS , x) = ∑

i∈N PSxi1 −∑

i∈N ˜0.05
I F

xi1 −∑

i∈N PI xi1

Min ˜OI F
3 (C, x) = ∑

i∈N PSxi1 +∑

i∈N ˜0.635
I F

xi2
s.t.

PI − ˜0.01
I F ≥ 0,

PI ≤ ˜0.88
I F

PS ,

PS ≤ ˜0.635
I F

,

10 ≤ xi ≤ ni , ∀ i ∈ N ,

where˜0.01
I F = (0.00, 0.01, 0.04; 0.00, 0.01, 0.06), ˜0.05

I F

= (0.03, 0.05, 0.07; 0.01, 0.05, 0.09), ˜0.635
I F =

(0.630, 0.635, 0.640; 0.625, 0.635, 0.645), ˜0.88
I F =

(0.86, 0.88, 0.90; 0.84, 0.88, 0.92) are the triangular intu-
itionistic fuzzy parameters. Also, PI and PS are the prices of
the IaaS and the SaaS, respectively, and C is the purchasing
cost for customer. If the customers do not feel justified with
the price of SaaS, he/she can utilize the conventional tools
for the resource storage instead of storing the SaaS resources.
Suppose xi1 be the demand of i th customer for the SaaS, xi2
be the service level capacity for utilizing intrinsic resources,
and x = (xi1, xi2, . . . , xiN ). Furthermore, PI , PS , and x
are the set of decision variables. The values ni = 105T and
N = 50 are chosen according to box.com [16] and Amazon
[11].

Step 2: Using accuracy function (Definition 8), the crisp
version of the IFMOOP can be presented as follows:

Max ˜O
′
1(PI , x) = ∑

i∈N PI xi1 −∑

i∈N 0.01xi1
Max ˜O

′
2(PS, x) = ∑

i∈N PSxi1 −∑

i∈N 0.05xi1 −∑

i∈N PI xi1
Min ˜O

′
3(C, x) = ∑

i∈N PSxi1 +∑

i∈N 0.635xi2
s.t.

PI − 0.01 ≥ 0,
PI ≤ 0.88PS,
PS ≤ 0.635,
10 ≤ xi ≤ ni , ∀ i ∈ N .

(30)

Step 3: The lower and upper bounds can be obtained as fol-
lows: U1 = 11.2528 × 105, L1 = 7.5482 × 105, U2 =
12.2528 × 105, L2 = 6.4758 × 105, U3 = 4.2546 ×
106, and L3 = 0.5482 × 106, respectively.
Step 4: The bounds for truth, indeterminacy, and falsitymem-
bership functions can be given as follows: Uμ

1 = 11.2528×
105, Lμ

1 = 7.5482 × 105, Uμ
2 = 12.2528 × 105, Lμ

2 =
6.4758×105,Uμ

3 = 4.2546×106, Lμ
3 = 0.5482×106Uλ

1 =
7.5482 × 105 + s1, Lλ

1 = Lμ
1 , Uλ

2 = 6.4758 × 105 +
s2, Lλ

2 = 6.4758 × 105, Uλ
3 = 0.5482 × 106 + s3, Lλ

3 =
0.5482×106U ν

1 = 11.2528×105, Lν
1 = 7.5482×105+ t1,

U ν
2 = 12.2528 × 105, Lν

2 = 6.4758 × 105 + t2, U ν
3 =

4.2546 × 106, Lν
3 = 0.5482 × 106 + t3.

Step 5 and 6: The different model such as LTMFA (26),
ETMFA (27), and HTMFA (29) can be formulated as fol-
lows:

• Using the LTMFA (26), Problem (30) can be represented
as follows (31):

Max α − β − γ

s.t.
∑

i∈N
PI xi1 −

∑

i∈N
0.01xi1 + (Uμ

1 − Lμ
1 )α ≤ Uμ

1 ,

∑

i∈N
PI xi1 −

∑

i∈N
0.01xi1 − (Uλ

1 − Lλ
1)β ≤ Lλ

1 ,

∑

i∈N
PI xi1 −

∑

i∈N
0.01xi1 − (Uν

1 − Lν
1)γ ≤ Lν

1,

∑

i∈N
PSxi1 −

∑

i∈N
0.05xi1 −

∑

i∈N
PI xi1 + (Uμ

2 − Lμ
2 )α ≤ Uμ

2 ,

∑

i∈N
PSxi1 −

∑

i∈N
0.05xi1 −

∑

i∈N
PI xi1 − (Uλ

2 − Lλ
2)β ≤ Lλ

2 ,

∑

i∈N
PSxi1 −

∑

i∈N
0.05xi1 −

∑

i∈N
PI xi1 − (Uν

2 − Lν
2)γ ≤ Lν

2,

∑

i∈N
PSxi1 +

∑

i∈N
0.635xi2 + (Uμ

3 − Lμ
3 )α ≤ Uμ

3 ,

∑

i∈N
PSxi1 +

∑

i∈N
0.635xi2 − (Uλ

3 − Lλ
3)β ≤ Lλ

3 ,

∑

i∈N
PSxi1 +

∑

i∈N
0.635xi2 − (Uν

3 − Lν
3)γ ≤ Lν

3,

PI − 0.01 ≥ 0,

PI ≤ 0.88PS ,

PS ≤ 0.635,

α ≥ β, α ≥ γ, α + β + γ ≤ 3

α, β, γ ∈ (0, 1)

10 ≤ xi ≤ ni , ∀ i ∈ N . (31)

• Using the ETMFA (27), Problem (30) can be represented
as follows (32):

Max α − β − γ

s.t.
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e
−d

(
∑

i∈N PI xi1−∑i∈N 0.01xi1−L
μ
1

U
μ
1 −L

μ
1

)

− e−d

1 − e−d
≥ α,

e
−d

(

Uλ
1 −∑i∈N PI xi1−∑i∈N 0.01xi1

Uλ
1 −Lλ

1

)

− e−d

1 − e−d
≤ β,

e
−d

(

Uν
1 −∑i∈N PI xi1−∑i∈N 0.01xi1

Uν
1 −Lν

1

)

− e−d

1 − e−d
≤ γ,

e
−d

(
∑

i∈N PS xi1−∑i∈N 0.05xi1−∑i∈N PI xi1−L
μ
2

U
μ
2 −L

μ
2

)

− e−d

1 − e−d
≥ α,

e
−d

(

Uλ
2 −∑i∈N PS xi1−∑i∈N 0.05xi1−∑i∈N PI xi1

Uλ
2 −Lλ

2

)

− e−d

1 − e−d
≤ β,

e
−d

(

Uν
2 −∑i∈N PS xi1−∑i∈N 0.05xi1−∑i∈N PI xi1

Uν
2 −Lν

2

)

− e−d

1 − e−d
≤ γ,

e
−d

(
∑

i∈N PS xi1+∑i∈N 0.635xi2−L
μ
3

U
μ
3 −L

μ
3

)

− e−d

1 − e−d
≥ α,

e
−d

(

Uλ
3 −∑i∈N PS xi1+∑i∈N 0.635xi2

Uλ
3 −Lλ

3

)

− e−d

1 − e−d
≤ β,

e
−d

(

Uν
3 −∑i∈N PS xi1+∑i∈N 0.635xi2

Uν
3 −Lν

3

)

− e−d

1 − e−d
≤ γ,

PI − 0.01 ≥ 0,

PI ≤ 0.88PS,

PS ≤ 0.635,

α ≥ β, α ≥ γ, α + β + γ ≤ 3

α, β, γ ∈ (0, 1)

10 ≤ xi ≤ ni , ∀ i ∈ N . (32)

• Using the HTMFA (29), Problem (30) can be represented
as follows (33):

Max α − β − γ

s.t.

θ1(
∑

i∈N
PI xi1 −

∑

i∈N
0.01xi1)

+ tanh−1 (2α − 1) ≤ θ1

2

(

Uμ
1 + Lμ

1

)

,

θ1(
∑

i∈N
PI xi1 −

∑

i∈N
0.01xi1)

− tanh−1 (2β − 1) ≤ θ1

2

(

Uμ
1 + Lμ

1

)

,

θ1(
∑

i∈N
PI xi1 −

∑

i∈N
0.01xi1)

− tanh−1 (2γ − 1) ≤ θ1

2

(

Uμ
1 + Lμ

1

)

,

θ2(
∑

i∈N
PSxi1 −

∑

i∈N
0.05xi1

−
∑

i∈N
PI xi1) + tanh−1 (2α − 1) ≤ θ2

2

(

Uμ
2 + Lμ

2

)

,

θ2(
∑

i∈N
PSxi1 −

∑

i∈N
0.05xi1 −

∑

i∈N
PI xi1)

− tanh−1 (2β − 1) ≤ θ2

2

(

Uμ
2 + Lμ

2

)

,

θ2(
∑

i∈N
PSxi1 −

∑

i∈N
0.05xi1 −

∑

i∈N
PI xi1)

− tanh−1 (2γ − 1) ≤ θ2

2

(

Uμ
2 + Lμ

2

)

,

θ3(
∑

i∈N
PSxi1 +

∑

i∈N
0.635xi2)

+ tanh−1 (2α − 1) ≤ θ2

2

(

Uμ
3 + Lμ

3

)

,

θ3(
∑

i∈N
PSxi1 +

∑

i∈N
0.635xi2)

− tanh−1 (2β − 1) ≤ θ2

2

(

Uμ
3 + Lμ

3

)

,

θ3(
∑

i∈N
PSxi1 +

∑

i∈N
0.635xi2)

− tanh−1 (2γ − 1) ≤ θ2

2

(

Uμ
3 + Lμ

3

)

,

PI − 0.01 ≥ 0,

PI ≤ 0.88PS,

PS ≤ 0.635,

α ≥ β, α ≥ γ, α + β + γ ≤ 3,

α, β, γ ∈ (0, 1),

10 ≤ xi ≤ ni , ∀ i ∈ N . (33)

Step 7: Solve the Problems (31), (32), and (33) using the
INPA or WINPA to get the best compromise solution.

Evaluation of solution results

On implementing the proposed INPA, we have obtained the
following compromise optimal solution outcomes of each
objective function. Using proposed INPA with LTMFA, the
pricing values of the IaaS and the SaaS facilities provider
are PI = $0.1942 and PS = $0.4250, respectively. Con-
sequently, the respective objective function values of cloud
computing providers are O1 = $9.2024 × 105, O2 =
$9.0326 × 105, and O3 = $2.1234 × 106 with

∑

i∈N xi1
∑

i∈N xi
=

1.00. The minimum value of distance function is obtained as
0.3569.

For proposed INPA with ETMFA, the pricing values of
the IaaS and the SaaS facilities provider are PI = $0.2022
and PS = $0.4330, respectively. Consequently, the cor-
responding objective function values of cloud computing
providers are O1 = $9.4116 × 105, O2 = $8.8527 × 105,
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and O3 = $2.1241 × 106 with
∑

i∈N xi1
∑

i∈N xi
= 0.9987. Further-

more, the minimum value of distance function is determined
as 0.5126.

On applying the proposed INPAwith HTMFA, the pricing
values of the IaaS and the SaaS facilities provider are PI =
$0.2029 and PS = $0.4337, respectively. Consequently, the
corresponding objective function values of cloud computing
providers are O1 = $9.2029×105, O2 = $9.0329×105, and

O3 = $2.1234 × 106 with
∑

i∈N xi1
∑

i∈N xi
= 1.00. Moreover, the

minimum value of distance function is calculated as 0.5485.
The outcomes reveal that the cloud computing pricing

problem is solved using the proposed INPA with LTMFA,
ETMFA, and HTMFA. By the comparison among the val-

ues of O1, O2, O3 and
∑

i∈N xi1
∑

i∈N xi
, it is found that the proposed

INPA with LTMFA can give more gross profit for the SaaS
facility provider at a very low cost. Therefore, LTMFA is
more fruitful and appropriate than other approaches for this
cloud computing pricing problem. Moreover, to reflect the
reality, suppose ni be randomly generated in the specified
interval [0, 105] T. Again, applying the proposed INPA with
LTMFA, ETMFA, and HTMFA, we can determine the fol-
lowing outcomes.

Using proposed INPA with LTMFA, the pricing values of
the IaaS and the SaaS facilities provider are PI = $0.1942
and PS = $0.4250, respectively. Consequently, the respec-
tive objective function values of cloud computing providers
are O1 = $5.1707 × 105, O2 = $5.0740 × 105, and
O3 = $1.1937 × 106. Furthermore, the corresponding min-
imum value of distance function is obtained as 0.3724.

For proposed INPA with ETMFA, the pricing values of
the IaaS and the SaaS facilities provider are PI = $0.2058
and PS = $0.4366, respectively. Consequently, the cor-
responding objective function values of cloud computing
providers are O1 = $4.8101 × 105, O2 = $4.4410 × 105,
and O3 = $1.0729 × 106. Moreover, the minimum value of
distance function is calculated as 0.5482.

On applying the proposed INPAwith HTMFA, the pricing
values of the IaaS and the SaaS facilities provider are PI =
$0.2029 and PS = $0.4337, respectively. Consequently, the
corresponding objective function values of cloud computing
providers are O1 = $4.3409 × 105, O2 = $4.0680 × 105,
and O3 = $9.7686 × 105. Furthermore, the minimum value
of distance function is obtained as 0.5728.

Comparing the above three solution outcomes,we observe
that the proposed INPA with LTMFA has a lower cost for
cloud service facility and fetch more profit for the IaaS and
the SaaS service provider. It means that the pricing policies
of the proposed INPAwith LTMFA aremore feasible and can
attract the attention of more customers to utilize cloud com-
puting services. Also, cloud service facility providers will
invite more customers to avail of the cloud service facilities
to generate more revenue. Based on the obtained solution

outcomes, the proposed INPA with LTMFA is more reliable
and outperforms the other approacheswhile solving the cloud
computing pricing problem.

Managerial implications

The current study inherently focuses on practical level impli-
cations by exploring advances in modeling and optimization
techniques for solving MOOP. First, the representation of
vague or ambiguous parameters using the intuitionistic fuzzy
set theory is more realistic than a fuzzy set. It deals with the
degree of non-belongingness along with the belongingness
simultaneously. The second practical approach can be con-
sidered a neutrosophic optimization technique that inherently
supports the neutral thoughts in decision-making problems
and adheres to the indeterminacy degree and degrees of
belongingness and non-belongingness simultaneously. The
extension of Torabi and Hassini [35] is presented, and a
comparative study is also performed. The proposed INPA is
tested on four different numerical examples, and outcomes
are evaluated based on the neutrosophic distance function.
The performance of the proposed INPA is better than TH
method for all the numerical. A case study on the cloud com-
puting pricing problem is examined and solved using the
proposed INPAwith LTMFA, ETMFA, andHTMFA, respec-
tively. For this problem, the proposed INPA with LTMFA
outperforms the other approaches. The end-users’ dimen-
sion can be enhanced to match the real-life situation, and the
optimal results can be obtained by using the proposed INPA
efficiently. By tuning the compensation co-efficient (η), one
can obtain the desired number of solution sets. Thus, the pro-
posedmodeling and optimization framework can solvemany
real-life problems such as transportation, supplier selection,
inventory control, supply chain planning problems, etc. The
robust neutrosophic optimization techniques can be extended
to solve the multiobjective linear, nonlinear, fractional, bi-
level, multi-level programming problems implicitly.

Conclusions

This studypresented themodeling andoptimization approach
of MOOP under the neutrosophic environment. The various
parameters are taken as an intuitionistic fuzzy number that
highlights real-life complexity, and the corresponding crisp
versions are obtained using a robust ranking function (EV).
The development of various membership functions ensures
the rationality aspects while determining the best possible
optimal solution set. The use of linear, exponential, and
hyperbolic membership functions is more flexible and real-
istic in decision-making processes due to an indeterminacy
degree while obtaining the optimal compromise solution.
The proposed INPA with LTMFA, ETMFA, and HTMFA
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is designed under the neutrosophic environment, consisting
of independent indeterminacy/neutral thoughts in decision-
making processes. The overall satisfactory decision-makers’
overall satisfactory degree is always maximized at different
compensation coefficients to achieve each objective func-
tion’s best possible compromise solution. A comparative
study is also presented by illustrating four different numerical
examples. The proposed MOOP and INPA are implemented
on a cloud computing pricing case study, and the out-
comes are evaluated efficiently. The practical implications
are explored that immensely support practitioners in adopt-
ing the proposed INPA while solving the MOOP.

The propounded study has some limitations that can be
addressed in future research. The discussed MOOP can be
merged with and extended by considering the hierarchical
level decision, which is not included in this study. The pro-
posed approach is not directly applicable for multiobjective
fractional programming problems however can be applied
after linearizing processes. The bi-level and multi-level
decision-making model cannot be solved directly, but can
be adopted after obtaining the individual level satisfactory
solution. Uncertainty among parameters due to randomness
can also be incorporated and handled with the historical data.

In the future, the proposed INPA can be extended for
different mathematical programming problems such as mul-
tiobjective fractional programming, nonlinear programming,
geometric programming, etc. It can also be applied to trans-
portation, supplier selection, inventory control, and supply
chain planning problems. Besides, proposed INPA, various
metaheuristic approaches may be applied to solve the cloud
computing pricing problem as a future research scope.
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