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Abstract
In this paper, a new variant of the electric vehicle (EV) routing problem, which considers heterogeneous EVs, partial recharge, 
and vehicle recycling, is investigated based on logistic companies’ practical operation. A mixed integer linear programming 
(MILP) model is proposed to formulate the problem. For small-scale scenarios, commercial solver, e.g., CPLEX, is leveraged. 
For large-scale instances faced by practical applications, a hybrid metaheuristic is designed through integrating a modified 
Greedy Algorithm with the Variable Neighborhood Search (VNS). The proposed algorithm was tested by real-world instances 
from JD, an e-commerce enterprise in China. Computational results indicate that partial recharge and vehicle recycling can 
save costs effectively. It also shows that the number of charging stations is an important factor for the application of EVs.

Keywords  Electric vehicle · Routing problem · Heterogeneous vehicles · Vehicle recycling · Partial recharge

Introduction

Greenhouse gas (mainly CO2) emissions have spurred a 
major concern as the past 9 years witnessed the intense 
growth of daily CO2 of roughly 5.15% from 388.72 parts 
per million in 2010 to 408.58 parts per million in 2019 [1. 
Data from the European Commission (2016) [1] indicate 
that the transportation system is one of the major drivers for 
greenhouse gas emissions, accounting for 25% of the CO2 
emissions, and the ratio is expected to be double by 2050. 
Not surprisingly, regulations promulgated by the European 
Commission are beginning to promote alternative fuel vehi-
cles (AFV) that adopt greener fuel sources (e.g., bio-diesel, 
liquid/compressed natural gas, and electricity) to replace tra-
ditional internal combustion commercial vehicles (ICCVs) 
that utilize fossil fuels. Among AFVs, the choice of electric 
vehicles remains the most attractive.

Studies of NASA [2] show that the use of EVs entails 
the following merits: (1) EVs exhaust fewer carbon emis-
sions, which remarkably improve the air quality; (2) EVs 
require lower operational and maintenance costs. (3) EVs 

can offer quicker, quieter, and smoother acceleration, and 
therefore can be heavily used in densely populated areas 
with noise restrictions. These advantages of EVs and gov-
ernment policy support have led to a dramatic growth of the 
EV industry. EVs are beginning to be widely used in logis-
tics companies’ delivery fleets [3] such as TNT Express, JD, 
UPS, etc. However, a major challenge faced by EVs is their 
limited driving range, which requires additional charging 
facilities and longer charging time. As a ramification of these 
restrictions, a new variant of the vehicle routing problem 
(VRP)—electric vehicle routing problem (E-VRP) arises.

Nowadays, along with the development of e-commerce, 
logistics has been recognized as one of the key factors in 
our daily lives. The primary concern of companies is how 
to save the cost effectively under many practical constraints. 
Generally, EV’s fixed acquisition cost is very high, and the 
recycling use of EVs can effectively save costs by increasing 
vehicle utilization rate and reducing necessary labor costs. 
Most of the previous works do not consider the vehicle recy-
cling and ignore the volume limit, a practical constraint tan-
tamount to the weight constraint. However, in the practical 
operation of logistic companies, e.g., JD logistics, both the 
weight and volume of the goods have to be considered, and 
the EVs are allowed to return to the warehouse and restart 
again after a short period of time.

Focused on vehicle recycling and volume constraint, a 
new variant of E-VRP (H-EVRP-PR&VR) is investigated, 
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which comprehensively considers mixed fleet, time win-
dows, and vehicle capacities (weight and volume), partial 
recharge (PR), and vehicle recycling (VR). These constraints 
are faced by many logistic companies employing EV, com-
plicating the problem devastatingly. For large logistic com-
panies like JD, the EV routes are needed to be optimized for 
daily package distribution in hundreds of cities, which is an 
impetus to developing efficient approaches to such kind of 
problems.

The main contributions of this study are summarized as 
follows.

•	 We introduce the H-EVRP-PR&VR, which incorporates 
a fleet of heterogeneous EVs, partial recharge, and vehi-
cle recycling schemes. The objective is to minimize the 
total cost.

•	 The MILP model for the problem is developed and solved 
by CPLEX.

•	 We propose a hybrid metaheuristic combining a con-
struction heuristic with a VNS algorithm. New perturba-
tion operators and neighborhood structures are designed 
and incorporated in the VNS metaheuristic.

The remainder of the paper is organized as follows. The 
section “Literature review” presents a review of related 
works. In the section “Model development”, an MILP for-
mulation of H-EVRP-PR&VR is presented. We describe 
the VNS algorithm in the section “The hybrid metaheuris-
tic algorithm” and reports the experimental results in the 
section “Numerical experiments”. The section “Conclusions 
and future works” concludes the paper and presents a discus-
sion on future research directions.

Literature review

Recently, there is a considerable amount of literature on 
E-VRP. Erdelić et al. [4] presented a comprehensive review 
on existing studies for E-VRP. The literatures related with 
the investigated H-EVRP-PR&VR are reviewed in this sec-
tion for the convenience of readers.

The Recharging VRP (RVRP), where vehicles with lim-
ited range are allowed to recharge at the customer, was firstly 
introduced by Conrad and Figliozzi [5]. This is a problem 
that not only the traditional routing decisions are optimized 
with respect to the load capacity of the vehicle, but also 
the selection of charging stations should be considered with 
respect to the limited traveling range of EV. The number 
of vehicles and the total cost are minimized. Erdogan and 
Miller-Hooks [6] proposed GVRP by considering charg-
ing stations and optimized the problem by minimizing the 
total distance. Two heuristics named modified Clarke and 
Wright Savings (MCWS) and Density-Based Clustering 

Algorithm (DBCA) were presented in the paper. Koc et al. 
[7] developed a branch-and-cut algorithm which combines 
a simulated annealing heuristic algorithm and several valid 
inequalities. Still, considering the possibility of two con-
secutive charging stations, Bahrami et al. [8] introduced 
two MILP formulations and consolidated them by some 
dominant criteria and valid inequalities. Montoya et al. [9] 
proposed a multi-sampling heuristic, the method includes 
two phases: sampling and assembly. In the sampling phase, 
a pool of route is built via a “route first and cluster second” 
heuristic algorithm, while in the assembly phase, the solu-
tion is obtained by solving a set partitioning formulation 
over the pool. Andelmin et al. [10] solved the problem by a 
multi-start local search heuristic.

Furthermore, Schneider et al. [11] extended the model 
to E-VRPTW by adding time windows on the customer and 
assumed that each vehicle can visits at most one charging 
station per route and becomes fully recharged with a non-
fixed recharging time, and solved the problem by a hybrid 
heuristic algorithm combining the VNS with tabu search 
(TS). Keskin et al. [12] developed a two-phase metaheuris-
tic combining the Adaptive Large Neighborhood Search 
(ALNS) with an exact approach. Felipe et al. [13] studied 
the GVRP with partial recharge (GVRP-PR) by considering 
partial recharge, in which three charging technologies with 
varied charging speed were also considered. Local Search 
(LS) combined with non-deterministic Simulated Anneal-
ing (SA) was utilized to solve it. Based on their work, Ding 
et al. [14] considered the capacity limitation of the recharg-
ing station by restricting the number of EVs to be recharged 
at a recharging station, and a hybrid heuristic method com-
bining VNS and Tabu Search (TS) was developed. Keskin 
et al. [15] investigated the E-VRPTW with partial recharge 
(E-VRPTWPR) and solved it by ALNS. Results show that 
partial recharge strategies can greatly improve routing deci-
sions. Desaulniers et al. [16] presented branch price and cut 
algorithms for four variants of E-VRPTW which were dif-
ferent in recharge numbers per route or whether allowed 
partial recharge. Schiffer et al. [17] extended the problem by 
considering the location of charging stations. Mao et al. [18] 
studied E-VRPTW with multiple recharging options and 
solved it by an improved ant colony optimization algorithm.

Goeke et al. [19] extended the work to E-VRPTWMF 
by considering the mixed fleet of battery electric vehicles 
(BEVs) and ICCVs, in which mixed fleet combining a sin-
gle type of BEVs and ICCVs is considered, and the load-
dependent energy consumption is minimized. An ALNS 
method that allows infeasible solutions during the search 
is introduced. Hiermann et al. [20] extended the problem 
by focusing on heterogeneous BEVs with the difference 
in transport capacity, battery size, and acquisition cost. 
Besides, in [21], they considered E-VRP which combined 
ICCVs, BEVs, and plug-in hybrid vehicles, and solved the 



1447Complex & Intelligent Systems (2021) 7:1445–1458	

1 3

problem with a metaheuristic approach combining a genetic 
algorithm (GA) and LNS. Lebeau et al. [22] studied the 
combinations of different vehicle class and vehicle tech-
nology. However, the recharging was only allowed at the 
depot. Kopfer et al. [23] proposed the mixed use of ICCVs 
and BEVs, and illustrated the advantaged of mixed fleet by 
comparing range, payload, and efficiency. Sassi et al. [24] 
extended Hiermann’s work by allowing multiple charging 
and partial recharge technologies and considering time-
dependent charging costs. Macrina et al. [25] investigated 
the mixed use of EVs and ICCVs with partial recharge and 
figured out the problem with an LNS algorithm.

Additionally, most of the literatures consider using lin-
ear functions to approximate charging process. Montoya 
et al. [26] established a mixed integer programming named 
E-VRP with nonlinear functions (E-VRPNL) and solved it 
by a hybrid heuristic method. They used a piecewise linear 
function to capture the nonlinear behavior of the charging 
process. Koç et al. [27] extended the work by consider-
ing a shared charging station which aims to minimize the 
aggregate driver cost and construction cost of charging sta-
tions. In [28], Froger et al. considered a piecewise linear 

approximation by tracking the time and the state of charge 
by an arc instead of a node. An overview of different variants 
of E-VRP is summarized in Table 1.

To sum up, most of the prior works do not take the vol-
ume constraint and vehicle recycling into account, which 
would be useful for the practical application in logistic com-
panies. Therefore, a vehicle routing problem with E-VRPTW 
constraints, volume constraints, heterogeneous fleet, partial 
recharge, as well as vehicle recycling is presented in this 
paper.

Model development

In this section, the problem is defined and an MILP model 
that considers vehicle recycling and volume constraints 
along with partial recharge is consequently developed.

Problem analysis

H-EVRP-PR&VR is an extension of the E-VRP by consid-
ering a combination of mixed fleet, time windows, vehicle 

Table 1   Literature statistics

References Problem Capacity Time window Partial recharge Mixed-vehicles Objective

Conrad et al. [5] RVRP √ Vehicle number and 
Traveling cost

Erdogan et al. [6] GVRP Traveling distance
Koc et al. [7] GVRP Traveling distance
Bahrami et al. [8] GVRP √ Traveling distance
Montoya et al. [9] GVRP Traveling distance
Andelmin et al. [10] GVRP √ Traveling distance
Schneider et al. [11] E-VRPTW √ √ Traveling distance
Keskin et al. [12] E-VRPTWPR √ √ √ Traveling distance
Felipe et al. [13] GVRP √ √ Total recharging costs
Ding et al. [14] GVRP √ √ √ Traveling distance
Keskin et al. [15] E-VRPTW-PR √ √ √ Total energy cost
Desaulniers et al. [16] E-VRPTW √ √ √ √ Total routing

costs
Schiffer et al. [17] E-VRPTW-PR √ √ √ Total costs
Mao et al. [18] E-VRPTW √ √ √ Total costs
Goeke et al. [19] E-VRPTW √ √ √ √ Distance and costs
Hiermann et al. [20] E-VRPTW √ √ √ Total costs
Hiermann et al. [21] E-VRPTW √ √ √ Total costs
Lebeau et al. [22] E-VRPTW √ √ √ Total costs
Kopfer et al. [23] E-VRPTW √ √ √ Total energy
Sassi et al. [24] HEVRP-TDMF √ √ √ Total costs
Macrina et al. [25] GMFVRPPRTW​ √ √ √ √ Total costs
Montoya et al. [26] E-VRP-NL √ Total time
Koç et al. [27] E-VRP-NL √ Total costs
Froger et al. [28] E-VRP-NL-C √ Total time
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capacities (weight and volume), partial charging, and vehicle 
recycling.

The problem is defined by a directed graph G = (N,A) 
with a set of nodes N = C ∪ F ∪ O and a set of arcs 
A = {(i, j)|i, j ∈ N, i ≠ j  .  L e t  C = {1, 2,… , n} a n d 
F = {1, 2,… ,m} be customers, and the set of recharging 
stations and their copies, respectively. Vertex O denotes the 
depot. Each customer i ∈ C entails a capacity pi , a volume 
qi , a service time si , and a hard time window [ei, li] . Each 
arc (i, j) ∈ A has a relevant distance dij and time tij . There 
are K types of vehicles available for transport. Each vehicle 
type k ∈ K encompasses a maximum load capacity Qk , a 
maximum load volume Vk , a maximum energy capacity Yk , 
a travel cost per kilometer rk , and a fixed cost f k . The maxi-
mum number of each type of vehicle is V .

The objective is to find a route plan departing from the 
depot satisfying customers’ demands and arriving at the 
depot. The vehicles can be recharged at charging stations or 
depot with non-fixed charging time at the charging station 
and fixed charging time at the depot. The aim is to minimize 
the total cost comprised of fixed costs, charging costs, travel 
costs, and waiting costs. We need to decide vehicle type, 
visiting sequence, departure time, recharging quantity, and 
return time for each vehicle.

Figure 1 illustrates an example which includes 9 custom-
ers (C1–C9), 4 stations (S1–S4), and the depot (D). This 
case contains two types of vehicle routes marked in different 
colors, and the percentage on each path represents battery 
state. Vehicle 1 visits S1 after servicing C1, recharges its 
battery to 90% before visiting C2 and C3, and consequently 
goes back to the depot with the battery fully consumed after 

servicing C4. On the other hand, Vehicle 1 is recharged 
twice at S1, indicating that a charging station can be visited 
more than once. Vehicle 2 returns to the depot after serving 
C5 and C6 and sets off again, via C7–C9. Obviously, the 
recycling of the vehicle saves a vehicle.

As the proposition proposed by Keskin et al. in [12], we 
assume that the vehicle departs from the depot with full 
energy and arrives at the depot with its energy fully con-
sumed if it has been recharged along the route. For conveni-
ence, we note the proposition as follows.

Proposition 1  If an optimal solution exists, such that an 
EV leaves the depot with its battery partially charged, then 
the same fully charged EV departing from the depot is also 
optimal.

Model formulation

In this section, a mixed linear model of the problem is for-
mulated with the notations of the model presented at the 
outset. Then, a mixed linear programming (MLP) is formu-
lated and a proposition, which proves that the model can be 
transformed into an MILP model with the path consistent 
with the non-integer programming model, is given.

Notations

The parameters and variables involved in the article are 
shown in Table 2.

S1
C2

C4 C3

C5

C6

C7

C8

C9

S4

S3

S2

30%

60%

30%

0%

40%

70%

50%

50%

50% 35%

15%

0%

D

Fig. 1   An illustrative example for H-EVRP-PR&VR
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Model formulation

In this model, we use a four-dimension binary variable xkl
ij

 to 
define the type of used vehicle and the number. We also 
define binary variable xkl

iOj
 to denote whether the vehicle is 

recycled. �kl
i

 represents the cost of time recharged at i by lth 
vehicle of type k. In this problem, the objective to minimize 
is given as:

The objective function consists of four parts: (1) the total 
cost of the vehicle, (2) the total travel cost, (3) the total 

min
∑

k∈K

f k

(
V∑

l=1

(
∑

j∈{C,F}

xkl
Oj
−

∑

i∈{C,F}

∑

j∈{C,F}

xkl
iOj

))

+
∑

k∈K

rk

(
V∑

l=1

∑

i,j∈N,i≠j

dijx
kl

ij

)

+

[(
∑

k∈K

V∑

l=1

∑

i∈{C,F}

∑

j∈{C,F}

xkl
iOj

)
sO +

∑

i∈C

(
�i − �i

)
]
w

+
∑

j∈F

∑

k∈K

V∑

l=1

∑

i∈N

��
kl
j
.

Table 2   Notations in the model 
formulation Input parameters

O Depot
C Set of customers
CO Set of depot and customers, CO = C ∪ O

F Set of recharging stations and their copies
N Set of all nodes N = C ∪ F ∪ O

K Set of vehicle type
Vk Maximum volume of vehicle type k
Qk Maximum capacity of vehicle type k
Yk Maximum energy capacity of vehicle type k
pi Capacity demand of node i
qi Volume demand of node i
V Upper limit of each type of vehicle
L A large enough number
[ei, li] Time windows of customers, ei represent the earliest service time and li represent the 

latest service time of node i
si Service time of node i
dij Distance from node i to node j
tij Travel time from node i to node j
rk Per kilometer cost of vehicle type k
f k Fixed cost of vehicle type k
w Waiting cost per hours
g Charging rate, km/min
� Charging cost per hours
Decision variables
xkl
ij

Binary variable which is 1 if the lth vehicle of type k visits node j after visiting node i

xkl
iOj

Binary variable which is 1 if the lth vehicle of type k from i to O then to j

�
kl
i

Time of the lth vehicle of type k recharged at station i
�i Arrival time at node i
�i Staring time at node i
ykl
ij

Available mileage when the lth vehicle of type k reaches node j from node i

qkl
i

Available load when the lth vehicle of type k reaches node i

pkl
i

Available volume when the lth vehicle of type k reaches node i
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waiting cost including depot waiting cost and customer wait-
ing cost, and (4) the total charging cost.

Model constraints are listed as follows:

(1)
∑

k∈K

V∑

l=1

∑

j∈N,i≠j

xkl
ij
= 1, ∀i ∈ C,

(2)
∑

i∈N,i≠j

xkl
ji
−

∑

i∈N,i≠j

xkl
ij
= 0, ∀j ∈ N,∀k ∈ K,∀l ≤ V,

(3)
∑

j∈N

xkl
Oj
−

∑

i,j∈N

xkl
iOj

<= 1, ∀k ∈ K,∀l ≤ V ,

(4)|||x
kl
iO
− 1

||| ≤ L
(
1 − xkl

iOj

)
, ∀i, j ∈ N,∀k ∈ K,∀l ≤ V ,

(5)|||x
kl
Oj
− 1

||| ≤ L
(
1 − xkl

iOj

)
, ∀i, j ∈ N,∀k ∈ K,∀l ≤ V ,

(6)�i ≤ �i, ∀i ∈ Co,

(7)ei ≤ �i ≤ li, ∀i ∈ Co,

(8)

|||�j − �j
||| ≤ L

(
∑

i∈{C,F}

xkl
iOj

+ 1 − xkl
Oj

)
, ∀k ∈ K,∀l ≤ V ,∀j ∈ {C,F},

(9)

|||�i + tiO + si + sO + tOj − �j
||| ≤ L

(
1 − xkl

iOj

)
,

∀k ∈ K,∀l ≤ V ,∀i ∈ {C}, j ∈ {C,F},

(10)

|||�i + tiO + �
kl
i
+ sO + tOj − �j

||| ≤ L
(
1 − xkl

iOj

)
,

∀k ∈ K,∀l ≤ V ,∀i ∈ {F}, j ∈ {C,F},

(11)

|�i + (tij + si)x
kl
ij
− �j| ≤ L

(
1 − xkl

ij

)
,

∀k ∈ K,∀l ≤ V ,∀i ∈ {C}j ∈ N,

(12)

|||�i + tijx
kl
ij
+ �

kl
i
− �j

||| ≤ L
(
1 − xkl

ij

)
,

∀k ∈ K,∀l ≤ V ,∀i ∈ {F}, j ∈ N,

(13)||�i − �i
|| = 0, ∀i ∈ {O,F},

(14)

|||q
kl
j
− qj

||| ≤ L
(
1 − xkl

Oj

)
, ∀k ∈ K,∀l ≤ V ,∀j ∈ {C,F},

(15)

|||q
kl
i
+ qjx

kl
ij
− qkl

j

||| ≤ L
(
1 − xkl

ij

)
, ∀k ∈ K,∀l ≤ V ,∀i ∈ {C,F}, j ∈ N,

(16)0 ≤ qkl
i
≤ Qk

∑

j∈N

xkl
ij
, ∀k ∈ K,∀l ≤ V ,∀i ∈ N,

(17)

|||p
kl
j
− pj

||| ≤ L
(
1 − xkl

Oj

)
, ∀k ∈ K,∀l ≤ V ,∀j ∈, {C,F},

(18)
|pkl

i
+ pjx

kl
ij
− pkl

j
| ≤ L

(
1 − xkl

ij

)
, ∀k ∈ K,∀l ≤ V ,∀i ∈ {C,F}, j ∈ N,

(19)0 ≤ pkl
i
≤ Vk

∑

j∈N

xkl
ij
, ∀k ∈ K,∀l ≤ V ,∀i ∈ N,

(20)

ykl
si
− dijx

kl
ij
≥ L

(
xkl
si
− 1

)
,

∀k ∈ K,∀l ≤ V ,∀s, i ∈ N,∀j ∈ N, s ≠ i, i ≠ j,

(21)|ykl
si
− dijx

kl
ij
− ykl

ij
| ≤ L

(
2 − xkl

si
− xkl

ij

)
,

|||y
kl
si
− dijx

kl
ij
+ g�kl

j
− ykl

ij

||| ≤ L
(
2 − xkl

si
− xkl

ij

)
,

(22)
|||y

kl
si
− dijx

kl
ij
+ g�kl

j
− ykl

ij

||| ≤ L
(
2 − xkl

si
− xkl

ij

)
,

∀k ∈ K,∀l ≤ V ,∀s, i ∈ N,∀j ∈ F, s ≠ i, i ≠ j, i ≠ O,

(23)

|y
kl
Oi
− Ykxkl

Oi
+ dOix

kl
Oi
− g�kl

i
| ≤ L(1 − xkl

Oi
),

∀k ∈ K,∀l ≤ V ,∀i ∈ {C,F},

(24)0 ≤ ykl
ij
≤ Ykxkl

ij
, ∀k ∈ K,∀l ≤ V ,∀j ∈ N,

(25)0 ≤ �
kl
i
≤ L

∑

j∈N

xkl
ij
, ∀k ∈ K,∀l ≤ V ,∀i ∈ N,

(26)
∑

i∈N

∑

j∈N

xkl
iOj

∈ {0, 1}, ∀k ∈ K,∀l ≤ V ,

(27)
∑

j∈N

xkl
Oj

≤ 2, ∀k ∈ K,∀l ≤ V ,

(28)

∑

j∈N

xkl+1
Oj

−
∑

i∈N

∑

j∈N

xkl+1
iOj

≤
∑

j∈N

xkl
Oj
−
∑

i∈N

∑

j∈N

xkl
iOj
, ∀k ∈ K,∀l ≤ V − 1,

(29)xkl
ij
∈ {0, 1}, ∀k ∈ K,∀l ≤ V ,∀i, j ∈ N,

(30)xkl
iOj

∈ {0, 1}, ∀k ∈ K,∀l ≤ V ,∀i, j ∈ {C,F},

(31)xkl
ii
= 0, ∀k ∈ K,∀l ≤ V ,∀i ∈ N,
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Equation (1) ensures that each customer should be served 
by one vehicle and exactly once, while Eq. (2) guarantees 
flow conservation, i.e., all the inflows to a node must be 
equal to the outflows from that node, this constraint also 
ensures that all routes start and end at the depot when j = O . 
Equation (3) describes that for each type k , the number of 
vehicles departing again from the depot is less than the num-
ber of vehicles departing for the first time. The relationship 
between xkl

iOj
 and xkl

ij
 is covered by Eqs. (4) and (5).

The timing constraints for the vehicle are covered by 
Eqs. (6)–(13). Equation (6) describes that the starting time 
θi at node i is later than arrival time �i . Equation (7) ensures 
that the starting time �i is inside the time window [ei, li] . 
Equation (8) ensures the arrival time �j is equal to the start-
ing time �j when the vehicle departs for the first time, i.e., 
the service can begin as soon as the vehicle arrives, which 
differs from Eqs. (9) and (10), in which we consider the 
vehicle recycling. Equations (9) and (10) consider that i is a 
customer and charging station, respectively. Equation (9) 
guarantees that if the vehicle restarts from the depot, its 
arrival time at j is equal to starting time �i plus service time 
si , travel time tiO and tOj , and adjustment time at the depot 
sO . Equation (10) considers the same case for charging sta-
tion by replace service time with recharge time �kl

j
 . Equa-

tion (11) ensures that the arrival time of next node �j depends 
on the starting time at the previous node �j plus service time 
si and travel time tij . Equation (12) considers the case when 
the previous node i is a charging station. Equation (13) 
restricts the starting time �i to be equal to arrival time �i 
when i is either charging station or depot.

The constraints of weight and volume are covered by 
Eqs. (14)–(19). Equation (14) guarantees that the load vol-
ume of the vehicle at first node qkl

j
 is equal to the volume of 

the node qj . Equation (15) indicates that the load volume of 
next node qkl

j
 is equal to the load volume of previous node 

qkl
i

 plus demand qj . Equation (16) guarantees that the load 
volume qkl

i
 is a positive number and never exceeds the maxi-

mum volume of vehicle type k . Equations (17)–(19) are cor-
responding constraints for load.

Equations  (20)–(25) show the restrictions on current 
available energy ykl

ij
 . Equation (20) guarantees the vehicle 

can reach next node j from current node i . Equation (21) 
ensures that if j is a customer or depot node, current avail-
able energy ykl

ij
 at j is equal to the previous available energy 

(32)xkl
iOi

= 0, ∀k ∈ K,∀l ≤ V ,∀i ∈ N,

(33)ykl
iOi

= 0, ∀k ∈ K,∀l ≤ V ,∀i ∈ N.

ykl
si

 at i minus the distance dij . Equation (22) considers when 
j is a charging station, current available energy ykl

ij
 depends 

on the previous available energy ykl
si

 at i plus the amount of 
energy the vehicle recharged at station i and minus the dis-
tance dij . Equation (23) guarantees that each time the vehicle 
leaves the depot with full energy. Equation (24) enforces the 
current available energy ykl

j
 never exceeds the maximum 

capacity Yk for each vehicle k . Equation (25) guarantees that 
the recharge time does not exceed a large enough number.

Equations (26) and (27) place a once-only recycle restric-
tion on each vehicle. Equation (28) makes sure that the vehi-
cle is used in order. Equations (29)–(33) define the domains 
of variables xkl

ij
 and xkl

iOj
.

By requiring the charging time �kl
i

 to be integer, the above 
model can be easily converted to an integer programming 
model.

Proposition 2  If � is an optimal solution to the MLP, then 
⌈�⌉ is the optimal solution to the corresponding MILP.

Proof  If � is optimal, then vehicles shall arrive at the depot 
with its battery fully consumed (if it is charged among the 
route). ⌈�⌉ is the smallest integer that not only meets the 
charging requirements but also minimizes the remaining bat-
tery when the vehicle returns to the depot. As the two sides 
of the time window [ej, lj] are integers, assume the vehicle 
visits node j after accessing charging station i , and then, the 
arrival time of node j satisfies ⌈𝜃j⌉ − 𝜃j = ⌈𝛿i⌉ − 𝛿i < 1 . If 
𝜃j < 𝜏

j
 , ⌈�j⌉ = �j . If �j = �

j
 , then ⌈𝜏j⌉ − 𝜏j < 1 . Since �j ≤ lj , 

therefore ⌈�j⌉ ≤ lj , i.e., the new solution also satisfies the 
time window, ⌈�⌉ must be optimal for the corresponding inte-
ger linear programming.

The hybrid metaheuristic algorithm

To solve the H-EVRP-PR&VR problem, a hybrid 
metaheuristic combining a construction heuristic with the 
VNS algorithm is developed. The former incorporates the 
idea of the greedy method to construct the initial solution, 
while the latter improves the solution in each iteration, VNS 
randomly perturbs the current solution according to the 
defined neighborhood structure. Then, the departure time is 
adjusted by a departure time operator which aims to save the 
waiting cost. The pseudo-code of the hybrid metaheuristic 
algorithm is shown in Algorithm 1.



1452	 Complex & Intelligent Systems (2021) 7:1445–1458

1 3

Variable neighborhood search

Our VNS structure is similar to the classic VNS that consists 
of a variable neighborhood descent and a shaking procedure; 
however, we define new neighborhood structures and a per-
turbation operator to expand the search space. New labeling 
algorithm and recycling operator are also developed in the 
heuristic.

Labeling algorithm

A labeling algorithm is proposed to find out the optimal 
charging station. For each route, we determine whether it 
needs to be plugged into a charging station, record the inac-
cessible location, and find the closest non-customer point. 
The interval where the charging station can be inserted 
is found and the location with the lowest insertion cost is 
chosen. The recharging time is determined by dividing the 
distance from the current charging station to the next charg-
ing station by the power consumption. The algorithm is as 
follows:

Generation of initial solution

The initial solution for the H-EVRP-PR&VR problem is 
constructed by a modified Greedy Algorithm (MGA). The 
first point on each route is selected among the remaining 
customers according to the urgency of the customer, which 
is defined as follows:

This formula shows that the urgency of the customer Ui 
is determined by the difference between the latest service 
time li and the time required to reach the customer from the 
depot tOi.

The vehicle type with the lowest cost is selected. After 
the first point is confirmed, the point with the least travel 
costs and waiting costs is chosen, until any constraints are 
violated. While the vehicle cannot reach the next client, the 
nearest charging station is selected to recharge the vehicle.

Ui = li − tOi,∀i ∈ C,



1453Complex & Intelligent Systems (2021) 7:1445–1458	

1 3

exchanged randomly with the cost saving recorded and ulti-
mately, the assignment algorithm is used to find the optimal 
exchange. The algorithm is as follows:

Perturbation algorithm

A new perturbation operator is proposed with each route 
divided into three segments according to a randomly 
given time period. The middle parts of the two routes are 
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The saving value defaults to a large number M , and thus, 
the diagonal entries of the saving matrix are all M. The per-
turbation algorithm changes one value in the matrix at a 
time.

Neighborhood structures

As we know, VNS is an improved local search algorithm that 
makes use of the neighborhood structure formed by differ-
ent actions to perform alternate searches and diversify the 
search space. Our neighborhood structures are defined on 
the basis of the exchange operator. We proposed k-neigh-
borhood structures by the number of exchange nodes with 
each k-neighborhood structures representing the exchange 
of k ∗ 100 customers. The exchange cost is calculated for 
each customer, and the exchange with the greatest saving is 
selected. Neighborhoods are defined in terms of latitude and 
longitude as well as the time window coincidence.

Classical operators’ Inter-route 2-opt and Relocate are 
also used in the local search to improve the solution. Only 
feasible solutions are accepted throughout the local search, 
but during the insertion process of the Inter-route 2-opt and 
Relocate, the mileage constraint is allowed to be violated, 
i.e., after the insert, the remaining mileage of the vehicle 
cannot reach a certain customer point. Then, the infeasible 

path is repaired by the Labeling algorithm; if it cannot be 
repaired, the insert is abandoned.

Recycling operator

A vehicle recycling operator is proposed to save fixed costs 
by reducing the number of vehicles and improve vehicle 
utilization. For two routes, if the arrival time of one route is 
earlier than the departure time of the other, reconstruct the 
route based on the customers contains in the two routes. The 
above procedure is carried out until no further improvements 
can be done.

Departure time adjustment heuristic

As the departure time affects waiting time, an algorithm is 
designed to adjust the departure time. The algorithm uses 
the difference between the arrival time and time window of 
each point to calculate the adjustment time.

For route r , we calculate the waiting time and the delay 
time of each customer ni , i.e., wi = max{0, ei − �i} and 
sli = max{0, li − �i} , and figure out the maximum waiting 
time and minimum delay time for all customers. Afterward, 
we compute the maximum waiting time and minimum delay 
time for all customers, and the smallest value among them 
is chosen as the adjustment time.

Numerical experiments

In this section, we first present an illustration for the data set 
provided by JD Logistics and solve six small instances by 
the commercial software, CPLEX. The performance of the 

Table 3   Vehicle information Index Vehicle type Volume ( m3) Load (tone) Maximum 
mileage (Km)

Transportation 
cost (Yuan/km)

Vehicle 
cost (Yuan/
day)

1 IVECO 12 2 100 12 200
2 TRUCK 16 2.5 120 14 300

Fig. 2   The best-known solution for the instance with eight customers

Table 4   Results of small instances

Number of 
customers

Cplex (cost) Time (s) VNS (cost) Time (s)

3 1556.43 19 1556.43 0.09
4 2436.19 26 2436.19 0.09
5 2612.06 55 2612.06 0.09
6 3639.46 515 3639.46 0.93
7 4519.23 3217 4519.04 0.11
8 4892.27 7200 4695.19 0.18
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improved VNS algorithm is tested. The impact of vehicle 
recycling, partial recharge, and the number of charging sta-
tions is analyzed. The VNS algorithm is coded in Python. 
All the experiments are implemented on a laptop with 
Intel(R) Core(TM) i7 processor (2.2 GHz) and 8 GB RAM.

Experiment description

The algorithm is tested on the real-world data of Beijing 
provided by JD. The logistics company provides urban dis-
tribution services to 1000 customer nodes distributed in the 
whole city. Each customer has a time window. Two types 
of EVs are employed, and each EV has fixed capacities on 
both weight and volume. There are 100 charging stations 
distributed in the whole region, which can provide charg-
ing services for all EVs. The EV departs from the logistics 
center after 8 o’clock and returns before 24 o’clock. When 
an EV returns earlier, it can depart again after a period of 
1 h (Table 3).

The table below lists out the main information about the 
two types of EVs.

Some notes on other parameters are as follows:

1.	 Vehicles departing from the distribution center with 
battery fully recharged. The EVs are allowed to return 

to the depot and restart again after 1 h and calculating 
waiting costs.

2.	 The unloading time is 0.5 h, while the loading time is 
not taken into account.

3.	 The charging cost � is 100 yuan/h.
4.	 There are no restrictions on the charging station. The 

charging rate g is 4000 km per minute.
5.	 The waiting cost w is 24 yuan/h.

Computational results of small instances

The correctness of the model is demonstrated by combining 
the MATLAB toolbox YALMIP with the commercial solver 
CPLEX for solve small-scale cases. As this problem is raised 
for the first time, existing benchmark results are not avail-
able. A small dataset which includes 11 points, 8 customers, 
2 charging stations, and one depot is constructed based on Fig. 3   Computational time under different number of customers

Table 5   Calculation results for the real-world case

Algorithm Route number (type 
1, type 2)

Solution Gap

MCW 163 (157, 6) 262,789.02 9.6%
MGA 167 (161, 6) 285,007.47 18.9%
VNS 144 (138, 6) 239,679.60 0%

Table 6   The computational results obtained with MGA and VNS on 
different instances

Number of 
customers

MGA VNS Time (s) Gap

950 263,165.19 239,436.4 560.346 s 9.91%
900 258,603.49 230,835.47 596.766 s 12.03%
850 242,896.94 215,395.9 600.00 s 12.77%
800 229,129.29 204,060.12 535.117 s 12.29%
750 217,907.61 191,212.93 396.184 s 13.96%
700 202,316.98 178,637.19 411.409 s 13.26%
650 190,945.96 169,033.68 335.252 s 12.96%
600 175,891.83 156,239.96 289.186 s 12.58%
550 164,929.17 145,762.78 251.262 s 13.15%
500 149,226.67 131,755.9 247.359 s 13.26%

Fig. 4   Statistical analysis of the VNS algorithm
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the scale of the actual data. There are two types of vehicles 
available, with different vehicle loads and maximum mile-
age. The distribution of customer points and the best-known 
solution are shown in Fig. 2. The plane coordinates are con-
verted from latitude and longitude using the depot as the 
origin. Lines of different colors represent different vehicle 
types and green dots represent charging stations.

In Table 4, the results of commercial solver and VNS are 
compared for different sizes of customers. The second and 
third columns record the solution and computation time of 
CPLEX and the last two columns are the counterparts of the 
VNS. The results show that for customer points 3–7, VNS 
returns the same solution as CPLEX, but with a significantly 
shorter computation time; for 8-customer scenario, VNS can 
get a better solution than CPLEX in less than 1 s.

Figure 3 shows the change in computational time as the 
customer increases. From the above results, we can see that 
the calculation time increases exponentially as the number of 
customers increases. As the number of customers increases 
to 8, it is almost infeasible to find the optimal solution within 
an allotted time. Therefore, CPLEX is impossible to find the 
optimal solution for the large-scale problem, and the corre-
sponding heuristic algorithm needs to be designed.

Computational results of the real‑world cases

In this section, the performance of the algorithm on differ-
ent scales is presented, and the effects of partial recharge, 
vehicle cycling, and changes in the number of charging sta-
tions are analyzed.

Performance of the algorithm

To verify the performance of the algorithm, we modify the 
MCW algorithm proposed by Schneider et al. [11] as a com-
parison. The gap between each solution, considering the 
definition proposed by Hiermann et al. in [21], is calculated 
by gap =

solution−VNSsolution

VNSsolution
.

In Table 5, we present the results of MCW, MGA, and 
VNS, respectively. The second column shows the number 
of routes with each vehicle type shown in brackets. The total 
costs are displayed in the third column, while the gaps are 
shown in the fourth column. The results suggested that the 
solution obtained by VNS is optimal, and the gap between 

VNS and MCW is 9.6%, while the gap between MGA and 
the final solution is 18.9%.

We construct new instances by randomly sampling 
500–950 customers from the example. It is more critical 
for companies to obtain a feasible solution quickly than the 
optimal solution in practical applications. Therefore, we fix 
the number of iterations Kmax as 5 and limit the maximum 
running time to 10 min. The results are shown in Table 6.

To avoid accidental errors, all experiments are performed 
ten times with the best of them taken as a result. The distri-
bution of the solutions is presented in Fig. 4. It can be seen 
from the graph that the box widths are narrow and has fewer 
abnormalities, reflecting that the solutions are stable and 

Table 7   Effect of partial recharge and vehicle recycling on the real-
world case

Algorithm Without PR and VR PR and VR Gap

MCW 277,446.69 262,789.02 5.6%
VNS 249,269.02 239,679.60 4.0%

Fig. 5   The number of utilized vehicles with/without EV recycling

Fig. 6   Comparison of the charging cost for partial and full recharge 
strategies
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evenly distributed, while the cost reduction trend is steady 
at around 6% as the number of customers decreases.

In Table 6, it can be observed that VNS improves the 
solution by roughly 9.91%. For each 50 point difference, the 
cost will drop by about 11,900. The widest gap is more than 
15,900, while the smallest gap is 7278.

Effect of partial recharge and vehicle recycling

In Table 7, we show the effects of vehicle recycling and 
partial recharge on the large-scale case. The second column 
is the result without considering partial recharge and vehicle 
recycling, while the third column is the solution considering 
partial recharge and vehicle recycling. These results indicate 
that partial recharge and recycling could significantly save 
the total cost, reducing the initial and final solution by 5.6 
and 4%, respectively.

In Fig. 5, the impact of the vehicle recycling on instances 
with different number of customers is shown. The number 
of vehicles between recycling and non-recycling is com-
pared. The results demonstrate that vehicle recycling can 
save roughly 4.0% of the fixed cost, and in fact, the recycling 
of vehicles also reduces the vehicle purchase requirements 
and driver costs.

In Fig. 6, we display the comparison between partial 
recharge and fully recharge. For each instance, partial 
recharge can save about 1700 costs. The results demonstrate 
that partial recharge can save about 57.9% of the charging 
fee.

Effect of charging stations

In E-VRP, another key factor that affects the costs is the 
number of charging stations. We study the impact of the 
charging station by varying its number from 100 to 50.

In Table 8, CS stands for the number of charging sta-
tions, while Cus represents customers’ number. It can be 
drawn from Table 8 that as the number of charging stations 

decreases, the optimal solution cannot be obtained for large-
scale points, and the overall solution projects an increasing 
trend. For scenarios with less than 700 customers, the opti-
mal solutions are obtained given 70 or 60 charging stations. 
This means that for smaller scale, 60 charging stations are 
already sufficient, and due to the reduction in the number of 
customers, it is easier to get the optimal solution. However, 
when the number of charging stations is further reduced, 
the costs increase.

Conclusions and future works

This study introduces the heterogeneous electric vehicle 
routing problem with time windows, partial recharge, and 
vehicle recycling. The objective is to minimize the total 
cost comprised of fixed costs, driving costs, waiting costs, 
and charging costs. A mathematical model is established. 
Experiments indicate that commercial solvers, e.g., CPLEX, 
can only solve small instances of the problem. For large-
scale instances, a two-stage algorithm is designed. An initial 
feasible solution is constructed by the MGA heuristic and 
then is improved by VNS. A new shaking operator and a 
departure time adjustment heuristic are also included in the 
VNS to improve the search efficiency. Computational results 
show that the VNS algorithm can greatly improve the initial 
solution. Besides, the effectiveness of partial recharge and 
vehicle recycling is demonstrated, while the impact of the 
number of charging stations is analyzed.

There are several directions for future research. As the 
proposed problem is a new variant of E-VRP and integrates 
many practical constraints faced by logistic companies in 
the daily operation, the problem turns out to be complicated 
and computationally expensive. Thus, it remains an essential 
impetus to study more efficient algorithms for the problem. 
The problem presented in this paper can also be extended by 
considering the multi-depot situation and different charging 
technologies.

Table 8   The results under 
different number of charging 
stations

CS
Cus

100 90 80 70 60 50

950 237,877.6 239,098.7 239,377.2 240,471.3 239,897.6 242,685.6
900 230,835.47 230,004.5 230,763.3 230,763.3 231,127.53 231,738.2
850 217,146 215,450.8 215,547.3 216,151.2 217,159.6 216,666.3
800 204,703.2 203,369.6 203,727 204,178 204,961.47 205,791.4
750 193,107.5 191,095.6 191,385.4 191,410.7 193,466.4 194,611.9
700 181,706.4 178,191.4 179,603.6 181,333.5 178,171.3 181,390.7
650 169,914.7 169,648.5 170,881.4 169,655.1 167,783.3 169,572.6
600 159,183.1 157,536.5 157,793.6 156,301.7 158,439.1 158,516.2
550 147,154 145,379.5 147,264.5 145,765.8 145,123.8 145,795
500 134,003 133,052.4 132,533.9 131,264.3 134,120.4 132,216
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