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Abstract
Topological index is a numerical value associatedwith a chemical constitution for correlation of chemical structurewith various
physical properties, chemical reactivity or biological activity. In this work, some new indices based on neighborhood degree
sum of nodes are proposed. To make the computation of the novel indices convenient, an algorithm is designed. Quantitative
structure property relationship (QSPR) study is a good statistical method for investigating drug activity or binding mode for
different receptors. QSPR analysis of the newly introduced indices is studied here which reveals their predicting power. A
comparative study of the novel indices with some well-known and mostly used indices in structure-property modelling and
isomer discrimination is performed. Some mathematical properties of these indices are also discussed here.

Keywords Chemical network · Degree · Topological descriptors · QSPR analysis

Mathematics Subject Classification 05C09 · 05C92 · 05C07 · 92E10

Introduction

The graph theory is a significant part of applied mathematics
for modeling real life problems. The chemical graph theory,
a fascinating branch of graph theory, providesmany informa-
tion on chemical compounds using an important tool called
the topological index [4,43]. Theoretical molecular descrip-
tors alias topological indices are graph invariants that play an
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important role in chemistry, pharmaceutical sciences,materi-
als science, engineering and so forth. Its role onQSPR/QSAR
analysis [2,22,23,37,38], to model physical and chemical
properties of molecules is also remarkable. Among several
types of topological indices, vertex degree based [15] topo-
logical indices are most investigated and widely used. The
first vertex degree based topological index is proposed in
1975 by Randić [36] known as Connectivity index or Randic
index. Connectivity index is defined by

R(G) =
∑

uv∈E(G)

1√
dG(u)dG(v)

,

where dG(u), dG(v) represent the degree of nodes u,v in
the vertex set V (G) of a molecular graph G. By molecular
graph, we mean a simple connected graph considering atoms
of chemical compound as vertices and the chemical bonds
between themas edges. E(G) is the edge set ofG. The inverse
Randic index [19] is given by

RR(G) =
∑

uv∈E(G)

√
dG(u)dG(v).
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The Zagreb indices, introduced by Gutman and Trinajestić
[20], are defined as follows:

M1(G) =
∑

v∈V (G)

dG(v)2 =
∑

uv∈E(G)

[dG(u) + dG(v)],

M2(G) =
∑

uv∈E(G)

[dG(u)dG(v)].

Furtula et al. [12] have introduced the forgotten topological
index as follows:

F(G) =
∑

v∈V (G)

dG(v)3 =
∑

uv∈E(G)

[dG(u)2 + dG(v)2].

Zhou and Trinanjstić have designed the sum connectivity
index [49] which is as follows:

SCI(G) =
∑

uv∈E(G)

1√
dG(u) + dG(v)

.

The symmetric division degree index [44] is defined as

SDD(G) =
∑

uv∈E(G)

[dG(u)

dG(v)
+ dG(v)

dG(u)
].

The redefined third Zagreb index [39] is defined by

ReZG3(G) =
∑

uv∈E(G)

dG(u)dG(v)[dG(u) + dG(v)].

For more study about degree based topological indices, read-
ers are referred to the articles [5,10,24,25,27,32]. Recently,
the present authors introduced some new indices [30,31]
based on neighborhood degree sum of nodes. As a continu-
ation, we present here some new topological indices, named
as first NDe index (ND1), second NDe index (ND2), third
NDe index (ND3), fourth NDe index (ND4), fifth NDe index
(ND5), and sixth NDe index (ND6) and defined as

ND1(G) =
∑

uv∈E(G)

√
δG(u)δG(v),

ND2(G) =
∑

uv∈E(G)

1√
δG(u) + δG(v)

,

ND3(G) =
∑

uv∈E(G)

δG(u)δG(v)[δG(u) + δG(v)],

ND4(G) =
∑

uv∈E(G)

1√
δG(u)δG(v)

,

ND5(G) =
∑

uv∈E(G)

[
δG(u)

δG(v)
+ δG(v)

δG(u)

]
,

ND6(G) =
∑

uv∈E(G)

[dG(u)δG(u) + dG(v)δG(v)],

where δG(u) is the sum of degrees of all neighboring ver-
tices of u ∈ V (G), i.e, δG(u) = ∑

v∈NG (u) dG(v), NG(u)

being the set of adjacent vertices of u. The goal of this arti-
cle is to check the chemical applicability of the above newly
designed indices and discuss about some bounds of them in
terms of other topological descriptors to visualize the indices
mathematically.

We construct the results into two different parts. We start
the first part with an algorithm for computing the indices and
then some statistical regression analysis have been made to
check the efficiency of the novel indices to model physical
and chemical properties. Then, we would like to test their
degeneracy. It follows a comparative study of these indices
with other topological indices. This part ends with a discus-
sion about the applications of the present work. The second
part deals with some mathematical relation of these indices
with some other well-known indices.

Computational aspects

In this section, we have designed an algorithm to make the
computation of the novel indices convenient.

Algorithm 1 Computational Procedure
1: Input: Graph G.
2: Output: Calculation of ∂ and degree.
3: Initialization: E ← no. of edges, V ← no. of vertex ,

conn[E][2] ← connection matri x , deg[V][2] ←
degree of each vertex , ∂[V][2] ← n−bd degree of each vertex ,
ver[V] ← Vertex array, count ← 0, adj[count] ←
ad jacent element , ∂ ← 0.

4: loop i = 1 to V
5: For each vertex from the array ver [V ].
6: loop j = 1 to E
7: count corresponding vertex from the matrix conn[E][2].
8: end loop
9: deg[V ][2] = count .
10: loop k = 1 to count
11: ad j[count] = store corresponding vertex.
12: end loop
13: loop k = 1 to count
14: for each vertex from the array ad j[count].
15: loop j = 1 to E
16: Find the frequency of the vertex from the matrix

conn[E][2].
17: Store the frequency in ∂ for all the vertex in ad j[count].
18: end loop
19: ∂[V ][2] = ∂ .
20: ∂ = 0.
21: end loop
22: count = 0.
23: end loop
24: For each vertex v ∈ V .
25: Retrieve degree and n-bd degree sum from the matrix deg[V ][2]

and ∂[V ][2].
26: Calculate the function f (δG(u), δG(v), dG(u), dG(u)).
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To make it simple and understandable, we have con-
sidered some variables and matrices. We have used conn
[E][2] matrix to store the connection details among ver-
tices, whereas deg [V ][2] and δ[V ][2] is the matrix to store
degree of each vertex and neighborhood degree sumof vertex
respectively. The novel indices can be considered as function
of δG(u),δG(v),dG(u), and dG(v) i.e., f(δG(u),δG(v),dG(u),
dG(v)).

Newly introduced indices in QSPR analysis

In this section, we have studied about the newly designed
topological indices to model physico-chemical properties
[Acentric Factor (Acent Fac.), entropy (S), enthalpy of
vaporization (HVAP), standard enthalpy of vaporization
(DHVAP), and heat capacity at P constant (CP)] of the
octane isomers and physical properties [boiling points (bp),
molar volumes (mv) at 20◦C, molar refraction (mr) at
20 ◦C, heats of vaporization (hv) at 25 ◦C, critical tem-
perature (ct), critical pressure (cp) surface tensions (st) at
20 ◦C and melting points (mp)] of the 67 alkanes from
n-butanes to nonanes. The experimental values of physico-
chemical properties of octane isomers (Table 1) are taken
from http://www.moleculardescriptors.eu. The data related
to 67 alkanes (Table 9) are compiled from [27]. For com-
parative study, different well-known existing descriptors are
collected form http://www.moleculardescriptors.eu/books/
books.htm. First, we have considered the octane isomers
(Table 2) and then the 67 alkanes are taken into account.

Regressionmodel for octane isomers

We have tested the following linear regression models

P = m(TI) + c, (1)

where P is the physical property and TI is the topological
index. Using the above formula, we have the following linear
regression models for different neighborhood degree sum
based topological indices.

1. ND1 index:

S = 141.1521 − [ND1(G)]1.1926
Acent Fac. = 0.627 − [ND1(G)]0.0097

DHVAP = 11.8017 − [ND1(G)]0.0893

2. ND2 index:

S = 39.6776 + [ND2(G)]27.1579
Acent Fac. = −0.2058 + [ND2(G)]0.2238

DHVAP = 1.1069 + [ND2(G)]2.0737

3. ND3 index:

S = 117.2259 − [ND3(G)]0.0088
Acent Fac. = 0.4322 − [ND3(G)]7.2 × 10−5

DHVAP = 9.9568 − [ND3(G)]0.0006

Table 1 Experimental values of
physico-chemical properties for
octane isomers

Octanes Acent Fac. S HVAP DHVAP CP

n-Octane 0.397898 111.67 73.19 9.915 24.64

2-Methyl heptane 0.377916 109.84 70.3 9.484 24.8

3-Methyl heptane 0.371002 111.26 71.3 9.521 25.6

4-Methyl heptane 0.371504 109.32 70.91 9.483 25.6

3-Ethyl hexane 0.362472 109.43 71.7 9.476 25.74

2,2-Dimethyl hexane 0.339426 103.42 67.7 8.915 25.6

2,3-Dimethyl hexane 0.348247 108.02 70.2 9.272 26.6

2,4-Dimethyl hexane 0.344223 106.98 68.5 9.029 25.8

2,5-Dimethyl hexane 0.356830 105.72 68.6 9.051 25

3,3-Dimethyl hexane 0.322596 104.74 68.5 8.973 27.2

3,4-Dimethyl hexane 0.340345 106.59 70.2 9.316 27.4

2-Methyl-3-ethyl pentane 0.332433 106.06 69.7 9.209 27.4

3-Methyl-3-ethyl pentane 0.306899 101.48 69.3 9.081 28.9

2,2,3-Trimethyl pentane 0.300816 101.31 67.3 8.826 28.2

2,2,4-Trimethyl pentane 0.30537 104.09 64.87 8.402 25.5

2,3,3-Trimethyl pentane 0.293177 102.06 68.1 8.897 29

2,3,4-Trimethyl pentane 0.317422 102.39 68.37 9.014 27.6

2,2,3,3-Tetramethyl butane 0.255294 93.06 66.2 8.41 24.5
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Table 2 Topological indices of
octane isomers

Octanes ND1 ND2 ND3 ND4 ND5 ND6

n-Octane 23.827 2.711 612 2.144 14.5 92

2-Methyl heptane 25.786 2.601 770 1.971 14.517 108

3-Methyl heptane 26.559 2.5699 892 1.956 15.117 116

4-Methyl heptane 26.518 2.588 920 1.991 15.133 116

3-Ethyl hexane 27.254 2.551 1056 1.964 15.8 124

2,2-Dimethyl hexane 29.706 2.443 1224 1.754 14.6 146

2,3-Dimethyl hexane 29.266 2.444 1212 1.784 15.533 142

2,4-Dimethyl hexane 28.478 2.469 1086 1.799 15.183 132

2,5-Dimethyl hexane 27.801 2.495 946 1.802 14.433 124

3,3-Dimethyl hexane 31.1296 2.381 1504 1.718 15.933 164

3,4-Dimethyl hexane 29.94 2.404 1332 1.753 16.333 150

2-Methyl-3-ethyl pentane 29.902 2.415 1372 1.77 16.29 150

3-Methyl-3-ethyl pentane 32.526 2.301 1778 1.645 17.364 182

2,2,3-Trimethyl pentane 33.88 2.252 1832 1.527 16.107 192

2,2,4-Trimethyl pentane 31.552 2.346 1436 1.606 14.752 162

2,3,3-Trimethyl pentane 34.627 2.214 1976 1.489 16.681 202

2,3,4-Trimethyl pentane 31.907 2.308 1530 1.589 16.057 168

2,2,3,3-Tetramethyl butane 38.749 2.076 2534 1.277 15.928 248

4. ND4 index:

S = 69.8183 + [ND4(G)]20.3149
Acent Fac. = 0.04656 + [ND4(G)]0.1651

DHVAP = 6.2868 + [ND4(G)]1.6206
HVAP = 55.1172 + [ND4(G)]8.0164

5. ND5 index:

S = 144.7836 − [ND5(G)]2.5286
Acent Fac. = 0.7245 − [ND5(G)]0.0249

DHVAP = 10.6958 − [ND5(G)]0.1008
CP = 3.8987 + [ND5(G)]1.4447

6. ND6 index:

S = 122.3482 − [ND6(G)]0.1122
Acent Fac. = 0.4730 − [ND6(G)]0.0009

DHVAP = 10.3438 − [ND6(G)]0.0081

The correlations of the novel descriptors with different
physico-chemical properties are depicted in the Figs. 1, 2, 3,
4, 5 and 6.

Nowwe describe above linear models in the Tables 3, 4, 5,
6, 7 and 8. Here c, m, r, SE, F, SF stands for intercept, slope,
correlation coefficient, standard error,F test, and significance
F respectively. Correlation coefficient tells how strong the
linear relationship is. The standard error of the regression

Fig. 1 Correlation of ND1 index with S, Acent Fac., and DHVAP for octane isomers
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Fig. 2 Correlation of ND2 index with S, Acent Fac., and DHVAP for octane isomers

Fig. 3 Correlation of ND3 index with S, Acent Fac., and DHVAP for octane isomers

Fig. 4 Correlation of ND4
index with S, Acent Fac., and
DHVAP for octane isomers

is the precision that the regression coefficient is measured.
To check whether the results are reliable, Significance F can
be useful. If this value is less than 0.05, then the model is
statistically significant. If significance F is greater than 0.05,
it is probably better to stop using that set of independent
variable.

Regressionmodel for 67 alkanes

We have tested here the model described in (1) for 67 alka-
nes from n-butanes to nonanes. we have the following linear
regression models for different neighborhood degree sum-
based topological indices.
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Fig. 5 Correlation of ND5
index with S, Acent Fac., and
DHVAP for octane isomers

Fig. 6 Correlation of ND6 index with S, Acent Fac., and DHVAP for octane isomers

Table 3 Statical parameters
linear QSPR model for ND1(G)

Physical properties c m r SE F SF

S 141.1521 −1.1926 −0.9537 1.4010 160.7549 9.2E−10

Acent Fac. 0.627 −0.0097 −0.9904 0.0050 824.2198 3.42E−15

DHVAP 11.8017 −0.0893 −0.8414 0.2135 38.7783 1.21E−05

Table 4 Statical parameters of
linear QSPR model for ND2(G)

Physical properties c m r SE F SF

S 39.6776 27.1579 0.9419 1.5629 126.0258 5.37E−09

Acent Fac. − 0.2058 0.2238 0.9890 0.0054 717.1224 1.02E−14

DHVAP 1.1069 2.0737 0.8477 0.2096 40.8614 8.92E−06

Table 5 Statical parameters of
linear QSPR model for ND3(G)

Physical properties c m r SE F SF

S 117.2259 −0.0088 −0.9387 1.6052 118.6526 8.25E−09

Acent Fac. 0.4322 −7.2E−05 −0.9765 0.0079 328.2359 4.37E−12

DHVAP 9.9568 −0.0006 −0.7778 0.2483 24.5074 0.000145
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Table 6 Statical parameters of
linear QSPR model for ND4(G)

Physical properties c m r SE F SF

S 69.8183 20.3149 0.9491 1.4667 145.2802 1.93E−09

Acent Fac. 0.0465 0.1651 0.9830 0.0067 458.9889 3.31E−13

DHVAP 6.2868 1.6206 0.8923 0.1784 62.5202 6.45E−07

HVAP 55.1172 8.0164 0.8350 1.1493 36.8449 1.62E−05

Table 7 Statical parameters of
linear QSPR model for ND5(G)

Physical properties c m r SE F SF

CP 3.8987 1.4447 0.8478 0.7856 40.9017 8.87E−06

S 144.7836 −2.5286 −0.4721 4.1049 4.5895 0.047895

Acent Fac. 0.7245 −0.0249 −0.2218 0.0294 8.7253 0.009335

DHVAP 10.6958 −0.1008 −0.5940 0.3853 0.8280 0.376344

Table 8 Statical parameters of
linear QSPR model for ND6(G)

Physical properties c m r SE F SF

S 122.3482 −0.1122 −0.9508 1.4420 150.8369 1.47E−09

Acent Fac. 0.4730 −0.0009 −0.9821 0.0069 434.0329 5.09E−13

DHVAP 10.3438 −0.0081 −0.8056 0.2341 29.5844 5.46E−05

1. ND1 index:

bp = −8.8069 + [ND1(G)]4.0114
ct = 135.4475 + [ND1(G)]5.1317
cp = 34.6560 − [ND1(G)]0.2721
mv = 100.8619 + [ND1(G)]2.0398
mr = 20.1480 + [ND1(G)]0.6398
hv = 21.8703 + [ND1(G)]0.5616
st = 14.3557 + [ND1(G)]0.2177

mp = −131.654 + [ND1(G)]0.7933

2. ND2 index:

bp = −95.9303 + [ND2(G)]84.2834
ct = 47.6081 + [ND2(G)]98.1177
cp = 43.8159 − [ND2(G)]7.0529
mv = 50.7515 + [ND2(G)]45.1187
mr = 6.7917 + [ND2(G)]13.1956
hv = 3.9821 + [ND2(G)]14.0794
st = 9.6530 + [ND2(G)]4.5432

mp = −150.6221 + [ND2(G)]17.6077

3. ND3 index:

bp = 60.7738 + [ND3(G)]0.0372
ct = 220.3722 + [ND3(G)]0.0508
cp = 29.0689 − [ND3(G)]0.0019

mv = 140.8691 + [ND3(G)]0.0159
mr = 32.2248 + [ND3(G)]0.0054
hv = 32.9914 + [ND3(G)]0.0043
st = 18.2408 + [ND3(G)]0.0020

mp = −118.9098 + [ND3(G)]0.0078

4. ND4 index:

bp = −69.6148 + [ND4(G)]100.5729
ct = 86.3449 + [ND4(G)]112.5233
cp = 42.1443 − [ND4(G)]8.7145
mv = 75.6867 + [ND4(G)]48.0647
mr = 14.6003 + [ND4(G)]13.7704
hv = 9.3610 + [ND4(G)]16.3338
st = 12.1161 + [ND4(G)]4.8742

mp = −146.0101 + [ND4(G)]21.4463

5. ND5 index:

bp = −62.0831 + [ND5(G)]11.0891
ct = 73.9689 + [ND5(G)]13.7538
cp = 38.1279 − [ND5(G)]0.7430
mv = 74.7263 + [ND5(G)]5.5594
mr = 12.0902 + [ND5(G)]1.7348
hv = 11.8876 + [ND5(G)]1.7079
st = 10.2382 + [ND5(G)]0.6757
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Table 9 Experimental values of physical properties for 67 alkanes

Alkanes bp (◦C) mv (cm3) mr (cm3) hv (kJ) ct (◦C) cp (atm) st (dyne/cm) mp (◦C)

Butane − 0.05 152.01 37.47 −138.35

2-Methyl propane − 11.73 134.98 36 −159.6

Pentane 36.074 115.205 25.2656 26.42 196.62 33.31 16 −129.72

2-Methyl butane 27.852 116.426 25.2923 24.59 187.7 32.9 15 −159.9

2,2-Dimethyl propane 9.503 112.074 25.7243 21.78 160.6 31.57 −16.55

Hexane 68.74 130.688 29.9066 31.55 234.7 29.92 18.42 −95.35

2-Methyl pentane 60.271 131.933 29.945 29.86 224.9 29.95 17.38 −153.67

3-Methyl pentane 63.282 129.717 29.8016 30.27 231.2 30.83 18.12 −118

2,2-Methyl butane 4.741 132.744 29.9347 27.69 216.2 30.67 16.3 −99.87

2,3-Dimethyl butane 57.988 130.24 29.8104 29.12 227.1 30.99 17.37 −128.54

Heptane 98.427 146.54 34.5504 36.55 267.55 27.01 20.26 −90.61

2-Methyl hexane 90.052 147.656 34.5908 34.8 257.9 27.2 19.29 −118.28

3-Methyl hexane 91.85 145.821 34.4597 35.08 262.4 28.1 19.79 −119.4

3-Ethyl pentane 93.475 143.517 34.2827 35.22 267.6 28.6 20.44 −118.6

2,2-Dimethyl pentane 79.197 148.695 34.6166 32.43 247.7 28.4 18.02 −123.81

2,3-Dimethyl pentane 89.784 144.153 34.3237 34.24 264.6 29.2 19.96 −119.1

2,4-dimethyl pentane 80.5 148.949 34.6192 32.88 247.1 27.4 18.15 −119.24

3,3-Dimethyl pentane 86.064 144.53 34.3323 33.02 263 30 19.59 −134.46

Octane 125.665 162.592 39.1922 41.48 296.2 24.64 21.76 −56.79

2-Methyl heptane 117.647 163.663 39.2316 39.68 288 24.8 20.6 −109.04

3-Methyl heptane 118.925 161.832 39.1001 39.83 292 25.6 21.17 −120.5

3-Methyl heptane 117.709 162.105 39.1174 39.67 290 25.6 21 −120.95

3-Ethyl hexane 118.53 160.07 38.94 39.4 292 25.74 21.51

2,2-Dimethyl hexane 10.84 164.28 39.25 37.29 279 25.6 19.6 −121.18

2,3-Dimethyl hexane 115.607 160.39 38.98 38.79 293 26.6 20.99

2,4-Dimethyl hexane 109.42 163.09 39.13 37.76 282 25.8 20.05 −137.5

2,5-Dimethyl hexane 109.1 164.69 39.25 37.86 279 25 19.73 − 91.2

3,3-Dimethyl hexane 111.96 160.87 39 37.93 290.84 27.2 20.63 −126.1

3,4-Dimethyl hexane 117.72 158.81 38.84 39.02 298 27.4 21.64

3-Ethyl-2-methyl pentane 115.65 158.79 38.83 38.52 295 27.4 21.52 −114.96

3-Ethyl-3-methyl pentane 118.25 157.02 38.71 37.99 305 28 21.99 −90.87

2,2,3-Trimethyl pentane 109.84 159.52 38.92 36.91 294 28.2 20.67 −112.27

2,2,4-Trimethyl pentane 99.23 165.08 39.26 35.13 271.15 25.5 18.77 −107.38

2,3,3-Trimethyl pentane 114.76 157.29 38.76 37.22 303 29 21.56 −100.7

2,3,4-Trimethyl pentane 113.46 158.85 38.86 37.61 295 27.6 21.14 −109.21

Nonane 150.76 178.71 43.84 46.44 322 22.74 22.92 −53.52

2-Methyl octane 143.26 179.77 43.87 44.65 315 23.6 21.88 −80.4

3-Methyl octane 144.18 177.5 43.72 44.75 318 23.7 22.34 −107.64

4-Methyl octane 142.48 178.15 43.76 44.75 318.3 23.06 22.34 −113.2

3-Ethyl heptane 143 176.41 43.64 44.81 318 23.98 22.81 −114.9

4-Ethyl heptane 141.2 175.68 43.69 44.81 318.3 23.98 22.81

2,2-Dimethyl heptane 132.69 180.5 43.91 42.28 302 22.8 20.8 −113

2,3-Dimethyl heptane 140.5 176.65 43.63 43.79 315 23.79 22.34 −116

2,4-Dimethyl heptane 133.5 179.12 43.73 42.87 306 22.7 23.3

2,5-Dimethyl heptane 136 179.37 43.84 43.87 307.8 22.7 21.3
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Table 9 continued

Alkanes bp (◦C) mv (cm3) mr (cm3) hv (kJ) ct (◦C) cp (atm) st (dyne/cm) mp (◦C)

2,6-Dimethyl heptane 135.21 180.91 43.92 42.82 306 23.7 20.83 −102.9

3,3-Dimethyl heptane 137.3 176.897 43.687 42.66 314 24.19 22.01

3,4-Dimethyl heptane 140.6 175.349 43.5473 43.84 322.7 24.77 22.8

3,5-Dimethyl heptane 136 177.386 43.6379 42.98 312.3 23.59 21.77

4,4-Dimethyl heptane 135.2 176.897 43.6022 42.66 317.8 24.18 22.01

3-Ethyl-2-methyl hexane 138 175.445 43.655 43.84 322.7 24.77 22.8

4-Ethyl-2-methyl hexane 133.8 177.386 43.6472 42.98 330.3 25.56 21.77

3-Ethyl-3-methyl hexane 140.6 173.077 43.268 44.04 327.2 25.66 23.22

2,2,4-Trimethyl hexane 126.54 179.22 43.7638 40.57 301 23.39 20.51 −120

2,2,5-Trimethyl hexane 124.084 181.346 43.9356 40.17 296.6 22.41 20.04 −105.78

2,3,3-Trimethyl hexane 137.68 173.78 43.4347 42.23 326.1 25.56 22.41 −116.8

2,3,4-Trimethyl hexane 139 173.498 43.4917 42.93 324.2 25.46 22.8

2,3,5-Trimethyl hexane 131.34 177.656 43.6474 41.42 309.4 23.49 21.27 − 127.8

3,3,4-Trimethyl hexane 140.46 172.055 43.3407 42.28 330.6 26.45 23.27 −101.2

3,3-Diethyl pentane 146.168 170.185 43.1134 43.36 342.8 26.94 23.75 −33.11

2,2-Dimethyl-3-ethyl pentane 133.83 174.537 43.4571 42.02 322.6 25.96 22.38 −99.2

2,3-Dimethyl-3-ethyl pentane 142 170.093 42.9542 42.55 338.6 26.94 23.87

2,4-Dimethyl-3-ethyl pentane 136.73 173.804 43.4037 42.93 324.2 25.46 22.8 −122.2

2,2,3,3-Tetramethyl pentane 140.274 169.495 43.2147 41 334.5 27.04 23.38 −99

2,2,3,4-Tetramethyl pentane 133.016 173.557 43.4359 41 319.6 25.66 21.8 −121.09

2,2,4,4-Tetramethyl pentane 122.284 178.256 43.8747 38.1 301.6 24.58 20.37 −66.54

2,3,3,4-Tetramethyl pentane 141.551 169.928 43.2016 41.75 334.5 26.85 23.31 −102.12

mp = −142.0736 + [ND5(G)]2.2172

6. ND6 index:

bp = 35.3191 + [ND6(G)]0.5065
ct = 187.4769 + [ND6(G)]0.6782
cp = 30.8960 − [ND6(G)]0.0291
mv = 127.7664 + [ND6(G)]0.2304
mr = 28.1203 + [ND6(G)]0.0754
hv = 29.6437 + [ND6(G)]0.0609
st = 16.9413 + [ND6(G)]0.0266

mp = −123.8778 + [ND6(G)]0.1045

The statistical parameters like previous discussion are used in
Tables 11, 12, 13, 14, 15 and 16 to interpret the above regres-
sion models, where N denotes the total number of alkanes
under consideration.

Several interesting observations on the data presented in
Table 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 can
be made. From Table 3, the correlation coefficient of ND1

index with entropy, acentric factor and DHVAP for octane
isomers are found to be good (Fig. 1). Specially, it is strongly
correlated with acentric factor having correlation coefficient

r = −0.9904. Also, the correlation of this index is good for
the physical properties of 67 alkanes except for cp and mp
having correlation coefficient values −0.6941 and 0.2516,
respectively. The range of correlation coefficient values lies
from 0.7436 to 0.8981.

The QSPR analysis of ND2 index reveals that this index
is suitable to predict entropy, acentric factor and DHVAP
of octane isomers (Fig. 2). In addition, one can say from
Table 12 that, this index have remarkably good correlations
with the physical properties of alkanes except mp. The cor-
relation coefficients lies from 0.809 to 0.9638 except mp
(r = 0.2862). Surprisingly, the correlation of ND2 with hv
is very high with correlation coefficient value 0.9638.

Table 13 shows that ND3 index is inadequate for any
structure property correlation in the case of alkanes hav-
ing the correlation coefficient values from 0.2036 to 0.7318.
But, from Table 5, we can see that ND3 is well correlated
with entropy and acentric factor with correlation coefficients
−0.9387 and −0.9765 respectively.

The QSPR analysis of ND4 index shows that this index
is well correlated with entropy, acentric factor, DHVAP, and
HVAP for octane isomers (Table 6). Table 14 shows that ND4

index is inadequate for structure property correlation in case
of alkanes except cp and hv having correlation coefficients
-0.8634 and 0.8679, respectively.
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Table 10 Topological indices
for 67 alkanes

Alkanes ND1 ND2 ND3 ND4 ND5 ND6

Butane 7.899 1.303 114 1.149 6.333 28

2-Methyl propane 9 1.225 16 2 1 6 36

Pentane 11.827 1.65 228 1.394 8.5 44

2-Methyl butane 13.757 1.518 344 1.181 8.667 60

2,2-Dimethyl propane 16 1.414 512 1 8 80

Hexane 15.827 2.004 356 1.644 10.5 60

2-Methyl pentane 17.723 1.89 498 1.467 10.65 76

3-Methyl pentane 18.474 1.837 576 1.412 11.367 84

2,2-Methyl butane 21.579 1.694 860 1.187 11.05 114

2,3-Dimethyl butane 20.492 1.73 730 1.233 11.067 102

Heptane 19.827 2.357 484 1.894 12.5 76

2-Methyl hexane 21.786 2.248 642 1.721 12.517 92

3-Methyl hexane 22.496 2.212 748 1.702 13.25 100

3-Ethyl pentane 23.182 2.173 864 1.673 14 108

2,2-Dimethyl pentane 25.586 2.082 1062 1.497 12.85 130

2,3-Dimethyl pentane 25.193 2.066 1020 1.492 13.733 126

2,4-Dimethyl pentane 23.654 2.144 816 1.563 12.667 108

3,3-Dimethyl pentane 31.129 2.381 1504 1.718 15.933 164

Octane 23.827 2.711 612 2.144 14.5 92

2-Methyl heptane 25.786 2.601 770 1.971 14.517 108

3-Methyl heptane 26.559 2.569 892 1.956 15.117 116

3-Methyl heptane 26.518 2.588 920 1.991 15.133 116

3-Ethyl hexane 24.451 2.658 682 2.097 15.483 106

2,2-Dimethyl hexane 29.706 2.443 1224 1.754 14.6 146

2,3-Dimethyl hexane 29.266 2.444 1212 1.784 15.533 142

2,4-Dimethyl hexane 28.478 2.469 1086 1.799 15.183 132

2,5-Dimethyl hexane 27.801 2.495 946 1.802 14.433 124

3,3-Dimethyl hexane 31.129 2.381 1504 1.718 15.933 164

3,4-Dimethyl hexane 29.94 2.404 1332 1.753 16.333 150

3-Ethyl-2-methyl pentane 29.902 2.415 1372 1.77 16.29 150

3-Ethyl-3-methyl pentane 32.526 2.301 1778 1.645 17.364 182

2,2,3-Trimethyl pentane 33.88 2.252 1832 1.527 16.107 192

2,3,3-Trimethyl pentane 34.627 2.214 1976 1.489 16.681 202

2,3,4-Trimethyl pentane 31.907 2.308 1530 1.589 16.057 168

Nonane 27.827 3.064 740 2.394 16.5 108

2-Methyl octane 29.786 2.955 898 2.221 16.517 124

3-Methyl octane 30.559 2.923 1020 2.206 17.117 132

4-Methyl octane 29.116 3.004 888 2.323 16.917 123

3-Ethyl heptane 31.318 2.909 1200 2.218 17.667 140

4-Ethyl heptane 30.292 2.985 1152 2.342 17.6 136

2,2-Dimethyl heptane 33.706 2.796 1352 2.004 16.6 162

2,3-Dimethyl heptane 33.329 2.802 1356 2.038 17.4 158

2,4-Dimethyl heptane 32.499 2.844 1258 2.089 17.067 148

2,5-Dimethyl heptane 32.574 2.817 1196 2.036 17.033 148
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Table 10 continued Alkanes ND1 ND2 ND3 ND4 ND5 ND6

2,6-Dimethyl heptane 31.745 2.845 1056 2.049 16.533 140

3,3-Dimethyl heptane 35.25 2.742 1666 1.975 17.683 180

3,4-Dimethyl heptane 34.012 2.782 1524 2.045 18.133 166

3,5-Dimethyl heptane 34.179 2.768 1536 2.009 17.862 160

4,4-Dimethyl heptane 35.182 2.771 1728 2.029 17.667 180

3-Ethyl-2-methyl hexane 34.02 2.795 1586 2.063 18.017 166

4-Ethyl-2-methyl hexane 33.282 2.809 1416 2.063 17.667 156

3-Ethyl-3-methyl hexane 36.621 2.693 2026 1.958 19.04 198

2,2,4-Trimethyl hexane 36.422 2.672 1728 1.837 17.195 186

2,2,5-Trimethyl hexane 35.771 2.692 1548 1.837 16.433 178

2,2,4-Trimethyl pentane 31.552 2.346 1436 1.606 14.752 162

2,3,3-Trimethyl hexane 38.722 2.605 2224 1.802 18.357 218

2,3,4-Trimethyl hexane 36.695 2.647 1866 1.851 18.6 192

2,3,5-Trimethyl hexane 35.293 2.703 1572 1.883 17.4 174

3,3,4-Trimethyl hexane 39.364 2.563 2358 1.767 19.24 226

3,3-Diethyl pentane 37.947 2.621 2360 1.897 20.5 216

2,2-Dimethyl-3-ethyl pentane 38.596 2.609 2256 1.817 18.583 216

2,3-Dimethyl-3-ethyl pentane 40.044 2.533 2560 1.741 19.833 236

2,4-Dimethyl-3-ethyl pentane 36.626 2.666 1952 1.879 18.517 192

2,2,3,3-Tetramethyl pentane 44.158 2.395 3122 1.528 19.107 282

2,2,3,4-Tetramethyl pentane 40.595 2.502 2416 1.635 18.383 234

2,2,4,4-Tetramethyl pentane 39.482 2.555 2120 1.658 16.75 216

2,3,3,4-Tetramethyl pentane 42.141 2.445 2760 1.585 19.167 238

Table 11 Statical parameters of
linear QSPR model for ND1(G)

Physical properties N c m r SE F SF

bp 67 − 8.8069 4.0114 0.8160 22.8878 129.5828 4.01E−17

ct 67 135.4475 5.1317 0.8981 20.2494 270.9371 7.17E−25

cp 67 34.6560 − 0.2721 − 0.6941 2.2736 60.4267 7.37E−11

mv 65 100.8619 2.0398 0.8233 10.1969 132.5481 3.86E−17

mr 65 20.1480 0.6398 0.8683 2.6501 193.0535 7.53E−21

hv 65 21.8703 0.5616 0.7436 3.6618 77.9195 1.29E−12

st 64 14.3557 0.2177 0.7782 1.2448 95.1879 3.83E−14

mp 52 − 131.654 0.7933 0.2516 26.4042 3.3806 0.07191

Table 12 Statical parameters of
linear QSPR model for ND2(G)

Physical properties N c m r SE F SF

bp 67 − 95.9303 84.2834 0.9020 22.8878 129.5828 4.01E−17

ct 67 47.6081 98.1177 0.9033 20.2494 270.9371 7.17E−25

cp 67 43.8159 − 7.0529 − 0.9465 2.2737 60.4267 7.37E−11

mv 65 50.7515 45.1187 0.9415 10.1969 132.5481 3.86E−17

mr 65 6.7917 13.1956 0.9259 2.6501 193.0535 7.53E−21

hv 65 3.9821 14.0794 0.9638 3.6618 77.9195 1.29E−−12

st 64 9.6530 4.5432 0.8090 1.1652 117.4079 6.13E−16

mp 52 − 150.622 17.6077 0.2862 26.1414 4.4595 0.039726
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Table 13 Statical parameters of
linear QSPR model for ND3(G)

Physical properties N c m r SE F SF

bp 67 60.7738 0.0372 0.6238 30.9524 41.3958 1.71E−08

ct 67 220.3722 0.0508 0.7318 31.3747 74.9341 2E−12

cp 67 29.0689 − 0.0019 − 0.3904 2.9077 11.6902 0.00109

mv 65 140.8691 0.0159 0.5684 14.7809 30.0655 7.86E−07

mr 65 32.2248 0.0054 0.6418 4.0973 44.1193 8.37E−09

hv 65 32.9914 0.0043 0.5041 4.7298 21.4635 1.86E−05

st 64 18.2408 0.0020 0.6448 1.5151 44.1117 8.93E−09

mp 52 − 118.9098 0.0078 0.2036 26.7107 2.1626 0.147672

Table 14 Statical parameters of
linear QSPR model for ND4(G)

Physical properties N c m r SE F SF

bp 67 − 69.6148 100.5729 0.7947 24.0365 111.4291 9.91E−16

ct 67 86.3449 112.5233 0.7649 29.6545 91.6399 4.91E−14

cp 67 42.1443 − 8.7145 − 0.8634 1.5934 190.369 5.52E−21

mv 65 75.6867 48.0647 0.7785 11.2749 96.942 2.29E−14

mr 65 14.6003 13.7704 0.7500 3.5339 80.9956 6.48E−13

hv 65 9.3610 16.3338 0.8679 2.7207 192.2597 8.3E−21

st 64 12.1161 4.8742 0.6760 1.4605 52.1868 8.8E−10

mp 52 − 146.0101 21.4463 0.2525 26.3985 3.4038 0.070974

Table 15 Statical parameters of
linear QSPR model for ND5(G)

Physical properties N c m r SE F SF

bp 67 − 62.0831 11.0891 0.9166 15.8369 341.4188 1.44E−27

ct 67 73.9689 13.7538 0.9779 9.6226 1422.6559 6.55E−46

cp 67 38.1279 − 0.7430 − 0.7700 2.0151 94.6835 2.61E−14

mv 65 74.7263 5.5594 0.8881 8.2565 235.2645 6.02E−23

mr 65 12.0902 1.7348 0.9319 1.9378 415.896 1.91E−29

hv 65 11.8876 1.7079 0.8950 2.443 253.5998 9.12E−24

st 64 10.2382 0.6757 0.9267 0.7446 377.2765 4.73E−28

mp 52 − 142.0736 2.2172 0.2790 26.4042 3.3806 0.07191

Table 16 Statistical parameters
of linear QSPR model for
ND6(G)

Physical properties N c m r SE F SF

bp 67 35.3191 0.5065 0.6791 29.0691 55.6291 2.67E−10

ct 67 187.4769 0.6782 0.7823 28.6755 102.5177 5.42E−15

cp 67 30.8960 − 0.0291 − 0.4892 2.7546 20.4495 2.66E−05

mv 65 127.7664 0.2304 0.6393 13.8148 43.5369 9.97E−09

mr 65 28.1203 0.0754 0.7033 3.7979 61.6774 6.44E−11

hv 65 29.6437 0.0609 0.5551 4.5554 28.0552 1.6E−06

st 64 16.9413 0.0266 0.6646 1.4811 49.0453 2.12E−09

mp 52 − 123.8778 0.1045 0.2192 26.619 2.5225 0.118536
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From Table 7, one can say that ND5 does not sound so
good except CP having correlation coefficient 0.8478. But
this index can be considered as an useful tool to predict the
physical properties of alkanes except cp andmp. This index is
suitable to model bp, ct, mv, mr, hv, st with correlation coef-
ficients 0.9166, 0.9779, 0.8881, 0.9319, 0.8950, and 0.9267,
respectively.

The QSPR analysis of ND6 index reveals that the corre-
lation coefficient of this index with the physical properties
of alkanes are very poor (Table 16). The range of correlation
coefficient values lies from 0.2192 to 0.7823. But, when we
look into the Table 8, we can say that this index has the abil-
ity to model entropy, acentric factor, and DHVAP for octane
isomers.

Nowwecompare themodelling ability of the novel indices
with some well-known and mostly used indices that include:
First Zagreb index (M1), second Zagreb index (M2), Forgot-
ten topological index (F), Sum connectivity index (SCI),
Randić index (R), symmetric division deg index (SDD),
Weiner index (W ) [47], hyper Weiner index [37] (WW), ter-
minal Wiener index (TW) [18], Schultz index (Sc) [41], first
(S1) and second status connectivity index (S2) [34], Gutman
index (GI) [16], degree distance index (DD) [6], inverse sum
indeg status (ISIS) index [7], total eccentricity connectiv-
ity index (TECI) [1], first Zagreb eccentricity connectivity
Index (ZECI1) [13], first (ξ1) and second eccentricity con-
nectivity index (ξ2) [29,46], connective eccentricity index
(CEI) [29,46], vertex adjacency energy (E) [17], Laplacian
energy (LE) [21], atom bond connectivity index (ABC) [8],
augmented Zagreb index (AZI) [11], geometric arithmetic
index (GA) [45], harmonic index (H ) [9], Ashwini Index
(A) [33], SM-index (SM) [42], vertex Zagreb energy (Z1E)
[26], forgotten energy (FE) [26], harmonic energy (HE) [26],
geometric-arithmetic energy (GAE) [40], degree-sum energy
(DSE) [35], sum-connectivity energy (SCE) [48], andRandić
energy (RE) [3]. From Tables 3, 4, 5, 6, 7 to 8, it is clear
that among six new indices, the ND1 index can model acen-
tric factor of octane isomers with excellent accuracy. To
investigate the predictability of different well-established
descriptors for acentric factor of octanes, linear regression
analysis is performed and the outcomes are reported in Tables
17, 18, 19 and 20. From those findings, several observations
can be made. The modulus of the correlation coefficient and
theF value ofND1 index is significantly high compared to the
existing indices listed inTables 17, table:comp2, table:comp3
and 20. The standard error and the SF value of the ND1 index
is lower than that of the indices reported in Tables 17, 18,
19 and 20. Thus, it can be concluded that the ND1 index
is efficient in predicting acentric factor of octanes with high
accuracy compared to severalwell-knownandmostly utilised
molecular descriptors.

Now we are going to compare the new descriptors with
the existing descriptors in structure-property modelling for

Fig. 7 Correlation graph of novel indices with some well-known
indices for decane isomer

67 alkanes. Statistical parameters of linear regressionmodels
of different degree based indices, distance based indices and
spectral indices are reported in [24,26,42]. We listed the cor-
relation coefficients of those models in Tables 21, 22 and 23
for critical temperature (ct), critical pressure (cp) and surface
tension (st). FormTables 11, 12, 13, 14, 15 16, 21, 22, 23, one
can draw the following observations. Among all the newly
proposed indices and the already existing indices listed in
Tables 21, 22 and 23, the ND5 index has remarkable corre-
lation with ct and st, whereas for cp, the ND2 index sounds
the best. The rest parameters [24,26,42] are also in favour
of ND2 and ND5 indices. Therefore, we can conclude that
ND2 and ND5 indices outperform several well-established
and mostly utilised descriptors in modelling cp, ct, and st for
alkanes.

Correlation with somewell-known indices

In this section,we investigate the correlation between the new
indices and some well-known indices for octane isomers. It
is clear from Table 24, that the new indices have a high cor-
relation with the well-established indices except ND5 index.
Highest correlation coefficient (r = 0.9977) is between ND1

and M2. From Table 25, one can say that ND5 has signifi-
cantly low correlation coefficient with other indices. So we
can conclude that ND5 is independent among five indices. A
correlation graph (Fig. 7) is drawn considering indices as ver-
tices and two vertices are adjacent if and only if |r | ≥ 0.95.
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Table 17 Statical parameters of
linear QSPR model of acentric
factor for some degree based
indices

Topological indices c m r SE F SF

M1 0.6996 − 0.0118 0.9731 0.0084 285.064 1.28E−11

M2 0.6076 − 0.0088 − 0.9864 0.006 577.1626 5.57E−14

F 0.4701 − 0.0016 0.965 0.0096 216.9488 1E−10

SCI − 0.4 0.2165 0.9299 0.0134 102.2326 2.36E−08

R − 0.3694 0.1934 0.9042 0.0156 71.7338 2.62E−07

SDD 0.5346 − 0.0101 0.901 0.0158 69.0429 3.38E−07

Table 18 Statical parameters of
linear QSPR model of acentric
factor for some distance based
indices

Topological indices c m r SE F SF

W − 0.032 0.0053 0.9656 0.0095 220.4186 8.91E−11

WW 0.1666 0.0012 0.9458 0.0119 135.5882 3.18E−09

TW 0.4257 −0.0041 0.897 0.0162 65.928 4.57E−07

Sc −0.0308 0.0014 0.9514 0.0112 152.6589 1.35E−09

S1 0.06608 0.0012 0.8866 0.0169 58.7816 9.58E−07

S2 0.2104 7.02E−05 0.8808 0.0173 55.3582 1.4E−06

GI 0.2151 0.0007 0.6826 0.0267 13.9565 0.0018

DD 0.1441 0.0008 0.6906 0.0264 14.5858 0.0015

I S I S 0.0638 0.005 0.9669 0.0093 230.3191 6.41E−11

Table 19 Statical parameters of
linear QSPR model of acentric
factor for some eccentricity
based indices

Topological indices c m r SE F SF

TECI 0.1453 0.006 0.9392 0.0125 119.8089 7.7E−09

ZECI1 0.2433 0.0007 0.9216 0.0142 90.2098 5.6E−08

ξ1 0.167 0.0033 0.9357 0.0129 112.5135 1.2E−08

ξ2 0.2554 0.0008 0.9149 0.0147 82.1992 1.05E−07

CEI 0.4997 − 0.0398 0.9492 0.0115 145.6681 1.89E−09

Table 20 Statical parameters of
linear QSPR model of acentric
factor for some graph energies

Graph energies c m r SE F SF

E −0.0059 0.03956 0.7163 0.0255 16.8571 0.0008

LE 0.9693 −0.0576 0.9124 0.0149 79.5214 1.32E−07

Table 21 Correlation
coefficients of some degree
based indices with different
physical properties for 67
alkanes

Physical properties M1 M2 F R ABC AZI GA H SCI

ct 0.856 0.898 0.704 0.962 0.850 0.85 0.964 0.908 0.963

cp 0.686 0.688 0.486 0.911 0.743 0.718 0.913 0.878 0.920

st 0.329 0.777 0.595 0.909 0.7 0.834 0.9 0.847 0.901

Table 22 Correlation
coefficients of some distance
based indices with different
physical properties for 67
alkanes

Physical properties W TW WW DD GI A SM

ct 0.899 0.620 0.809 0.809 0.807 0.459 0.326

cp 0.899 0.475 0.636 0.890 0.889 0.381 0.288

st 0.815 0.481 0.555 0.716 0.711 0.320 0.198
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Table 23 Correlation
coefficients of some graph
energies with different physical
properties for 67 alkanes

Physical properties E Z1E FE HE GAE DSE LE SCE RE

ct 0.936 0.855 0.525 0.808 0.833 0.638 0.935 0.883 0.749

cp 0.006 0.030 0.024 0.018 0.020 0.045 0.014 0.025 0.035

st 0.871 0.727 0.369 0.804 0.767 0.540 0.834 0.847 0.667

Table 24 Correlation with some
well-known indices

M1 M2 F SCI R RR SDD

ND1 − 0.86958 − 0.8295 0.995406 0.817435 0.946941 0.741367 0.937806

ND2 0.892937 0.857255 − 0.99282 − 0.83834 − 0.95286 − 0.71895 − 0.93683

ND3 − 0.75331 − 0.70235 0.953983 0.691599 0.865993 0.746587 0.861531

ND4 0.955051 0.933136 − 0.97643 − 0.9137 − 0.97717 − 0.6806 − 0.95874

ND5 − 0.29763 − 0.22396 0.665973 0.198425 0.471285 0.56989 0.461035

ND6 − 0.89201 − 0.85372 0.994895 0.848793 0.964237 0.739059 0.959608

Table 25 Correlation among
new indices

ND1 ND2 ND3 ND4 ND5 ND6

ND1 1

ND2 −0.98906 1

ND3 0.976497 −0.94568 1

ND4 −0.95818 0.980133 −0.87983 1

ND5 0.719609 −0.68604 0.825766 −0.54476 1

ND6 0.992599 −0.97954 0.962921 −0.95487 0.675576 1

Degeneracy

The objective of a topological index is to encipher the
structural property as much as possible. Different struc-
tural formulae should be distinguished by a good topological
descriptor. A major drawback of most topological indices is
their degeneracy, i.e., two or more isomers possess the same
topological index. Topological indices having high discrim-
inating power captures more structural information. We use
the measure of degeneracy known as sensitivity introduced
by Konstantinova [28], which is defined as follows:

SI = N − NI

N
,

where N is the total number of isomers considered and
NI is the number of them that cannot be distinguished
by the topological index I . As SI increases, the isomer-
discrimination power of topological indices increases. The
vertex degree-based topological indices have more discrimi-
nating power in comparison with other classes of molecular
descriptors. For octane and decane isomers, the newly intro-
duced indices exhibit better response compared to some
well-known degree-based indices (Table 26).

Table 26 Measure of sensitivity (SI ) of different indices for octane and
decane isomers

Topological indices Sensityvity (SI )
Octane Decane

ND1 1.000 1.000

ND2 1.000 1.000

ND3 1.000 0.96

ND4 1.000 0.987

ND5 1.000 0.92

ND6 0.833 0.613

R 0.889 0.667

RR 0.889 0.653

SCI 0.889 0.64

SDD 0.889 0.547

M2 0.722 0.28

F 0.389 0.133

M1 0.333 0.107

Sensitivity of the newly proposed descriptors aremade bold to highlight
the supremacy of the newly introduced indices in comparison to the
already existing well-established indices

Applications

QSPR analysis is a powerful investigation for breaking down
amolecule into a series of numerical values describing its rel-
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evant physico-chemical properties and biological activities.
Descriptors having the strongest correlation in this study give
information about essential functional groups of compounds
under consideration. Accordingly, we can regulate pharma-
cological action or physico-chemical properties of drugs by
modifying certain groups in the structure of medications. It is
usually very costly to test a compound using awet lab, but the
QSPR study allow that cost to be reduced. This is generally
used to analyze biological activities with specific properties
associated with the structures and is helpful in understanding
how molecular attributes in a drug effect biological activi-
ties. QSPR approaches can be used to develop models which
can predict properties or activities of organic chemical. An
efficient way of encoding structures with determined topo-
logical index is, therefore, necessary for the construction of
accurate models. The indices used for the creation of model
can offer a chance to concentrate on particular characteris-
tics that account for the activity or property of interest in the
compounds. QSPR analysis of some newly designed indices
using octane isomers and alkanes is performed in this work.
It has been shown that these indices can be considered as
useful molecular descriptors in QSPR research. They yield
excellent correlation with S, Acent Fac, HVAP, DHVAP, CP
for octane isomers and bp, ct, cp, mv, mr,hv, st, mp for alka-
nes. Their isomer discrimination ability is also remarkable
for octane and decane isomers. These indices are an exten-
sion of some well-known degree-based topological indices
namely R, SCI, SDD, and ReZG3. Sometimes the predictive
power of these indices is superior, sometimes little bit infe-
rior than that of the old indices. But the degeneracy test on
Table 26, assures the supremacy of newly designed indices
in comparison to the old indices. It is worth discussing the
mathematical properties of the novel descriptors discussed
in the following section.

Mathematical properties

In this section, we discuss about some bounds of the newly
proposed indiceswith somewell-known indices. Throughout
this section, we consider simple connected graph. We con-
struct this section with some standard inequalities. We start
with the following inequality.

Lemma 1 (Radon’s inequality) If xi , yi > 0, i = 1, 2, . . . , n,

t > 0, then

∑n
i=1 x

t+1
i∑n

i=1 y
t
i

≥
(∑n

i=1 xi
)t+1

(∑n
i=1 yi

)t , (2)

where equality holds iff xi = kyi for some constant k, ∀i =
1, 2, . . . , n.

Proposition 1 For a graph G having m edges with neighbor-
hood version of second Zagreb index M∗

2 (G) [31], we have

ND1(G) ≤
√
mM∗

2 (G), (3)

where equality holds iff G is regular or complete bipartite
graph.

Proof For a graph G, M∗
2 (G) = ∑

uv∈E(G) δG(u)δG(v).

Now considering xi = 1, yi = δG(u)δG(v), t = 1
2 , in (2),

we obtain

∑
uv∈E(G) 1

∑
uv∈E(G)(δG(u)δG(v))

1
2

≥
(∑

uv∈E(G) 1
) 3

2

(∑
uv∈E(G) δG(u)δG(v)

) 1
2

.

(4)

Now using the definition of ND1 and M∗
2 indices, we can

easily obtain the required bound (3). Equality in (4) holds iff
δG(u)δG(v) = k, a constant ∀uv ∈ E(G). So the equality in
(3) holds iff G is regular or complete bipartite graph.

Lemma 2 Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
be sequence of real numbers. Also let z = (z1, z2, . . . , zn)
andw = (w1, w2, . . . , wn) be non-negative sequences. Then

n∑

i=1

wi

n∑

i=1

Zi x
2
i +

n∑

i=1

zi

n∑

i=1

wi y
2
i ≥ 2

n∑

i=1

zi xi

n∑

i=1

wi yi ,

(5)

In particular, if zi andwi are positive, then the equality holds
iff x = y = k, where k = (k, k, . . . , k), a constant sequence.

Proposition 2 For a graph G having m edges with neigh-
bourhood version of second Zagreb index M∗

2 (G), we have

ND1(G) ≤ (m + M∗
2 (G))

2
, (6)

where equality holds iff G is P2.

Proof Considering xi = δG(u)δG(v), yi = 1, zi = 1, wi =
1, in (5), we get

∑

uv∈E(G)

1
∑

uv∈E(G)

δG(u)δG(v) +
∑

uv∈E(G)

1
∑

uv∈E(G)

1

≥ 2
∑

uv∈E(G)

√
δG(u)δG(v)

∑

uv∈E(G)

1.

After using the definition of ND1 and M∗
2 indices we can

obtain

mM∗
2 (G) + m2 ≥ 2mND1(G).
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After simplification, the required bound is obvious.
FromLemma 2, the equality in (6) holds iff δG(u)δG(v) =

1∀uv ∈ E(G),i.e. G is P2.

Remark Byarithmeticmean≥ geometricmean,we canwrite

(m + M∗
2 (G))

2
≥

√
mM∗

2 (G).

So the upper bound of ND1(G) obtained in Proposition 1, is
better than that obtained in Proposition 2.

Proposition 3 For a graph G having second Zagreb index
M2(G), forgotten topological index F(G) , neighbourhood
version of hyper Zagreb index HMN (G) [31], neighbour-
hood Zagreb index MN (G) [30], we have

ND6(G) ≤ F(G)

2
+ M2(G) + HMN (G)

2
− MN (G), (7)

equality holds iff G is P2.

Proof For agraphG,wehaveMN (G) = ∑
v∈V (G) δG(v)2 =∑

uv∈E(G)[δG(u)dG(v) + δG(v)dG(u)], HMN (G)

= ∑
uv∈E(G)[δG(u) + δG(v)]2. We know that for any two

non-negative numbers x, y, arithmetic mean ≥ geometric
mean, i.e., x+y

2 ≥ √
xy, equality holds iff x = y. Now con-

sidering x = dG(u) + dG(v), y = δG(u) + δG(v), we get

[dG(u) + dG(v) + δG(u) + δG(v)]
2

≥ √
(dG(u) + dG(v))(δG(u) + δG(v)),

squiring both sides, we have

4(dG(u) + dG(v))(δG(u) + δG(v)) ≤ [dG(u) + dG(v)

+δG(u) + δG(v)]2,

which gives

2
∑

uv∈E(G)

[(dG(u)δG(u) + dG(v)δG(v))(dG(u)δG(v)

+dG(v)δG(u))] ≤
∑

uv∈E(G)

[dG(u)2 + dG(v)2]

+2
∑

uv∈E(G)

dG(u)dG(v) +
∑

uv∈E(G)

[δG(u)2 + δG(v)2]

+2
∑

uv∈E(G)

δG(u)δG(v).

After simplifying and using the formulation of ND6, F , M2,
HMN , and MN indices, the required bound is clear. The
equality in (7) occurs iff dG(u) + dG(v) = δG(u) + δG(v),
i.e., G is P2. Hence the proof. 
�

For a graph G consider

�N = max{δG(v) : v ∈ V (G)},
δN = min{δG(v) : v ∈ V (G)}.

Thus δN ≤ δG(u) ≤ �N for all u ∈ V (G). Equality holds
iff G is regular or complete bipartite graph. Clearly we have
the following proposition.

Proposition 4 For a graph G with m number of edges, we
have the following bounds.

(i) mδN ≤ ND1(G) ≤ m�N ,
(ii) m√

2�N
≤ ND2(G) ≤ m√

2δN
,

(iii) 2mδ3N ≤ ND3(G) ≤ 2m�3
N ,

(iv) m
�N

≤ ND4(G) ≤ m
δN

,

(v)
F∗
N (G)−2M∗

2 (G)

δ2N
+ 2m ≤ F∗

N (G)−2M∗
2 (G)

�2
N

+ 2m,

where [31] F∗
N (G) = ∑

uv∈E(G)[dG(u)2 + dG(v)2].
Equality holds in each case iff G is regular or complete

bipartite graph.

Lemma 3 Let ai and bi be two sequences of real numbers
with ai �= 0 (i = 1, 2, . . . , n) and such that pai ≤ bi ≤ Pai .
Then

n∑

i=1

b2i + pP
n∑

i=1

a2i ≤ (P + p)
n∑

i=1

aibi . (8)

Equality holds iff either bi = pai or bi = Pai for every
i = 1, 2, . . . , n.

Proposition 5 For a graph G with m edges having neigh-
bourhood version of second Zagreb index M∗

2 (G), we have

ND1(G) ≥ M∗
2 (G) + mδN�N

δN + �N

Equality holds iff G is regular or complete bipartite graph.

Proof Putting ai = 1, bi = √
δG(u)δG(v), p = δN , P =

�N in 8, we get

∑

uv∈E(G)

δG(u)δG(v) + δN�N

∑

uv∈E(G)

1

≤ (δN + �N )
∑

uv∈E(G)

√
δG(u)δG(v).

Now applying the definition ofM∗
2 (G), ND1(G) in the above

inequation, we obtain

M∗
2 (G) + mδN�N ≤ (δN + �N )ND1(G).
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Which implies

ND1(G) ≥ M∗
2 (G) + mδN�N

δN + �N
.

Equality holds iff
√

δG(u)δG(v) = δN or
√

δG(u)δG(v) =
�N for all uv ∈ E(G), i.e. G is regular or complete bipartite
graph. Hence the proof. 
�

Proposition 6 For a graph G of size m with fifth version of
geometric arithmetic index GA5, and second Zagreb index
M2(G), we have

(i) ND5(G) ≥ 2m2

GA5
,

(ii) ND5(G) ≥ 4M2(G)2

m�2
N

− 2m.

Equality in both cases hold iff G is regular or complete bipar-
tite graph.

Proof (i) For a graph G, we know that [14] GA5(G) =∑
uv∈E(G)

2
√

δG (u)δG (v)
δG (u)+δG (v)

.NowbyCauchy–Schwarz inequal-
ity, we have

⎛

⎝
∑

uv∈E(G)

1

⎞

⎠
2

=
( ∑

uv∈E(G)

√
δG(u) + δG(v)√

δG(u)δG(v)

× 1√
δG (u)+δG (v)√

δG (u)δG (v)

)2

≤
∑

uv∈E(G)

δG(u) + δG(v)√
δG(u)δG(v)

∑

uv∈E(G)

√
δG(u)δG(v)

δG(u) + δG(v)
.

Thus,

2m2 ≤ GA5(G)
∑

uv∈E(G)

δG(u) + δG(v)√
δG(u)δG(v)

. (9)

We know that

δG(u)

δG(v)
+ δG(v)

δG(u)
≥

√
δG(u)

δG(v)
+

√
δG(v)

δG(u)
.

From 9, we obtain 2m2 ≤ GA5(G)ND5(G), i.e.

ND5(G) ≥ 2m2

GA5
.

Equality holds iff δG (u)+δG (v)√
δG (u)δG (v)

= k, a constant ∀uv ∈
E(G). That is, δG(u) = some constant × δG(v) ∀uv ∈
E(G), i.e., G is regular or complete bipartite graph.

(ii) By Cauchy–Schwarz inequality, we have

ND5(G) =
∑

uv∈E(G)

[δG(u) + δG(v)]2
δG(u)δG(v)

− 2m

≥ 1

�2
N

∑

uv∈E(G)

[δG(u) + δG(v)]2 − 2m

= 1

m�2
N

∑

uv∈E(G)

12
∑

uv∈E(G)

[δG(u) + δG(v)]2 − 2m

≥ 1

m�2
N

[
∑

uv∈E(G)

(δG(u) + δG(v))]2 − 2m

= 4M2(G)2

m�2
N

− 2m.

Equality holds iff δG(u) = �N = δG(v) and δG(u) +
δG(v) = c, a constant occur simultaneously for all uv ∈
E(G). That is, G is regular or complete bipartite graph.

Hence the proof 
�
It is obvious that, δG(u) ≥ dG(u) and δG(v) ≥ dG(v), ∀uv ∈
E(G). Equality appears for P2 only. Keeping in mind this
fact, we have the following proposition.

Proposition 7 For a graph G, having Randic index R(G),
secondZagreb index M2(G), reciprocalRandic indexRR(G),
sum-connectivity index SCI(G), we have

(i) ND1(G) ≥ RR(G)

(ii) ND2(G) ≥ SCI(G)

(ii) ND3(G) ≥ ReZG3(G)

(iii) ND4(G) ≥ R(G)

(iv) ND5(G) ≤ 2M2(G)

(v) ND6(G) ≤ 2M2(G)

Equality holds in each case iff G is P2.

Conclusion

In this article, we have proposed some novel topological
indices based on neighborhood degree sum of end vertices of
edges. Their predictive ability have tested using octane iso-
mers and alkanes from n-butanes to nonanes. These indices
have demonstrated as useful molecular descriptors in QSPR
study. These indices are an extension of some well estab-
lished indices based on degree. The correlations between
these new indices and the different properties and activi-
ties are often stronger, sometimes slightly weaker than the
old indices. For octane isomers, the ND1 index can model
acentric factor with high precision compared to the existing
indices under consideration. For alkanes, the ND5 index is
more effective in predicting ct and st compared to otherwell-
known indices. Thepredictability ofND2 index is remarkable
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for cp compared to the existing and often used topolog-
ical indices. The sensitivity test (Table 26) confirms the
supremacy of the novel indices compared to the old indices.
We have also correlated these indices with other degree-
based topological indices. This investigation on Tables 24,
25 concludes that ND5 index is independent among all novel
indices. This work ends with computing some bounds of
these novel indices. For further research, these indices can
be computed for various graph operations and some compos-
ite graphs and networks.
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48. Zhou B, Trinajstić N (2010) On sum-connectivity matrix and
sum-connectivity energy of (molecular) graphs. Acta Chim Slov
57:518–523
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