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Abstract
Surrogate-assisted optimization has attracted much attention due to its superiority in solving expensive optimization prob-
lems. However, relatively little work has been dedicated to addressing expensive constrained multi-objective discrete optimi-
zation problems although there are many such problems in the real world. Hence, a surrogate-assisted evolutionary algorithm 
is proposed in this paper for this kind of problem. Specifically, random forest models are embedded in the framework of the 
evolutionary algorithm as surrogates to improve approximate accuracy for discrete optimization problems. To enhance the 
optimization efficiency, an improved stochastic ranking strategy based on the fitness mechanism and adaptive probability 
operator is presented, which also takes into account both convergence and diversity to advance the quality of candidate solu-
tions. To validate the proposed algorithm, it is comprehensively compared with several well-known optimization algorithms 
on several benchmark problems. Numerical experiments are demonstrated that the proposed algorithm is very promising for 
the expensive constrained multi-objective discrete optimization problems.

Keywords Data-driven optimization · Constrained multi-objective discrete optimization problems · Surrogate model · 
Random forest · Strength pareto evolutionary algorithm · Stochastic ranking strategy

Introduction

Multi-objective discrete optimization problems (MODOPs) 
[1] are the operation optimization problems with discrete 
variables and multiple objectives, which together with the 
multi-objective continuous optimization problems constitute 
the field of multi-objective optimization problems (MOPs) 
[2]. Compared with continuous MOPs, there is relatively 
little research on MODOPs although these problems exist 
widely in real-world applications, such as 0–1 knapsack 
problems [3], production planning [4], vehicle routing [5], 
location selection [6], project scheduling [7], resource allo-
cation [8]. Since most of these engineering application prob-
lems are subject to constraints, this can be categorized into 
constrained multi-objective discrete optimization problems 
(CMODOPs). As a type of optimization problem, it is obvi-
ous that the key to solving such problems lies in searching 
algorithms and constraint processing methods.

Similar to the classic classification of optimization algo-
rithms for continuous MOPs [9], the searching algorithms 
of CMODOPs can also be divided into the following four 
categories according to the principle of selecting solu-
tions: dominance-based [10], decomposition-based [11], 
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indicator-based [12], and hybrid selection method-based 
[13]. Among them, this kind of dominance-based algorithms 
including NSGA-II and SPEA2 are the most commonly used 
in CMODOPs [14, 15]. Nevertheless, due to the randomness 
of the evolutionary algorithm (EA), no matter which kind 
of algorithm requires a mass of evaluation to obtain satisfy-
ing candidate solutions. The evaluation of some practical 
engineering problems such as antenna design [16], blast 
optimization [17], trauma system design [18], and power 
system design [19] are time-consuming and costly so that the 
expense of obtaining the optimal solution is unaffordable. 
Therefore, as an efficient tool for expensive optimization 
problems, the surrogate model [20, 21] has attracted much 
attention from researchers in different fields. In the expen-
sive optimization, the evaluation of objectives and con-
straints can only be performed through surrogates trained by 
data collected from physical experiments, numerical simula-
tions, or daily life. Such optimization algorithms are named 
as data-driven optimization algorithms (DDOAs) [22, 23], 
and it is also commonly known as surrogate-assisted evolu-
tionary algorithms (SAEAs). Many existing regression mod-
els have been regarded as surrogate models, such as support 
vector machines [24], radial basis function [25–29], poly-
nomial regression [30], and Kriging model [31, 32]. As far 
as expensive CMODOPs are concerned, there are two main 
challenges. One is how to choose and manage the surrogate 
models for discrete variables, so that the higher approximate 
accuracy can be obtained at a reasonable calculation cost. 
The other is how to strike a balance between the optimal 
objective values and the feasible solutions during the optimi-
zation, thus ensuring the quality of the candidate solutions.

At present, most of SAEAs are presented to solve expen-
sive continuous optimization problems, and few scholars 
also developed such models for expensive CMODOPs. For 
example, to mitigate the computational expense of models 
with both continuous and discrete parameters, Swiler et al. 
[33] investigated and analyzed the performance of three 
types of response surfaces developed for mixed-variable 
models. Nguyen et al. [34] proposed a new surrogate assisted 
genetic programming in terms of automated design problems 
of dispatching rules for production systems to improve the 
quality of the evolved rules without significant computa-
tional costs. To find the optimal the resource allocation strat-
egy, Wang et al. [35] employed support vector regression 
surrogate model instead of the time-consuming simulations 
to show the solution robustness. Aiming at a bi-objective 
mixed-integer optimization model, Daniel [36] introduced 
surrogates including radial basis function and polynomial 
regression to screen the good solutions. The similar problem 
has been optimized in literature [37] by established the Krig-
ing surrogate model to reduce the identification load of the 
pollution sources. However, the continuous surrogate model 
used to solve CMODOPs may generate large approximation 

errors, which will affect the evaluation precision. Towards 
this end, Wang et al. [38] came up with a new algorithm 
called the random forest assisted constrained multi-objective 
combinatorial optimization (RFCMOCO), in which the tree 
structure of the random forest (RF) [39] is well suited for 
approximating problems with discrete decision variables. 
Nevertheless, training and updating decision trees require 
considerable computational costs. Therefore, it is necessary 
to cooperate with the constraint processing strategy with 
high efficiency, so as to improve the quality of candidate 
solutions without large computational costs.

Generally speaking, the simplest and most commonly 
used constraint processing method is the penalty function 
method [40], which transforms the problems into uncon-
strained optimization problems by adding penalty factors. 
However, it is difficult for the user to define parameter values 
explicitly. To avoid adjusting penalty coefficients, scholars 
presented a series of new methods named the separation of 
objectives and constraints, such as stochastic ranking (SR) 
[41], epsilon constraint handling method [42], and constraint 
dominance principle (CDP) [43]. Among the successful 
approaches, the SR method introduced by Runarsson and 
Yao to strike a balance between better objectives and fea-
sible solutions, which has been widely used in constrained 
optimization. For example, Balande et al. [44] combined 
stochastic ranking with an improved firefly algorithm for 
constrained engineering design optimization problems. Ali 
et al. [45] integrated stochastic ranking with an evolutionary 
algorithm to maintain a balance between penalty and objec-
tive functions, which can only address constrained continu-
ous problems with a single objective. Besides, to minimize 
energy consumption, Hector et al. [46] used alternately sto-
chastic ranking, feasibility rules, and 8-constrained methods 
to analyze the design changes, and validated that stochastic 
ranking method always obtains better solutions in all pro-
posed torque limits.

Given the simplicity and efficiency of stochastic ranking, 
it is very suitable to cooperate with a high-accuracy random 
forest model to optimize CMODOPs, which can effectively 
improve the calculation speed while ensuring the quality 
of solutions. In general, fast non-dominated sorting [47] is 
usually deemed as a sorting basis in the stochastic ranking 
strategy to handle constrained problems with multiple objec-
tives. However, when faced with such problems with scat-
tered solution space like CMODOPs, the selection pressure 
of this method will increase, and the diversity of solutions 
cannot be weakened, which may ultimately result in the poor 
quality of the selected individuals and waste of computing 
resources. Considering the fitness assessment from SPEA2 
can take into account location information of the population, 
it may effectively overcome the drawback. Motivated by 
this consideration, a random forest assisted multi-objective 
optimization with improved stochastic ranking (RFMOISR) 
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is proposed in this paper for expensive constrained multi-
objective discrete optimization problems. More specifically, 
the main contributions of this work can be highlighted as 
follows:

(1) The improved stochastic ranking strategy is presented 
by developing fitness mechanism as the novel crite-
rion to ensure the full exploration of solution space and 
enhance the quality of solutions for expensive CMO-
DOPs;

(2) Random forest surrogate models with high precision 
are incorporated with the improved stochastic ranking 
strategy to precisely guide the search direction, thereby 
saving the calculation resources;

(3) A flexible probability operator is adaptively adjusted 
depending on the bias of the different search stages 
to advance optimization efficiency, which can further 
improve the algorithm convergence.

The remainder of the paper is organized as follows. 
“Relative techniques” briefly reviews the relative tech-
niques, while the proposed approach is discussed in “The 
proposed algorithm”. Numerical experiments are presented 
in “Experimental studies”, followed by conclusions and 
future research directions in “Conclusion and future work”.

Relative techniques

Constrained multi‑objective discrete optimization 
problems

Constrained multi-objective discrete optimization problems 
can be described as:

Among them, x = (x1, x2, …, xn)T is a n-dimensional can-
didate solution, D ⊆ Rn is a n-dimensional bounded discrete 
decision space. F(x) is an objective vector containing m 
(m ≥ 2) objective functions, and G(x) is a constraint vector 
with c constraints. Since multiple objectives conflict with 
each other, it is difficult to optimize them simultaneously. 
Therefore, the concept of Pareto dominance was introduced 
into CMODOPs to obtain an acceptable Pareto front (PF) 
[48] rather than single-objective optimality. In this work, we 
focus on solving constrained multi-objective discrete opti-
mization problems with 2–3 objectives.

(1)
maxF(�) = (f1(�),… , fm(�))

T, � ∈ D

s.t. G(�) = (g1(�),… , gc(�))
T
≤ 0.

Random forest

Random forest (RF) [39] is an ensemble machine learn-
ing method proposed by Leo Breiman. The main idea of 
ensemble learning is to build and combine multiple base 
learners to fulfill better generalization capability. For RF 
model, multiple sample subsets are first formed by bootstrap 
sampling. Then, the decision trees are modeled according 
to the above subsets and the prediction results are output 
respectively. The mean of the output of all decision trees 
is generally regarded as the final prediction result. Mean-
while, RF is a simple and supervised method, which is fast 
and robust to the noise of the target data. Due to the use of 
bootstrap aggregation or bagging, the random forest model 
can decrease the error in classification and regression tasks.

The most obvious feature of CMODOPs is that they have 
discrete decision variables, thus it is a wise choice to employ 
RF to approximate m objectives and c constraints of such 
problems. Moreover, a great many theoretical and empirical 
studies [49] have proved that the random forest algorithm 
has high prediction accuracy.

Stochastic ranking strategy

Stochastic ranking strategy [44] is the constraint processing 
approach using bubble sorting technique, which can strike 
a balance between optimal solutions and feasible solutions. 
Specifically, two criteria are used to rank the population 
separately. The first criterion is ranking them as an uncon-
strained problem with m + c objectives, and the other is rank-
ing them as a constrained problem with m objectives and c 
constraints. Individuals with better objective values or low 
constraint violations are selected and retained with a certain 
probability.

In the SR strategy, the transition from constrained MOPs 
to unconstrained MOPs with additional objectives can be 
clearly depicted by Eq. 2, which can significantly improve 
the performance of constraint processing in SAEAs [50]. 
Note that such objective and constraint values here are both 
predicted by surrogates. Furthermore, the fast non-domi-
nated sorting method is often used as a basis for ranking in 
MOPs.

The proposed algorithm

Overall framework of RFMOISR algorithm

In this section, a novel surrogate-assisted multi-objective 
evolutionary algorithm is presented to improve the conver-
gence and diversity for expensive CMODOPs under the 

(2)F(�) = max(f1(�),… , fm(�), g1(�),… , gh(�))
T.
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limited computational budget. The framework of the pro-
posed RFMOISR is outlined in Algorithm 1. More specifi-
cally, the algorithm starts building the random forest models 
with training data for each objective and constraint, and con-
struct the logistic regression model [51] before optimization. 
It is worth noting that the logistic regression model is used 
to rectify the boundaries of the feasible regions during opti-
mization to reduce the impact of approximation errors on 
the constraints as described in the literature [38]. Afterward, 
the initial population randomly generated is approximated 

by the surrogates and then the optimization iteration begins. 
When selecting the parent population for the next genera-
tion, an improved stochastic ranking strategy was introduced 
to strike a balance between satisfying constraints and better 
objectives. What is more, to advance approximation accu-
racy, a flexible model management approach is employed to 
update the surrogate models after individual approximation 
errors are corrected. The optimization will not stop until 
the allowed computing resources are exhausted, and then 
the current optimal solution for CMODOPs will be output.

Algorithm 1 Pseudo code for RFMOISR.

Input: P: population with the approximated objectives and constraints, FE: maximum number 

of expensive exact evaluations allowed, fe: current number of exact evaluations, Td: number of 

Training data, NP: population size.

1: Set fe=0

2:Set Archive=[]

3:Traindata= InitializeTDs(Td)

4: Models=BuildSurrogate(Traindata)

5:fe=fe+T
6:POP=InitializePOPs(P)

7: POP=EvaluateRF(Models, POP)

8:While fe FE

9:     CM=GenerateOffsprings(P);

10: CM=EvaluateRF(Models, CM);

11:    Q=CombinePC(POP, CM);  

12: Q=CorrectLR(Q);

13:    (FO)=CalculateFitness_objectives(Q);

14:   (FC)=CalculateFitness_constraints(Q);

15:    R=ImprovedStochasticRanking(FO, FC, fe, FE)   

16:    if |Q| ＞ P then

17:      POP=Q(R(1:P));

18: end if
19:    Qr=CorrectError(Q)

20:    Archive=UpdateArchive(Qr)

21:    Models=UpdateRF(Models, Archive)

22:    fe=fe+ |Archive|
23: end while
Output: Archive with the optimal solutions.
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Surrogate modeling

The modeling process of the random forest used in this paper 
is shown in Fig. 1. First, 1000 training samples are randomly 
generated to form the original training set N, and exact func-
tion evaluations are employed to compute the true values of 
objectives and constraints. Regardless of whether individu-
als in the training set are feasible solutions, all the true val-
ues are put into the RF trainer. Subsequently, the bootstrap 
method is introduced to resample from N to generate k train-
ing subsets randomly. Then, a classification and regression 
tree (CART) [52] with binary tree structure is constructed 
in each subset, and according to the minimum square error 
criterion, the optimal feature is selected for node splitting. 
Finally, all CARTs are combined into an RF model, and the 
final output is the average of the k tree outputs.

Each CART branches recursively and stops growing 
once the segmentation termination condition is reached. In 
empirical studies, the threshold is set to le−4 * σ2 (σ2 is 
the variance of all data before the CART is grown). Note 
that since multi-objective CMODOPs has m objectives and 
c constraints, the above process needs to be performed m + c 
times to build the surrogate for each objective or constraint, 
respectively.

Constraint processing

Considering that the surrogate model introduces some 
uncertainty, the improved stochastic ranking strategy is 
presented to deal with the constraints in this part, which 
not only provide a good guide to the selection of parent 
population, but also enhance the optimization efficiency. 
To be specific, the improved stochastic ranking strategy 
mainly includes two aspects. One is the introduction of the 

fitness mechanism, which takes into account the information 
between dominated and non-dominated individuals in light 
of SPEA2 [53]. Furthermore, a k-nearest neighbor method 
is added to assign individual fitness comprehensively. As 
shown in Eq. (3), the fitness values including dominance 
relations and density information individual i is calculated:

The formulas for each component are as follows:

where �k
i
 is the Euclidean distance from individual i to kth 

neighbor. Hence, the Euclidean distance between the indi-
vidual i and other individuals from the population P and the 
external archive set Q is counted and arranged in ascend-
ing order. Moreover, the niche method and elite retention 
mechanism were employed to expand the search range and 
augment the diversity of the population.

Meanwhile, Fig. 2 visualizes the superiority of the sto-
chastic ranking with the fitness mechanism compared to the 
fast non-dominated sorting method when the solution space 
is scattered. Please note that the objectives are to be maxi-
mized in Fig. 2. From Fig. 2a there is no obvious distinction 
between individuals of the same level according to the fast 

(3)F(i) = R(i) + D(i).

(4)R(i) =
∑

j∈P+Q,j≻i

S(j),

(5)S(i) = |{j|j ∈ P + Q ∧ i ≻ j}|,

(6)D(i) =
1

�
k
i
+ 2

,

(7)k =
√
�P� + �Q�,

Fig. 1  The generation process 
of the random forest
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non-dominated sorting method. As a result, the SR strategy 
may ignore potential individuals, especially those distributed 
in sparse areas. Whereas as illustrated in Fig. 2b [53], capac-
ity for each individual can be accurately assessed through 
fitness mechanisms. Besides, a neighbor mechanism is uti-
lized to maintain population distribution. Thus, SR based on 
this criterion can provide excellent trade-off ability between 
convergence and diversity.

The second aspect is the probability operator. In the 
original SR, a fixed probability is defined to determine 
whether the comparison with neighboring individuals is 
based on objectives or constraints. However, EAs have dif-
ferent emphases in different search stages. Therefore, to 
speed up convergence and save computing costs, we pro-
pose a new probability operator of SR. As we all know, 
the initial population is relatively uniform, and the algo-
rithm is expected to search as wide as possible. With the 

optimization proceeding, the population gradually converges 
near the Pareto front, and the algorithm is required to search 
within the feasible region. Therefore, the fixed probability 
is replaced to a dynamic probability that can be adaptively 
adjusted according to search stages, as shown below:

where FE is the maximum number of expensive fitness eval-
uations allowed, fe is the current number of exact evalua-
tions, and P0 is the default probability. The improved strat-
egy is consistent with the search law of EAs, which can 
further improve the quality of the solutions and the opti-
mization efficiency. Algorithm 2 presents a pseudo code of 
the improved stochastic ranking (ISR) including Adaptive 
Selection (AS) and Fitness Mechanism (FM).

(8)P = fe ÷ FE × P0,

Fig. 2  Comparison of the two different hierarchical schemes for a maximization problem with two objectives f1 and f2
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Algorithm 2 Pseudo code for ISR using two selection criteria.

Input: T: population with the approximated objectives and constraints, FV: approximate 

constraint value of individuals, FC: constraint correction difference, NP: population size.

1: Sorting T as an unconstrained MOP by fitness sort, denoting as SU.

2: Sorting T as a constrained MOP by fitness sort, denoting as SC.

3: for i=1:NP do
4:   P(i)=fe/FE*P0;

5: for j=1:|T| − 1 do

6:        if U(0,1)＞＞P(i) then

7: if SU 
j ＞＞SU 

j+1 then

8: Exchange Tj and Tj+1;

9: Exchange SU 
j and SU 

j+1, exchange SC 
j and SC 

j+1;

10： end if

11： else

12: if SC 
j ＞＞SC 

j+1 then

13: Exchange Tj and Tj+1;

14: Exchange SU 
j and SU 

j+1, exchange SC 
j and SC 

j+1;

15: end if
16:     end if
17:   end for
18: end for
Output: T with the first NP solutions.

Model managing

In SAEAs, model management is critical to the effective-
ness of the surrogate, affecting the optimization perfor-
mance of the algorithm. To reduce the approximate error, 
an individual-based model management strategy [54] was 
employed in this work to correct and update the model in 
each generation. The approach focuses on the selection of 
individuals demanding evaluation for each generation. Dur-
ing the optimization, all individuals are evaluated approxi-
mately through surrogates. Then, these individuals are 
sorted according to the fitness mechanism. Based on this 

order, the potential of individuals can be identified. And the 
root-mean-square error (RMSEs) between the predicted and 
true values of each objective for non-dominated individu-
als are calculated and recorded as E. Next, we use them to 
modify the predicted objective values F(x) for each individ-
ual. Specifically, in the maximization case, the lower bound 
on the objectives of revised individuals can be expressed 
as F(x) + E. If the modified individual dominates the non-
dominated solutions in the training set, it is regarded as new 
data to put into the training set for updating the model and 
ultimately stored into an archive for the next generation. The 
detail of this strategy is shown in Algorithm 3.
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Algorithm 3 Pseudo code for model management strategy.

Input: T: population with the approximated objectives and constraints (F(x) and G(x)), TRn: the 

non- dominated solutions of the training set, NP: population size.

1: Set Tn empty.

2: T is sorted by fitness values.

3: Estimate error of m RF models, denoting as E.

4: Modify T based on E, denoting as TE.

5: for i=1: NP do
6: if TEi dominates TRn then
7: if TEi is not in the training set then
8:       Put TEi into Tn.

9:     end if

10： end if

11: end for
12: Evaluate Tn by expensive objective and constraint functions.

13: Update m+c RF models with Tn.

Output: updated RF models.

Table 1  Parameter setting of RFMOISR

Parameters Definition Value

Np Population size 100
Pc Cross probability 1
Pm Mutation probability 0.4
Pα Feasibility probability 0.95
k The number of CARTs 100
t Splitting tolerance of CARTs 1e−4 * σ2
EFmax Maximum exact evaluations 2000
Td The number of training data of RF 1000

Experimental studies

To examine the efficiency of RFMOISR, numerical 
experiments are conducted to make comparisons between 
RFMOISR and four popular compared algorithms in CMO-
DOPs including RFCMOCO [38], SPEA2 [53], NSGA-II 
[55], MOEA/D [56].

Testing problems

The CMODOPs are designed to obtain the optimal order or 
grouping of events or items. Hence, for testing the popularity 
of the proposed algorithm in solving such problems, com-
mon and representative 0–1 multi-objective knapsack prob-
lem (MOKP) were selected as benchmark problems. And 
we assume that the exact evaluation may be computationally 

expensive. The distinct reason for this is that the computa-
tional expense can be easily measured in the problem by 
limiting the number of exact evaluations. A MOKP problem 
with m objectives and n items can be expressed as follows:

where vj
i
 is the value of the jth objective corresponding to 

the ith item, wi is the weight of the i-th item, and W is the 
maximum load of the backpack. The test questions used 
in this paper include two parts. One is ten small MOKPs 
(S-MOKPs) with 10–100 items and 2–3 objectives, which 
can be obtained by the method of literature [57]. The other 
is that six widely used large MOKP (L-MOKPs) [58] are 
considered here, with 250–750 items and 2–3 objectives.

Performance metrics

The inverted generational distance (IGD) [59] is deployed 
as the index for evaluating the quality of the obtained solu-
tion set in terms of both convergence and distribution. The 
smaller the IGD value, the better the quality of solution set 
obtained by the algorithm. To compute IGD, a reference 
set needs to be specified that is a close representation of 
the Pareto front. For such test problems, we introduce the 

(9)

max fj =

n∑

i=1

v
j

i
xi, xi ∈ {0, 1}, 1 ≤ j ≤ m

s.t.

n∑

i=1

wixi ≤ W,
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diversity. In principle, the expensive CMODOPs focus more 
on finding better feasible solutions. Therefore, this paper 
utilizes the maximum error rate (ME) [60] and generational 
distance (GD) [61] to measure the convergence of the algo-
rithm. Moreover, a smaller value of ME or GD is preferable, 
which indicates that the obtained non-dominated solutions 
have excellent convergence.

Parameter setting

In the experiments, the common parameters, such as the 
population size (Np) and the maximum exact evaluations 
 (EFmax), were set to the same values in compared algo-
rithms. Furthermore, algorithms use two-point crossover 
with a probability of 1 and point mutation method with 

(a) (b)

Fig. 3  The accuracy of selection for different strategies on MOKPs with 30–50 decision variables and 2 objectives

(a) (b)

Fig. 4  The accuracy of selection for different strategies on MOKPs with 30–50 decision variables and 3 objectives

method from the literature [38] to generate the reference set 
by 30 runs of NSGA-II (with a population size of 100 runs 
for 200 generations using exact function evaluations).

The hypervolume (HV) [58] is also adopted as the perfor-
mance metric in the comparisons to make empirical compar-
isons between the results obtained by each algorithm. This 
metric measures the volume of the objective space between 
the obtained solutions set and a predefined reference point. 
Since the reference point plays an important role in the cal-
culation of HV, the points far from the objective values are 
selected as reference points to maintain the accuracy of HV. 
Given a reference point, a larger HV value means better 
quality.

The above two metrics evaluate the comprehensive 
performance of the algorithm, namely convergence and 
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a probability of 0.4. The detail parameter settings in the 
experiments are given in Table 1. All algorithms are not 
stopped until the maximum number of exact evaluations is 

reached, which are performed 30 independent runs on 
each test problem to obtain a robust optimizing result. All 

(a) (b)

Fig. 5  RMSE of the RF model in RFMOISR with or without model management strategy on the MOKP instances with 2 objectives

(a) (b)

Fig. 6  RMSE of the RF model in RFMOISR with or without model management strategy on the MOKP instances with 3 objectives

Table 2  Statistical results of the HV and IGD values on the two MOKP instances

Best result of each benchmark is marked in boldface

n m HV IGD

RFMOISR RFMOISR-WMM RFMOISR RFMOISR-WMM

30 2 1.72e+07 ± 2.57e+06 1.32e+07 ± 2.38e+06 (+) 8.63e−01 ± 3.12e−01 1.49e+00 ± 5.86e−01 (+)
30 3 3.17e+10 ± 5.04e+09 2.16e+10 ± 3.73e+09 (+) 1.22e+00 ± 3.00e−01 1.67e+00 ± 4.19e−01 (+)
50 2 3.87e+07 ± 3.25e+06 3.02e+07 ± 2.99e+06 (+) 1.48e+00 ± 5.41e−01 2.20e+00 ± 2.88e−01 (+)
50 3 4.08e+10 ± 3.61e+09 3.23e+10 ± 1.67e+09 (+) 1.61e+00 ± 3.11e−01 2.66e+00 ± 2.96e−01 (+)
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programs were coded in Matlab 2018a on an Intel Core i7 
with a 1.99 GHz CPU.

Comparative experiment of ISR strategy

To validate the performance of the proposed constraint han-
dling strategy in the RF model, we compare the ISR strategy 
with Original Stochastic Ranking (OSR) [41], Stochastic 
Ranking with Adaptive Selection (SR-AS), and Stochastic 
Ranking with Fitness Mechanism (SR-FM). The experiment 
was carried out in the MOKP instances with 30–50 deci-
sion variables and 2 or 3 objectives to show the differences 
between these strategies. And the parent population retained 
by the NSGA-II using exact function evaluations is consid-
ered as the reference set to measure the selection accuracy 
of the above four strategies. Specifically, the RF models are 
first trained using 1000 random samples and then used to 
approximate the objectives and constraints of all the indi-
viduals generated by NSGA-II. Subsequently, the individual 

fitness values are calculated based on two different criteria 
and regarded as the basis for the individual ascending order. 
Finally, the SR strategies are employed to select the parent 
population, and then their selection accuracy is obtained 
respectively through the reference set. The experiment will 
be terminated when the maximum number of allowed evalu-
ations is exhausted, of which 1000 exact evaluations are used 
for building the RF models.

Figures 3 and 4 depict the selection accuracy of these 
four strategies on such MOKP instances with two and three 
objectives, separately. It can be seen from Fig. 3a to b that 
the selection accuracy of ISR can achieve the highest 91% 
and 92%, respectively, on test instances with 2 objectives, 
30 and 50 decision variables, which is significantly better 
than the other three strategies. Moreover, the performance 
of SR-FM is second only to ISR, which also shows that a 
stochastic ranking strategy with an adaptive mechanism can 
accurately assess the potential of each individual, thereby 
improving selection efficiency.

Table 3  Statistical results of the IGD values on the small and large MOKP instances

Best result of each benchmark is marked in boldface

n m RFMOISR RFCMOCO [38] SPEA2 [53] NSGA-II [55] MOEA/D [56]

S-MOKP 10 2 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00 
(=)

6.28e−02 ± 2.60e−03 
(+)

7.72e−02 ± 1.54e−03 
(+)

6.45e−02 ± 2.32e−03 
(+)

10 3 8.61e−02 ± 3.40e−03 7.49e−02 ± 5.26e−03 
(=)

3.18e−01 ± 2.26e−02 
(+)

5.34e−01 ± 4.01e−02 
(+)

6.81e−01 ± 2.81e−02 
(+)

20 2 6.32e−01 ± 1.45e−02 6.08e−01 ± 3.24e−02 
(=)

8.35e−01 ± 4.13e−02 
(+)

7.26e−01 ± 6.10e−02 
(+)

1.20e+00 ± 3.44e−01 
(+)

20 3 1.14e+00 ± 4.31e−01 1.37e+00 ± 5.28e−01 
(+)

1.45e+00 ± 3.22e−01 
(+)

1.55e+00 ± 7.42e−01 
(+)

1.67e+00 ± 4.72e−01 
(+)

30 2 8.63e−01 ± 3.12e−01 9.42e−01 ± 6.27e−01 
(+)

1.19e+00 ± 2.51e−01 
(+)

1.61e+00 ± 3.29e−01 
(+)

2.11e+00 ± 8.21e−01 
(+)

30 3 1.22e+00 ± 3.00e−01 1.15e+00 ± 3.20e−01 
(=)

1.37e+00 ± 4.36e−01 
(+)

1.41e+00 ± 6.21e−01 
(+)

2.27e+00 ± 7.31e−01 
(+)

50 2 1.48e+00 ± 5.41e−01 1.87e+00 ± 2.13e−01 
(+)

2.35e+00 ± 5.47e−01 
(+)

2.46e+00 ± 7.19e−01 
(+)

2.80e+00 ± 2.91e−01 
(+)

50 3 1.61e+00 ± 3.11e−01 1.94e+00 ± 2.36e−01 
(+)

2.33e+00 ± 4.16e−01 
(+)

2.58e+00 ± 5.33e−01 
(+)

4.36e+00 ± 5.27e−01 
(+)

100 2 5.43e+00 ± 6.21e−01 5.98e+00 ± 4.83e−01 
(+)

6.31e+00 ± 7.26e−01 
(+)

6.42e+00 ± 2.77e−01 
(+)

6.72e+00 ± 3.63e−01 
(+)

100 3 6.18e+00 ± 5.28e−01 6.60e+00 ± 4.39e−01 
(+)

6.98e+00 ± 5.46e−01 
(+)

7.08e+00 ± 3.24e−01 
(+)

7.44e+00 ± 4.10e−01 
(+)

L-MOKP 250 2 5.74e+00 ± 5.77e−01 6.57e+00 ± 5.11e−01 
(+)

6.73e+00 ± 9.62e−01 
(+)

7.03e+00 ± 8.06e−01 
(+)

9.36e+00 ± 1.13e+00 
(+)

250 3 4.65e+00 ± 6.96e−01 5.27e+00 ± 4.81e−01 
(+)

5.55e+00 ± 1.29e+00 
(+)

6.41e+00 ± 1.07e+00 
(+)

7.38e+00 ± 1.77e+00 
(+)

500 2 6.04e+00 ± 4.78e−01 6.60e+00 ± 3.20e−01 
(+)

6.84e+00 ± 7.80e−01 
(+)

7.18e+00 ± 6.35e−01 
(+)

9.92e+00 ± 9.67e−01 
(+)

500 3 5.12e+00 ± 9.93e−01 5.42e+00 ± 1.07e+00 
(+)

5.83e+00 ± 8.51e−01 
(+)

6.50e+00 ± 7.16e−01 
(+)

7.73e+00 ± 8.38e−01 
(+)

750 2 8.39e+00 ± 4.14e−01 9.11e+00 ± 1.16e+00 
(+)

9.63e+00 ± 1.15e+00 
(+)

1.05e+01 ± 8.53e−01 
(+)

1.33e+01 ± 1.39e+00 
(+)

750 3 7.28e+00 ± 6.90e−01 7.58e+00 ± 8.35e−01 
(+)

7.73e+00 ± 8.27e−01 
(+)

7.97e+00 ± 1.03e+01 
(+)

9.77e+00 ± 1.04e+00 
(+)
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What is more, a similar phenomenon can be observed in 
Fig. 4. From Fig. 4a, the selection accuracy of ISR outper-
forms the others on the MOKP instance with 30 decision var-
iables and 3 objectives, further demonstrating the superiority 
of the strategy. In addition, compared with Fig. 4a, the perfor-
mance of ISR is more prominent on the MOKP instance with 
50 decision variables and 3 objectives as shown in Fig. 4b. 
It can be attributed to the fact that with the augment of deci-
sion variables, the situation of individuals not dominating 
each other gradually increases so that it is more necessary 
for such a method to accurately distinguish each individual. 
Furthermore, selecting the parent population according to 

the search bias can effectively decrease the loss of promis-
ing solutions and accelerate the convergence. Overall, the 
proposed strategy can markedly enhance the quality of the 
parent population for the expensive CMODOPs, especially 
when the problem size becomes larger.

Comparative experiment of model management 
strategy

To verify the effectiveness of the model management strat-
egy used [54] on the proposed algorithm, two aspects of 
performance comparison are designed in this section. One 

(a) (b)

Fig. 7  The IGD values for all the algorithms on the small-scale MOKPs with two or three objectives

(a) (b)

Fig. 8  The IGD values for all the algorithms on the large-scale MOKPs with two or three objectives
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Table 4  Statistical results of the HV values on the small and large MOKP instances

Best result of each benchmark is marked in boldface

n m RFMOISR RFCMOCO [38] SPEA2 [53] NSGA-II [55] MOEA/D [56]

S-MOKP 10 2 5.13e+05 ± 3.26e+03 5.10e+05 ± 3.10e+03 
(+)

5.05e+05 ± 6.19e+03 
(+)

5.04e+05 ± 3.11e+03(+) 4.39e+05 ± 6.72e+04 
(+)

10 3 4.91e+09 ± 4.71e+06 4.92e+09 ± 8.25e+06 
(=)

3.80e+09 ± 6.17e+08 
(+)

4.86e+09 ± 7.46e+07 (+) 4.43e+09 ± 2.15e+08 
(+)

20 2 1.11e+07 ± 4.15e+05 1.16e+07 ± 5.71e+05 
(=)

1.03e+07 ± 6.51e+05 
(+)

1.06e+07 ± 6.27e+05 (+) 7.83e+06 ± 5.33e+05 
(+)

20 3 6.71e+09 ± 4.21e+08 6.37e+09 ± 1.53e+08 
(+)

4.99e+09 ± 7.21e+08 
(+)

5.62e+09 ± 3.70e+08 (+) 3.08e+09 ± 8.14e+08 
(+)

30 2 1.72e+07 ± 2.57e+06 1.43e+07 ± 3.16e+06 
(+)

1.26e+07 ± 4.90e+06 
(+)

1.18e+07 ± 7.81e+06 (+) 9.49e+06 ± 6.12e+06 
(+)

30 3 3.17e+10 ± 5.04e+09 3.26e+10 ± 6.12e+09 
(=)

2.37e+10 ± 4.13e+09 
(+)

2.24e+10 ± 2.51e+09 (+) 1.61e+10 ± 4.34e+09 
(+)

50 2 3.87e+07 ± 3.25e+06 3.45e+07 ± 4.16e+06 
(+)

3.20e+07 ± 5.01e+06 
(+)

3.16e+07 ± 2.13e+06 (+) 2.02e+07 ± 1.97e+06 
(+)

50 3 4.08e+10 ± 3.61e+09 3.64e+10 ± 5.21e+09 
(+)

3.21e+10 ± 5.30e+09 
(+)

3.05e+10 ± 6.17e+09 (+) 2.46e+10 ± 3.26e+09 
(+)

100 2 5.70e+07 ± 3.70e+06 5.07e+07 ± 2.41e+06 
(+)

4.98e+07 ± 5.28e+06 
(+)

4.79e+07 ± 7.10e+06 (+) 2.43e+07 ± 4.03e+06 
(+)

100 3 4.59e+10 ± 3.91e+09 4.08e+10 ± 5.25e+09 
(+)

3.52e+10 ± 7.16e+09 
(+)

3.32e+10 ± 3.51e+09 (+) 2.95e+10 ± 4.20e+09 
(+)

L-MOKP 250 2 6.42e+07 ± 1.49e+06 5.94e+07 ± 1.07e+06 
(+)

5.90e+07 ± 3.19e+06 
(+)

5.82e+07 ± 2.04e+06 (+) 5.45e+07 ± 2.04e+06 
(+)

250 3 5.27e+11 ± 1.10e+10 4.97e+11 ± 1.65e+10 
(+)

4.91e+11 ± 2.66e+10 
(+)

4.89e+11 ± 1.15e+10 (+) 4.46e+11 ± 1.52e+10 
(+)

500 2 9.87e+07 ± 3.21e+06 9.09e+07 ± 3.01e+06 
(+)

9.04e+07 ± 3.95e+06 
(+)

8.76e+07 ± 2.17e+06 (+) 7.78e+07 ± 5.27e+06 
(+)

500 3 7.65e+11 ± 4.10e+10 7.23e+11 ± 3.73e+10 
(+)

7.12e+11 ± 2.14e+10 
(+)

7.05e+11 ± 2.88e+10 (+) 6.48e+11 ± 5.79e+10 
(+)

750 2 1.30e+08 ± 1.79e+06 1.22e+08 ± 6.28e+06 
(+)

1.20e+08 ± 3.88e+06 
(+)

1.18e+08 ± 3.31e+07 (+) 1.07e+08 ± 5.90e+06 
(+)

750 3 1.10e+12 ± 5.72e+10 1.00e+12 ± 3.43e+10 
(+)

9.83e+11 ± 5.70e+10 
(+)

9.78e+11 ± 8.38e+10 (+) 8.79e+11 ± 6.28e+10 
(+)

(a) (b)

Fig. 9  The HV values for all the algorithms on the small-scale MOKPs with two or three objectives
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is the RMSE between the predicted and the true values of 
an objective during optimization, as shown in Figs. 5 and 
6, which is used to measure the evaluation accuracy of the 
RF model with or without the model management strat-
egy, separately. The other is that the proposed algorithm is 
compared with RFMOISR without the model management 
strategy (RFMOISR-WMM) on the comprehensive perfor-
mance including convergence and distribution, as shown in 
Table 2. Experiments were performed in MOKP instances 
with 30–50 decision variables and 2–3 objectives.

From Fig. 5, we can observe that, guided by the model 
management strategy, RMSE is gradually reduced to an 
acceptable error range during the iteration. However, the 
evaluation error of the RF model is always large without the 
use of model management, and even has an upward trend 
with the iteration. The above phenomenon clearly indicates 
that the model management strategy used has an excellent 
improvement effect on the prediction accuracy of the RF 
model in the proposed algorithm. Meanwhile, a similar con-
clusion can be drawn from the MOKP instance with 30–50 
decision variables and 3 objectives in Fig. 6. This again 
illustrates that the model management strategy plays a cru-
cial role in RFMOISR algorithm for solving CMODOPs.

In addition, the HV and IGD values of RFMOISR with or 
without the model management strategy in the four instances 
above are presented in Table 2. It can be seen from Table 2 
that the proposed RFMOISR is significantly better than that 
without the model management strategy in terms of HV 
index and IGD index, which means that the model manage-
ment strategy can bring outstanding convergence and diver-
sity to the proposed algorithm. This can be attributed to the 
improvement of the evaluation accuracy of the surrogates by 
the model management, so that the search of the algorithm 
can be accurately guided. Moreover, coupled with the ISR 
strategy, the algorithm accelerates the convergence while 

maintaining the diversity of the population, resulting in a 
set of reliable solutions.

Comparative experiment of RFMOISR

Comparative analysis of IGD

The mean IGD values of the five different algorithms on 
small and large-scale MOKP instances are listed in Table 3. 
The best values among all the compared algorithms for each 
instance are marked in boldface. To judge whether there 
is a statistical significance between RFMOISR and other 
compared algorithms, the Wilcoxon rank sum test with sig-
nificance level p = 0.05 is employed in Table 3, where sym-
bols ‘+’, ‘−’, ‘=’ indicate that RFMOISR is significantly 
better than, significantly worse than, or comparable to the 
compared algorithms, respectively. Figures 7 and 8 draw the 
change graphs of IGD values obtained by the overall algo-
rithms based on small and large MOKPs with 2 and 3 objec-
tives, separately. According to the Wilcoxon rank sum test, 
the RFMOISR algorithm outperforms the others on most of 
the small-scale test problems, and achieves the optimal IGD 
values on all the large-scale MOKP instances. Moreover, we 
can also observe from Fig. 7 that RFCMOCO is the second 
best-performing algorithm among the five compared algo-
rithms. It can be found that better performance on expensive 
MOKP instances is acquired from SAEAs, i.e., RFMOISR, 
RFCMOCO. Also, as shown in Fig. 8, despite the increas-
ing scale of problems, these two SAEAs still maintain their 
performance advantages. The phenomenon can be well 
interpreted, which also shows the significance of SAEAs. 
Owing to costly and limited exact evaluations, the surrogate 
model with low cost and high precision undertakes the main 
evaluation task, which can save computing resources while 

(a) (b)

Fig. 10  The HV values for all the algorithms on the large-scale MOKPs with two or three objectives
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obtaining higher quality solutions, especially on more com-
plex large-scale problems.

What is more, it is clear from Fig. 7 to 8 that SPEA2 is 
the best-performing algorithm among the three MOEAs in 
such instances. And NSGA-II performs very competitively 
to SPEA2. For MOEA/D, it is poor than that of its competi-
tors, and it does not obtain an acceptable solution for any test 
problem. This may be since the PFs of MOKP test problems 
are irregular and discontinued, while a set of well-distributed 
weight vectors generated by MOEA/D cannot guarantee a 
good distribution of obtained solutions. By contrast, unlike 
MOEA/D where the search directions are fixed by weight 
vectors, SPEA2 can effectively avoid the search biased to 
a certain area in CMODOPs by introducing fitness assign-
ment. It is also one of the main reasons why RFMOISR is 
the most effective algorithm in expensive MOKPs.

Comparative analysis of HV

For completeness, all algorithms have also been compared 
using the HV index. Table 3 presents the average HV results 
on such test problems, including the Wilcoxon rank sum test 
with significance level p = 0.05. Similar conclusions can be 
drawn from the results given in Table 4. These results in 
Table 4 indicate that RFMOISR can provide significantly 
better results than the other algorithms on an overwhelm-
ing majority of the small and large tested problems in light 
of the Wilcoxon’s test. Besides, to intuitively analyze the 
performance of the compared algorithms, the HV values for 
such algorithms on MOKPs with two and three objectives 
are severally plotted in Figs. 9 and 10. It is also observed 
from figures that RFMOISR achieves significantly better 
comprehensive performance on most of the test problems.

There are two main reasons why the proposed algorithm 
shows comparably well on the HV index. One is the usage of 

Table 5  Statistical results of the ME values on the small and large MOKP instances

Best result of each benchmark is marked in boldface

n m RFMOISR RFCMOCO [38] SPEA2 [53] NSGA-II [55] MOEA/D [56]

S-MOKP 10 2 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00 
(=)

9.04e+00 ± 2.15e+00 
(+)

1.01e+01 ± 3.60e+00 
(+)

3.93e+01 ± 3.58e+00 
(+)

10 3 9.08e+00 ± 3.51e−01 8.63e+00 ± 2.34e−01 
(=)

3.57e+01 ± 2.77e+01 
(+)

3.40e+01 ± 8.20e+00 
(+)

9.74e+01 ± 6.41e+01 
(+)

20 2 1.39e+02 ± 1.86e+01 1.27e+02 ± 3.34e+01 
(=)

6.18e+02 ± 2.75e+01 
(+)

5.89e+02 ± 6.39e+01 
(+)

7.61e+02 ± 4.10e+01 
(+)

20 3 1.71e+02 ± 4.01e+01 3.11e+02 ± 4.20e+01 
(+)

6.35e+02 ± 3.44e+01 
(+)

5.15e+02 ± 5.16e+01 
(+)

6.76e+02 ± 3.34e+01 
(+)

30 2 4.37e+02 ± 1.82e+01 5.49e+02 ± 3.83e+01 
(+)

5.89e+02 ± 6.71e+02 
(+)

1.14e+03 ± 4.02e+02 
(+)

2.21e+03 ± 3.30e+02 
(+)

30 3 2.37e+02 ± 5.30e+01 2.13e+02 ± 7.01e+01 
(=)

2.60e+02 ± 8.32e+01 
(+)

5.56e+02 ± 7.50e+01 
(+)

7.34e+02 ± 5.73e+01 
(+)

50 2 1.14e+03 ± 3.10e+01 1.71e+03 ± 2.25e+02 
(+)

1.95e+03 ± 1.89e+02 
(+)

2.50e+03 ± 4.29e+02 
(+)

3.96e+03 ± 4.20e+01 
(+)

50 3 6.02e+02 ± 5.10e+01 9.01e+02 ± 4.02e+01 
(+)

1.10e+03 ± 6.05e+02 
(+)

1.34e+03 ± 7.22e+02 
(+)

1.83e+03 ± 5.10e+02 
(+)

100 2 6.53e+03 ± 2.18e+02 7.75e+03 ± 5.26e+02 
(+)

8.10e+03 ± 3.44e+02 
(+)

8.88e+03 ± 5.41e+02 
(+)

1.10e+04 ± 7.18e+02 
(+)

100 3 4.10e+03 ± 7.19e+01 4.86e+03 ± 3.16e+02 
(+)

5.36e+03 ± 3.09e+02 
(+)

7.57e+03 ± 6.39e+02 
(+)

8.92e+03 ± 6.80e+02 
(+)

L-MOKP 250 2 8.84e+02 ± 1.86e+02 1.21e+03 ± 7.69e+01 
(+)

1.31e+03 ± 3.89+02 
(+)

1.47e+03 ± 2.51+02 
(+)

1.66e+03 ± 2.47e+02 
(+)

250 3 8.53e+02 ± 1.71e+02 9.53e+02 ± 1.36e+02 
(+)

1.33e+03 ± 4.10e+02 
(+)

1.47e+03 ± 2.40e+02 
(+)

1.63e+03 ± 5.61e+02 
(+)

500 2 1.31e+03 ± 2.91e+02 1.76e+03 ± 2.06e+02 
(+)

1.76e+03 ± 3.57e+02 
(+)

2.12e+03 ± 3.31e+02 
(+)

2.69e+03 ± 4.39e+02 
(+)

500 3 9.46e+02 ± 2.12e+02 1.11e+03 ± 5.04e+02 
(+)

1.31e+03 ± 3.05e+02 
(+)

1.68e+03 ± 3.44e+02 
(+)

1.88e+03 ± 3.26e+02 
(+)

750 2 2.08e+03 ± 1.31e+02 2.58e+03 ± 4.42e+02 
(+)

2.73e+03 ± 4.00e+02 
(+)

3.17e+03 ± 4.14e+02 
(+)

3.69e+03 ± 4.47e+02 
(+)

750 3 1.94e+03 ± 2.11e+02 2.08e+03 ± 5.02e+02 
(+)

2.19e+03 ± 4.84e+02 
(+)

2.51e+03 ± 3.59e+02 
(+)

2.60e+03 ± 3.74e+02 
(+)
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RF models, and the other is the improved stochastic ranking 
approach. Random forest is adopted as the surrogate model 
according to its high approximation accuracy for discrete 
problems, which can reduce the evaluation error of indi-
viduals and correctly grasp the search direction. Moreover, 
the fitness mechanism takes into account both the dominant 
relationship and the aggregate distribution of population to 
accurately identifying the identify the potential of each indi-
vidual, thereby improving the quality of parent individuals. 
And adaptive probability operator is developed in ISR to be 
consistent with the search principles of evolutionary algo-
rithms to speed up the search process and converge quickly 
to an optimum. Hence, thanks to the novel mechanisms pro-
posed, the RFMOISR algorithm still has significant potential 
for the large-scale MOKP instances in Fig. 10. Overall, the 
statistical analyses of the above two indexes have evidenced 
that RFMOISR can better balance convergence and diversity 
in expensive CMODOPs.

Comparative analysis of ME

In this subsection, the convergence of the compared algo-
rithms can be observed from Table 5 which shows the mean 
and variance of the convergence metric ME obtained using 
five algorithms RFMOISR, RFCMOCO, SPEA2, NSGA-II, 
and MOEA/D. The Wilcoxon test is also adopted to judge 
the significance of the results compared to RFMOISR algo-
rithm. The results of Table 5 show that RFMOISR is able to 
converge better on such MOKP test problems, which indicate 
SAEAs with the help of random forest models can refrain 
from a misleading search on expensive CMODOPs. Also, 
the collaboration of fitness assignment and adaptive selec-
tion can further contribute to improving the quality of solu-
tion and convergence speed. Furthermore, with the increase 
of problem scale and solving difficulty, the superiority of 
the proposed strategies under limited real evaluations are 
ulteriorly revealed, so that the algorithm can converge to a 

Table 6  Statistical results of the GD values on the small and large-scale MOKP instances

Best result of each benchmark is marked in boldface

n m RFMOISR RFCMOCO [38] SPEA2 [53] NSGA-II [55] MOEA/D [56]

S-MOKP 10 2 0.00e+0 ± 0.00e+00 0.00e+00 ± 0.00e+00 
(=)

0.00e+00 ± 0.00e+00 
(=)

0.00e+00 ± 0.00e+00 
(=)

0.00e+00 ± 0.00e+00 
(=)

10 3 0.00e+0 ± 0.00e+00 0.00e+0 ± 0.00e+00 
(=)

8.79e+00 ± 8.75e−00 
(+)

9.29e+00 ± 8.26e+00 
(+)

1.49e+01 ± 9.83e+00 
(+)

20 2 6.69e+01 ± 9.91e+00 6.52e+01 ± 2.66e+01 
(=)

1.06e+02 ± 2.09e+01 
(+)

1.18e+02 ± 8.25e+01 
(+)

2.92e+02 ± 8.53e+01 
(+)

20 3 5.36e+01 ± 2.67e+01 6.61e+01 ± 9.04e+00 
(+)

1.35e+02 ± 1.87e+01 
(+)

1.55e+02 ± 4.12e+01 
(+)

2.62e+02 ± 6.61e+01 
(+)

30 2 1.47e+02 ± 6.86e+01 2.29e+02 ± 7.36e+01 
(+)

3.86e+02 ± 6.71e+02 
(+)

4.40e+02 ± 6.84e+02 
(+)

9.98e+02 ± 3.59e+02 
(+)

30 3 1.30e+02 ± 4.05e+01 1.18e+02 ± 3.85e+01 
(=)

2.5 0e+02 ± 6.52e+01 
(+)

2.88e+02 ± 4.43e+01 
(+)

6.69e+02 ± 1.12e+02 
(+)

50 2 8.03e+02 ± 6.66e+01 1.04e+03 ± 3.79e+02 
(+)

1.25e+03 ± 6.49e+02 
(+)

1.38e+03 ± 3.68e+02 
(+)

2.12e+03 ± 6.09e+02 
(+)

50 3 5.53e+02 ± 6.40e+01 7.01e+02 ± 1.05e+02 
(+)

8.07e+02 ± 1.56e+02 
(+)

8.44e+02 ± 9.16e+01 
(+)

1.30e+03 ± 3.22e+02 
(+)

100 2 5.02e+03 ± 9.38e+02 6.27e+03 ± 1.46e+03 
(+)

6.48e+03 ± 1.38e+03 
(+)

7.24e+03 ± 9.43e+02 
(+)

7.84e+03 ± 1.29e+03 
(+)

100 3 3.40e+03 ± 2.82e+02 4.00e+03 ± 6.25e+02 
(+)

4.17e+03 ± 4.85e+02 
(+)

4.24e+03 ± 5.23e+02 
(+)

4.79e+03 ± 8.87e+02 
(+)

L-MOKP 250 2 5.08e+02 ± 8.53e+01 5.49e+02 ± 8.46e+01 
(+)

5.63e+02 ± 7.71e+01 
(+)

7.10e+02 ± 8.69+01  
(+)

9.01e+02 ± 9.26e+01 
(+)

250 3 3.46e+02 ± 6.88e+01 4.07e+02 ± 7.84e+01 
(+)

4.49e+02 ± 9.57e+01 
(+)

5.39e+02 ± 9.94e+01 
(+)

5.67e+02 ± 7.87e+01 
(+)

500 2 7.09e+02 ± 8.69e+02 7.58e+02 ± 8.80e+01 
(+)

7.83e+02 ± 1.45e+02 
(+)

8.72e+02 ± 7.17e+01 
(+)

1.36e+03 ± 3.34e+02 
(+)

500 3 5.95e+02 ± 7.63e+01 6.33e+02 ± 7.32e+01 
(+)

6.50e+02 ± 9.66e+01 
(+)

7.07e+02 ± 9.02e+01 
(+)

8.40e+02 ± 8.18e+01 
(+)

750 2 1.14e+03 ± 2.73e+02 1.36e+03 ± 3.18e+02 
(+)

1.44e+03 ± 2.94e+02 
(+)

1.58e+03 ± 3.13e+02 
(+)

2.10e+03 ± 3.49e+02 
(+)

750 3 7.47e+02 ± 9.08e+01 8.40e+02 ± 7.87e+01 
(+)

8.65e+02 ± 8.57e+01 
(+)

8.82e+02 ± 1.17e+02 
(+)

1.19e+03 ± 4.31e+02 
(+)
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satisfactory level. Additionally, in all cases with RFMOISR, 
the variance in 30 runs is also small, which manifests the 
stability of the proposed algorithm in optimizing expensive 
constrained multi-objective discrete optimization problems.

Comparative analysis of GD

Since the algorithms failed to converge to the Pareto fronts 
on some of the benchmarks due to the limited evaluation 
budget, GD metric is adopted to investigate the convergence 
of the five algorithms. The statistical results in terms of GD 
values obtained by the five algorithms on small and large-
scale MOKPs are summarized in Table 6. The best result 

on each instance is highlighted in bold. Also, the Wilcoxon 
rank sum test is also employed to compare the results at a 
significance level of 0.05. Symbol +, −, and ≈ means the 
result of RFMOISR is significantly better than, worse than 
or similar to that of the compared algorithm as well.

As listed in Table 6, the proposed RFMOISR obtains the 
best GD values compared to other four algorithms on a vast 
majority of the small-scale test problems. And it achieves 
significant advantages with respect to the convergence in 
large-scale MOKP problems, confirming the better perfor-
mance indicated by ME values. Overall, it can be concluded 
that the proposed algorithm has the preeminent capability in 
approximating Pareto fronts of such expensive CMODOPs.

Comparative analysis of computational cost

In this section, we perform a comparative analysis of the 
computational cost of RFMOISR and RFCMOCO to gain 
some insight into the computation efficiency of the proposed 
method. Table 7 presents the average computation time 
consumed by the competitive algorithms over 30 independ-
ent runs on the ten small-scale and six large-scale bench-
mark problems with 10–750 decision variables under the 
limited computational budget. From Table 7 together with 
Table 3, we can find that the proposed RFMOISR requires 
less computation time whilst obtaining better results than 
the compared algorithm RFCMOCO in 6 out of 10 small-
scale cases. Moreover, the RFMOISR outperforms the RFC-
MOCO on the large-scale test problems in terms of solution 
performance and running time. This means that the ISR 
strategy, while improving the quality of the solutions, can 
also notably save the computational overhead of RFMOISR 
and accelerate the search efficiency of the algorithm.

For visual observations, Figs. 11 and 12 draw the runtime 
of the two SAEAs for the small- and large-scale MOKPs 
with two or three objectives, respectively. The graphs show 

Table 7  Statistical results of the runtime(s) values on the MOKP 
instances

Best result of each benchmark is marked in boldface

n m RFMOISR RFCMOCO [38]

S-MOKP 10 2 2.27e+02 ± 1.34e+00 6.67e+02 ± 3.51e+01
10 3 1.18e+02 ± 2.13e+00 8.93e+02 ± 4.11e+01
20 2 2.59e+02 ± 1.05e+01 7.06e+02 ± 4.22e+01
20 3 3.43e+02 ± 4.61e+01 9.01e+02 ± 3.30e+01
30 2 5.14e+02 ± 2.32e+01 7.68e+02 ± 4.57e+01
30 3 4.27e+02 ± 6.05e+01 9.55e+02 ± 5.73e+01
50 2 5.81e+02 ± 1.82e+01 9.38e+02 ± 2.59e+01
50 3 4.83e+02 ± 2.41e+01 1.27e+03 ± 4.02e+01

100 2 7.50e+02 ± 5.63e+01 1.11e+03 ± 7.31e+02
100 3 7.75e+02 ± 6.04e+01 1.46e+03 ± 3.70e+02

L-MOKP 250 2 1.12e+03 ± 1.93e+02 1.33e+03 ± 4.29e+02
250 3 1.25e+03 ± 1.56e+02 1.67e+03 ± 1.69e+02
500 2 1.46e+03 ± 2.59e+02 1.59e+03 ± 2.10e+02
500 3 1.54e+03 ± 7.48e+02 1.82e+03 ± 5.08e+02
750 2 1.91e+03 ± 1.59e+02 2.08e+03 ± 5.70e+01
750 3 1.78e+03 ± 4.81e+02 1.93e+03 ± 3.26e+02

Fig. 11  The runtime of the two 
SAEAs on the small MOKPs 
with 2 or 3 objectives

(a) (b)
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that RFMOISR is significantly more efficient than RFC-
MOCO in such sixteen benchmark problems. Specifically, 
it can be seen from Fig. 11a that compared with RFCMOCO, 
the proposed algorithm reduces the calculation time by at 
least 32% on the test functions with two objectives. What is 
more, Fig. 11b manifests that the proposed algorithm can be 
saved at least 50% of the calculation time of RFCMOCO in 
such MOKP instances with three objectives. This again rein-
forces the advantages of the improved stochastic ranking, 
which has the nature of computation simply and provides 
a good parent population for the next generation, thereby 
further saving computing resources. As it saves some evalu-
ation costs, it gets more opportunity to explore the search 

space. Although the size of the problem becomes large in 
Fig. 12, the proposed algorithm still performs prominently 
in convergence speed due to the above strategies. To sum 
up, it is potential for RFMOISR to obtain better solutions 
in a relatively short time on expensive constrained multi-
objective discrete optimization problems.

Besides, we find from Fig. 13 that as the number of objec-
tives and decision variables increases, the complexity of the 
problem also rises, so the time taken by the two SAEAs aug-
ments apparently. However, the time taken by RFMOISR to 
optimize the instances with three objectives is close to or 
even less than the time taken on the two objectives when the 
problem scale is increased to more than 30. This may illus-
trate that the proposed algorithm is more efficient in solving 
the expensive high-dimensional CMODOPs.

Conclusion and future work

In this paper, we propose a surrogate assisted multi-objective 
optimization with improved stochastic ranking, RFMOISR, 
for computationally expensive constrained multi-objective 
discrete optimization problems, in which the random forest 
surrogate models are coordinated with an individual-based 
model management strategy to enhance approximation accu-
racy. Moreover, an improved stochastic ranking method is 
proposed by introducing the fitness mechanism and adaptive 
probability operator to balance better objectives and feasi-
ble solutions and improve the quality of the parent popula-
tion for the next generation, which is a simple and efficient 
approach to compensate for the time-consuming nature of 
the RF model. Experimental results on the ten small-scale 
and six large-scale typical benchmark problems demonstrate 
the performance of the proposed RFMOISR algorithm for 
expensive constrained multi-objective discrete optimization 
problems outperforms the existing schemes in terms of con-
vergence, diversity and computational cost.

In the experimental analysis, the improved stochastic 
ranking strategy is compared with original stochastic rank-
ing, stochastic ranking with adaptive selection, and stochas-
tic ranking with the fitness mechanism to verify the supe-
riority of its selection accuracy based on the RF model, 
especially on expensive constrained multi-objective discrete 
optimization problems with larger scales. Meanwhile, the 
significance of individual-based model management to the 
proposed algorithm is verified from two aspects of approxi-
mate error and algorithm performance. Furthermore, differ-
ent kinds of performance metrics were employed to check 
the effectiveness and quality of the proposed algorithm. The 
statistical results obtained from RFMOISR when compared 
to other popular algorithms including RFCMOCO [38], 
NSGA-II [55], SPEA2 [53], and MOEA/D [56] indicated 
that solutions of RFMOISR are with the highest quality in 

Fig. 12  The runtime of the two SAEAs on the large MOKPs with 2 
or 3 objectives

Fig. 13  The runtime of the two SAEAs on all the MOKPs with 2 and 
3 objectives
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terms of both the convergence and distribution under the 
limited computing resources. Besides, compared with the 
RFCMOCO in running time index, we also find that the 
proposed algorithm can save more computational cost. To 
sum up, the proposed algorithm is promising to address the 
expensive constrained multi-objective discrete optimization 
problems.

In the future, we are planning to investigate more efficient 
approaches for solving expensive constrained multi-objec-
tive combinatorial optimization problems. Also, RFMOISR 
is expected to be applied to more complicated engineer-
ing problems to further prove its potential for real-world 
applications.
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