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Abstract
Sedimentation in open channels occurs frequently and is relative to system inflow. The long-term retention of sediments on
channel beds can increase the possibility of variations in deposits and their eventual consolidation. This study compares
three hybrid artificial intelligence methods in estimating sediment transport without sedimentation (STWS). We employed
the Particle Swarm Optimization (PSO), Imperialist Competitive Algorithm (ICA) and Genetic Algorithm (GA) methods
in combination with the Artificial Neural Network (ANN) to overcome the weakness of ANN training with conventional
algorithms. We used the ICA, GA and PSO methods to optimize the weights of the ANN layers. Using dimensional analysis,
we placed the effective parameters in predicting sediment transport into five non-dimensional groups. Sixmodels are proposed
and run using three hybrid methods (18 models in total). As the comparisons demonstrate, the proposed combined models
are more accurate than ANN and existing equations in estimating the densimetric Froude number (Fr). However, we found
the ICA–ANN superior to GA–ANN and PSO–ANN, as it produces explicit solutions to the problem. The ICA–ANN has
the lowest prediction uncertainty band for Fr of all developed models. Moreover, the variation trend of the Fr for all input
variables (except overall friction factor of sediment) is a second-order polynomial.

Keywords Bed load · Combined model · Limit of deposition · Optimization · Sediment transport · Sensitivity analysis

Introduction

Water flowing through open channels often contains sedi-
ments. If the channel’s transport capacity is insufficient to
transport sediment, solidswill deposit. Sediment retention on
a riverbed without movement for long periods rises the risk
of alteration and the ultimate cementation. During low flow
in particular, the permanent deposition on channel beds alters
the velocity and the shear stress distribution. Channel pipes
are designed based on the concept of self-cleaning. Accord-
ingly, the velocity of the flowpassing through a channelmust,
therefore, be capable of washing the deposited sediments
away. Consequently, channel design based on self-cleansing
should be done in such manner as to meet the following con-
ditions: first, the channel’s equal or over-the-limit-flow must
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have the capacity to transport the minimum concentration
of small, suspended particles or low-mass particles. Second,
the bed load’s flow capacity for transporting rough particles
must be at a level that limits the depth of deposition up to a
specific pipe diameter.

Among the simplest ways to prevent sediment deposition
on channel beds is to use the constant sheer stress [1, 2]
or minimum velocity [3, 4] criteria. However, the minimum
essential discharge or minimum gradient may be under- or
over-predicted when the hydraulic properties of the channel
and sediments entering the channel are not considered [5].

Many researchers have undertaken various experimental
and empirical studies on sediment transportwithout sediment
[6–14]. It can be said that classic methods do not have the
capacity to estimate the flow velocity that prevents sediment
deposition under different conditions, and there is a need
for methods with such capacity. Recently, intelligent learn-
ing systems including Neural Networks have been applied
extensively in water engineering [15–21]. Nasseri et al. [22]
developed the feed-forward neural network (FNN) to simu-
late rainfall fields. By combining the Backpropagation (BP)
algorithm with the Genetic Algorithm (GA), Nasseri et al.
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[22] trained and optimized the FNN. This technique led to
the prediction of rainfall in different periods using a recorded
hyetograph. Nasseri et al.’s study results showed that when
combined with the Genetic Algorithm, the neural network
with the selected input parameters performed better than
in similar works where only the Genetic Algorithm was
used. For efficient water supply system design, Montalvo
et al. [23] used the PSO algorithm. Altunkaynak [24] pre-
dicted sediment load using GA by referring to the flow in
different sections. Altunkaynak concluded that GA yields
better results than existing regression models. Afshar and
Rajabpour [25] used the PSO method to design and operate
an irrigation pumping system. Zhang et al. [26] optimized
the critical shear stress values for sediment deposition and
re-suspension by applying GAmethod. Tang et al. [27] intro-
duced a method that combines a hydrodynamic model with
the intelligent model obtainedwithGA.Azadnia and Zahraie
[28] utilized the PSO algorithm to model the sedimentation
problem in reservoirs. Ashraf Vaghefi et al. [29] employed
the ICA to estimate the discharge in the Karkheh watershed.
Abdollahi et al. [30] utilized the ICA to solve non-linear
equation systems. Ebtehaj and Bonakdari [31] used differ-
ent methods of generating fuzzy inference systems (FIS) and
two algorithms for network training and presented various
models with ANFIS for predicting the densimetric Froude
number. They demonstrated that using the hybrid algorithm
for network training and grid partitioning presented the best
FIS generation results. The comparison of the ICA and GA
[32] and ICAandGA [33] indicates the superior performance
of the ICA in optimal training of the feed-forward neural net-
work model for prediction of the bed load sediment transport
in sewer pipe network. However, the main limitation of these
recent studies is the lack of an explicit expression that can
be easily adopted and used by practitioners. Also, the uncer-
tainty of the model predictions in these papers is not clearly
presented.

The main objective of this article is to model sediment
transport without sedimentation using hybrids of ANNbased
on the evolutionary algorithms ICA, PSO and GA. The algo-
rithms were combined with ANN to optimally design the
layer weights and minimize the objective function to fore-
cast the densimetric Froude number (Fr) parameter. First,
the parameters affecting sediment transport were identified
and grouped into five categories. Then, six different mod-
els were introduced to survey the impact of each parameter.
Fr was then estimated using ICA–ANN, PSO–ANN and
GA–ANN and the results of evaluating each algorithm were
compared with existing laboratory results obtained by Ghani
[34]. Afterwards, to assess the flexibility of proposed hybrid
models, Ghani’s [34] trained models were evaluated against
Vongvisessomjai et al.’s [35] models, which had different
hydraulic conditions from the training dataset. Additionally,
the obtained results were compared with the ANN results

and existing sediment transport equations. Finally, an explicit
equation was produced to calculate Fr in practical engineer-
ing. In addition, through uncertainty analysis examined the
95% prediction error interval for all hybrid models. More-
over, we employed a sensitivity analysis to study the trend
variation of each input variables in the proposed STWSmod-
els.

Review of existing equations for STWS

Popular equations for STWSare typically semi-experimental
and some are developed through dimensional analysis.
Hence, the best semi-experimental relations and two of the
newest equations presented using dimensional analysis [36,
37] are used in this study. Consequently, to review the
models obtained from existing equations, May et al.’s [38]
semi-experimental equation, which is the best among semi-
experimental equations [35, 37], is employed along with
Azamathulla et al. [36] and Ebtehaj et al.’s [37] equations,
which represent the dimensional analysis results.

Using seven different datasets (presented by Ackers et al.
[39] in detail), May et al. [38] evaluated seven cases to
estimate bed load sediment transport without sediment.
The authors found that each equation presented satisfactory
results only with certain datasets derived and none provided
good results in all hydraulic conditions. Therefore,May et al.
[38] presented a new semi-experimental equation by consid-
ering the forces affecting a sediment particle in stationary
condition as follows:

CV � 3.03 × 10−2
(
D2/A

)
(d/D)0.6

(
V 2/g(s − 1)D

)1.5
(1 − Vt/V )4, (1)

Vt � 0.125(g(s − 1)d)0.5(y/d)0.47, (2)

where CV is the volumetric sediment concentration; A is the
flow cross-sectional area; D is the pipe diameter; d is the
median particle diameter; V is the flow velocity; V t is the
velocity required for the initial motion of sediment (Eq. 2);
s is the specific gravity of sediment; y is the flow depth; and
g is the gravitational acceleration.

By considering the different pipe channel diameters that
Ghani [34] did not utilize, Azamathulla et al. [36] amended
Ghani’s [34] equation coefficient as follows:

Fr � V√
g(s − 1)d

� 0.22C0.16
V D−0.14

gr

(
d

R

)−0.29

λ−0.51
s ,

(3)

where Fr is the densimetric Froude number, Dgr (�
d(g(s−1)/ν2)1/3) is the dimensionless particle number and
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λs is the overall sediment friction factor, which is calculated
with Nalluri and Kithsiri’s [40] equation below.

λs � 0.851λ0.86c C0.04
V D0.03

gr , (4)

where λc is the channel’s clear water friction factor.
Ebtehaj et al. [37] evaluated Vongvisessomjai et al.’s

[35] equations for bed load sediment transport in channels
and found these equations produced ineligible results in
diverse hydraulic conditions that were not used for fitting in
Vongvisessomjai et al.’s [35] equations. Therefore, Ebtehaj
et al. included the volumetric sediment concentration (CV)
and relative depth of flow (d/R) as dimensionless parameters
in estimating Fr. Ebtehaj et al. [37] presented an equation in
the following form:

Fr � V√
g(s − 1)d

� 4.49C0.21
V

(
d

R

)−0.54

. (5)

Artificial neural networks (ANN)

Owing to the ability to model complex problems, the ANN
method is used extensively in various engineering fields. In
the first step of the training procedure, the initial informa-
tion is utilized to create a raw MLP structure. The initial
information consists of the input variables, number of hidden
neurons, number of hidden layers, number of output neurons,
and the hidden and output layers’ activation functions. In the
second step, according to the learning method considered,
the weights and biases of the raw MLP structure formed are
determined. Thus, in case of MLP–ANN modeling, the tra-
ditional Levenberg–Marquardt learning method is applied,
and in case of evolutionary optimization-based ANNmethod
modeling, the algorithm considered is applied in this step. It
should be noted that for all MLP modeling applied in the
present study, the sigmoid activation function is employed
for the hidden neurons and the linear activation function is
utilized for the output neurons. The other initial information
is presented in the following sections. TheMLPweights con-
sist of the input to hidden layer and hidden to output layer
weights. The objective function that the evolutionary algo-
rithm attempts to minimize is shown in Eq. (6).

Objective function � Observed − predicted. (6)

By minimizing the objective function, the simulation
performance increases. In each iteration, the evolutionary
algorithm runs the MLP neural network with a new set of
weight coefficients until it finds the best set. Finally, the
results of these hybrid methods are compared with the tra-
ditional MLP–ANN. Figure 1 presents the flowchart of the
hybrid MLP-evolutionary algorithm (MLP-EA).

Genetic algorithm (GA)

A genetic algorithm, which is inspired from nature, per-
forms robustly in solving non-linear optimization problems
that cannot be solved using classical optimization methods.
According to Fig. 2, to optimize the objective function, GA
first produces a random initial population of chromosomes.
Each chromosome is considered one candidate answer. Next,
the objective function is recalled using each chromosome
generated and the cost of each is computed. Then, the chro-
mosomes are sorted according to their costs. In the present
study, answer reproduction is done using the standard GA
in three main steps: elite, crossover and mutation. The best
answers of the current generation are saved as elite chro-
mosomes. These answers are transferred directly from the
current generation to the next without any changes. In the
crossover procedure, two answers from the current gen-
eration are selected as parents and two new children are
generated and transferred to the next generation. The muta-
tion procedure increases optimization process exploration.
Mutation is a random search tool that prevents algorithm
entrapment in a locally optimized point. Selecting the genetic
mutation probability accurately has great impact on the opti-
mization trend. Thus, the three mentioned processes serve to
develop the new generation of answers. This generation pro-
duced is run until convergence occurs and no more precision
enhancement takes place. Details of the GA procedure are
shown in Fig. 2.

Particle swarm optimization (PSO)

The PSO algorithm is an evolutionary algorithm which is
inspired fromcreatives’ social intelligence.With thismethod,
each creative is like a bird or fish in a group and is called a
particle. Particles are answers to the problem. Each particle
moves at a speed that can be regulated in the search space
and retains the best previous position in its memory. In the
total space searched by PSO, the best position obtained by
the group is also shared with all other components. Suppose
there is a space with X-dimension, the ith particle in the pop-
ulation is denoted as a position and velocity vector. Change
in the velocity and position structure of each particle result in
alteration in the position of the particle in the next iteration.

The position of each particle is achieved by comparison
between the current position of particle xi and the best value
it has attained (pbest). Furthermore, the best response that
each particle has achieved so far by the swarm from pbest is
known as gbest. The velocity and position of each particle
(Eqs. 7 and 8, respectively) are updated after finding gbest
and pbest using the following equations.

vi � w ∗ vi + R1
(
pbesti − xi

)
+ R2

(
gbes,ti − xi

)
, (7)
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Fig. 1 Flowchart of hybrid MLP-EA
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Fig. 2 GA flowchart

xi � xi + vi , (8)

where xi denotes the position of the particle i; vi is the velocity
of particle i; andR1 andR2 are learning parameters. The basic
steps in PSO are summarized in the flowchart given in Fig. 3.

Imperialist competitive algorithm (ICA)

The ICA algorithm introduced by Atashpaz-Gargari and
Lucas [41] is one of the most effective evolutionary opti-
mization algorithms inspired from the human political/social
evolution concepts. The initial countries population of the
ICA algorithm is randomly generated. In the first generation,
the existing countries are randomly categorized as the impe-
rialists and colonies and based on the power of each colony,
they are distributed between the imperialists.

The countries’ costs are calculated using the fitness func-
tion of the considered problem. After that, countries are
sorted according to their costs. Countries with the most
strength are chosen as imperialist and the rest of them are
considered as the colonies of imperialists. The imperialists
use the absorption policy to increase their colonies. Themain
theme of ICA optimization technique is the attraction policy,
which is based on the evolution of the countries towards effi-
ciency. The main ICA procedure for finding the optimum
answer is the imperialist competition for attracting colonies.
Throughout this process, weaker empires lose colonies and
their power decreases. At the final optimization process, all
colonies fall under the strongest empire’s control and the
other ones are vanished. Thus, the algorithm proceeds until

only one empire remains. Figure 4 presents the details of the
ICA procedure.

Data collection

In this study, Ghani [34] and Vongvisessomjai et al.’s [35]
data were used in the model training and validation pro-
cesses. Ghani [34] conducted experiments in two cases:
non-deposition and loosely deposited beds. The author used
20.5-m-long pipes with three diameters of 154, 305 and
450 mm for the rigid bed tests. In addition, the author used
305-mm-and405-mm-diameter pipes for the rough and loose
bed tests, respectively. The pipe with the larger diameter was
made of concrete while the others were PVC. The maximum
slope and discharge were 0.006 and 40 l/s, respectively. To
supply sediment to the flow and measure the flow depth, dif-
ferent openings were located at the top of the pipes. The
velocity profile was achieved at the center line of the pipe
channel. The number of data employed from Ghani’s [34]
study was 120 and categorized in 2 groups: training (96 sam-
ples) and validation (24 samples).

The data ranges used in Ghani’s [34] tests for non-
deposition state were as follows: 0.153<y/D <0.8, 0.033<R
(m)<0.136, 0.24<V (m/s)<1.216, 0<k (mm)<1.34,
38<CV (ppm)<1450 and 0.93<d (mm)<8.3.

Vongvisessomjai et al. [35] conducted a laboratory study
with 16-m-long PVC pipes with 2 diameters: 100 and
150 mm. The top of the pipes was removed for open chan-
nel condition. The channel slope was adjusted mechanically.
Sediment was supplied to the flow using a vibrating screw
feeder attached downstream. The downstream end of the
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Fig. 3 PSO flowchart
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Fig. 4 ICA flowchart

channel operated as a sediment trap. The water level and flow
velocity in each pipe were measured by a point gauge and
an electronic current meter, respectively. Using a sluice gate,

the tail water was adjusted to provide uniform flow, which
was constant with time. The downstream gate was regulated
by trial and error until the water level in each section became
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equal. Vongvisessomjai et al. [35] also conducted labora-
tory experiments at limit of deposition. The data ranges in
Vongvisessomjai et al.’s [35] experiments were as follows:
0.2<y/D <0.4, 0.24<V (m/s)<0.63, 0.012<R (m)<0.032,
4<CV (ppm)<90 and 0.2<d (mm)<0.43. Vongvisessomjai
et al.’s [35] dataset utilized in this study including 27 samples
was employed to survey and appraise the performance of the
proposed methods using a dataset that was not used in the
training phase.

Methodology

Based on previous laboratory studies conducted [32, 33, 36],
themost significant parameters used in equations of sediment
transports can be presented as follows:

V � �(g, CV, d, D, y, R, A, λs, s, υ), (9)

where � is an operator and CV and λs are dimensionless
parameters. The flow velocity to prevent sedimentation in
pipes (limiting velocity,V ) is given as the densimetric Froude
number (Fr�V /(g(s−1)d)0.5). In a two-phase flow condition
including water–sediment interaction, a dimensionless vari-
able, dimensionless particle number (Dgr � d(g(s−1)/ν2)1/3)
is defined.[16, 32, 34]. To identify the dimensionless parame-
ters affecting sediment transport in pipe channels and when d
is selected as a basic parameter, the Buckingham

∏
-theorem

[42] is used. Therefore, all dimensionless parameters are pre-
sented as follows:

Fr � V√
g(s − 1)d

� �

(
CV,λs, Dgr,

d

D
,
D2

A
,
y

D
,
d

R

)
.

(10)

By considering the nature of the dimensionless parame-
ters obtained from dimensional analysis, that parameters can
be placed in different groups [31]: movement, transport, sed-
iment, transport form and flow resistance.

Accordingly, the main objective of the modeling is to pre-
dict the limiting velocity (V ) using Fr as a dimensionless
parameter. In previous studies [32, 33], densimetric Froude
number, Fr (� V /

√
gd(s−1)), is estimated based on six dif-

ferent dimensionless models, Model 1: �(CV, Dgr, d/R, λs),
Model 2: �(CV, Dgr, D2/A, λs), Model 3: �(CV, Dgr, y/D,
λs), Model 4: �(CV, d/D, d/R, λs), Model 5 �(CV, d/D,
D2/A, λs), Model 6: �(CV, d/D, y/D, λs).

The k-fold cross validation method is employed to obtain
amore reliable estimation of prediction accuracy. The k value
in this work is 10. With this method, all data are fragmented
into ten subsets. In each subset, a single sub-sample is pre-
served to test the models and the remaining sub-samples are
for model training. This trend is repeated 10 times, where

one from each of the ten subsets is utilized exactly once as
validation data. The number of training and validation data
is 96 and 24, respectively. To evaluate the models’ flexibil-
ity, their accuracy is validated using Vongvisessomjai et al.’s
[35] data.

The ANN analysis results, whereby ANN is trained using
evolutionary algorithms, are established on the criteria of
Root Mean Square Error (RMSE), Mean Absolute Percent-
ageError (MAPE), Index ofAgreement (IOA) andEfficiency
(EFF), as defined below. The method of evaluating the mod-
els based on these indicators is in the form: the more the
IOA and EFF indicators approach 1, and RMSE and MAPE
approach 0, the greater the model’s desirability is.

RMSE �
√√√√

(
1

n

) n∑
i�1

(
FrEXPi − FrANNi

)2
, (11)

MAPE �
(
1

n

) n∑
i�1

(∣∣FrEXPi − FrANNi

∣∣
FrEXPi

)
× 100, (12)

IOA � 1 −
∑n

i�1

(
FrEXPi − FrANNi

)2
∑n

i�1

(∣∣FrEXPi − FrEXPi
∣∣ + ∣∣FrANNi − FrEXPi

∣∣)2 ,

(13)

EFF �
⎡
⎣

√∑n
i�1

(
FrEXPi − FrEXPi

)2
√∑n

i�1

(
FrANNi − FrEXPi

)2

⎤
⎦
2

. (14)

Results and discussion

Comparison of MLP–GA, MLP–PSO andMLP–ICA
in sediment transport prediction

The results from training the ANN models using GA, PSO
and ICA are presented in this section. All models contain a
typical ANN. In addition, a one-hidden layer network is con-
sidered for each model. To make a reasonable comparison
between GA, PSO and ICA, the same population size (300)
and iteration number (1000) are considered for all models.
Figures 5, 6 and 7 display the densimetric Froude number
(Fr) prediction results using GA, PSO and ICA, respectively,
for the 6 models presented in this study. The prediction accu-
racy results are similar for all models in training and testing
modes. Model 4 estimated Fr with less than 10% relative
error with GA and PSO in both testing and training modes.
GA sometimes made overestimated and underestimated pre-
dictions with Models 2 and 5 (respectively) and had a higher
relative error than the other models, which can lead to uneco-
nomical designs, sediment deposition on the pipe channel
bed and eventually problems caused by deposition such as
blockage. Models 1 and 4 that contain GA produced relative
errors of approximately 13% and 9% (respectively), which

123



408 Complex & Intelligent Systems (2021) 7:401–416

Fig. 5 Evaluation of Fr estimation by six models with GA in training and testing
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Fig. 6 Evaluation of Fr estimation by six models with PSO in training and testing
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Fig. 7 Evaluation of Fr estimation by six models with ICA in training and testing
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Table 1 Evaluation of the
accuracy of Fr estimation by
GA, PSO and ICA with all
models in training and testing

Ghani’s dataset Training Testing

Model no Algorithm MAPE RMSE IOA EFF MAPE RMSE IOA EFF

1 ICA 4.626 0.032 0.996 0.954 4.454 0.032 0.995 0.960

1 PSO 5.299 0.034 0.995 1.025 6.684 0.050 0.987 0.757

1 GA 4.862 0.030 0.997 1.003 6.505 0.049 0.985 1.107

2 ICA 7.379 0.045 0.994 0.993 4.691 0.038 0.992 0.843

2 PSO 10.476 0.048 0.986 0.907 6.225 0.044 0.990 0.869

2 GA 9.620 0.048 0.992 0.960 7.578 0.064 0.974 1.179

3 ICA 4.114 0.042 0.993 0.987 5.105 0.047 0.988 0.782

3 PSO 7.509 0.044 0.995 0.945 6.187 0.044 0.989 0.892

3 GA 9.213 0.045 0.993 1.029 9.022 0.066 0.973 1.018

4 ICA 3.666 0.030 0.998 0.974 3.290 0.024 0.997 1.029

4 PSO 5.168 0.033 0.997 0.967 4.306 0.030 0.995 1.000

4 GA 4.807 0.031 0.997 0.987 5.898 0.046 0.989 0.873

5 ICA 6.682 0.037 0.993 1.017 3.406 0.026 0.997 1.025

5 PSO 8.221 0.039 0.989 1.055 9.693 0.081 0.967 0.678

5 GA 5.324 0.037 0.995 0.996 11.198 0.080 0.959 1.188

6 ICA 4.466 0.034 0.995 0.949 4.445 0.031 0.990 0.949

6 PSO 5.087 0.036 0.987 1.016 7.284 0.051 0.960 0.846

6 GA 5.016 0.032 0.998 1.002 11.819 0.081 0.989 1.111

indicates that GA predicted Fr relatively accurately. Models
2 and 5 were not as accurate as the other models with PSO
andGA, because most predictions were overestimated in this
state. This can result in uneconomic designs. The dimension-
less parameters in model 4 (CV, d/D, d/R, λs) produced less
than 10% relative error with PSO, and this model, thus, made
the best predictions. With most models, ICA estimated Fr
with less than 10% relative error, which indicates this algo-
rithm’s superiority over the other two algorithms.

Statistical indices were employed to quantitatively survey
the accuracy of each evolutionary algorithm (GA, PSO and
ICA) in predicting Fr with models 1–6. The results of these
statistical indices are shown in Table 1 for testing and train-
ing modes. This table indicates that the MAPE value was
below 10% for all models and for all three algorithms except
GA in testing mode with models 5 (MAPE � 11.2%) and
6 (MAPE � 11.9%) and PSO (MAPE � 10.5%) in train-
ing mode with model 2. Besides, the values of the remaining
indices for the three algorithms prove the evolutionary algo-
rithms’ performance in optimizing the weights of different
neural network layers to minimize the target function. The
table also signifies that using the data with no role in model
training (testing) did not have a noticeable effect on the mod-
els’ performance, because not much difference was noted
between the indices in the training and testing modes. The
maximummean relative error (of nearly 12%) was for model
6 (GA) in testing mode. Moreover, model 4 with ICA (model
4-ICA) seemed to perform the best amongst all models and

algorithms. Although GA and PSO also presented good pre-
diction results with model 4, model 4-ICA was still selected
as the best model.

Performance evaluation of proposed hybridmethods
withMLP using validation dataset [35]

Figure 8 compares the abilities of the evolutionary algorithms
(GA, PSO and ICA) and MLP neural network in Fr predic-
tion. The experimental dataset in this figure was produced by
Vongvisessomjai et al. [35]. The aim of selecting this dataset
was to examine the flexibility of the proposed models under
different conditions. ICA and PSO made better predictions
than GA and MLP. It is clear that MLP made forecasts with
a relative error of approximately 10% in most cases. This
methodmostly overestimated, which can lead to uneconomic
designs. In general, it can be stated that using evolutionary
algorithms increases the prediction accuracymore than using
gradient algorithms in MLP.

Because ICA (Model 4) produced the best results, we can
calculate Fr with the following equation:

Fr � purelin ((tansig(input × iw + b1)) × lw + b2), (15)

input � [CV, d/D,d/R, λs], (16)

purelin(x) � x, (17)
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Fig. 8 Comparison of evolutionary algorithms (ICA, PSO and GA) and
MLP neural network in estimating Fr using Vongvisessomjai et al.’s
[35] dataset

transig(x) � 2

1 + e−2x − 1 (18)

iw �

⎡
⎢⎢⎣

− 1.1643 − 7.3668 2.1575
0.0866 7.5079 − 6.4150
2.8735 4.4912 − 13.8707
− 0.0806 − 1.7714 − 0.5592

⎤
⎥⎥⎦, (19)

lw �
⎡
⎢⎣

− 3.1226

6.8832

6.0567

⎤
⎥⎦, (20)

b1 � [
3.1621 10.0650 −19.7723

]
, (21)

b2 � [1.3657]. (22)

Comparison of the best hybrid ANNwith existing
sediment transport equations

With respect to the explanations provided, it is evident that
ICAwas more accurate than the two other evolutionary algo-
rithms (GA and PSO) and the MLP neural network. Figure 9
compares the Fr values predicted using ICA with the results
of the sediment transport equations. ICA produced a relative
error below 10% in all states, whereas none of the sediment
transfer equations presented did so.May et al.’s [38] equation
results were in the forms of under- and over-design, whereby
the predicted values had low quantitative accuracy in both
states because the relative error reached 30% in some cases.
Azamathulla et al.’s [36] equation often underestimated Fr.
Since the relative error was lower than May et al.’s [38], it
can lead to sediment deposition on channel beds. This will
result in diminished transport capacity due to the reduced

Fig. 9 Comparison of ICA and existing sediment transport equations in
estimating Fr

transverse flow cross section and increased bed roughness.
Ebtehaj et al.’s [37] equation was more accurate than the two
other equations, but it also predicted Fr with approximately
11% relative error, which is less accurate than ICA.

Table 2 compares the results of ICA, PSO and GA,
and the MLP neural network with existing sediment trans-
port algorithms according to different statistical indices and
Vongvisessomjai et al.’s [35] dataset. It is clear that the soft
computing methods presented in this study (ICA, GA, PSO
and MLP) are more accurate than the regression equations.
The best regression equation was that proposed by Ebte-
haj et al. [37], which is less capable of predicting Fr than
the evolutionary algorithms proposed in this study. It should
be mentioned that despite the higher accuracy of the evo-
lutionary optimization-based MLP neural network models
over the classical MLP and other regression models, these
models have some disadvantages. One downfall is with train-
ing speed and another is that neural network modeling using
evolutionary algorithms is much more time consuming than
MLP, which is trained by classical learning algorithms such
as Levenberg–Marquardt and other simple regression mod-
els.

Uncertainty analysis for hybrid ANNmodel
predictions

In this sub-section, we present the quantitative appraisal of
the uncertainty [43, 44] in the non-deposition sediment trans-
port model forecast for three different hybrid ANNmethods,
including PSO–ANN,GA–ANN, ICA–ANN.The difference
between the predicted values (Pi) and the actual values (Ai)
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Table 2 Comparison of evolutionary algorithms (ICA, PSO and GA)
and theMLP neural network with existing sediment transport equations
according to statistical indices

Vongvisessomjai et al.’s [35]
dataset

MAPE RMSE IOA EFF

ICA 2.644 0.028 0.997 0.999

PSO 3.892 0.051 0.995 1.042

GA 4.810 0.057 0.993 0.895

MLP 6.397 0.036 0.986 0.842

May et al. [38] 13.829 0.183 0.876 1.478

Azamathulla et al. [36] 12.213 0.995 0.992 2.076

Ebtehaj et al. [37] 11.680 0.023 0.936 1.044

is known as the error (ei � Pi−Ai). Using the ei as the value
of predicted error, the mean (e � ∑n

i�1 ei ) and standard

deviation Se �
√∑n

i�1 (ei − e)2/n − 1 of the prediction
errors are computed. The standard deviation of prediction
error (SDPE) and MPE as well as Wilson score technique
are employed to defined a 95% confidence band around
forecasted values of Fr. The results ofMPE, SDPE, 95% pre-
diction error interval (95PEI) and width of uncertainty band
(WUB) for 18 different models (six models for each hybrid
ANNmodels) are presented in Table 3. It is clear that the low-
est value of MPE, SDPE and WUB belong to Model 4 for
entire hybrid methods (PSO–ANN, GA–ANN, ICA–ANN).
TheWUB forModel 4 of PSO–ANN,GA–ANN, ICA–ANN
are±0.026,±0.032 and±0.024, respectively. The MPE for

ICA–ANN is computed as 0.16 compared to 0.209 and 0.223
for PSO–ANN and GA–ANN. The results of MPE for all
models including ICA, GA, PSO indicate the overestimation
performance of all 18 models. The MPE were ranged from
0.162 to 0.396 which are related to ICA 4 and PSO 2, respec-
tively. The model PSO 5 had the highest WUB of 0.06, while
ICA 4 had the lowest WUB of 0.024. Similarity, the lowest
95PEI was shown for the ICA 4model. Generally, the results
of this table demonstrate the lowest MPE and the smallest
WUB and 95PEI compared to other hybrid models.

Partial derivative sensitivity analysis (PDSA)
for proposed equation

In this sub-section, we studied the sensitivity of an equation
by partial deference of this equation related to each input vari-
able, also known as the partial derivative sensitivity analysis
(PDSA), and the trendvariation of ICA–ANNdue to different
samples of each input parameters [45–49]. The highest value
of sensitivity indicates the higher impact of each input param-
eter in calculation of target value by the proposed equation.
The negative (or positive) value of PDSA demonstrates that
a reduction in parameter xi leads to an increase (or decrease)
of target value calculated by proposed equation. Figure 10
presents the results of partial derivative sensitivity analysis
(PDSA) for all input parameters of ICA (Mode 4). The result
of PDSA demonstrated the direct relation of CV and λS and

Table 3 Uncertainty analysis for
ICA, PSO and GA models Model Mean prediction error

(MPE)
Standard deviation of
prediction error
(SDPE)

Width of uncertainty
band (WUB)

95% prediction error
interval (95PEI)

ICA 1 0.204 0.1746 ±0.032 (0.173 0.236)

ICA 2 0.277 0.1841 ±0.033 (0.244 0.311)

ICA 3 0.291 0.2345 ±0.042 (0.248 0.333)

ICA 4 0.162 0.132 ±0.024 (0.138 0.186)

ICA 5 0.253 0.2317 ±0.042 (0.211 0.294)

ICA 6 0.219 0.1988 ±0.036 (0.183 0.254)

PSO 1 0.256 0.2143 ±0.039 (0.217 0.294)

PSO 2 0.396 0.3104 ±0.056 (0.34 0.452)

PSO 3 0.191 0.2621 ±0.047 (0.144 0.238)

PSO 4 0.209 0.1441 ±0.026 (0.182 0.235)

PSO 5 0.371 0.3316 ±0.060 (0.311 0.431)

PSO 6 0.231 0.2154 ±0.039 (0.192 0.27)

GA 1 0.226 0.1888 ±0.034 (0.192 0.26)

GA 2 0.353 0.2512 ±0.045 (0.307 0.398)

GA 3 0.354 0.2252 ±0.041 (0.313 0.395)

GA 4 0.223 0.1792 ±0.032 (0.191 0.256)

GA 5 0.295 0.2911 ±0.053 (0.242 0.347)

GA 6 0.285 0.2698 ±0.049 (0.236 0.333)
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Fig. 10 The results of partial derivative sensitivity analysis (PDSA) for all input parameters of ICA (Mode 4)

the indirect relation of d/D and d/R with the variation trend
of densimetric Froude number (Fr).

Conclusions

An omnipresent factor affecting channel pipes is sediment
deposition on channel beds. In this study, Fr was estimated
using ANN with the GA, PSO and ICA algorithms to opti-
mize the layer design and minimize the target functions. To
obtain an equation for predicting Fr, the effective parameters
were categorized into 5 groups, and 6 models were presented
to survey the impact of each parameter on Fr prediction using
ICA–ANN, GA–ANN and PSO–ANN. The model gener-
ated by all algorithms that includes the volumetric sediment
concentration (CV), median relative particle size (d/D), rela-
tive flow depth (d/R) and overall sediment friction factor (λs)
parameters to estimate Fr returned the best results.Moreover,
to validate the flexibility of the models generated by the evo-

lutionary algorithms in different hydraulic conditions, their
results were compared with Vongvisessomjai et al.’s [35]
laboratory test results. The outcome demonstrated that these
algorithms also produced good results under different condi-
tions that were not applied in network training. A comparison
of the predictions made by the used evolutionary algorithms
with the ANN indicated that using these algorithms raises Fr
prediction accuracy. Moreover, the evolutionary algorithms’
prediction accuracy was compared with existing equations.
The results indicated that ICA (MAPE � 3.29%, RMSE �
0.024, IOA � 0.997 and EFF � 1.029) predicted Fr more
accurately than other equations. Furthermore, an explicit
equation was presented that can be easily applied in prac-
tical situations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-

123



Complex & Intelligent Systems (2021) 7:401–416 415

cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Jones Jr DE (1970) Design and construction of sanitary and storm
sewers, ASCE manual of practice

2. LindholmOG (1984) Pollutant loads from combined sewer sys-
tems. In: Proc. 3rd Int. Conf. Urban storm drain. Gothenburg,
Sweden

3. BS8005-1 (1987)BSsewerageguide to newsewerage construction.
In: British Standard Institution, London

4. EN752-4 (1977) ES Drain and sewer system outside building: part
4. In: Hydraulic design and environmental considerations, Brus-
sels: CEN (European Committee for Standardization)

5. Bonakdari H, Ebtehaj I (2014) Verification of equation for non-
deposition sediment transport in flood water canals. In: 7th
Int. Conf. on Fluvial Hydraul., RIVER FLOW 2014, Lausanne;
Switzerland, pp 1527–1533

6. Novak P, Nalluri C (1975) Sediment transport in smooth fixed bed
channels. J HydraulDiv ASCE 101(HY9):1139–1154

7. Ackers P (1984) Sediment transport in sewers and the design impli-
cations. In: International conference on planning, construction,
maintenance, and operation of sewerage systems, BHRA/WRc,
Reading, UK, pp 215–230

8. Loveless JH (1991) Sediment transport in rigid boundary channels
with particular reference to the condition of incipient deposition,
Ph.D. thesis, London Univ, UK

9. Nalluri C, Ota JJ (2000) Non-cohesive sediment transport in clean
sewers and with small mobile beds. In: Building Partnerships, pp
1–11

10. Ota JJ, Nalluri C (2003) Urban storm sewer design: approach in
consideration of sediments. J HydraulEng 129(4):291–297. https://
doi.org/10.1061/(ASCE)0733-9429(2003)129:4(291)

11. Almedeij J, Almohsen N (2010) Remarks on Camp criterion for
self-cleansing storm sewer. J Irrig Drain Eng 136(2):145–148.
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000129

12. Enfinger KL, Mitchell PS (2010) Scattergraph principles and prac-
tice: evaluating self-cleansing in existing sewers using the tractive
forcemethod. In:WorldEnviron.WaterResour.Cong., Providence,
Rhode Island, USA, pp 4458–4467

13. Almedeij J (2012) Rectangular storm sewer design under equal
sediment mobility. Am J Environ Sci 8(4):376–384. https://doi.
org/10.3844/ajessp.2012.376.384

14. Ota JJ, Perrusquia G (2013) Particle velocity and sediment trans-
port at the limit of deposition in sewers. Water Sci Technol
67(5):959–967. https://doi.org/10.2166/wst.2013.646

15. KimM,GerbaCP,ChoiCY (2010)Assessment of physically-based
and data-driven models to predict microbial water quality in open
channels. J Environ Sci 22(6):851–857. https://doi.org/10.1016/S1
001-0742(09)60188-1

16. Ebtehaj I, Bonakdari H (2013) Evaluation of sediment transport
in sewer using artificial neural network. EngAppl Comput Fluid
Mech 7(3):382–392

17. Zaji AH, Bonakdari H (2014) Performance evaluation of two dif-
ferent neural network and particle swarm optimization methods
for prediction of discharge capacity of modified triangular side

weirs. Flow Meas Instrum 40:149–156. https://doi.org/10.1016/j.
flowmeasinst.2014.10.002

18. Ebtehaj I, BonakdariH,Khoshbin F,AzimiH (2015) Pareto genetic
design of GMDH-type neural network for predict discharge coef-
ficient in rectangular side orifices. Flow Meas Instrum 41:67–74.
https://doi.org/10.1016/j.flowmeasinst.2014.10.016

19. Anuse A, Vyas V (2016) A novel training algorithm for convolu-
tional neural network. Complex IntellSyst 2(3):221–234. https://
doi.org/10.1007/s40747-016-0024-6

20. Yahyavi SN, Mazinan AH, Khademi M (2016) Real-time high-
resolution detection approach considering eyes and its states in
video frames through intelligence-based representation. Complex
IntellSyst 2(2):75–81. https://doi.org/10.1007/s40747-016-0016-6

21. Heydari A, Keynia F, Shahsavari-Pour N, Sedaghat R (2017) An
evolutionary hybrid method to predict pistachio price. Complex
IntellSyst 3(2):121–132. https://doi.org/10.1007/s40747-017-003
8-8

22. Nasseri M, Asghari K, Abedini M (2008) Optimized scenario for
rainfall forecasting using genetic algorithm coupled with artificial
neural network. Expert SystAppl 35(3):1415–1421. https://doi.org/
10.1016/j.eswa.2007.08.033

23. Montalvo I, Izquierdo J, Pérez R, TungMM (2008) Particle swarm
optimization applied to the design of water supply systems. Comp
Math Appl 56(3):769–776. https://doi.org/10.1016/j.camwa.2008.
02.006

24. Altunkaynak A (2009) Sediment load prediction by genetic algo-
rithms. AdvEngSoftw 40(9):928–934. https://doi.org/10.1016/j.
advengsoft.2008.12.009

25. Afshar MH, Rajabpour R (2009) Application of local and global
particle swarm optimization algorithms to optimal design and oper-
ation of irrigation pumping systems. Irrig Drain 58(3):321–331.
https://doi.org/10.1002/ird.412

26. Zhang F, Wai OW, Jiang Y (2010) Prediction of sediment trans-
portation in deep bay (Hong Kong) using genetic algorithm. J
HydrodynSer B 22(5):599–604. https://doi.org/10.1016/S1001-60
58(09)60260-2

27. Tang H-W, Xin X-K, Dai W-H, Xiao Y (2010) Parameter identi-
fication for modeling river network using a genetic algorithm. J
HydrodynSer B 22(2):246–253

28. Azadnia A, Zahraie B (2010) Application of multi-objective parti-
cle swarmoptimization in operationmanagement of reservoirswith
sedimentation problems. World Environ Water Resour Congress.
https://doi.org/10.1061/41114(371)233

29. Ashraf Vaghefi SA, Mousavi S, Abbaspour K, Yang H (2012) An
imperialist competitive algorithm artificial neural network method
to predict runoff. EGUGener Assembly ConfAbstr 14:484

30. Abdollahi M, Isazadeh A, Abdollahi D (2013) Imperialist compet-
itive algorithm for solving systems of nonlinear equations. Comput
Math Appl 65:1894–1908

31. Ebtehaj I, Bonakdari H (2014) Performance evaluation of adaptive
neural fuzzy inference system for sediment transport in sewers.
Water Resour Manage 28(13):4765–4779. https://doi.org/10.100
7/s11269-014-0774-0

32. Ebtehaj I, Bonakdari H (2014) Comparison of genetic algorithm
and imperialist competitive algorithms in predicting bed load trans-
port in clean pipe. Water Sci Technol 70(10):1695–1701. https://
doi.org/10.2166/wst.2014.434

33. Ebtehaj I, Bonakdari H (2016) Assessment of evolutionary algo-
rithms in predicting non-deposition sediment transport. Urban
Water J 13(5):499–510. https://doi.org/10.1080/1573062X.2014.
994003

34. Ghani AA (1993) Sediment transport in sewers. Newcastle Uni-
versity, Upon Tyne

35. Vongvisessomjai N, Tingsanchali T, Babel MS (2010) Non-
deposition design criteria for sewers with part-full flow. Urban
Water J 7(1):61–77. https://doi.org/10.1080/15730620903242824

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1061/(ASCE)0733-9429(2003)129:4(291)
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000129
https://doi.org/10.3844/ajessp.2012.376.384
https://doi.org/10.2166/wst.2013.646
https://doi.org/10.1016/S1001-0742(09)60188-1
https://doi.org/10.1016/j.flowmeasinst.2014.10.002
https://doi.org/10.1016/j.flowmeasinst.2014.10.016
https://doi.org/10.1007/s40747-016-0024-6
https://doi.org/10.1007/s40747-016-0016-6
https://doi.org/10.1007/s40747-017-0038-8
https://doi.org/10.1016/j.eswa.2007.08.033
https://doi.org/10.1016/j.camwa.2008.02.006
https://doi.org/10.1016/j.advengsoft.2008.12.009
https://doi.org/10.1002/ird.412
https://doi.org/10.1016/S1001-6058(09)60260-2
https://doi.org/10.1061/41114(371)233
https://doi.org/10.1007/s11269-014-0774-0
https://doi.org/10.2166/wst.2014.434
https://doi.org/10.1080/1573062X.2014.994003
https://doi.org/10.1080/15730620903242824


416 Complex & Intelligent Systems (2021) 7:401–416

36. Azamathulla HMd, Ghani AA, Fei SY (2012) ANFIS—based
approach for predicting sediment transport in clean sewer. Appl
Soft Comp 12(3):1227–1230. https://doi.org/10.1016/j.asoc.2011.
12.003

37. Ebtehaj I, Bonakdari H, Sharifi A (2014) Design criteria for
sediment transport in sewers based on self-cleansing concept.
J Zhejiang Univ-Sci A 15(11):914–924. https://doi.org/10.1631/
jzus.A1300135

38. May RWP, Ackers JC, Butler D, John S (1996) Development of
design methodology for self-cleansing sewers. Water Sci Technol
33(9):195–205. https://doi.org/10.1016/0273-1223(96)00387-3

39. Ackers JC, Butler D,May RWP (1996) Design of sewers to control
sediment problems. In: Rep.No. CIRIA141, Construction Industry
Research and Information Association, London

40. Nalluri C, Kithsiri M (1992) Extended data on sediment transport
in rigid bed rectangular channels. J Hydraul Res 30(6):851–856.
https://doi.org/10.1080/00221689209498914

41. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algo-
rithm: an algorithm for optimization inspired by imperialistic
competition. IEEE CongrEvol Comput 7:4661–4666. https://doi.
org/10.1109/CEC.2007.4425083

42. Bertrand J (1878) Sur l’homogénéitédans les formules de physique.
Compt Rend 86(15):916–920

43. Khozani ZS, Bonakdari H, Ebtehaj I (2017) An analysis of shear
stress distribution in circular channels with sediment deposition
based on Gene Expression Programming. Int J Sediment Res
32(4):575–584. https://doi.org/10.1016/j.ijsrc.2017.04.004

44. Ebtehaj I, Sattar AM, Bonakdari H, Zaji AH (2016) Prediction of
scour depth around bridge piers using self-adaptive extreme learn-
ing machine. J Hydroinform 19(2):207–224. https://doi.org/10.21
66/hydro.2016.025

45. Ebtehaj I, Bonakdari H, Zaji AH, Azimi H, Khoshbin F (2015)
GMDH-type neural network approach for modeling the discharge
coefficient of rectangular sharp-crested sideweirs. Eng Sci Technol
Int J 18(4):746–757. https://doi.org/10.1016/j.jestch.2015.04.012

46. Azimi H, Bonakdari H, Ebtehaj I (2017) A highly efficient gene
expressionprogrammingmodel for predictingdischarge coefficient
in a side weir along a trapezoidal canal. Irrig Drain 66(4):655–666.
https://doi.org/10.1002/ird.2127

47. Ebtehaj I, Bonakdari H, Moradi F, Gharabaghi B, Khozani ZS
(2018) An integrated framework of Extreme Learning Machines
for predicting scour at pile groups in clear water condition. Coast
Eng 135:1–15

48. Moradi F, Bonakdari H, Kisi O, Ebtehaj I, Shiri J, Gharabaghi
B (2018) Abutment scour depth modeling using neuro-fuzzy-
embedded techniques. Mar GeoresourGeotechnol 2018:1–11

49. Ebtehaj I,BonakdariH,GharabaghiB (2018)Development ofmore
accurate discharge coefficient prediction equations for rectangular
side weirs using adaptive neuro-fuzzy inference system and gener-
alized group method of data handling. Measurement 116:473–482

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.asoc.2011.12.003
https://doi.org/10.1631/jzus.A1300135
https://doi.org/10.1016/0273-1223(96)00387-3
https://doi.org/10.1080/00221689209498914
https://doi.org/10.1109/CEC.2007.4425083
https://doi.org/10.1016/j.ijsrc.2017.04.004
https://doi.org/10.2166/hydro.2016.025
https://doi.org/10.1016/j.jestch.2015.04.012
https://doi.org/10.1002/ird.2127

	Evolutionary optimization of neural network to predict sediment transport without sedimentation
	Abstract
	Introduction
	Review of existing equations for STWS
	Artificial neural networks (ANN)
	Genetic algorithm (GA)
	Particle swarm optimization (PSO)
	Imperialist competitive algorithm (ICA)

	Data collection
	Methodology
	Results and discussion
	Comparison of MLP–GA, MLP–PSO and MLP–ICA in sediment transport prediction
	Performance evaluation of proposed hybrid methods with MLP using validation dataset [35]
	Comparison of the best hybrid ANN with existing sediment transport equations
	Uncertainty analysis for hybrid ANN model predictions
	Partial derivative sensitivity analysis (PDSA) for proposed equation

	Conclusions
	References




