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Abstract

The recently proposed g-rung orthopair fuzzy set, which is characterized by a membership degree and a non-membership
degree, is effective for handling uncertainty and vagueness. This paper proposes the concept of complex g-rung orthopair
fuzzy sets (Cq-ROFS) and their operational laws. A multi-attribute decision making (MADM) method with complex g-rung
orthopair fuzzy information is investigated. To aggregate complex g-rung orthopair fuzzy numbers, we extend the Einstein
operations to Cq-ROFSs and propose a family of complex g-rung orthopair fuzzy Einstein averaging operators, such as the
complex g-rung orthopair fuzzy Einstein weighted averaging operator, the complex q-rung orthopair fuzzy Einstein ordered
weighted averaging operator, the generalized complex g-rung orthopair fuzzy Einstein weighted averaging operator, and the
generalized complex q-rung orthopair fuzzy Einstein ordered weighted averaging operator. Desirable properties and special
cases of the introduced operators are discussed. Further, we develop a novel MADM approach based on the proposed operators
in acomplex g-rung orthopair fuzzy context. Numerical examples are provided to demonstrate the effectiveness and superiority
of the proposed method through a detailed comparison with existing methods.

Keywords Pythagorean fuzzy sets - Complex pythagorean fuzzy sets - q-Rung orthopair fuzzy sets - Complex g-rung
orthopair fuzzy sets - Einstein aggregation operators

Introduction

The intuitionistic fuzzy set (IFS), which was pioneered by
Atanassove [1], is a generalization of the fuzzy set (FS)
[2]. The IFS is an important tool for coping with unreli-
able and difficult information. The prominent characteristic
of the IFS is that it assigns each element a membership grade
and a non-membership grade, whose sum is < 1. Therefore,
the IFS has received increasing research attention since it
was proposed [3, 4]. However, in many cases, the IFS can-
not work effectively, for example, when a decision maker
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provides information for which the aforementioned sum
is>1. For example, if he/she assigns 0.52 as the member-
ship grade and 0.63 as the non-membership grade, we note
that 0.52 4 0.63 ;él. To deal with such problems, Yager
[5] pioneered the notion of the Pythagorean FS (PFS) as
a useful tool to describe uncertain and unreliable informa-
tion effectively, where the sum of the square of membership
grade and the square of the non-membership grade is lim-
ited to [0,1]. Sometimes, the PFS cannot work effectively.
For example, when a decision maker assigns 0.9 as the
membership grade and 0.7 as the non-membership grade,
0.9 + 0.7 = 0.81 4+ 0.47 = 1.28 > 1; thus, the PFS
is not applicable. Yager [6] developed the g-rung orthopair
FS (q-ROFS) for handling such situations, where the sum of
the g-power of the membership grade and the g-power of the
non-membership grade is constrained to [0,1]. For this exam-
ple, we have 0.9* 4+ 0.7* = 0.66 4+ 0.24 = 0.9. Clearly, the
g-ROFS is more general than the IFS and PFS (see Fig. 1).
Because of its advantages, the q-ROFS is a fundamental tool
for processing troublesome fuzzy data, and it is used in the
fields of aggregation operators, similarity measures (SMs),
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Fig. 1 Geometric comparison of the q-ROFS, PFS, and IFS

hybrid aggregation operators, etc. Various studies have been
performed on q-ROFSs, as described below.

1. Operator-based approaches: According to the aggre-
gation operators, many scholars have successfully
developed operators for the q-ROFS environment. For
instance, Liu and Wang [7] developed aggregation oper-
ators using q-ROFSs. Garg and Chen [8] investigated
neutrality aggregation operators for g-ROFSs. Using the
new score function, Peng et al. [9] presented exponen-
tial and aggregation operators based on g-ROFSs. Xing
et al. [10] established point-weighted aggregation oper-
ators based on q-ROFSs.

2. Measures-based approaches: The SM is useful for accu-
rately examining the degree of similarity between any
two objects. Many scholars have applied SMs in differ-
ent environments. For example, Wang et al. [11] used a
cosine function to evaluate the SMs for g-ROFSs. Du [12]
established Makowski-type distance measures based on
generalized g-ROFSs. Peng and Liu [13] examined infor-
mation measures for q-ROFSs.

3. Hybrid operator-based approaches: For investigating the
relationships between objects, the hybrid aggregation
operators play an essential role in the realistic deci-
sion environment. Scholars have investigated various
hybrid aggregation operators based on the q-ROFS, for
example, Archimedean Bonferroni mean operators [14],
Maclaurin symmetric mean operators [15], Muirhead
mean operators [16], power Maclaurin symmetric mean
operators [17], Heronian mean operators [ 18], partitioned
Bonferroni mean operators [19], partitioned Maclaurin
symmetric mean operators [20], and others [21-33].

Figure 1 presents the geometric representations of the
IFSs, PFSs, and q-ROFSs. As shown, the q-ROFSs provide
the largest amount of space for expressing the fuzzy infor-
mation. Ramot et al. [34] introduced the complex FS (CFS),
which extended the range of the membership grades from
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real numbers to complex numbers with unit discs. The CFS
is an extension of the FS for coping with uncertainty and
unreliability. Additionally, Ramot et al. [35] reintroduced the
notion of complex fuzzy logic. However, the CFS is com-
pletely different from the complex fuzzy number proposed
by Buckley [36]. Furthermore, Alkouri and Salleh [37] devel-
oped the complex IFS (CIFS), which extended the range
of the membership and non-membership grades from real
numbers to complex numbers with a unit disc. In contrast to
the IFS, which can process only one-dimensional informa-
tion, the CIFS can cope with two-dimensional information;
hence, information loss can be avoided. Kumar and Bajaj [38]
developed complex intuitionistic fuzzy soft sets with distance
measures and entropies. Garg and Rani [39, 40] proposed cor-
relation coefficients and aggregation operators based on the
CIFS. Rani and Garg [41, 42] introduced distance measures
and power aggregation operators based on the CIFS.

Recently, Ullah et al. [43] proposed the complex PFS
(CPES), which is useful for efficiently describing uncer-
tain and unreliable information. A characteristic of CPFS
is that the sum of the square of the real part (and imag-
inary part) of complex membership grade and the square
of the real part (and imaginary part) of complex non-
membership grade is limited to [0,1]. Sometimes, the CPFS
cannot work effectively; for example, when a decision maker
provides 0.9¢/>7©-8 for the complex membership grade
and 0.7¢/*©7) for the complex non-membership grade,
0.92+0.7> = 0.81 +0.47 = 1.28 > 1 and 0.8 + 0.6> =
0.64 + 0.49 = 1.13 > 1, making the CPFS inapplicable.
To solve such problems, we developed a complex g-rung
orthopair FS (Cq-ROFS) characterized by complex mem-
bership and non-membership grades, i.e., 0.9* + 0.7% =
0.66 + 0.24 = 0.9 and 0.8* + 0.7* = 0.41 + 0.24 = 0.65.
In the Cq-ROFS, the sum of the gq-power of the real part (and
imaginary part) of the complex membership grade and the
g-power of the real part (and imaginary part) of the complex
non-membership grade is constrained to [0,1]. The Cq-ROFS
is more general than the CIFS and CPFS.

Real-life situations involve numerous complex circum-
stances, and data measures are useful for handling uncertain
data. Various data measures, e.g., similitude, separation, and
entropy, are used in the decision-making process, for exam-
ple, in design acknowledgment, clinical determination, and
bunching investigation. Some existing MADM methodolo-
gies for fuzzy information are based on the PFS and q-ROFS,
because they have shortcomings. In the proposed Cq-ROFS,
the sum of the g-power of the real part (and imaginary
part) of the complex membership grade and the g-power
of the real part (and imaginary part) of the complex non-
membership grade is constrained to [0,1]. It is more general
and can express a wider information scope. Next, the g-ROFS
is turned into a fundamental tool to process troublesome
fuzzy data. Now, we provide an example. Assume that XYZ
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Corp. chooses to set up biometric-based participation gadgets
(BBPGs) in all its workplaces throughout the nation. For this,
the organization invites a specialist to provide the data with
respect to the (i) shows of BBPGs and (ii) creation dates of
BBPGs. The organization must select the optimal model of
BBPGs with its creation date at the same time. Here, the issue
includes two-dimensional information: the BBPG model and
the creation date of the BBPGs. Obviously, they cannot be
expressed precisely by the g-ROFS, because the g-ROFS can-
not handle multiple types of one-dimensional information
simultaneously. The sufficiency terms in the Cq-ROFS can
be utilized to determine an organization’s choice with regard
to the model of the BBPGs, and the stage terms can be uti-
lized to express the organization’s judgment regarding the
creation date of the BBPGs.

Keeping the advantages of the Cq-ROFS, the objectives
of this study were as follows:

1. To propose the notion of Cq-ROFS and its operational
laws, which was the basis of this study

2. To aggregate complex q-rung orthopair fuzzy numbers
(Cqg-ROFNs), we extend the Einstein operations (EOs)
to Cq-ROFSs and propose a family of complex g-rung
orthopair fuzzy Einstein averaging operators, such as
the complex g-rung orthopair fuzzy Einstein weighted
averaging (Cq-ROFEWA) operator, the complex g-rung
orthopair fuzzy Einstein ordered weighted averaging
(Cq-ROFEOWA) operator, the generalized complex g-
rung orthopair fuzzy Einstein weighted averaging (GCq-
ROFEWA) operator, and the generalized complex q-rung
orthopair fuzzy Einstein ordered weighted averaging
(GCq-ROFEOWA) operator. Desirable properties and
special cases of the introduced operators are discussed.

3. To develop a novel MADM approach in the complex
g-rung orthopair fuzzy context based on the proposed
operators

4. To demonstrate the effectiveness and superiority of the
proposed method by comparing numerical results with
the results of existing methods

The remainder of this paper is organized as follows. In
the next section, we briefly review existing concepts such as
PYFSs, CPYFSs, g-ROFSs, and their operational laws. In the
following section, the concept of the Cq-ROFS and its oper-
ational laws are investigated. In the next section, we extend
the EOs to Cq-ROFSs and propose a family of complex
g-rung orthopair fuzzy Einstein averaging operators, such
as the Cq-ROFEWA, Cq-ROFEOWA, GCq-ROFEWA, and
GCq-ROFEOWA operators. Desirable properties and special
cases of the introduced operators are discussed. In the fol-
lowing section, we develop a novel approach for MADM in
the complex g-rung orthopair fuzzy context based on the pro-
posed operators. Finally, a detailed comparison is performed

between existing methods and the proposed approach. The
conclusions are presented in the last section.

Preliminaries

In this section, we briefly review existing concepts such as
PYFSs, CPYFSs, g-ROFSs, and their operational laws. In
this study, the finite universal set is denoted as X.

Definition 1 [15] A PYFS E on a finite universal set X is
given by:

E = {(Tg(X),Np(X)) : X € X}, (1)

where 7; and N, represent the membership and non-

membership grades, respectively, under the following condi-

tion: 0 < 7%2 +N]é2 < 1. The hesitancy degree is defined as
1

Hg = (1 — 7> — N#?)?. The Pythagorean fuzzy number

(PYFN) is given as E = (T}, NVf).

Definition 2 [43] A CPYFS E on a finite universal set X is
given as follows:

E = {(Tg(X),Ng(X)) : X € X} —, )

where 7}, = Tie! Wz and Ng = Nige!Z WA represent
the complex-valued membership grade and complex-valued
non-membership grade, respectively, under the following
conditions: 0 < 7]'E2 +NI§ <land0 < W%E + W/Z\/]E < 1.
Further, the complex-valued hesitancy degree is defined as
1

; 2 2 )2
He = (1 - T2 _/\@%ezzn(l—WTE—WNE)
PYFN is given as E = (’Z]’Eeﬂ”WTlE, NEeiZHWNE).

. The complex

Definition 3 [24] A g-ROFS E on a finite universal set X is
given as:

E = {(Tg(X),Ng(X)) : X € X} —, 3)

where 7 and Ny represent the membership and non-
membership grades, respectively, under the following con-

dition: 0 < ’]Eéq + NI/Eq < l.lThe hesitancy degree is given

as Hg = (1 - ’]Eéq - ./\/'Iéq>g. The g-rung orthopair fuzzy
number (g-ROFN) is given as E = (7, Nj).

Definition 4 [24] For any two g-ROFNs E| = (Tl’ N ) and
E, = (7,, N}) with any § > 0,

1
i\ NN :
bR (<‘+]Tl"”2'2"’> | (<1+<1wl><ffvf>>é))’
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1
_ 77 NN N
2. Eir@R, = ((<1+(1_7,]/q1)(1_7—2’q))011 ), <l+.l/\/'1/q/\;2/q) )’

3. sE = (<1+Tliq)5(17{4)5) , (2)%/\/1’5 l  and
() (1) )\ (i) s (airy)

@i 15 ((1+N{")5—<1—N{")6 i
-, ,
1 )

(1+N{")5+<1—N{‘7 ’

Q=

8
4. B =

Definition 5 [24] For any -ROFNE| = (T{, N{), the score
function and accuracy function are defined as follows:

SE) =77 - N/, )
H(E)) = 7,7 + N, Q)

where S(E1) € [—1, 1] and H(E,) € [0, 1].

Cqg-ROFSs and their operational laws

In this section, we propose the Cq-ROFSs and their opera-
tional laws.

Definition 6 A Cq-ROFS E on a finite universal set X is given
as:

E = {(Tg(X),Ng(X)) : X € X}, (6)

where 7, = Tre! WV and Ng = Nige!WNe represent
the degrees of the complex-valued membership and complex-
valued non-membership, respectively, under the following
conditions:0 < 7E1 +ng <10 < W%—E + Wj{/m <1,
and ¢ > 1. The complex-valued hesitancy degree is given

1y _we Wi \4
as Hg = (1 -7 —/\/’]]f:’)qe’zn(l Wi W) . The Cq-
ROFN is given as | = (ﬁgeﬂﬂwﬁﬁ, e,

Definition7 For any two

(7—1 VT A 2TVN )

(TZGianTZ Nzeiznwj\&)

Cq-ROFNs E;
and E,

1. Ei — (NleiZHWNl , 7']ei27TWT1);

2. By VE, = (max(Tl, Tp)ei 27 max(Wry Wr,)

min(N;, Na)e' 2™ mi“(WNl’WNZ)); and

3. By AR, = (min(Tl, Tp)e! 27 min(Wr Wry)
max(N], J\/z)eizﬂ max (W, ’WNz)) )
Next, we investigate Einstein’s operational laws for Cg-

ROFNs, which are defined as follows.

Definition8 For any two Cq-ROFNs E;
('T] ei2an—] , NleiZHWN]) and E,

(TzeianTZ , NzeianNz) with any § > 0,

Wa, W
i27 NI TN,

e \(H() (%)

R

NN

(1+ (1 =M (1 =AT))

WnWr,

Q=

1
1 wh +wi >E
q g9\ ¢ i2n| —L—2
1. Ei®E, = Lq%q e <1+W%-1W%—2 ,
I+ 77
i2m
T
2. EiQE, = T
(1+0-7)01-1))

T q q 1 ) (W-?\[1+Wj\fz )3
i YN 4 i2mw T A
e (”(1 W71)<1 WTz)) , (Nl +N ) e W YN,

T NINT

1
7 ws
@7TwWR,

((sz'f]‘fl >5+(W3]\f1 )5)

2w

ey

1
)N}
(=N + 1))

; and
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X W
2 1

@77

(-7 + (1))

4. B =

Q=

Definition 9 For any q-ROFN E =
('T] e 2TWTi  A1e/2TWN1 ) | the score function and accuracy
function are defined as follows:

1
SE) = 3T + Wi, =N = Wi, ), )

1
HE) = 5 (T + W, + N + W, ). ®)

where S(Eq) € [—1, 1] and H(E,) € [0, 1].

Theorem1 For any two Cq-ROFNs

T2V Nl 2TVN ) E,

(7—2ei2nWTz’ NzeﬂﬂWNz) with any 8, &1, 8> > 0,

E,
and

Ei®E;, =E; @ Eq;

EIQE =E ®E;

S(E; ® Eo) = SE; @ SEy;

(B ® Ep)° = ES @ ES;

51E1 @ 8E1 = (6; + 62)Eq; and
Efil ®E?2 — E?]+82.

AR e

The proof of Theorem 1 is presented in the "Appendix".

Theorem2 For any two

(7—1 2T A 2N )
(7—261'2711/\/72 , N26i2ﬂWN2>,

Cq-ROFNs
E»

E, =
and

Eﬁ \Y4 ]EE = (E1 AEp)S;

E; A Ei = (E; v Ep);

Ef @ E = (E; ® Ep)¢;

Ef ® E = (E1 @ E2);

(E1 VE2) @ (E; AEy) =E; ® Ez; and
(Ep VE) @ (E; AEp) = E; Q Es.

AR e

Proof Similar to the case of Theorem 1, the proofs are omit-
ted.

Theorem 3 For any three Cq-ROFNs
E, — ('TleﬂnWTl , NleiZnWNl )’ E, —

<7~zei2nW7—2 Nzei2ﬂWN2 )

(7361'2711/\/7—3 ./\/'361'2711/\0\/3 )

and Es =

(Er VE) AE3 = (E1 AE3) V (B A E3);
(E1 AEp) VE; = (E; VE3) A (Ez VvV Ez);
(Er VE) @ Ez = (E; & E3) v (Ez & E3);
(E1 AEp) @ Ez = (B & E3) A (B @ E3);
(E1 VE;) @ E3 = (E; ® E3) Vv (E2 ® E3); and
(E1 AnEp) @ E3 = (B ® E3) A (2 ® E3).

QN A L=

Proof Similar to the case of Theorem 1, the proofs are omit-
ted.

Complex g-rung orthopair fuzzy Einstein
arithmetic aggregation operators

In this section, we propose complex g-rung orthopair fuzzy
Einstein aggregation operators.

Complex g-rung orthopair fuzzy Einstein weighted
averaging operator

The complex g-rung orthopair fuzzy FEinstein weighted
averaging operator is investigated, and its properties are dis-
cussed.

Definition 10 SupposethatE; = (Zeizani , Nie 2T,
i =12, ..., ncomprise the family of Cq-ROFNs; then, the
Cq-ROFEWA operator is given as Cq-ROFEWA : X" — R,
and defined by:

Cq-ROFEWA(E,,E,, ...,E,)

= w1E1 @ 0@, -+, @ 0, Ey = ©]_ i )
Here, the symbol R represents the family of Cq-ROFNS,
and the weight vector is defined as Z?:l w; =1, w; €[0,1].

Remark 1 By substituting w; = % for all instances of i,
the Cq-ROFEWA operator is reduced to the complex g-rung
orthopair fuzzy averaging (Cq-ROFA) operator, as follows:

1
Cq-ROFA(E1,E2, ...LE,) = ;(El SE®, ---, DE,)
1 n
= & E;. (10)
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According to Einstein’s operational laws, we obtain the
following result.

Theorem 4 Suppose that E; = (’Zfeiznwﬂfi, N;el 2PN, )
i =12, ..., ncomprise the family of Cq-ROFNs; then, the
aggregating value from Definition 10 is a Cq-ROFN, and:

Complex g-rung orthopair fuzzy Einstein ordered
weighted averaging operator

Definition 11 Suppose thatF; = (’Z}eiZ”WTi, Nie! VA ),
i = 1,2, ..., n comprise the family of Cq-ROFNs; then, the
Cq-ROFEOWA operator is given by Cq-ROFEOWA : R" —
N

i w; 1
‘ ,'.’:l(wwiffi)w’f ;':1<1—W%) "\
127 @; w;
l—[;z=l(1+7;q)wi71—[l{l=1(177f‘1)“’i qe ;’=l(1+w‘77—i> +1‘[f‘=1<17W%)
[T (7 + T (1= ’
Cq-ROFEWA(E(, E,, ..., E,) = 1 o (11)
. @I Wy,
| i2m — L —1
@I N e (s () (W) ™)
(T =N+ T (V) )
The proof of Theorem 4 is presented in the Appendix. Cq-ROFEOWA (E,.E,. ....E,) = o1Eo)
® mEo)®, -+, ®wEom =B 0iEoq) (12)

Theorem 5 Suppose that E; = Tie! WV Ne2TWVN) ¢
Cq-ROFN, i = 1,2, ..., n comprise the family of Cq-
ROFNSs; then, the relationship between the Cq-ROFEWA and
Cq-ROFWA operators is expressed as follows:

Cq-ROFEWA(E,, E,, ...
< Cq-ROFWA(E,, E,, ...

s En)
B En):

where the weight vector is defined by Y '_,w; = 1, w; €
[0,1].
The proof of Theorem 5 is presented in the Appendix.

The Cq-ROFEWA operator has the following properties.
Suppose that E; = (7; ! 2V NN €
Cq-ROFN, i = 1,2, ..., n comprise the family of Cq-
ROFNs and the weight vector is defined by Y /', w; = 1,
w; € [0,1]. Then, we have the following:

1. Idea: When E; = Eo = (Toeﬂ”WTo, Noeﬂ”WNo), Vi,

Cq-ROFEWA (Ey, E,, ..., E,) = E,.
2. Boundedness: Let E; =
(min(,z;)eﬂnmin(Wq;)’ maX(M)eiZHmaX(WN’")) ’

Ej_ _ (max(,z;)eiZNmax<WT[>’ min(M)eianin(WNi));
then, E; < Cq-ROFEWA(E,, Es, ..., E,) < E;.

If F < E/, ¥i, Cg-ROFEWA
(E), By, ... E,) = CG-ROFEWA(E|, B}, ..., E, ).

3. Monotonicity:

Proofs of these properties are presented in the Appendix.

jillate ¢llodl By .
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where the symbol K represents the family of Cq-ROFNs,
and the weight vector is defined by Y 7 ,wi = 1,
w; € [0,1]. (O(1), O(2), ..., O(n)) is a permutation of
(i =1,2, ..., n) such that ]EO(,') < EO(i—l)-

Remark 2 By substituting w; = rll for all instances of i, the
Cq-ROFEOWA operator is reduced to the complex g-rung
orthopair fuzzy ordered averaging (Cq-ROFOA) operator, as
follows:

Cq-ROFA(E;, E,, ..., E,)
1
= r—l(EO(l) ®Eo®, -, ®Eow)
1 n
=5 ®i—i1 Eoq)- (13)

According to Einstein’s operational laws, we examine the
following results.

Theorem 6 Suppose that E; = (’T,-eizani, N;el2TWai ),
i =12, ..., ncomprise the family of Cq-ROFNs; then, the
aggregating value from Definition 11 is a Cq-ROFN, and
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. o\ b
N S 1 m-, (1+W"TO<’_) )wl. -, (pw‘lTom )a‘. q
(m (1+T3(,))a'*l_[?:1(1 Tou))ml)qe 1_[?:1(1+Wq70<i)) [+H?:1(1—W%O(i)> [
Mo (1478, +TT n) ’
Cq-ROFEOWA(Ey, Es, ..., E,) = (1730 ) T (173, (14)

1 )
QT2 Now

@ T Wi
=1 "Nog)

1
0\ g

i
2- n 9 ) )
( WNO(:)) m‘:‘(WNou)

n
i=1

o

Nbw) "+ (Vo))

-

where the weight vector is defined by Y 7 ; ;
w; € [0,1]. (O(1), O2), ..., O(n)) is a permutation of

5

(i=12,...,n)suchthat Ep;) < Ep¢_1). When we con-
sider J\/'o(l =1- ’Tg(l), Eq. (14) is converted into the

following equation:

M (1478,) " =TT (1-

GCq-ROFEWA(E,Es, ....E,)

= (B 0E))" —
(15)

1
= (a)lE(i @szgﬁa, e, D Ol)nIE;S,)(S

1
n q a
=1 HWTO()

gl

(e,

)wl: ale ('7Wq70(i))

;
(11 n Wq wi
) +ni='(l_ Tom)
)

wl-
O(z))

(

I (1475,) ™+ (1

Cq-ROFEOWAE,, Es, ..., E,)

(1475, "1

_74

@f
0(1))
)

1
q

w;

iy ) o ( Wi )

< Tow) [Tz Tow) _
1

1
00) i 1(*""70()) *nf':l(I*WTO(i)>

(1

i (1

)wi T2 (1
0([) i=1

_74

1 i27r(l—
q
) ‘

)w[

o(i)

Proof Similar to the case of Theorem 4, the proof is omitted.

Next, we discuss the properties of this operator.
TeianTi Nei2nW/\/i
1 ’ ]

Suppose that E;
Cq-ROFN, i 1,2, ..., n comprise the family of Cq-
ROFNSs and the weight vector is defined by >/, w; = 1,
w; € [0,1]. Then, we have:

S

Idea: When E; = Ey = (%eiZ"WTO, /\/'oeﬂ"WNO), Vi,
Cq-ROFEOWA(E, E, ..., E,) = Ey
Boundedness: Let E-

(min(’]}) zanm(W ) max(./\/) zanax(WNi)
(max(Ti)e"z”ma"(WTf), minm/,-)e””min(wfw));

then, E; < Cq-ROFEOWA(E,, Eo, ..., E,) <E/.
Monotonicity: If E; < E;, Vi, Cq-ROFEOWA
(Ey, Eg, ..., Ep) < Cq-ROFEOWA

(B} E;. ... E,).

Generalized complex q-rung orthopair fuzzy
Einstein weighted averaging operator

s

E

s

n

Definition 12 SupposethatE; = (Zeiz” W, Nie2TVNG ),
i =12, ..., ncomprise the family of Cq-ROFNs; then, the
GCqg-ROFEWA operator is given by GCq-ROFEWA : R" —
N

where the symbol R represents the family of Cq-ROFNs, and
the weight vector is defined by 27:1 wi =1, w; € [0,1],
6> 0.

Remark 3 By substituting w; % for all instances of i,
the GCq-ROFEWA operator is reduced to the generalized
complex g-rung orthopair fuzzy averaging (GCq-ROFA)
operator, as follows:

GCq-ROFA(E,,Ey, ...,E,)

1 1
3 1 5
: @Eﬁ)) = (;@?_111*1?)

(16)

< (ES & B3, -

When § = 1, the GCq-ROFEWA operator is reduced to the
Cq-ROFEWA operator.

Using Einstein’s operational laws, the following result is
obtained.

Theorem 7 Suppose that E; = TPV | NG 2TVNG ),
i = 1,2, ..., n comprise the family of Cq-ROFNs; then, the

aggregating value from Definition 12 is a Cq-ROFN, and:
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GCq-ROFEWA(E(, Ey, ..., E,)

i2m

1
q

| a
(mafe-zy “} ' (H?'{(zw% +3(W%)6}“:’)5
) ( Mo fe-77) - @y} ) Mo (=)~ (v2)'|

(3nlfquf””!1 )-
(1'[ Je-79 +3T‘15] )

- [2 79)° 7‘1‘3]

i2m

| [Tz
(1‘[;‘,{(1+/\/") +3(1-a7) +) q (31-[;?{1 (1+W7v.)5—(1—W7v,-
ST {0+ A7) = (=)
(1‘[ J+a7) +30 - Nq)‘S] )
o+ = (=)}
(]‘[i_l{(1+/\/" +3(1 = NY) ‘S]w+)
ST {0+ A7) = (1=

(Talp oo l)

(a7

Proof Similar to the case of Theorem 4, the proof is omitted.
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Generalized complex q-rung orthopair fuzzy
Einstein ordered weighted averaging operator

Definition 13 Suppose thatE; = (’Z}eiZ”WTi, Niel 2 Ni ),
i = 1,2, ..., n comprise the family of Cq-ROFNs; then, the
GCq-ROFEOWA operator is given by GCq-ROFEOWA :
R — R

GCq-ROFEOWA (E,E,, ...,E,)

5

= (U)IE(SO(U ® U)ZE(SO(Q)@, e, D CUnE(SO(n))
1
_ (@;’leiIE‘SO(i))B - (18)

where the symbol R represents the family of Cq-ROFNs, and
the weight vector is defined by Z?:l wi = 1, w; € [0,1],
5 > 0.

Remark 4 By substituting w; = % for all instances of i,
the GCq-ROFEOWA operator is reduced to the generalized
complex g-rung orthopair fuzzy ordered averaging (GCq-
ROFOA) operator, as follows:

GCq-ROFOA(E,,E,, . ..,E,)

1

Ls 5 5 s
_ (Z(EO(D O ,®, -, @ EO(H)))
1

1 n S ’
= ;@i:IEO(i) (19)

When § = 1, the GCq-ROFEOWA operator is reduced to
the Cq-ROFEOWA operator.

According to Einstssein’s operational laws, we obtain the
following result.

Theorem 8 Suppose that E; = (’Z}eizani, N;el 2V )
i =12, ..., ncomprise the family of Cq-ROFNs; then, the
aggregating value from Definition 13 is a Cq-ROFN, and

bislase cllol Eyao .
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GCq-ROFEOWA(E{, Eo, ... ,E,)

HL%(Z—M4MJS+3OM%mf}M_ s
}m

) s«
n q q
Hi:l { (2 - WT()(,’)) - (WT()(I')>

i2mw

(20)

Proof Similar to the case of Theorem 4, the proof is omitted.
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Table 1 Complex g-rung orthopair fuzzy decision matrix

Symbols Gy Gy, G,

X1 (7—llei2nW7-“’ N“eiZHWNH) (ﬂzeiZnWle’ leei2”WN12> ............ <7—1n6l2”WTln, Nlne’Z”WNlu)
X2 (7-2161'27[1/\/121 , ./\[2161'27'[1/\/_,\/21 ) (7-2261'27[1/\2722 , szelzﬂWN22> ............ (7—2"612711/\/72" , NzneIZn'WNZ” )
X3 (7316’2”WT3‘ , N31612”WN31) (7'326’2”WT32 . /\/326’2”WN32) ............ <T3ne'2”WT3", /\f3ne’2”WN3n)
. (Tml TVt N TN ) (aneiznwznz, Nmzeiznwj\/mz> ............ (T Wi N 2T VWNy )

Table 2 Symbols of the alternatives

Symbols X1 X2

X3 X4 X5

Representations Computer company Furniture company

Car company Chemical company Food company

Table 3 Representations of the attributes

Symbols G G

G3 Gy

Representations Technical ability Accepted benefits

Competitive power in market Management capability

In Eq. (20), 6 plays a key role in the aggregation of the
Cq-ROFNs. The parameter § takes a special number; then,
the GCq-ROFEWA operator can be reduced. For example,
when § = 1, Eq. (20) is converted into Eq. (14).

MAGDM approach based on proposed
operators

Description of decision-making problem

Suppose an MAGDM problem in which A =
{x1, x2, ..., xpn} represents the family of alternatives,
and G = {Gy, Gy, ..., G,} represents the family of
finite attributes with weight vector v = (w1, w2, ..., wy).
The decision matrix A = (IE,- j)mxn is given by decision
makers through evaluation of the attribute G; under the
alternativex;, which is represented by the Cq-ROFN. The
complex g-rung orthopair fuzzy decision matrix is presented
in Table 1.

We use the proposed operators to solve this decision-
making problem, and the steps are as follows.

Step 1: Normalize the decision matrix with respect to.

. . ES. j 1is benefit types
ryj = (,Z;jeﬂan—ij,MjeﬂnWM.j) _ { ij J yp

E;j j 1iscosttypes

2n

Step 2: Use Eq. (20) to aggregate the normalized decision
matrix.

ri=GCq—ROFOWA(ri1, ri2, ..., rin), 1 =1,2,3, ..., m

Step 3: Use Eq. (7) to examine the score values of the
aggregated values obtained in step 2.

Step 4: Rank all the alternatives according to the score
values from step 3, and select the best one.

Step 5: End.

lllustrative numerical example

An example was taken from the area of the investment, where
the investor wishes to invest money in a standard company.
After a careful analysis, five possible alternatives represented
by A = {x1, x2, ..., x;} were considered, as shown in Table
2.

Furthermore, these alternatives were evaluated using four
attributes represented by G = {G, G2, ..., G,}, which are
presented in Table 3.

The weight vector for the given attributes was given as
o = {0.25,0.15,0.4,0.2}; then, the complex q-rung orthopair
fuzzy decision matrix was obtained, as shown in Table 4.

The steps of the decision-making process were as follows:

Step 1: Normalize the decision matrix and obtain the
results shown in Table 5.

Step 2: Obtain the aggregation results using Eq. (20),
which are presented in Table 6.

Step 3: Obtain the scores of the aggregated values using
Eq. (7), which are presented in Table 7.

Step 4: Rank all the alternatives and select the best one.

Es <E4 <E <E3 <k
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Table 4 Complex g-rung orthopair fuzzy decision matrix

G,

G3

Gy

Symbols G

X (o_zzeiZﬂ(Oﬁl), 0.4ei2n(0.45))
X2 (0.24e"2”(0<31), 0.41ei2”(0'46))
X3 (0.25¢/27(039) | 42¢127(0:47))
X4 (0.27e27 (039 43¢i27(0:49))
X5 (0.3561'27:(0,35)’ 0.44ei2”(0~49))

(0.35¢/27(040)0,33¢i27(03))
(0.36e127 (041 0,34¢/27(0.3D)
(0.37¢127(042) | ,35¢i27(0.32))
(0.38¢127(043) | .36¢127(0.39))
( )

0.39612” (0.44) 0.376’27[ (0.34)

(O‘SeiZn(OAS), 0.23¢i27(0-1D)
(0.5161‘271(0.46)’ 0.2461'271(0412))
(052627047 (9527 (0.13))
(0.53¢127(0:48) 0 26127 (0-149)
(0.5461'2”(0.49), 0.2761'27:(0.15))

(0.216i2n(0.26)’ 0.196i2n(0.33))
(0.2261‘271(0.27)’ 0.20ei27'[(0.23))
(0.236’271(0‘28), 0.2161‘271(0‘24))
( )
( )

0.24Ci2ﬂ (0.29) 0.228i2ﬂ (0.25)
0.256i2” (0.30) 0.23612” (0.26)

Table 5 Normalized complex g-rung orthopair fuzzy decision matrix

G,

G3

Gy

Symbols G

X1 (O.4ei2”(°'45), 0.22¢i27(0.31)
X2 (0.4161'271(0446)’ 0_24ei27r(0.31))
x3 (0.42ei2”(0'47), O.25ei2”(0'33))
X4 (0.4361'271(0448), 0.27ei2n(0.34))
x5 (0‘4461'2”(0449)’ 0.356i2n(0.35))

(0.35¢i27(040) () 33¢i27(03))
(0,3631'2”(0.41)’ 0.3461'271(0‘31))
(0.37e/27042) . 35¢i27(032))
(0.38e127(043) | 0,36¢/27(0-33))
(0.39¢127 (044 | ,37¢i27(0.34))

0.5ei27[(0445) 0_2361'271(0.11))
0.516i2ﬂ(0'46) 0.2461'271(0412)

(0.526”” 0.47) , 0.256i27[ (0.13)
(0.54€i2ﬂ (0.49) , 0‘276[271 (0.15)

)
)
0.53ei2n (0.48) , 0.266i2n 0. 14))
)

0.2lei2” (0.26) 0.19€i2ﬂ (0.33)

0.226i2ﬂ(0'27) 0'2061'271(0423)

0.24ei2n (0.29) 0.2261'27'[ (0.25)

< )
< )
(0.23¢127(028) 0.21¢/27(0-24))
( )
(0.25¢127(030) | ,23¢127(0.26))

Table 6 Aggregation values of

Method

the Cq-ROFNs

Getting values

ri = GCq - ROFOWA(r11, 712, ..., Fin) (0.317¢/27(0:319) "0 082¢27(0:073))

ry = GCq - ROFOWA(ra1, 2. ..., n) (0.321¢27(0323) 10,0882 (0-069)

r3 = GCq - ROFOWA(r31, r32, ..., 3) (0.325¢27(032D) 1 (,094¢!27 (0-079))

r4 = GCq - ROFOWA (41, r42, ..., Tan) (0.329¢/27(0-33D) 10, 1127 (0-08))

rs = GCq - ROFOWA(rsy, 52, - ..., I's) (0.333¢/27 (0335 0.116¢/27(0:085)
Effect of parameter q

Table 7 Score values of the Cq-ROFNs

Score values of the alternatives

S(x1) = S(r1) = SE;) = 0.241
S(x2) = S(r2) = S(Ey) = 0.244
S(x3) = S(r3) = S(E3) = 0.242
S(xg) = S(rg) = S(Ey) = 0.239
S(xs5) = S(r5) = S(Es) = 0.233

Hence, the best alternative is E,, which represents the
furniture company.
Step 5: End.

Effect of parameter 6

In this subsection, we examine the effect of the parameter §
on the ranking results. We obtained the ranking results for
different values of the parameter 3, as shown in Table 8 (g
was 1).

As shown in Table 8, the parameter § affected the ranking
results. However, the best alternative did not change.

jillate ¢llodl By .
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In this subsection, we examine the effect of the parameter ¢
on the ranking results. We obtained the ranking results for
different values of ¢, as shown in Table 9 (6 was 1).

As indicated by Table 9, the parameter g affected the rank-
ing results. However, the best alternative did not change.

Advantages and comparative analysis

The proposed method was compared with existing
approaches to highlight its advantages.

We compared Garg and Rani’s method [40] based on
the power aggregation operators for the CIFS and Garg and
Rani’s method [42] based on the aggregation operators for the
CIFS with the proposed method for the CPFS and Cq-ROFS.
The results are presented in Table 10 and Fig. 2.

Figure 2 contains five alternatives represented by E;
(i=1.2,34,5). To identify the best alternative among
them, we adopt four types of operators, whose representa-
tions are presented in Table 10. Two of the operators existed
previously, and the other two are newly proposed herein.
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Table 8 Effect of the parameter 3, for q = 1

Value of § Score values of the methods Rankings of the methods

§=2 S(E;) =0.336, S(E2) = 0.339, S(E3) = 0.331, S(E4) = 0.321, S(Es) = 0.295 Es <E4 <E3<E| <E;
§=3 S(E;) =0.282, S(Ey) = 0.284, S(E3) = 0.181, S(E4) = —0.72, S(Es5) = —0.23 Eq4 <Es <E3 <E| <E;
§=5 S(E;) = 0.001, S(Ey) = 0.002, S(E3) = 0.0019, S(E4) = 0.002, S(Es5) = 0.001 Es <E| <E3; <E4<E
8§=7 S(E1) = 0.0026, S(Ez) = 0.0030, S(E3) = 0.0029, S(E4) = 0.0029, S(Es5) = 0.0021 Es <E4 <E| <E3 <E;
§=10 S(E;) =0.0031, S(Ey) = 0.0036, S(E3) = 0.0036, S(E4) = 0.0035, S(Es) = 0.0024 Es <E| <E3;<E4 <E;
§=15 S(E;) = —0.004, S(Ey) = —0.003, S(E3) = —0.004, S(E4) = —0.005, S(Es) = —0.008 Es <E4 <E3 <E| <E,
§=20 S(E;) = —0.004, S(E) = —0.004, S(E3) = —0.005 Es <E4 <E3<E| <E;

, S(E4) = —0.006, S(Es) = —0.009

Table 9 Effect of the parameter q for § = 1

Value of ¢ Score values of the methods

Rankings of the methods

qg=2

S(E;) = 0.0082, S(Ez) = 0.0088, S(E3) = 0.0084, S(E4) = 0.0078, S(Es) = 0.0059

S(Ey) = —0.0021, S(E) = —0.0021, S(E3) = —0.0025, S(E4) = —0.003, S(Es) = —0.0039

S(E;) = —0.00058, S(E;) = —0.00053, S(E3) = —0.00077, S(E4) = —0.00093, S(Es) = —0.00095
S(E1) = —0.00020, S(E;) = —0.000015, S(E3) = —0.00019, S(E4) = —0.00024, S(Es) = —0.00036

Es <E4y <E; <E3 <K
Es <E4 <E3 <E| <E
Es <E4 <E3 <E; <E;
Es <E4 <E; <E3 <E

Table 10 Comparison of the proposed method with existing approaches

Methods Score values of the methods

Rankings of the methods

Garg and Rani [40]

Rani and Garg [42]

Proposed Method for CPFS
Proposed methods for Cq-ROFS

S(E1) = 0.231, S(Ey) = 0.234, S(E3) = 0.232, S(E4) = 0.229, S(Es) = 0.222
S(E1) = 0.251, S(Ey) = 0.254, S(E3) = 0.252, S(E4) = 0.249, S(Es) = 0.243

S(E1) = 0.0082, S(Ey) = 0.0088, S(E3) = 0.0084, S(E4) = 0.0078, S(Es) = 0.0059

S(E1) = —0.0021, S(E,) = —0.0021, S(E3) = —0.0025, S(E4) = —0.003, S(Es) = —0.0039

Es <E4 <E| <E3 <E
Es <E4 <E; <E3 <E
Es <E4 <E; <E3 <E
Es <E4 <E3 <E; <E;

Fig. 2 Graphical representation

Geometric comparison of the presented work with existing works

of Table 10 03 \ I \ \
‘ [ Garg and Rani [40] [”_JRani and Garg [42] [—_]Proposed Method for CPFS [ Proposed methods for Cg-ROFS
025 — ] — — - _
021 —
ERNN = .
o
>
2
S 0l i
]
0.05 - _
0 — 1 —1 . L
005 | | | | |
1 2 3 4 5
Alternatives

As indicated by Table 10 and Fig. 2, we obtained the same
ranking results for the four methods. This validates the pro-
posed method.

Furthermore, the geometric interpretations of the range
of Cq-ROFSs and the existing methods are shown in Fig. 3,
which represents the unit disc in a complex plane.

The advantages of the proposed method are explained
below.

First numerical example for comparison

An example is taken from the area of the investment, where
the investor wishes to invest money in a stranded company.
After a careful analysis, we consider the five possible alter-
natives represented by A = {x1, x2, ..., x5}, as shown in
Table 2. The alternatives are evaluated using four attributes
represented by G = {G1, G2, ..., G4}, as shown in Table

Piedase cllollayao
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Fig. 3 Range for Cq-ROFS and the existing approaches

3. The weight vector for the given attributes is given as
o = {0.25,0.15,0.4,0.2}, and the normalized complex g-rung
orthopair fuzzy decision matrix is presented in Table 11.

Using Eqgs. (20) and (7) for § = 20, then the score values
of the alternatives are obtained, as shown in Table 12 and
Fig. 4.

Then, all the alternatives are ranked as follows, and the
best one is selected.

Es <E4 <E3 <E, <[

Hence, the best alternative is Ej, which represents the
furniture company.

The proposed method is compared with existing
approaches in Table 13 and Fig. 5.

Figure 5 shows five alternatives represented by [E;
(i =1,2,34,5). Because the two existing methods based
on the CIFS [40] and [42] could not solve this problem, they
are not included in Fig. 5. In this example, we select the
complex Pythagorean fuzzy information form.

Therefore, this example demonstrates the advantages of
the proposed method.

Table 11 Normalized complex q-rung orthopair fuzzy decision matrix

Table 12 Score values of the proposed methods

Score values of the alternatives

S(x1) = S(r1) = S(Ey) =0.099
S(x2) = S(r2) = S(Ey) = 0.096
S(x3) = S(r3) = S(E3) = 0.094
S(x4) = S(r4) = S(Eq) = 0.093
S(xs) = S(rs) = S(Es) = 0.089

Second numerical example for comparison

An example is taken from the area of the investment, where
the investor wishes to invest money in a stranded company.
After a careful analysis, we consider the five possible alter-
natives represented by A = {x, x2, ..., x5}, as shown
in Table 2, which are evaluated using four attributes rep-
resented by G = {G, G2, ..., G4}, as shown in Table
3. The weight vector for the given attributes is given as
o = {0.25,0.15,0.4,0.2}, and the normalized complex g-rung
orthopair fuzzy decision matrix is presented in Table 14.

Using Egs. (20) and (7) for § = 20, the score values of the
alternatives are obtained, as shown in Table 15 and Fig. 6.

Then, all the alternatives are ranked as follows, and the
best one is selected.

Ei <E; <E4<E; <Es

Hence, the best alternative is Es, which represents the
furniture company.

The proposed method is compared with existing
approaches in Table 16 and Fig. 7.

Figure 7 shows five alternatives represented by [E;
(i =1,2,34,5), as the methods based on the CIFS and
CPFS cannot solve this problem. In Fig. 7, only the pro-
posed method is shown, indicating that the proposed method
is more general than the other methods.

Defense budget

Next, we discuss the defense budget of Pakistan. Informa-
tion regarding the defense budget, national saving scheme,

G3 Gy

Symbols G Gs

X (0.7/27(0:69) 0 22¢/27(031) (0616270 0 33¢/27(0.3)
X (0.716127066) 0 24¢i2703D) (06262707 ( 34¢127(03D)
3 (0.726i27067) | 0256127 039)) (0632707 ( 35¢i27(0:32))
X4 (0.73ei27068) | . 27¢i27039) (0642707 0 36¢i27(0:39)
Xs (0.74ei27069) | 0 35¢127039)) (06527074 0 37¢i27(0:39)

(0.8¢i270:94) (23127 0-11))
(0.81e/27 (09 | 24¢i27(0.12))
(0.82e"2”<0<92>, 0.2561'271(0413))
(0.83¢127 (091 0.26¢/27(0-14))
(0.84¢127(09) [ 0,27¢i27(0:19))

(0.84¢ 2707 0,19¢127(0:33))
(08327072 20¢i27(0:23))
(0.82¢/270T3) 0 21¢127(024))
(0.81¢127(0.74) | . 20¢i27(0.25))
(0.8¢/27076) | 23¢127(0.26))
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Fig. 4 Graphical representation

of Table 12

0.1

The score values got by the GCq-ROFEOWA
I

0.098 —

0.096 —

£ 0.094

0.092

Scorevalues
o
=
)

T

0.088

0.086 —

0.084

Table 13 Comparison of the proposed method with existing approaches

3
Alternatives

Methods

Score values of the methods

Rankings of the methods

Garg and Rani [40]
Rani and Garg [42]
Proposed Method for CPFS

Proposed methods for Cq-ROFS

Cannot be Calculated
Cannot be Calculated

, S(E4) = 0.064, S(Es) = 0.061

, S(E4) = 0.093, S(Es) = 0.089

S(E;) =0.069, S(Ey) = 0.068, S(E3) = 0.066

S(Ey) = 0.099, S(E,) = 0.096, S(E3) = 0.094

Cannot be Calculated
Cannot be Calculated
Es <E4 <E3 <E; <E;

Es <E4 <E; <E; <E

Geometric comparison of the presented work with existing works

e 2 2
o o = 2
E X & =

Score values

o
1=}
=)

=}

. 5
Alternatives 1

[ Garg and Rani [41]

[TRani and Garg [43]
[_IProposed Method for CPFS
[ Proposed methods for Cg-ROFS

S

=
<

3
2

Methods

Fig.5 Graphical representation of Table 13

Table 14 Normalized complex q-rung orthopair fuzzy decision matrix

deposit and reserves, and development expenditure and rev-
enue account for this country is presented below. According
to this information, we discuss the strength and capability of
armies or which one is powerful militaries.

The total defense budget of the Pakistan army removes
the lion’s share:

Pakistan army budget: 0.476%;
Pakistan air force budget: 0.21%;
Pakistan navy budget: 0.11%;
Pakistan’s inter-service budget: 0.20%.

The total national saving scheme budget of Pakistan
removes the lion’s share:

Pakistan investment deposit account budget: 0.8%;
Pakistan’s other accounts budget: 0.5%;
Pakistan total receipts budget: 0.17%;
Pakistan net receipts budget: 0.13%.

Symbols G G G3 Gy

X (0.7e/270:69)_ 61¢/27(064)) (061612707 (51270 (08¢0 (796127 (09)) (0.84¢12707) (196127 (033))

X (0.71612706) 0.62e127069))  (0.62e270.7D_ 052270 (0.81e127(09) 0 8ei27(0:9N) (0.83¢127(072) 0. 20¢i27(0:23)
3 (0726127067 0,63¢1270:60))  (0.63¢i27(0.7) (,53¢1270TD)  (0.82¢i27(09) (. 81¢i2709D) (08212707 21¢i27(0:29)
X4 (0.73e27068) | 0.64¢i270:6D) (0642707 0.54¢1270.TD) (0832709, 0. 82¢i27O89) (08127074, 0, 22¢i27(0:29)
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Table 15 Score values of the proposed method zero, with weight vectors (0.2,0.2,0.2,0.3). Then, we have
the following:

Score values of the alternatives

S(x1) = S(r1) = S(Ey) = —0.00357

Str2) = S8(r2) = S(E2) = —~0.00234 Defense budget of Pakistan: 0.249.

S(x3) = 5(r3) = S(E3) = —0.00287 National saving scheme of Pakistan: 0.4

S(x4) = S(ra) = S(Bq) = —0.00283 Deposit and reserves of Pakistan: 0.155.

S(xs) = S(rs) = S(Es) = —0.00224 Development expenditure and revenue account for Pak-
istan: 0.1925.

3. Thetotal deposit and reserves budget of Pakistan removes

the lion’s share: Geometric comparison of proposed method with existing methods

. . [ Garg and Rani [41]
Pakistan zakat collection account budget: 0.25%; x10° <> I:IRan§and Garg [43]
: o s : . 4 [__IProposed Method for CPFS
galké(sytan civil and criminal deposit amount budget: 0 roposed methods for C-ROFS
.16%;

'
[e%)

Pakistan’s personal deposit budget: 0.11%;
Pakistan’s post office welfare found budget: 0.1%.

Score values
L)

4. The total development expenditure and revenue account
budget of Pakistan take away the lion’s share:

'
—

(=)

Pakistan health budget: 0.27%;

Pakistan culture and religion budget: 0.15%;
Pakistan’s social protection budget: 0.17%;
Pakistan’s education budget: 0.18%.

Alternatives 5 1

Methods
Using Eq. (11), we obtain the following values: the imag-

inary part and the non-membership values are considered as ~ Fig.7 Graphical representation of Table 16

Fig.6 The graphical MTE The score values got by the GCq-ROFEOWA
representation of the Table 15 0 T T T T T

-0.0023 -0.0022 -

Score values
[
T

4 \ \ \ \ \
I 2 3 4 5

Alternatives

Table 16 Comparison of the proposed method with existing approaches

Methods Score values of the methods Rankings of the methods
Garg and Rani [40] Cannot be calculated Cannot be calculated

Rani and Garg [42] Cannot be calculated Cannot be calculated
Proposed Method for CPFS Cannot be calculated Cannot be calculated
Proposed methods for Cg-ROFS ~ S(E;) = —0.00357, S(Ez) = —0.00234, S(E3) = —0.00287 Ei <E3<E4 <E; <Es

, S(E4) = —0.00283, S(E5) = —0.00224

jillate ¢llodl By .
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The ranking values of the foregoing results clearly indi-
cate that the best alternative is the national saving scheme of
Pakistan, with a score of 0.4. Similarly, we can analyze the
budgets of any country.

The key advantages of the proposed approach are as fol-
lows:

1. The complex g-rung orthopair fuzzy Einstein aggregation
operators generalize the existing Einstein aggregation
operators.

2. The complex g-rung orthopair fuzzy Einstein aggregation
operators take into account the refusal grade compared
with complex intuitionistic and complex Pythagorean
fuzzy Einstein aggregation operators.

3. The proposed method based on the proposed operators is
more general than some existing methods, as the param-
eters dandg can be changed.

The Cq-ROFS contains two complex-valued functions
called the complex-valued membership and complex-
valued non-membership grades. Because Cq-ROFN E =

(ﬁeiZ”WTE, NEeiZ”WNE) satisfies the conditions 0 <

Tg +Ng < 1,0 < WL + WY, <1, andg > 1, the CIFSs
and CPFSs are clearly special cases of the proposed Cq-
ROFS. By setting g = 1, the proposed Cq-ROFS is converted
into a CIFS, and by setting ¢ = 2, the proposed Cq-ROFS is
converted into a CPFS. Moreover, the foregoing discussions
indicate that the proposed method is more general and accu-
rate than some existing approaches. The proposed method is
useful for designing intelligent systems in real applications,
such as image recognition.

Conclusion

This paper proposes the Cq-ROFS and its operational laws.
An MADM method based on complex g-rung orthopair
fuzzy information was investigated. To aggregate the Cg-
ROFNs, we extended the EOs to Cq-ROFSs and proposed
a family of complex g-rung orthopair fuzzy Einstein aver-
aging operators, such as the Cq-ROFEWA operator, the
Cq-ROFEOWA operator, the GCq-ROFEWA operator, and
the GCq-ROFEOWA operator. Desirable properties and
special cases of the introduced operators were discussed.
Additionally, we developed a novel approach for MADM
in the complex g-rung orthopair fuzzy context based on the
proposed operators. Numerical examples were presented to
demonstrate the effectiveness and superiority of the proposed
method via comparison with existing methods. The main
contributions of this study are as follows:

1. The concept of the Cq-ROFS was proposed in the form
of polar coordinates belonging to a unit disc in a complex
plane.

2. Complex g-rung orthopair fuzzy Einstein averaging oper-
ators were introduced, such as the Cq-ROFEWA opera-
tor, Cq-ROFEOWA operator, GCq-ROFEWA operator,
and GCq-ROFEOWA operator. Desirable properties and
special cases of the introduced operators were discussed.

3. An MADM method based on the proposed operators was
developed, which is more general than some existing
methods, as the parameters § and g can be changed.

In the future, we will extend the present work to con-
sider (1) aggregation operators for different FSs, e.g., the
linguistic neutrosophic set [44], probabilistic linguistic infor-
mation [45], linguistic D number [46], interval type-2 FS
[47], T-spherical FS [48, 49], and others [50], and (2) MADM
methods [51-59], which will be more flexible for future
directs.
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Appendix

Proof 1 We know that 0 < 7/ + MV < 1,0 < W%E +
Wi, < Lthen0 < 7 < 1-Ng, 0 < WL <1-W{.
andOSNﬂg 51—’]}5,051/\//’% gl—awg]-E implies thaat

q\0 q\9 q q
0= < (-7 0= (W) = (1-8)
implies that

IA

e

1+ + (1 -7

_ <<1+:rﬂ>5 - (N@“)g

(1+77) + ()]

and
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If and only if 7/ + N = 1, W + W}, = 1. Thus,
S0E; = [y is also Cq-ROFNS.

Proof 2 We examine the following parts (1,3,5), and the oth-
ers is similar with them.

1. Let us consider the part (1), we have
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q q 1 5 Wg—l +Wg—2 q 27 YWNVN, T
E dE, = M ° 7T<1+wg,1 W;’,z) ’ NN, . <1+(1—W7\/1)(|—wj’\[2))"
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1. The proof of part (2) is straightforward.
2. Let us consider the part (3), we have
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We will consider for real part a = (1 + ’qu)(l + qu),
b= (I—T)(1-T). c = MAL. d = (2—NT)
(2 - qu ) and similarly for imaginary part a’ = (1 + Wg—l)
(14w ) o = (1= W8 ) (1= W8), & = Wi Wi,
d' = (2= W4 ) (2= Wi, ). then
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By Einstein operational laws, we get

1

1 1 1 o ()T

— q ad—=b'\7 q i2n 1

S(E; @ Ey) =6 (a b)qel2n(a/+b/)q’ (2;)”’16 (@)
a+b d+c)a

1
e d =\ _(1_d=p )P\

1 i a’+b' a’+b’
g 1T Ty \0 T_p\0
(i) +(-25%)
€

a’+b’ Tdy

1
= o (())
. (d/+c’)ﬁ

1 \§
1 N 2
2c)4 v T
W( ) (-7 (7))
(d4c0) 1 d'+c d’+c'

)

)

q \° g \° q \° g \° %
1+W, W, —(1-w! 1-W
o [ (5) () (1w ) (104 )
1t 7\ 7 \° 7\ 7\
(1+W71) (1+W71) +<17W7—2> (1—WT2>

(T (T +-T) (-5 ) © ’

1
T s
@9 Wh Wy,

5 5
q q q 8 .9 8
<(2—WN|) (2—WN2) WL VR )

-

@F NN
1
(-N) =Ng) NN ?) T

(S

In other hand, we examine that

Q|

(L) o)) I T
Z i2m 5 %th q 8 q 8
’ (2)1 N} e (<Z_WN1) +(WN1> )

(@-n7) + (1))

R

8By = ( 5 s
(1+77)" + (1 -17y)

jillate ¢llodl By .
besSienss ) Springer



Complex & Intelligent Systems (2021) 7:511-538

531

and

SE,

Qey)
@7 ),
(dy + c2)4

{

(2)5/\@S

(C-a3) + 2y

€

i2m

1
FRY.YI
[BX) W./\f2

<(27W3\/2)3+(W3\/2>8>

|

) ) §
where ay = (1+77)", by = (1-T77)", a1 = (V)"
§ § §
do= @M@ = (+T) b = (1-T)"
_ q\8 _ A _ qa\°
o= W)\ d = =N e = (1404)
§ $ §
/o q /o q /! q
b= (o) = ) = o)
/7 1 Wq 8 b/ _ 1 Wq 8 /o Wq g
a2 = + 7—2 s Uy = - 75 5 C2 - Nz >
S
_ q
dy=(2-W4,)"
!’ ! % ! !
1 i2n<“}_b}> 1 12n<“?_b,2
a;—by lie a+b; ary—by \4 ay+b,
<a1+b1 ) ’ (a2+b2)
1
SE; @ SE, = (2(7/1)5 @
i2m T i2n T
1 r NG 1 /I oINg
< (e ) (d1+cl>q ( (2¢2)7 > (d2+‘2)q
—=L e ——T1]¢
(di+ed (da+c2)@
1
ot B B
o al+b1 az+b2
1 a/—b/ a/fb/
a1=by  a=by q 1+ 11 2 2
( aj+bg +a2+b2 ) e a;+b, ay+b,
ay—b ay—b >
1+ () (357 1
= ( C/C/ )q
2| ——2—~
i (d1+cl)(d2+cz) .
1 20/ 20, q
S L — I I p— . ) —
2((d1+f1)(d2+02)) e (+( dy+ey ( dz“z))

ayar)—b1by
ayax+b1by

2c102

(

2c|
(1+(1_d1+61 )(l

(d1dr+cic2)

_ 20
dy+cp

)

;o b/b/
. aja,—
i2n | H—2

a1a2+b|b2

1
q
1
)'e ’
o
L 27 ﬁ)
)qe <(dld2+c1[:2)

Piedase cllollayao
KACST &.0141lg oglel)

@ Springer



532

Complex & Intelligent Systems (2021) 7:511-538

1 027
8 8 8 8
((1+Tff)5(1+qu>5—<1—7;")6<1—7;")6 ‘Y
(T (+T) +(-) (1= T3)
2w
1
)T NING .

1
(=AY (2=NF) +N P NE?)

8 8 8 8
q q q q
<1+WT1) <1+W7—1) —(I—WT2> (I_W’Tz)

8 8 8 8
q q q q
<1+WT1) <1+WTI) +(1—W7-2> (I_WTZ)

1
7w s
@TWR WA,

5 )
q q g 8.4 8
((2—WN1> (Z—WN2> Wi WA, )

=

Hence §(E| @ Ey) = SE| @ SE,.

3. The proof of part (4) is straightforward.
4. Let us consider the part (5), we have

. 1
. (1+w,[1)&'7(17w‘471)5' !
T (1T \ 7 o (|+w )51+(17W‘1 )&l
(+7")" -(1-7) e T 7
(7)1 +(1-7)"
§HE = 1
@7 W
i2m Ny T
1 81 51\ 7
@7 A . ((Z*W%.) +(W4e) )
(C-ay ey )
1
. ni—l/l q
aj—by \ 4 127r<(,+h,)
(¢¢:+b:) ¢ “ar ’
— 1
1 i2m 7(261)41
(LW, )e @)
(di+c) ¥
1
(1+W"TI)5 —(1—\/\1"71){32 !
1 i2m 5 %
720192\ 7\ (o ) 7o)
(+7) 2 +(1-7)2 ’
5HE| =

1
I NG
1 “27b2 q
ar—by qelzn<a£+b/2>
ar+by
— 1
1 i2w () q]
< (2¢) 7 )e (déJrc’z q
1
(da+c2)?

Pielase cllolayao
KACST a.141lg oglel)

@ Springer

(LT b= (1= T e = (V)"

do= 2-N) @ = (14T by = (1-T)"
)

= (- Nf)a = (14 W5) b

where aq

/
1

q d / q d ! q g /
(1=wt) e = (W) = (- W) @
8 & &
q /o _ q /o q 4
(1+we) " b = (1-w8) " e = (W)
8
2-W9.)". Then
N2
1
1 2 a/lfb/l q
a;—b qel T ai+b’]
aj+by >
— 1
§HE @ E = . ()7
1 i2w i
<(20—1)‘11)e (d1+¢)) 4
(di+en)d
1
’ / a
1 s (75 )9
ar)—by qelzn<aé+b’2)
a+by ’
D 1
1 i2m (20/2)‘1]
< Q)7 )e (dy+ch) @
(da+c2)
1
aj=by  ah=b q
i ) +b] uétb/z/
aj=by | ay—by 7 I+(a/lfbl)<uz—b2)
aj+b) " apy+hy e a’]+b’l aé+h/2

aj=by
a1 +b;

a—by
a b,

(=

)
2(("1 +e)(da+e2)

(1-as) (1

T diFeg

(et )(

1
7

)
) e
)

1
26, q

5))

1

q

) dé +c/2
2cp

T &

((1+



Complex & Intelligent Systems (2021) 7:511-538

ayax+b1by

1 .
(a.azblbz)qe’z”(
L .
2c102 )qezZn(

((d1d2+6162)

/

Y,
a/lagfblbg)
cllclz+b1b2

2(:’1 (3/2

(d1dy+<1c3)

1
q

)%

7

8+

2

_wi
7

81+82

81 +382
) +(1 wi

T

81 +48 31 +8:
((HT#) G (e i

(T T (=TT

)“ff”(m)

i2m

1 Y

3 31 +0

7 oitn
@7 Win

1
)q

)8]+52

5

1
81+6 5 q
1 q 1+o2 g 81+8\ 7
@INT2 . ((Z*WM) W,
1
(=N 12ty @

= (81 + 6)E;.
Hence 61 E; & 6E; = (61 + 62)E;.
5. The proof of part (6) is straightforward.

Proof4 Using the process of mathematical induction to
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For n = k + 1, the result is also kept. Hence the Eq. (11),
is kept for all n.

Proof 5 Let Cq-ROFEWA(Ey, E,, ..., E,) =
. q . q

(7? ¢ 7V quzZnWM> = E! and Cq-ROFW,

E By, By = (7Y, NN = E,.

Firstly, we check for real part of complex-valued member-

ship grades, such that

At the same time, it is also kept for imaginary part of
complex-valued membership grade. Next, we check for real
part for non-membership grade, we get
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2(TTE N q n _
n (1}_&; ) n q)\@i = H‘—l(M)wl
[T @ = N)™ + (M=) =
SN =N = M=M=...=N,
At the same time, it is also kept for imaginary part

of complex-valued non-membership grade. Then the score
value of the above, such that

1
S(Ef) = 5(777 + W =i W)

IA

%(Zq—i-W% _M.q_quvi) =SE)

When S (Elp ) < S(E;), then by definition of score func-
tion, we have

Cq-ROFEWA(E,, Es, ..., E,) < CQ-ROFWA(E, Es, ..., E,)

When S(E/) = S(E;), then by definition of accuracy
function, we have

H(E!) = %(T{’" +WRT = NPT =R
1
= (T + W + N+ W) = HED

Cq-ROFEWA(E,, E,, ..., E,) = C¢-ROFWA(E,, E,, ..., E,)

therefore

Cq-ROFEWA(E,, E,, ..., E,) < Cq¢-ROFWAE,, E,, ..., E,)
Proof (Property 1: Idempotency)

1. We know that By = (’]E)eiZJTWTO, Noeﬂ”WNO) €

Cq-ROFN, i = 1,2, ..., n, then
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2. Proof (Property 2: Boundedness)
We know that f(x) =
-2

(14x)

real part of membership grade, such that

1+x, € [0, 1], then f'(x) =
—=> < 0, thus f(x) is decreasing function. We check for
74 . < T! <

i.min —

T4 . 74
zmale - 1’ 2’ R thel; f( 1mm) q—< f( i 2 = f
. . A 1-T; 1-T
q o L.max L i.min o
(Zl max) Vi implies that g = 77 = oA , Vi

i.max

and the weight vector is discussed above, we have
wj w;
<1_Tqmax> (1_7—‘1 ( tmm)
1+7:qu)( 1+Tq 1+7: min

wj i
= ﬁ 1- 7:qmax < TZ < ﬁ 1- Q;Zmin
i=1 I+szax i=1 1+7? i 1+7;, i
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sz ; > i
<:><177:qm'1x> < "(1 zq> (177:qmin>’:1
—_ —_ q
1+77qmax i=1 1+7;‘7 l—"_,Zjlmin
nf1—T\” 2
©<1+T" )5 +n<1+7" =\1v77
1. max =1 . min
©<1+T,"mm> ! <<1+T,-f’max)
\_T7 w; — 2
1+H1 ]<1+T(I>
2
(l +IZ—; mm) — ]—Tq — (1+7: max)
1+1—[:'<1+T‘7>
2
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It is also kept for the imaginary part of membership grade,
such that

w; q

o;
W%) - 1_[?:1(1 _WqT,-)
_ W%) '
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— 2=y
- T? y € [07 1]’

< 0, then the function is decreasing, so the

Similarly, when we consider g(y)

then g'(y) = 32
followings are kept.

@1 [Ty N

M.min =< <

(T 2 = N)™ + TS (V)

It is also kept for the imaginary part of non-membership
grade, such that

@ [T W
W, min < : : — 1 = Whim
(M (=) + T (W) )’

From the above discussion, we get
711"min =< /Tz =< /];.max
WT win WL SWT
jvi.min = M = M.max
WN: min = VWN: = VNG

So. SE) = (T +WE-N-WL) = 4

q q q wHa _ +
(7: max W’]}.m“ - 'A/‘l min M min) - S(El )
and SE) = H(TT+WE-N W) = )
(zqmm + W’Z min j\/;qmax - WM mm) S(E:)’ then we
get

E; < Cq-ROFEWA(E,, Ey, ..., E,) < E;".

3. The proof of property 3 is similar to property 2.
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