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Abstract
The recently proposed q-rung orthopair fuzzy set, which is characterized by a membership degree and a non-membership
degree, is effective for handling uncertainty and vagueness. This paper proposes the concept of complex q-rung orthopair
fuzzy sets (Cq-ROFS) and their operational laws. A multi-attribute decision making (MADM) method with complex q-rung
orthopair fuzzy information is investigated. To aggregate complex q-rung orthopair fuzzy numbers, we extend the Einstein
operations to Cq-ROFSs and propose a family of complex q-rung orthopair fuzzy Einstein averaging operators, such as the
complex q-rung orthopair fuzzy Einstein weighted averaging operator, the complex q-rung orthopair fuzzy Einstein ordered
weighted averaging operator, the generalized complex q-rung orthopair fuzzy Einstein weighted averaging operator, and the
generalized complex q-rung orthopair fuzzy Einstein ordered weighted averaging operator. Desirable properties and special
cases of the introduced operators are discussed. Further, we develop a novelMADMapproach based on the proposed operators
in a complex q-rung orthopair fuzzy context. Numerical examples are provided to demonstrate the effectiveness and superiority
of the proposed method through a detailed comparison with existing methods.

Keywords Pythagorean fuzzy sets · Complex pythagorean fuzzy sets · q-Rung orthopair fuzzy sets · Complex q-rung
orthopair fuzzy sets · Einstein aggregation operators

Introduction

The intuitionistic fuzzy set (IFS), which was pioneered by
Atanassove [1], is a generalization of the fuzzy set (FS)
[2]. The IFS is an important tool for coping with unreli-
able and difficult information. The prominent characteristic
of the IFS is that it assigns each element a membership grade
and a non-membership grade, whose sum is≤1. Therefore,
the IFS has received increasing research attention since it
was proposed [3, 4]. However, in many cases, the IFS can-
not work effectively, for example, when a decision maker
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provides information for which the aforementioned sum
is>1. For example, if he/she assigns 0.52 as the member-
ship grade and 0.63 as the non-membership grade, we note
that 0.52 + 0.63 �1. To deal with such problems, Yager
[5] pioneered the notion of the Pythagorean FS (PFS) as
a useful tool to describe uncertain and unreliable informa-
tion effectively, where the sum of the square of membership
grade and the square of the non-membership grade is lim-
ited to [0,1]. Sometimes, the PFS cannot work effectively.
For example, when a decision maker assigns 0.9 as the
membership grade and 0.7 as the non-membership grade,
0.92 + 0.72 = 0.81 + 0.47 = 1.28 > 1; thus, the PFS
is not applicable. Yager [6] developed the q-rung orthopair
FS (q-ROFS) for handling such situations, where the sum of
the q-power of the membership grade and the q-power of the
non-membership grade is constrained to [0,1]. For this exam-
ple, we have 0.94 + 0.74 = 0.66 + 0.24 = 0.9. Clearly, the
q-ROFS is more general than the IFS and PFS (see Fig. 1).
Because of its advantages, the q-ROFS is a fundamental tool
for processing troublesome fuzzy data, and it is used in the
fields of aggregation operators, similarity measures (SMs),
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Fig. 1 Geometric comparison of the q-ROFS, PFS, and IFS

hybrid aggregation operators, etc. Various studies have been
performed on q-ROFSs, as described below.

1. Operator-based approaches: According to the aggre-
gation operators, many scholars have successfully
developed operators for the q-ROFS environment. For
instance, Liu and Wang [7] developed aggregation oper-
ators using q-ROFSs. Garg and Chen [8] investigated
neutrality aggregation operators for q-ROFSs. Using the
new score function, Peng et al. [9] presented exponen-
tial and aggregation operators based on q-ROFSs. Xing
et al. [10] established point-weighted aggregation oper-
ators based on q-ROFSs.

2. Measures-based approaches: The SM is useful for accu-
rately examining the degree of similarity between any
two objects. Many scholars have applied SMs in differ-
ent environments. For example, Wang et al. [11] used a
cosine function to evaluate the SMs for q-ROFSs.Du [12]
established Makowski-type distance measures based on
generalized q-ROFSs. Peng and Liu [13] examined infor-
mation measures for q-ROFSs.

3. Hybrid operator-based approaches: For investigating the
relationships between objects, the hybrid aggregation
operators play an essential role in the realistic deci-
sion environment. Scholars have investigated various
hybrid aggregation operators based on the q-ROFS, for
example, Archimedean Bonferroni mean operators [14],
Maclaurin symmetric mean operators [15], Muirhead
mean operators [16], power Maclaurin symmetric mean
operators [17],Heronianmeanoperators [18], partitioned
Bonferroni mean operators [19], partitioned Maclaurin
symmetric mean operators [20], and others [21–33].

Figure 1 presents the geometric representations of the
IFSs, PFSs, and q-ROFSs. As shown, the q-ROFSs provide
the largest amount of space for expressing the fuzzy infor-
mation. Ramot et al. [34] introduced the complex FS (CFS),
which extended the range of the membership grades from

real numbers to complex numbers with unit discs. The CFS
is an extension of the FS for coping with uncertainty and
unreliability. Additionally, Ramot et al. [35] reintroduced the
notion of complex fuzzy logic. However, the CFS is com-
pletely different from the complex fuzzy number proposed
byBuckley [36]. Furthermore,Alkouri and Salleh [37] devel-
oped the complex IFS (CIFS), which extended the range
of the membership and non-membership grades from real
numbers to complex numbers with a unit disc. In contrast to
the IFS, which can process only one-dimensional informa-
tion, the CIFS can cope with two-dimensional information;
hence, information loss can be avoided.Kumar andBajaj [38]
developed complex intuitionistic fuzzy soft setswith distance
measures and entropies.Garg andRani [39, 40] proposed cor-
relation coefficients and aggregation operators based on the
CIFS. Rani and Garg [41, 42] introduced distance measures
and power aggregation operators based on the CIFS.

Recently, Ullah et al. [43] proposed the complex PFS
(CPFS), which is useful for efficiently describing uncer-
tain and unreliable information. A characteristic of CPFS
is that the sum of the square of the real part (and imag-
inary part) of complex membership grade and the square
of the real part (and imaginary part) of complex non-
membership grade is limited to [0,1]. Sometimes, the CPFS
cannot work effectively; for example, when a decision maker
provides 0.9ei2π(0.8) for the complex membership grade
and 0.7ei2π(0.7) for the complex non-membership grade,
0.92 + 0.72 = 0.81 + 0.47 = 1.28 > 1 and 0.82 + 0.62 =
0.64 + 0.49 = 1.13 > 1, making the CPFS inapplicable.
To solve such problems, we developed a complex q-rung
orthopair FS (Cq-ROFS) characterized by complex mem-
bership and non-membership grades, i.e., 0.94 + 0.74 =
0.66 + 0.24 = 0.9 and 0.84 + 0.74 = 0.41 + 0.24 = 0.65.
In the Cq-ROFS, the sum of the q-power of the real part (and
imaginary part) of the complex membership grade and the
q-power of the real part (and imaginary part) of the complex
non-membership grade is constrained to [0,1]. TheCq-ROFS
is more general than the CIFS and CPFS.

Real-life situations involve numerous complex circum-
stances, and data measures are useful for handling uncertain
data. Various data measures, e.g., similitude, separation, and
entropy, are used in the decision-making process, for exam-
ple, in design acknowledgment, clinical determination, and
bunching investigation. Some existing MADM methodolo-
gies for fuzzy information are based on the PFS and q-ROFS,
because they have shortcomings. In the proposed Cq-ROFS,
the sum of the q-power of the real part (and imaginary
part) of the complex membership grade and the q-power
of the real part (and imaginary part) of the complex non-
membership grade is constrained to [0,1]. It is more general
and can express awider information scope.Next, the q-ROFS
is turned into a fundamental tool to process troublesome
fuzzy data. Now, we provide an example. Assume that XYZ
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Corp. chooses to set up biometric-based participation gadgets
(BBPGs) in all its workplaces throughout the nation. For this,
the organization invites a specialist to provide the data with
respect to the (i) shows of BBPGs and (ii) creation dates of
BBPGs. The organization must select the optimal model of
BBPGswith its creation date at the same time. Here, the issue
includes two-dimensional information: the BBPGmodel and
the creation date of the BBPGs. Obviously, they cannot be
expressed precisely by the q-ROFS, because the q-ROFScan-
not handle multiple types of one-dimensional information
simultaneously. The sufficiency terms in the Cq-ROFS can
be utilized to determine an organization’s choice with regard
to the model of the BBPGs, and the stage terms can be uti-
lized to express the organization’s judgment regarding the
creation date of the BBPGs.

Keeping the advantages of the Cq-ROFS, the objectives
of this study were as follows:

1. To propose the notion of Cq-ROFS and its operational
laws, which was the basis of this study

2. To aggregate complex q-rung orthopair fuzzy numbers
(Cq-ROFNs), we extend the Einstein operations (EOs)
to Cq-ROFSs and propose a family of complex q-rung
orthopair fuzzy Einstein averaging operators, such as
the complex q-rung orthopair fuzzy Einstein weighted
averaging (Cq-ROFEWA) operator, the complex q-rung
orthopair fuzzy Einstein ordered weighted averaging
(Cq-ROFEOWA) operator, the generalized complex q-
rung orthopair fuzzy Einstein weighted averaging (GCq-
ROFEWA) operator, and the generalized complex q-rung
orthopair fuzzy Einstein ordered weighted averaging
(GCq-ROFEOWA) operator. Desirable properties and
special cases of the introduced operators are discussed.

3. To develop a novel MADM approach in the complex
q-rung orthopair fuzzy context based on the proposed
operators

4. To demonstrate the effectiveness and superiority of the
proposed method by comparing numerical results with
the results of existing methods

The remainder of this paper is organized as follows. In
the next section, we briefly review existing concepts such as
PYFSs, CPYFSs, q-ROFSs, and their operational laws. In the
following section, the concept of the Cq-ROFS and its oper-
ational laws are investigated. In the next section, we extend
the EOs to Cq-ROFSs and propose a family of complex
q-rung orthopair fuzzy Einstein averaging operators, such
as the Cq-ROFEWA, Cq-ROFEOWA, GCq-ROFEWA, and
GCq-ROFEOWAoperators. Desirable properties and special
cases of the introduced operators are discussed. In the fol-
lowing section, we develop a novel approach for MADM in
the complex q-rung orthopair fuzzy context based on the pro-
posed operators. Finally, a detailed comparison is performed

between existing methods and the proposed approach. The
conclusions are presented in the last section.

Preliminaries

In this section, we briefly review existing concepts such as
PYFSs, CPYFSs, q-ROFSs, and their operational laws. In
this study, the finite universal set is denoted as X .

Definition 1 [15] A PYFS E on a finite universal set X is
given by:

E = {(
T ′
E
(X),N ′

E
(X)

) : X ∈ X
}
, (1)

where T ′
E

and N ′
E

represent the membership and non-
membership grades, respectively, under the following condi-
tion: 0 ≤ T ′2

E
+N ′2

E
≤ 1. The hesitancy degree is defined as

HE = (
1 − T ′2

E
− N ′2

E

) 1
2 . The Pythagorean fuzzy number

(PYFN) is given as E = (
T ′
E
, N ′

E

)
.

Definition 2 [43] A CPYFS E on a finite universal set X is
given as follows:

E = {(
T ′
E
(X),N ′

E
(X)

) : X ∈ X
} →, (2)

where T ′
E

= TEei2πWTE and N ′
E

= NEe
i2πWNE represent

the complex-valued membership grade and complex-valued
non-membership grade, respectively, under the following
conditions: 0 ≤ T 2

E
+ N 2

E
≤ 1 and 0 ≤ W2

TE + W2
NE

≤ 1.
Further, the complex-valued hesitancy degree is defined as

HE = (
1 − T 2

E
− N 2

E

) 1
2 e

i2π
(
1−W2

TE
−W2

NE

) 1
2

. The complex

PYFN is given as E =
(
TEei2πWTE , NEe

i2πWNE

)
.

Definition 3 [24] A q-ROFS E on a finite universal set X is
given as:

E = {(
T ′
E
(X),N ′

E
(X)

) : X ∈ X
} →, (3)

where T ′
E

and N ′
E

represent the membership and non-
membership grades, respectively, under the following con-
dition: 0 ≤ T ′q

E
+ N ′q

E
≤ 1. The hesitancy degree is given

as HE =
(
1 − T ′q

E
− N ′q

E

) 1
q
. The q-rung orthopair fuzzy

number (q-ROFN) is given as E = (
T ′
E
, N ′

E

)
.

Definition 4 [24] For any two q-ROFNs E1 = (
T ′
1 , N ′

1

)
and

E2 = (
T ′
2 , N ′

2

)
with any δ > 0,

1. E1 ⊕ E2 =
⎛

⎝
(

T ′q
1 +T ′q

2

1+T ′q
1 T ′q

2

) 1
q

,

⎛

⎝ N ′
1N ′

2
(
1+

(
1−N ′q

1

)(
1−N ′q

2

)) 1
q

⎞

⎠

⎞

⎠;
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2. E1 ⊗ E2 =
⎛

⎝

⎛

⎝ T ′
1T

′
2

(
1+

(
1−T ′q

1

)(
1−T ′q

2

)) 1
q

⎞

⎠,

(
N ′q

1 +N ′q
2

1+N ′q
1 N ′q

2

) 1
q

⎞

⎠;

3. δE1 =
⎛

⎜
⎝

⎛

⎝
(
1+T

′q
1

)δ

−
(
1−T

′q
1

)δ

(
1+T

′q
1

)δ+
(
1−T

′q
1

)δ

⎞

⎠

1
q

,

⎛

⎜
⎝

(2)
1
q N ′δ

1
((

2−N
′q
1

)δ+
(
N

′q
1

)δ
) 1

q

⎞

⎟
⎠

⎞

⎟
⎠; and

4. Eδ
1 =

⎛

⎜
⎝

⎛

⎜
⎝

(2)
1
q T ′δ

1
((

2−T ′q
1

)δ+
(
T ′q
1

)δ
) 1

q

⎞

⎟
⎠,

((
1+N ′q

1

)δ−
(
1−N ′q

1

)δ

(
1+N ′q

1

)δ+
(
1−N ′q

1

)δ

) 1
q

⎞

⎟
⎠.

Definition 5 [24] For any q-ROFNE1 = (
T ′
1 , N ′

1

)
, the score

function and accuracy function are defined as follows:

S(E1) = T ′q
1 − N ′q

1 , (4)

H(E1) = T ′q
1 + N ′q

1 , (5)

where S(E1) ∈ [−1, 1] and H(E1) ∈ [0, 1].

Cq-ROFSs and their operational laws

In this section, we propose the Cq-ROFSs and their opera-
tional laws.

Definition 6 ACq-ROFSEon afinite universal set X is given
as:

E = {(
T ′
E
(X),N ′

E
(X)

) : X ∈ X
}
, (6)

where T ′
E

= TEei2πWTE and N ′
E

= NEe
i2πWNE represent

the degrees of the complex-valuedmembership and complex-
valued non-membership, respectively, under the following
conditions:0 ≤ T q

E
+ N q

E
≤ 1, 0 ≤ Wq

TE + Wq
NE

≤ 1,
and q ≥ 1. The complex-valued hesitancy degree is given

as HE = (
1 − T q

E
− N q

E

) 1
q e

i2π
(
1−Wq

TE
−Wq

NE

) 1
q

. The Cq-

ROFN is given as E =
(
TEei2πWTE , NEe

i2πWNE

)
.

Definition 7 For any two Cq-ROFNs E1 =(
T1ei2πWT1 , N1e

i2πWN1

)
and E2 =

(
T2ei2πWT2 , N2e

i2πWN2

)

1. Ec
1 =

(
N1e

i2πWN1 , T1ei2πWT1
)
;

2. E1 ∨ E2 =
(
max(T1, T2)ei2π max

(
WT1 ,WT2

)
,

min(N1, N2)e
i2π min

(
WN1 ,WN2

))
; and

3. E1 ∧ E2 =
(
min(T1, T2)ei2π min

(
WT1 ,WT2

)
,

max(N1, N2)e
i2π max

(
WN1 ,WN2

))
.

Next, we investigate Einstein’s operational laws for Cq-
ROFNs, which are defined as follows.

Definition 8 For any two Cq-ROFNs E1 =(
T1ei2πWT1 , N1e

i2πWN1

)
and E2 =

(
T2ei2πWT2 , N2e

i2πWN2

)
with any δ > 0,

1. E1 ⊕ E2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

(
T q
1 + T q

2

1 + T q
1 T q

2

) 1
q

e
i2π

(
Wq

T1
+Wq

T2
1+Wq

T1
Wq

T2

) 1
q

,

⎛

⎝ N1N2
(
1 + (

1 − N q
1

)(
1 − N q

2

)) 1
q

⎞

⎠e

i2π

⎛

⎜⎜
⎝

WN1
WN2

(
1+

(
1−Wq

N1

)(
1−Wq

N2

)) 1
q

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

;

2. E1 ⊗ E2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

⎛

⎝ T1T2
(
1 + (

1 − T q
1

)(
1 − T q

2

)) 1
q

⎞

⎠e

i2π

⎛

⎜⎜
⎝

WT1WT2
(
1+

(
1−Wq

T1

)(
1−Wq

T2

)) 1
q

⎞

⎟⎟
⎠

,

(
N q

1 + N q
2

1 + N q
1 N

q
2

) 1
q

e
i2π

(
Wq

N1
+Wq

N2
1+Wq

N1
Wq

N2

) 1
q

⎞

⎟⎟⎟⎟⎟⎟
⎠

;

3. δE1 =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

((
1 + T q

1

)δ − (
1 − T q

1

)δ

(
1 + T q

1

)δ + (
1 − T q

1

)δ

) 1
q

e

i2π

⎛

⎜
⎝

(
1+Wq

T1

)δ
−

(
1−Wq

T1

)δ

(
1+Wq

T1

)δ
+

(
1−Wq

T1

)δ

⎞

⎟
⎠

1
q

,

⎛

⎜⎜
⎝

(2)
1
q N δ

1
((
2 − N q

1

)δ + (
N q

1

)δ
) 1

q

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝

(2)
1
q Wδ

N1
((

2−Wq
N1

)δ
+

(
Wq

N1

)δ
) 1
q

⎞

⎟⎟
⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

; and
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4. Eδ
1 =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝

(2)
1
q T δ

1
((
2 − T q

1

)δ + (
T q
1

)δ
) 1

q

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝

(2)
1
q Wδ

T1
((

2−Wq
T1

)δ
+

(
Wq

T1

)δ
) 1
q

⎞

⎟⎟
⎟
⎠

,

((
1 + N q

1

)δ − (
1 − N q

1

)δ

(
1 + N q

1

)δ + (
1 − N q

1

)δ

) 1
q

e

i2π

⎛

⎜
⎝

(
1+Wq

N1

)δ
−

(
1−Wq

N1

)δ

(
1+Wq

N1

)δ
+

(
1−Wq

N1

)δ

⎞

⎟
⎠

1
q

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

.

Definition 9 For any q-ROFN E1 =(
T1ei2πWT1 , N1e

i2πWN1

)
, the score function and accuracy

function are defined as follows:

S(E1) = 1

2

(
T q
1 + Wq

T1 − N q
1 − Wq

N1

)
, (7)

H(E1) = 1

2

(
T q
1 + Wq

T1 + N q
1 + Wq

N1

)
, (8)

where S(E1) ∈ [−1, 1] and H(E1) ∈ [0, 1].

Theorem 1 For any two Cq-ROFNs E1 =(
T1ei2πWT1 , N1e

i2πWN1

)
and E2 =

(
T2ei2πWT2 , N2e

i2πWN2

)
with any δ, δ1, δ2 > 0,

1. E1 ⊕ E2 = E2 ⊕ E1;
2. E1 ⊗ E2 = E2 ⊗ E1;
3. δ(E1 ⊕ E2) = δE1 ⊕ δE2;
4. (E1 ⊗ E2)

δ = Eδ
1 ⊗ Eδ

2;
5. δ1E1 ⊕ δ2E1 = (δ1 + δ2)E1; and
6. Eδ1

1 ⊗ Eδ2
1 = Eδ1+δ2

1 .

The proof of Theorem 1 is presented in the "Appendix".

Theorem 2 For any two Cq-ROFNs E1 =(
T1ei2πWT1 , N1e

i2πWN1

)
and E2 =

(
T2ei2πWT2 , N2e

i2πWN2

)
,

1. Ec
1 ∨ Ec

2 = (E1 ∧ E2)
c;

2. Ec
2 ∧ Ec

1 = (E1 ∨ E2)
c;

3. Ec
1 ⊕ Ec

2 = (E1 ⊗ E2)
c;

4. Ec
1 ⊗ Ec

2 = (E1 ⊕ E2)
c;

5. (E1 ∨ E2) ⊕ (E1 ∧ E2) = E1 ⊕ E2; and
6. (E1 ∨ E2) ⊗ (E1 ∧ E2) = E1 ⊗ E2.

Proof Similar to the case of Theorem 1, the proofs are omit-
ted.

Theorem 3 For any three Cq-ROFNs

E1 =
(
T1ei2πWT1 , N1e

i2πWN1

)
, E2 =

(
T2ei2πWT2 , N2e

i2πWN2

)
, and E3 =

(
T3ei2πWT3 , N3e

i2πWN3

)
,

1. (E1 ∨ E2) ∧ E3 = (E1 ∧ E3) ∨ (E2 ∧ E3);
2. (E1 ∧ E2) ∨ E3 = (E1 ∨ E3) ∧ (E2 ∨ E3);
3. (E1 ∨ E2) ⊕ E3 = (E1 ⊕ E3) ∨ (E2 ⊕ E3);
4. (E1 ∧ E2) ⊕ E3 = (E1 ⊕ E3) ∧ (E2 ⊕ E3);
5. (E1 ∨ E2) ⊗ E3 = (E1 ⊗ E3) ∨ (E2 ⊗ E3); and
6. (E1 ∧ E2) ⊗ E3 = (E1 ⊗ E3) ∧ (E2 ⊗ E3).

Proof Similar to the case of Theorem 1, the proofs are omit-
ted.

Complex q-rung orthopair fuzzy Einstein
arithmetic aggregation operators

In this section, we propose complex q-rung orthopair fuzzy
Einstein aggregation operators.

Complex q-rung orthopair fuzzy Einstein weighted
averaging operator

The complex q-rung orthopair fuzzy Einstein weighted
averaging operator is investigated, and its properties are dis-
cussed.

Definition 10 Suppose thatEi =
(
Tiei2πWTi , Nie

i2πWNi

)
,

i = 1,2, . . . , n comprise the family of Cq-ROFNs; then, the
Cq-ROFEWA operator is given as Cq-ROFEWA : ℵn → ℵ,
and defined by:

Cq-ROFEWA(E1,E2, . . . ,En)

= ω1E1 ⊕ ω2E2⊕, · · · , ⊕ ωnEn = ⊕n
i=1ωiEi (9)

Here, the symbol ℵ represents the family of Cq-ROFNs,
and the weight vector is defined as

∑n
i=1 ωi = 1, ωi ∈ [0,1].

Remark 1 By substituting ωi = 1
n for all instances of i ,

the Cq-ROFEWA operator is reduced to the complex q-rung
orthopair fuzzy averaging (Cq-ROFA) operator, as follows:

Cq-ROFA(E1,E2, . . . ,En) = 1

n
(E1 ⊕ E2⊕, · · · , ⊕ En)

= 1

n
⊕n

i=1Ei . (10)
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According to Einstein’s operational laws, we obtain the
following result.

Theorem 4 Suppose that Ei =
(
Tiei2πWTi , Nie

i2πWNi

)
,

i = 1,2, . . . , n comprise the family of Cq-ROFNs; then, the
aggregating value from Definition 10 is a Cq-ROFN, and:

Cq-ROFEWA(E1,E2, . . . ,En) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(∏n
i=1

(
1+T q

i

)ωi −∏n
i=1

(
1−T q

i

)ωi
∏n

i=1
(
1+T q

i

)ωi +∏n
i=1

(
1−T q

i

)ωi

) 1
q

e

i2π

⎛

⎜
⎝

∏n
i=1

(
1+Wq

Ti

)ωi −∏n
i=1

(
1−Wq

Ti

)ωi

∏n
i=1

(
1+Wq

Ti

)ωi +∏n
i=1

(
1−Wq

Ti

)ωi

⎞

⎟
⎠

1
q

,

⎛

⎝ (2)
1
q

∏n
i=1N

ωi
i

(∏n
i=1

(
2−N q

i

)ωi +∏n
i=1

(
N q

i

)ωi
) 1
q

⎞

⎠e

i2π

⎛

⎜⎜
⎝

(2)
1
q ∏n

i=1W
ωi
Ni

(
∏n
i=1

(
2−Wq

Ni

)ωi +∏n
i=1

(
Wq

Ni

)ωi
) 1
q

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (11)

The proof of Theorem 4 is presented in the Appendix.

Theorem 5 Suppose that Ei =
(
Tiei2πWTi , Nie

i2πWNi

)
∈

Cq-ROFN, i = 1,2, . . . , n comprise the family of Cq-
ROFNs; then, the relationship between theCq-ROFEWAand
Cq-ROFWA operators is expressed as follows:

Cq-ROFEWA(E1, E2, . . . , En)

≤ Cq-ROFWA(E1, E2, . . . , En),

where the weight vector is defined by
∑n

i=1 ωi = 1, ωi ∈
[0,1].

The proof of Theorem 5 is presented in the Appendix.

The Cq-ROFEWA operator has the following properties.

Suppose that Ei =
(
Tiei2πWTi , Nie

i2πWNi

)
∈

Cq-ROFN, i = 1,2, . . . , n comprise the family of Cq-
ROFNs and the weight vector is defined by

∑n
i=1 ωi = 1,

ωi ∈ [0,1]. Then, we have the following:

1. Idea: When Ei = E0 =
(
T0ei2πWT0 , N0e

i2πWN0

)
, ∀i ,

Cq-ROFEWA(E1, E2, . . . , En) = E0.
2. Boundedness: Let E−

i =(
min(Ti )e

i2πmin
(
WTi

)

, max(Ni )e
i2πmax

(
WNi

))
,

E+
i =

(
max(Ti )e

i2πmax
(
WTi

)

, min(Ni )e
i2πmin

(
WNi

))
;

then, E−
i ≤ Cq-ROFEWA(E1, E2, . . . , En) ≤ E+

i .

3. Monotonicity: If Ei ≤ E′ ′
i , ∀i , Cq-ROFEWA

(E1, E2, . . . , En) ≤ Cq-ROFEWA
(
E′ ′
1, E′ ′

2, . . . , E′ ′
n

)
.

Proofs of these properties are presented in the Appendix.

Complex q-rung orthopair fuzzy Einstein ordered
weighted averaging operator

Definition 11 Suppose thatEi =
(
Tiei2πWTi , Nie

i2πWNi

)
,

i = 1,2, . . . , n comprise the family of Cq-ROFNs; then, the
Cq-ROFEOWAoperator is given by Cq-ROFEOWA : ℵn →
ℵ

Cq-ROFEOWA(E1,E2, . . . ,En) = ω1EO(1)

⊕ ω2EO(2)⊕, · · · , ⊕ ωnEO(n) = ⊕n
i=1ωiEO(i) (12)

where the symbol ℵ represents the family of Cq-ROFNs,
and the weight vector is defined by

∑n
i=1 ωi = 1,

ωi ∈ [0,1]. (O(1), O(2), . . . , O(n)) is a permutation of
(i = 1,2, . . . , n) such that EO(i) ≤ EO(i−1).

Remark 2 By substituting ωi = 1
n for all instances of i , the

Cq-ROFEOWA operator is reduced to the complex q-rung
orthopair fuzzy ordered averaging (Cq-ROFOA) operator, as
follows:

Cq-ROFA(E1,E2, . . . ,En)

= 1

n

(
EO(1) ⊕ EO(2)⊕, · · · , ⊕ EO(n)

)

= 1

n
⊕n

i=1 EO(i). (13)

According to Einstein’s operational laws, we examine the
following results.

Theorem 6 Suppose that Ei =
(
Tiei2πWTi , Nie

i2πWNi

)
,

i = 1,2, . . . , n comprise the family of Cq-ROFNs; then, the
aggregating value from Definition 11 is a Cq-ROFN, and
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Cq-ROFEOWA(E1,E2, . . . ,En) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(∏n
i=1

(
1+T q

O(i)

)ωi −∏n
i=1

(
1−T q

O(i)

)ωi

∏n
i=1

(
1+T q

O(i)

)ωi +∏n
i=1

(
1−T q

O(i)

)ωi

) 1
q

e

i2π

⎛

⎜
⎝

∏n
i=1

(
1+Wq

TO(i)

)ωi −∏n
i=1

(
1−Wq

TO(i)

)ωi

∏n
i=1

(
1+Wq

TO(i)

)ωi +∏n
i=1

(
1−Wq

TO(i)

)ωi

⎞

⎟
⎠

1
q

,

⎛

⎝ (2)
1
q

∏n
i=1N

ωi
O(i)

(∏n
i=1

(
2−N q

O(i)

)ωi +∏n
i=1

(
N q

O(i)

)ωi
) 1
q

⎞

⎠e

i2π

⎛

⎜⎜
⎝

(2)
1
q ∏n

i=1W
ωi
NO(i)

(
∏n
i=1

(
2−Wq

NO(i)

)ωi +∏n
i=1

(
Wq

NO(i)

)ωi
) 1
q

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(14)

where the weight vector is defined by
∑n

i=1 ωi = 1,
ωi ∈ [0,1]. (O(1), O(2), . . . , O(n)) is a permutation of
(i = 1,2, . . . , n) such that EO(i) ≤ EO(i−1). When we con-
sider N q

O(i) = 1 − T q
O(i), Eq. (14) is converted into the

following equation:

Cq-ROFEOWA(E1, E2, . . . , En) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(∏n
i=1

(
1+T q

O(i)

)ωi −∏n
i=1

(
1−T q

O(i)

)ωi

∏n
i=1

(
1+T q

O(i)

)ωi +∏n
i=1

(
1−T q

O(i)

)ωi

) 1
q

e

i2π

⎛

⎜
⎝

∏n
i=1

(
1+Wq

TO(i)

)ωi −∏n
i=1

(
1−Wq

TO(i)

)ωi

∏n
i=1

(
1+Wq

TO(i)

)ωi +∏n
i=1

(
1−Wq

TO(i)

)ωi

⎞

⎟
⎠

1
q

,

(

1 −
∏n

i=1

(
1+T q

O(i)

)ωi −∏n
i=1

(
1−T q

O(i)

)ωi

∏n
i=1

(
1+T q

O(i)

)ωi +∏n
i=1

(
1−T q

O(i)

)ωi

) 1
q

e

i2π

⎛

⎜
⎝1−

∏n
i=1

(
1+Wq

TO(i)

)ωi −∏n
i=1

(
1−Wq

TO(i)

)ωi

∏n
i=1

(
1+Wq

TO(i)

)ωi +∏n
i=1

(
1−Wq

TO(i)

)ωi

⎞

⎟
⎠

1
q

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Proof Similar to the case of Theorem 4, the proof is omitted.

Next, we discuss the properties of this operator.

Suppose that Ei =
(
Tiei2πWTi , Nie

i2πWNi

)
∈

Cq-ROFN, i = 1,2, . . . , n comprise the family of Cq-
ROFNs and the weight vector is defined by

∑n
i=1 ωi = 1,

ωi ∈ [0,1]. Then, we have:

1. Idea: When Ei = E0 =
(
T0ei2πWT0 , N0e

i2πWN0

)
, ∀i ,

Cq-ROFEOWA(E1, E2, . . . , En) = E0.
2. Boundedness: Let E−

i =(
min(Ti )e

i2πmin
(
WTi

)

, max(Ni )e
i2πmax

(
WNi

))
,

E+
i =

(
max(Ti )e

i2πmax
(
WTi

)

, min(Ni )e
i2πmin

(
WNi

))
;

then, E−
i ≤ Cq-ROFEOWA(E1, E2, . . . , En) ≤ E+

i .

3. Monotonicity: If Ei ≤ E′ ′
i , ∀i , Cq-ROFEOWA

(E1, E2, . . . , En) ≤ Cq-ROFEOWA(
E′ ′
1, E′ ′

2, . . . , E′ ′
n

)
.

Generalized complex q-rung orthopair fuzzy
Einstein weighted averaging operator

Definition 12 Suppose thatEi =
(
Tiei2πWTi , Nie

i2πWNi

)
,

i = 1,2, . . . , n comprise the family of Cq-ROFNs; then, the
GCq-ROFEWAoperator is given byGCq-ROFEWA : ℵn →
ℵ

GCq-ROFEWA(E1,E2, . . . ,En)

= (
ω1Eδ

1 ⊕ ω2Eδ
2⊕, · · · , ⊕ ωnEδ

n

) 1
δ = (⊕n

i=1ωiEδ
i

) 1
δ →
(15)

where the symbol ℵ represents the family of Cq-ROFNs, and
the weight vector is defined by

∑n
i=1 ωi = 1, ωi ∈ [0,1],

δ > 0.

Remark 3 By substituting ωi = 1
n for all instances of i ,

the GCq-ROFEWA operator is reduced to the generalized
complex q-rung orthopair fuzzy averaging (GCq-ROFA)
operator, as follows:

GCq-ROFA(E1,E2, . . . ,En)

=
(
1

n

(
Eδ
1 ⊕ Eδ

2⊕, · · · , ⊕ Eδ
n

))
1
δ =

(
1

n
⊕n

i=1E
δ
i

) 1
δ

(16)

When δ = 1, the GCq-ROFEWA operator is reduced to the
Cq-ROFEWA operator.

Using Einstein’s operational laws, the following result is
obtained.

Theorem 7 Suppose that Ei =
(
Tiei2πWTi , Nie

i2πWNi

)
,

i = 1,2, . . . , n comprise the family of Cq-ROFNs; then, the
aggregating value from Definition 12 is a Cq-ROFN, and:
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GCq-ROFEWA(E1,E2, . . . ,En)

=

⎛
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1 + Wq

Ni

)δ −
(
1 − Wq

Ni

)δ
}ωi

⎞

⎟⎟
⎠

1
δ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
q

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(17)

Proof Similar to the case of Theorem 4, the proof is omitted.
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Generalized complex q-rung orthopair fuzzy
Einstein ordered weighted averaging operator

Definition 13 Suppose thatEi =
(
Tiei2πWTi , Nie

i2πWNi

)
,

i = 1,2, . . . , n comprise the family of Cq-ROFNs; then, the
GCq-ROFEOWA operator is given by GCq-ROFEOWA :
ℵn → ℵ

GCq-ROFEOWA(E1,E2, . . . ,En)

=
(
ω1Eδ

O(1) ⊕ ω2Eδ
O(2)⊕, · · · , ⊕ ωnEδ

O(n)

) 1
δ

=
(
⊕n

i=1ωiEδ
O(i)

) 1
δ → (18)

where the symbol ℵ represents the family of Cq-ROFNs, and
the weight vector is defined by

∑n
i=1 ωi = 1, ωi ∈ [0,1],

δ > 0.

Remark 4 By substituting ωi = 1
n for all instances of i ,

the GCq-ROFEOWA operator is reduced to the generalized
complex q-rung orthopair fuzzy ordered averaging (GCq-
ROFOA) operator, as follows:

GCq-ROFOA(E1,E2, . . . ,En)

=
(
1

n

(
Eδ
O(1) ⊕ Eδ

O(2)⊕, · · · , ⊕ Eδ
O(n)

)) 1
δ

=
(
1

n
⊕n

i=1E
δ
O(i)

) 1
δ

(19)

When δ = 1, the GCq-ROFEOWA operator is reduced to
the Cq-ROFEOWA operator.

According to Einstssein’s operational laws, we obtain the
following result.

Theorem 8 Suppose that Ei =
(
Tiei2πWTi , Nie

i2πWNi

)
,

i = 1,2, . . . , n comprise the family of Cq-ROFNs; then, the
aggregating value from Definition 13 is a Cq-ROFN, and
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GCq-ROFEOWA(E1,E2, . . . ,En)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(2)
1
q

⎛

⎜⎜⎜⎜
⎝

∏n
i=1

{(
2 − T q

O(i)

)δ + 3
(
T q
O(i)

)δ
}ωi

−
∏n

i=1

{(
2 − T q

O(i)

)δ −
(
T q
O(i)

)δ
}ωi

⎞

⎟⎟⎟⎟
⎠

1
2δ

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝

∏n
i=1

{(
2 − T q

O(i)

)δ + 3
(
T q
O(i)

)δ
}ωi

+

3
∏n

i=1

{(
2 − T q

O(i)

)δ −
(
T q
O(i)

)δ
}ωi

⎞

⎟⎟
⎠

1
δ

+

⎛

⎜⎜
⎝

∏n
i=1

{(
2 − T q

O(i)

)δ + 3
(
T q
O(i)

)δ
}ωi

−
∏n

i=1

{(
2 − T q

O(i)

)δ −
(
T q
O(i)

)δ
}ωi

⎞

⎟⎟
⎠

1
δ

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
q
e

i2π

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(2)
1
q

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝
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{(
2 − Wq

TO(i)
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(
Wq

TO(i)
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}ωi

−
∏n
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{(
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Wq

TO(i)
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}ωi

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

1
2δ

⎛
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⎝

⎛

⎜⎜
⎝
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{(
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TO(i)
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(
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TO(i)
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}ωi

+
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{(
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TO(i)
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(
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TO(i)

)δ
}ωi

⎞

⎟⎟
⎠

1
δ
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⎛

⎜⎜
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{(
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(
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}ωi

−
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TO(i)

)δ −
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}ωi

⎞

⎟⎟
⎠

1
δ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
q

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
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⎠

,
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O(i)
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}ωi
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)δ −
(
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O(i)

)δ
}ωi

⎞

⎟⎟
⎠

1
δ

−

⎛

⎜⎜
⎝
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O(i)
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}ωi

−
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O(i)

)δ −
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O(i)

)δ
}ωi

⎞

⎟⎟
⎠

1
δ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

⎛
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⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝
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O(i)
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O(i)

)δ
}ωi

+
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)δ −
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O(i)
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}ωi

⎞

⎟⎟
⎠

1
δ
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⎛

⎜⎜
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O(i)
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}ωi

−
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O(i)

)δ −
(
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⎞

⎟⎟
⎠

1
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⎞
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⎠

.

(20)

Proof Similar to the case of Theorem 4, the proof is omitted.
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Table 1 Complex q-rung orthopair fuzzy decision matrix

Symbols G1 G2 . . . . . . . . . . . . Gn

x1
(
T11ei2πWT11 , N11e

i2πWN11

) (
T12ei2πWT12 , N12e

i2πWN12

)
. . . . . . . . . . . .

(
T1nei2πWT1n , N1ne

i2πWN1n

)

x2
(
T21ei2πWT21 , N21e

i2πWN21

) (
T22ei2πWT22 , N22e

i2πWN22

)
. . . . . . . . . . . .

(
T2nei2πWT2n , N2ne

i2πWN2n

)

x3
(
T31ei2πWT31 , N31e

i2πWN31

) (
T32ei2πWT32 , N32e

i2πWN32

)
. . . . . . . . . . . .

(
T3nei2πWT3n , N3ne

i2πWN3n

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xm
(
Tm1e

i2πWTm1 , Nm1e
i2πWNm1

) (
Tm2e

i2πWTm2 , Nm2e
i2πWNm2

)
. . . . . . . . . . . .

(
Tmnei2πWTmn , Nmnei2πWNmn

)

Table 2 Symbols of the alternatives

Symbols x1 x2 x3 x4 x5

Representations Computer company Furniture company Car company Chemical company Food company

Table 3 Representations of the attributes

Symbols G1 G2 G3 G4

Representations Technical ability Accepted benefits Competitive power in market Management capability

In Eq. (20), δ plays a key role in the aggregation of the
Cq-ROFNs. The parameter δ takes a special number; then,
the GCq-ROFEWA operator can be reduced. For example,
when δ = 1, Eq. (20) is converted into Eq. (14).

MAGDM approach based on proposed
operators

Description of decision-making problem

Suppose an MAGDM problem in which A =
{x1, x2, . . . , xm} represents the family of alternatives,
and G = {G1, G2, . . . , Gn} represents the family of
finite attributes with weight vector ω = (ω1, ω2, . . . , ωn).
The decision matrix A = (

Ei j
)
m×n is given by decision

makers through evaluation of the attribute G j under the
alternativexi , which is represented by the Cq-ROFN. The
complex q-rung orthopair fuzzy decision matrix is presented
in Table 1.

We use the proposed operators to solve this decision-
making problem, and the steps are as follows.

Step 1: Normalize the decision matrix with respect to.

ri j =
(
Ti jei2πWTi j ,Ni je

i2πWNi j

)
=

{
Ec
i j j is benefit types

Ei j j is cost types
(21)

Step 2:Use Eq. (20) to aggregate the normalized decision
matrix.

ri = GCq − ROFOW A(ri1, ri2, . . . , rin), i = 1,2, 3, . . . , m

Step 3: Use Eq. (7) to examine the score values of the
aggregated values obtained in step 2.

Step 4: Rank all the alternatives according to the score
values from step 3, and select the best one.

Step 5: End.

Illustrative numerical example

An examplewas taken from the area of the investment, where
the investor wishes to invest money in a standard company.
After a careful analysis, five possible alternatives represented
by A = {x1, x2, . . . , xm}were considered, as shown inTable
2.

Furthermore, these alternatives were evaluated using four
attributes represented byG = {G1, G2, . . . , Gn}, which are
presented in Table 3.

The weight vector for the given attributes was given as
ω = {0.25,0.15,0.4,0.2}; then, the complex q-rung orthopair
fuzzy decision matrix was obtained, as shown in Table 4.

The steps of the decision-making process were as follows:
Step 1: Normalize the decision matrix and obtain the

results shown in Table 5.
Step 2: Obtain the aggregation results using Eq. (20),

which are presented in Table 6.
Step 3: Obtain the scores of the aggregated values using

Eq. (7), which are presented in Table 7.
Step 4: Rank all the alternatives and select the best one.

E5 ≤ E4 ≤ E1 ≤ E3 ≤ E2
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Table 4 Complex q-rung orthopair fuzzy decision matrix

Symbols G1 G2 G3 G4

x1
(
0.22ei2π(0.31), 0.4ei2π(0.45)

) (
0.35ei2π(0.40), 0.33ei2π(0.3)

) (
0.5ei2π(0.45), 0.23ei2π(0.11)

) (
0.21ei2π(0.26), 0.19ei2π(0.33)

)

x2
(
0.24ei2π(0.31), 0.41ei2π(0.46)

) (
0.36ei2π(0.41), 0.34ei2π(0.31)

) (
0.51ei2π(0.46), 0.24ei2π(0.12)

) (
0.22ei2π(0.27), 0.20ei2π(0.23)

)

x3
(
0.25ei2π(0.33), 0.42ei2π(0.47)

) (
0.37ei2π(0.42), 0.35ei2π(0.32)

) (
0.52ei2π(0.47), 0.25ei2π(0.13)

) (
0.23ei2π(0.28), 0.21ei2π(0.24)

)

x4
(
0.27ei2π(0.34), 0.43ei2π(0.48)

) (
0.38ei2π(0.43), 0.36ei2π(0.33)

) (
0.53ei2π(0.48), 0.26ei2π(0.14)

) (
0.24ei2π(0.29), 0.22ei2π(0.25)

)

x5
(
0.35ei2π(0.35), 0.44ei2π(0.49)

) (
0.39ei2π(0.44), 0.37ei2π(0.34)

) (
0.54ei2π(0.49), 0.27ei2π(0.15)

) (
0.25ei2π(0.30), 0.23ei2π(0.26)

)

Table 5 Normalized complex q-rung orthopair fuzzy decision matrix

Symbols G1 G2 G3 G4

x1
(
0.4ei2π(0.45), 0.22ei2π(0.31)

) (
0.35ei2π(0.40), 0.33ei2π(0.3)

) (
0.5ei2π(0.45), 0.23ei2π(0.11)

) (
0.21ei2π(0.26), 0.19ei2π(0.33)

)

x2
(
0.41ei2π(0.46), 0.24ei2π(0.31)

) (
0.36ei2π(0.41), 0.34ei2π(0.31)

) (
0.51ei2π(0.46), 0.24ei2π(0.12)

) (
0.22ei2π(0.27), 0.20ei2π(0.23)

)

x3
(
0.42ei2π(0.47), 0.25ei2π(0.33)

) (
0.37ei2π(0.42), 0.35ei2π(0.32)

) (
0.52ei2π(0.47), 0.25ei2π(0.13)

) (
0.23ei2π(0.28), 0.21ei2π(0.24)

)

x4
(
0.43ei2π(0.48), 0.27ei2π(0.34)

) (
0.38ei2π(0.43), 0.36ei2π(0.33)

) (
0.53ei2π(0.48), 0.26ei2π(0.14)

) (
0.24ei2π(0.29), 0.22ei2π(0.25)

)

x5
(
0.44ei2π(0.49), 0.35ei2π(0.35)

) (
0.39ei2π(0.44), 0.37ei2π(0.34)

) (
0.54ei2π(0.49), 0.27ei2π(0.15)

) (
0.25ei2π(0.30), 0.23ei2π(0.26)

)

Table 6 Aggregation values of
the Cq-ROFNs Method Getting values

r1 = GCq - ROFOWA(r11, r12, . . . , r1n)
(
0.317ei2π(0.319), 0.082ei2π(0.073)

)

r2 = GCq - ROFOWA(r21, r22, . . . , r2n)
(
0.321ei2π(0.323), 0.088ei2π(0.069)

)

r3 = GCq - ROFOWA(r31, r32, . . . , r3n)
(
0.325ei2π(0.327), 0.094ei2π(0.075)

)

r4 = GCq - ROFOWA(r41, r42, . . . , r4n)
(
0.329ei2π(0.331), 0.1ei2π(0.08)

)

r5 = GCq - ROFOWA(r51, r52, . . . , r5n)
(
0.333ei2π(0.335), 0.116ei2π(0.085)

)

Table 7 Score values of the Cq-ROFNs

Score values of the alternatives

S(x1) = S(r1) = S(E1) = 0.241

S(x2) = S(r2) = S(E2) = 0.244

S(x3) = S(r3) = S(E3) = 0.242

S(x4) = S(r4) = S(E4) = 0.239

S(x5) = S(r5) = S(E5) = 0.233

Hence, the best alternative is E2, which represents the
furniture company.

Step 5: End.

Effect of parameter ı

In this subsection, we examine the effect of the parameter δ

on the ranking results. We obtained the ranking results for
different values of the parameter δ, as shown in Table 8 (q
was 1).

As shown in Table 8, the parameter δ affected the ranking
results. However, the best alternative did not change.

Effect of parameter q

In this subsection, we examine the effect of the parameter q
on the ranking results. We obtained the ranking results for
different values of q, as shown in Table 9 (δ was 1).

As indicated by Table 9, the parameter q affected the rank-
ing results. However, the best alternative did not change.

Advantages and comparative analysis

The proposed method was compared with existing
approaches to highlight its advantages.

We compared Garg and Rani’s method [40] based on
the power aggregation operators for the CIFS and Garg and
Rani’smethod [42] based on the aggregation operators for the
CIFS with the proposed method for the CPFS and Cq-ROFS.
The results are presented in Table 10 and Fig. 2.

Figure 2 contains five alternatives represented by Ei

(i = 1,2, 3,4, 5). To identify the best alternative among
them, we adopt four types of operators, whose representa-
tions are presented in Table 10. Two of the operators existed
previously, and the other two are newly proposed herein.
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Table 8 Effect of the parameter δ, for q = 1

Value of δ Score values of the methods Rankings of the methods

δ = 2 S(E1) = 0.336, S(E2) = 0.339, S(E3) = 0.331, S(E4) = 0.321, S(E5) = 0.295 E5 ≤ E4 ≤ E3 ≤ E1 ≤ E2

δ = 3 S(E1) = 0.282, S(E2) = 0.284, S(E3) = 0.181, S(E4) = −0.72, S(E5) = −0.23 E4 ≤ E5 ≤ E3 ≤ E1 ≤ E2

δ = 5 S(E1) = 0.001, S(E2) = 0.002, S(E3) = 0.0019, S(E4) = 0.002, S(E5) = 0.001 E5 ≤ E1 ≤ E3 ≤ E4 ≤ E2

δ = 7 S(E1) = 0.0026, S(E2) = 0.0030, S(E3) = 0.0029, S(E4) = 0.0029, S(E5) = 0.0021 E5 ≤ E4 ≤ E1 ≤ E3 ≤ E2

δ = 10 S(E1) = 0.0031, S(E2) = 0.0036, S(E3) = 0.0036, S(E4) = 0.0035, S(E5) = 0.0024 E5 ≤ E1 ≤ E3 ≤ E4 ≤ E2

δ = 15 S(E1) = −0.004, S(E2) = −0.003, S(E3) = −0.004, S(E4) = −0.005, S(E5) = −0.008 E5 ≤ E4 ≤ E3 ≤ E1 ≤ E2

δ = 20 S(E1) = −0.004, S(E2) = −0.004, S(E3) = −0.005
, S(E4) = −0.006, S(E5) = −0.009

E5 ≤ E4 ≤ E3 ≤ E1 ≤ E2

Table 9 Effect of the parameter q for δ = 1

Value of q Score values of the methods Rankings of the methods

q = 2 S(E1) = 0.0082, S(E2) = 0.0088, S(E3) = 0.0084, S(E4) = 0.0078, S(E5) = 0.0059 E5 ≤ E4 ≤ E1 ≤ E3 ≤ E2

q = 3 S(E1) = −0.0021, S(E2) = −0.0021, S(E3) = −0.0025, S(E4) = −0.003, S(E5) = −0.0039 E5 ≤ E4 ≤ E3 ≤ E1 ≤ E2

q = 4 S(E1) = −0.00058, S(E2) = −0.00053, S(E3) = −0.00077, S(E4) = −0.00093, S(E5) = −0.00095 E5 ≤ E4 ≤ E3 ≤ E1 ≤ E2

q = 5 S(E1) = −0.00020, S(E2) = −0.000015, S(E3) = −0.00019, S(E4) = −0.00024, S(E5) = −0.00036 E5 ≤ E4 ≤ E1 ≤ E3 ≤ E2

Table 10 Comparison of the proposed method with existing approaches

Methods Score values of the methods Rankings of the methods

Garg and Rani [40] S(E1) = 0.231, S(E2) = 0.234, S(E3) = 0.232, S(E4) = 0.229, S(E5) = 0.222 E5 ≤ E4 ≤ E1 ≤ E3 ≤ E2

Rani and Garg [42] S(E1) = 0.251, S(E2) = 0.254, S(E3) = 0.252, S(E4) = 0.249, S(E5) = 0.243 E5 ≤ E4 ≤ E1 ≤ E3 ≤ E2

Proposed Method for CPFS S(E1) = 0.0082, S(E2) = 0.0088, S(E3) = 0.0084, S(E4) = 0.0078, S(E5) = 0.0059 E5 ≤ E4 ≤ E1 ≤ E3 ≤ E2

Proposed methods for Cq-ROFS S(E1) = −0.0021, S(E2) = −0.0021, S(E3) = −0.0025, S(E4) = −0.003, S(E5) = −0.0039 E5 ≤ E4 ≤ E3 ≤ E1 ≤ E2

Fig. 2 Graphical representation
of Table 10

Geometric comparison of the presented work with existing works
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As indicated by Table 10 and Fig. 2, we obtained the same
ranking results for the four methods. This validates the pro-
posed method.

Furthermore, the geometric interpretations of the range
of Cq-ROFSs and the existing methods are shown in Fig. 3,
which represents the unit disc in a complex plane.

The advantages of the proposed method are explained
below.

First numerical example for comparison

An example is taken from the area of the investment, where
the investor wishes to invest money in a stranded company.
After a careful analysis, we consider the five possible alter-
natives represented by A = {x1, x2, . . . , x5}, as shown in
Table 2. The alternatives are evaluated using four attributes
represented by G = {G1, G2, . . . , G4}, as shown in Table
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Fig. 3 Range for Cq-ROFS and the existing approaches

3. The weight vector for the given attributes is given as
ω = {0.25,0.15,0.4,0.2}, and the normalized complex q-rung
orthopair fuzzy decision matrix is presented in Table 11.

Using Eqs. (20) and (7) for δ = 20, then the score values
of the alternatives are obtained, as shown in Table 12 and
Fig. 4.

Then, all the alternatives are ranked as follows, and the
best one is selected.

E5 ≤ E4 ≤ E3 ≤ E2 ≤ E1

Hence, the best alternative is E1, which represents the
furniture company.

The proposed method is compared with existing
approaches in Table 13 and Fig. 5.

Figure 5 shows five alternatives represented by Ei

(i = 1,2, 3,4, 5). Because the two existing methods based
on the CIFS [40] and [42] could not solve this problem, they
are not included in Fig. 5. In this example, we select the
complex Pythagorean fuzzy information form.

Therefore, this example demonstrates the advantages of
the proposed method.

Table 12 Score values of the proposed methods

Score values of the alternatives

S(x1) = S(r1) = S(E1) = 0.099

S(x2) = S(r2) = S(E2) = 0.096

S(x3) = S(r3) = S(E3) = 0.094

S(x4) = S(r4) = S(E4) = 0.093

S(x5) = S(r5) = S(E5) = 0.089

Second numerical example for comparison

An example is taken from the area of the investment, where
the investor wishes to invest money in a stranded company.
After a careful analysis, we consider the five possible alter-
natives represented by A = {x1, x2, . . . , x5}, as shown
in Table 2, which are evaluated using four attributes rep-
resented by G = {G1, G2, . . . , G4}, as shown in Table
3. The weight vector for the given attributes is given as
ω = {0.25,0.15,0.4,0.2}, and the normalized complex q-rung
orthopair fuzzy decision matrix is presented in Table 14.

Using Eqs. (20) and (7) for δ = 20, the score values of the
alternatives are obtained, as shown in Table 15 and Fig. 6.

Then, all the alternatives are ranked as follows, and the
best one is selected.

E1 ≤ E3 ≤ E4 ≤ E2 ≤ E5

Hence, the best alternative is E5, which represents the
furniture company.

The proposed method is compared with existing
approaches in Table 16 and Fig. 7.

Figure 7 shows five alternatives represented by Ei

(i = 1,2, 3,4, 5), as the methods based on the CIFS and
CPFS cannot solve this problem. In Fig. 7, only the pro-
posed method is shown, indicating that the proposed method
is more general than the other methods.

Defense budget

Next, we discuss the defense budget of Pakistan. Informa-
tion regarding the defense budget, national saving scheme,

Table 11 Normalized complex q-rung orthopair fuzzy decision matrix

Symbols G1 G2 G3 G4

x1
(
0.7ei2π(0.65), 0.22ei2π(0.31)

) (
0.61ei2π(0.7), 0.33ei2π(0.3)

) (
0.8ei2π(0.94), 0.23ei2π(0.11)

) (
0.84ei2π(0.7), 0.19ei2π(0.33)

)

x2
(
0.71ei2π(0.66), 0.24ei2π(0.31)

) (
0.62ei2π(0.71), 0.34ei2π(0.31)

) (
0.81ei2π(0.93), 0.24ei2π(0.12)

) (
0.83ei2π(0.72), 0.20ei2π(0.23)

)

x3
(
0.72ei2π(0.67), 0.25ei2π(0.33)

) (
0.63ei2π(0.72), 0.35ei2π(0.32)

) (
0.82ei2π(0.92), 0.25ei2π(0.13)

) (
0.82ei2π(0.73), 0.21ei2π(0.24)

)

x4
(
0.73ei2π(0.68), 0.27ei2π(0.34)

) (
0.64ei2π(0.73), 0.36ei2π(0.33)

) (
0.83ei2π(0.91), 0.26ei2π(0.14)

) (
0.81ei2π(0.74), 0.22ei2π(0.25)

)

x5
(
0.74ei2π(0.69), 0.35ei2π(0.35)

) (
0.65ei2π(0.74), 0.37ei2π(0.34)

) (
0.84ei2π(0.9), 0.27ei2π(0.15)

) (
0.8ei2π(0.76), 0.23ei2π(0.26)

)

123



Complex & Intelligent Systems (2021) 7:511–538 525

Fig. 4 Graphical representation
of Table 12

The score values got by the GCq-ROFEOWA
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Table 13 Comparison of the proposed method with existing approaches

Methods Score values of the methods Rankings of the methods

Garg and Rani [40] Cannot be Calculated Cannot be Calculated

Rani and Garg [42] Cannot be Calculated Cannot be Calculated

Proposed Method for CPFS S(E1) = 0.069, S(E2) = 0.068, S(E3) = 0.066
, S(E4) = 0.064, S(E5) = 0.061

E5 ≤ E4 ≤ E3 ≤ E2 ≤ E1

Proposed methods for Cq-ROFS S(E1) = 0.099, S(E2) = 0.096, S(E3) = 0.094
, S(E4) = 0.093, S(E5) = 0.089

E5 ≤ E4 ≤ E3 ≤ E2 ≤ E1
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Fig. 5 Graphical representation of Table 13

deposit and reserves, and development expenditure and rev-
enue account for this country is presented below. According
to this information, we discuss the strength and capability of
armies or which one is powerful militaries.

1. The total defense budget of the Pakistan army removes
the lion’s share:

Pakistan army budget: 0.476%;
Pakistan air force budget: 0.21%;
Pakistan navy budget: 0.11%;
Pakistan’s inter-service budget: 0.20%.

2. The total national saving scheme budget of Pakistan
removes the lion’s share:

Pakistan investment deposit account budget: 0.8%;
Pakistan’s other accounts budget: 0.5%;
Pakistan total receipts budget: 0.17%;
Pakistan net receipts budget: 0.13%.

Table 14 Normalized complex q-rung orthopair fuzzy decision matrix

Symbols G1 G2 G3 G4

x1
(
0.7ei2π(0.65), 0.61ei2π(0.64)

) (
0.61ei2π(0.7), 0.51ei2π(0.69)

) (
0.8ei2π(0.94), 0.79ei2π(0.9)

) (
0.84ei2π(0.7), 0.19ei2π(0.33)

)

x2
(
0.71ei2π(0.66), 0.62ei2π(0.65)

) (
0.62ei2π(0.71), 0.52ei2π(0.7)

) (
0.81ei2π(0.93), 0.8ei2π(0.91)

) (
0.83ei2π(0.72), 0.20ei2π(0.23)

)

x3
(
0.72ei2π(0.67), 0.63ei2π(0.66)

) (
0.63ei2π(0.72), 0.53ei2π(0.71)

) (
0.82ei2π(0.92), 0.81ei2π(0.92)

) (
0.82ei2π(0.73), 0.21ei2π(0.24)

)

x4
(
0.73ei2π(0.68), 0.64ei2π(0.67)

) (
0.64ei2π(0.73), 0.54ei2π(0.72)

) (
0.83ei2π(0.91), 0.82ei2π(0.89)

) (
0.81ei2π(0.74), 0.22ei2π(0.25)

)

x5
(
0.74ei2π(0.69), 0.65ei2π(0.68)

) (
0.65ei2π(0.74), 0.55ei2π(073)

) (
0.84ei2π(0.9), 0.83ei2π(0.79)

) (
0.8ei2π(0.76), 0.23ei2π(0.26)

)
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Table 15 Score values of the proposed method

Score values of the alternatives

S(x1) = S(r1) = S(E1) = −0.00357

S(x2) = S(r2) = S(E2) = −0.00234

S(x3) = S(r3) = S(E3) = −0.00287

S(x4) = S(r4) = S(E4) = −0.00283

S(x5) = S(r5) = S(E5) = −0.00224

3. The total deposit and reserves budget of Pakistan removes
the lion’s share:

Pakistan zakat collection account budget: 0.25%;
Pakistan civil and criminal deposit amount budget:
0.16%;
Pakistan’s personal deposit budget: 0.11%;
Pakistan’s post office welfare found budget: 0.1%.

4. The total development expenditure and revenue account
budget of Pakistan take away the lion’s share:

Pakistan health budget: 0.27%;
Pakistan culture and religion budget: 0.15%;
Pakistan’s social protection budget: 0.17%;
Pakistan’s education budget: 0.18%.

Using Eq. (11), we obtain the following values: the imag-
inary part and the non-membership values are considered as

zero, with weight vectors (0.2,0.2,0.2,0.3). Then, we have
the following:

Defense budget of Pakistan: 0.249.
National saving scheme of Pakistan: 0.4
Deposit and reserves of Pakistan: 0.155.
Development expenditure and revenue account for Pak-
istan: 0.1925.
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Fig. 6 The graphical
representation of the Table 15

The score values got by the GCq-ROFEOWA

1 2 3 4 5
Alternatives

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

S
co

re
 v

al
u
es

10-3

-0.0036

-0.0023

-0.0029 -0.0028

-0.0022

Table 16 Comparison of the proposed method with existing approaches

Methods Score values of the methods Rankings of the methods

Garg and Rani [40] Cannot be calculated Cannot be calculated

Rani and Garg [42] Cannot be calculated Cannot be calculated

Proposed Method for CPFS Cannot be calculated Cannot be calculated

Proposed methods for Cq-ROFS S(E1) = −0.00357, S(E2) = −0.00234, S(E3) = −0.00287
, S(E4) = −0.00283, S(E5) = −0.00224

E1 ≤ E3 ≤ E4 ≤ E2 ≤ E5
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The ranking values of the foregoing results clearly indi-
cate that the best alternative is the national saving scheme of
Pakistan, with a score of 0.4. Similarly, we can analyze the
budgets of any country.

The key advantages of the proposed approach are as fol-
lows:

1. The complexq-rungorthopair fuzzyEinstein aggregation
operators generalize the existing Einstein aggregation
operators.

2. The complexq-rungorthopair fuzzyEinstein aggregation
operators take into account the refusal grade compared
with complex intuitionistic and complex Pythagorean
fuzzy Einstein aggregation operators.

3. The proposed method based on the proposed operators is
more general than some existing methods, as the param-
eters δandq can be changed.

The Cq-ROFS contains two complex-valued functions
called the complex-valued membership and complex-
valued non-membership grades. Because Cq-ROFN E =(
TEei2πWTE , NEe

i2πWNE

)
satisfies the conditions 0 ≤

T q
E

+N q
E

≤ 1, 0 ≤ Wq
TE +Wq

NE
≤ 1, andq ≥ 1, the CIFSs

and CPFSs are clearly special cases of the proposed Cq-
ROFS.By setting q = 1, the proposedCq-ROFS is converted
into a CIFS, and by setting q = 2, the proposed Cq-ROFS is
converted into a CPFS. Moreover, the foregoing discussions
indicate that the proposed method is more general and accu-
rate than some existing approaches. The proposed method is
useful for designing intelligent systems in real applications,
such as image recognition.

Conclusion

This paper proposes the Cq-ROFS and its operational laws.
An MADM method based on complex q-rung orthopair
fuzzy information was investigated. To aggregate the Cq-
ROFNs, we extended the EOs to Cq-ROFSs and proposed
a family of complex q-rung orthopair fuzzy Einstein aver-
aging operators, such as the Cq-ROFEWA operator, the
Cq-ROFEOWA operator, the GCq-ROFEWA operator, and
the GCq-ROFEOWA operator. Desirable properties and
special cases of the introduced operators were discussed.
Additionally, we developed a novel approach for MADM
in the complex q-rung orthopair fuzzy context based on the
proposed operators. Numerical examples were presented to
demonstrate the effectiveness and superiority of the proposed
method via comparison with existing methods. The main
contributions of this study are as follows:

1. The concept of the Cq-ROFS was proposed in the form
of polar coordinates belonging to a unit disc in a complex
plane.

2. Complex q-rung orthopair fuzzyEinstein averaging oper-
ators were introduced, such as the Cq-ROFEWA opera-
tor, Cq-ROFEOWA operator, GCq-ROFEWA operator,
and GCq-ROFEOWA operator. Desirable properties and
special cases of the introduced operators were discussed.

3. AnMADMmethod based on the proposed operators was
developed, which is more general than some existing
methods, as the parameters δ and q can be changed.

In the future, we will extend the present work to con-
sider (1) aggregation operators for different FSs, e.g., the
linguistic neutrosophic set [44], probabilistic linguistic infor-
mation [45], linguistic D number [46], interval type-2 FS
[47], T-spherical FS [48, 49], and others [50], and (2)MADM
methods [51–59], which will be more flexible for future
directs.
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Appendix

Proof 1 We know that 0 ≤ T q
E

+ N q
E

≤ 1, 0 ≤ Wq
TE +

Wq
NE

≤ 1, then 0 ≤ T q
E

≤ 1 − N q
E
, 0 ≤ Wq

TE ≤ 1 − Wq
NE

and 0 ≤ N q
E

≤ 1 − T q
E
, 0 ≤ Wq

NE
≤ 1 − Wq

TE implies that

0 ≤ (
N q

E

)δ ≤ (
1 − T q

E

)δ
, 0 ≤

(
Wq

NE

)δ ≤
(
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TE

)δ
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1
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⎠
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1 − T q

1

)δ

) 1
q
⎞

⎠

q

+

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝

(2)
1
q N δ

1
((
2 − N q

1

)δ + (
N q

1

)δ
) 1

q

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠

q

≤ 1

⎛

⎜⎜
⎝

⎛

⎜
⎝

(
1 + Wq

T1

)δ −
(
1 − Wq

T1

)δ

(
1 + Wq

T1

)δ +
(
1 − Wq

T1

)δ

⎞

⎟
⎠

1
q
⎞

⎟⎟
⎠

q

+

⎛

⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜
⎝

(2)
1
q Wδ

N1
((

2 − Wq
N1

)δ +
(
Wq

N1

)δ
) 1

q

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎠

q

≤ 1

Moreover,

⎛

⎝
((

1 + T q
1

)δ − (
1 − T q

1

)δ

(
1 + T q

1

)δ + (
1 − T q

1

)δ

) 1
q
⎞

⎠

q

+

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝

(2)
1
q N δ

1
((
2 − N q

1

)δ + (
N q

1

)δ
) 1

q

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠

q

= 0

⎛

⎜⎜
⎝

⎛

⎜
⎝

(
1 + Wq

T1

)δ −
(
1 − Wq

T1

)δ

(
1 + Wq

T1

)δ +
(
1 − Wq

T1

)δ

⎞

⎟
⎠

1
q
⎞

⎟⎟
⎠

q

+

⎛

⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜
⎝

(2)
1
q Wδ

N1
((

2 − Wq
N1

)δ +
(
Wq

N1

)δ
) 1

q

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎠

q

= 0

If and only if T1 = N1 = WT1 = WN1 = 0.

⎛

⎝
((

1 + T q
1

)δ − (
1 − T q

1

)δ

(
1 + T q

1

)δ + (
1 − T q

1

)δ

) 1
q
⎞

⎠

q

+

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝

(2)
1
q N δ

1
((
2 − N q

1

)δ + (
N q

1

)δ
) 1

q

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠

q

= 1

⎛

⎜⎜
⎝

⎛

⎜
⎝

(
1 + Wq

T1

)δ −
(
1 − Wq

T1

)δ

(
1 + Wq

T1

)δ +
(
1 − Wq

T1

)δ

⎞

⎟
⎠

1
q
⎞

⎟⎟
⎠

q

+

⎛

⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜
⎝

(2)
1
q Wδ

N1
((

2 − Wq
N1

)δ +
(
Wq

N1

)δ
) 1

q

⎞

⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎠

q

= 1

If and only if T q
1 + N q

1 = 1, Wq
T1 + Wq

N1
= 1. Thus,

δE1 = E4 is also Cq-ROFNs.

Proof 2 We examine the following parts (1,3,5), and the oth-
ers is similar with them.

1. Let us consider the part (1), we have
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E1 ⊕ E2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

(
T q
1 + T q

2

1 + T q
1 T q

2

) 1
q

e
i2π

(
Wq

T1
+Wq

T2
1+Wq

T1
Wq

T2

) 1
q

,

⎛

⎝ N1N2
(
1 + (

1 − N q
1

)(
1 − N q

2

)) 1
q

⎞

⎠e

i2π

⎛

⎜⎜
⎝

WN1
WN2

(
1+

(
1−Wq

N1

)(
1−Wq

N2

)) 1
q

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

(
T q
2 + T q

1

1 + T q
2 T q

1

) 1
q

e
i2π

(
Wq

T2
+Wq

T1
1+Wq

T2
Wq

T1

) 1
q

,

⎛

⎝ N2N1
(
1 + (

1 − N q
2

)(
1 − N q

1

)) 1
q

⎞

⎠e

i2π

⎛

⎜⎜
⎝

WN2
WN1

(
1+

(
1−Wq

N2

)(
1−Wq

N1

)) 1
q

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

= E2 ⊕ E1

1. The proof of part (2) is straightforward.
2. Let us consider the part (3), we have

E1 ⊕ E2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

(
T q
1 + T q

2

1 + T q
1 T q

2

) 1
q

e
i2π

(
Wq

T1
+Wq

T2
1+Wq

T1
Wq

T2

) 1
q

,

⎛

⎝ N1N2
(
1 + (

1 − N q
1

)(
1 − N q

2

)) 1
q

⎞

⎠e

i2π

⎛

⎜⎜
⎝

WN1
WN2

(
1+

(
1−Wq

N1

)(
1−Wq

N2

)) 1
q

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

Is equivalent to

E1 ⊕ E2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

((
1+T q

1

)(
1+T q

1

)−(
1−T q

2

)(
1−T q

2

)
(
1+T q

1

)(
1+T q

1

)+(
1−T q

2

)(
1−T q

2

)

) 1
q

e

i2π

⎛

⎝

(
1+Wq

T1

)(
1+Wq

T1

)
−

(
1−Wq

T2

)(
1−Wq

T2

)

(
1+Wq

T1

)(
1+Wq

T1

)
+

(
1−Wq

T2

)(
1−Wq

T2

)

⎞

⎠

1
q

,

(
(2)

1
q N1N2

((
2−N q

1

)(
2−N q

2

)+N q
1 N

q
2

) 1
q

)

e

i2π

⎛

⎜⎜
⎝

(2)
1
q WN1

WN2
((

2−Wq
N1

)(
2−Wq

N2

)
+Wq

N1
Wq

N2

) 1
q

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We will consider for real part a = (
1 + T q

1

)(
1 + T q

1

)
,

b = (
1 − T q

2

)(
1 − T q

2

)
, c = N q

1 N
q
2 , d = (

2 − N q
1

)

(
2 − N q

2

)
and similarly for imaginary part a′ =

(
1 + Wq

T1

)

(
1 + Wq

T1

)
, b′ =

(
1 − Wq

T2

)(
1 − Wq

T2

)
, c′ = Wq

N1
Wq

N2
,

d ′ =
(
2 − Wq

N1

)(
2 − Wq

N2

)
, then

E1 ⊕ E2 =

⎛

⎜⎜⎜⎜⎜
⎝

(
a − b

a + b

) 1
q

e
i2π

(
a
′ −b

′
a
′ +b

′
) 1

q

,
(2c)

1
q

(d + c)
1
q

e

i2π

(
2c

′ ) 1
q

(
d
′ +c

′ ) 1
q

⎞

⎟⎟⎟⎟⎟
⎠
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By Einstein operational laws, we get

δ(E1 ⊕ E2) = δ

⎛

⎜⎜
⎝

(
a − b

a + b

) 1
q

e
i2π

(
a′−b′
a′+b′

) 1
q

,
(2c)

1
q

(d + c)
1
q

e
i2π (2c′)

1
q

(d′+c′)
1
q

⎞

⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

((
1+ a−b

a+b

)δ−
(
1− a−b

a+b

)δ

(
1+ a−b

a+b

)δ+
(
1− a−b

a+b

)δ

) 1
q

e

i2π

⎛

⎜
⎝

(
1+ a′−b′

a′+b′
)δ

−
(
1− a′−b′

a′+b′
)δ

(
1+ a′−b′

a′+b′
)δ+

(
1− a′−b′

a′+b′
)δ

⎞

⎟
⎠

1
q

,

(2)
1
q

(
(2c)

1
q

(d+c)
1
q

)δ

((
2− 2c

d+c

)δ+
(

2c
d+c

)δ
) 1

q
e

i2π

(2)
1
q

⎛

⎜
⎝

(2c′)
1
q

(d′+c′)
1
q

⎞

⎟
⎠

δ

((
2− 2c′

d′+c′
)δ+

(
2c′

d′+c′
)δ

) 1
q

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

(
aδ−bδ

aδ+bδ

) 1
q
e
i2π

(
a′δ−b′δ
a′δ+b′δ

) 1
q

,

(
2cδ

) 1
q

(dδ+cδ)
1
q
e

i2π

(
2c′δ

) 1
q

(
d′δ+c′δ

) 1
q

⎞

⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

((
1+T q

1

)δ(
1+T q

1

)δ−(
1−T q

2

)δ(
1−T q

2

)δ
(
1+T q

1

)δ(
1+T q

1

)δ+(
1−T q

2

)δ(
1−T q

2

)δ

) 1
q

e

i2π

⎛

⎜
⎝

(
1+Wq

T1

)δ(
1+Wq

T1

)δ
−

(
1−Wq

T2

)δ(
1−Wq

T2

)δ

(
1+Wq

T1

)δ(
1+Wq

T1

)δ
+

(
1−Wq

T2

)δ(
1−Wq

T2

)δ

⎞

⎟
⎠

1
q

,

⎛

⎝ (2)
1
q N δ

1N δ
2

((
2−N q

1

)δ(
2−N q

2

)δ+N q
1

δN q
2

δ
) 1
q

⎞

⎠e

i2π

⎛

⎜⎜⎜
⎝

(2)
1
q Wδ

N1
Wδ

N2
((

2−Wq
N1

)δ(
2−Wq

N2

)δ
+Wq

N1

δWq
N2

δ
) 1
q

⎞

⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

In other hand, we examine that

δE1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

((
1 + T q

1

)δ − (
1 − T q

1

)δ

(
1 + T q

1

)δ + (
1 − T q

1

)δ

) 1
q

e

i2π

⎛

⎜
⎝

(
1+Wq

T1

)δ
−

(
1−Wq

T1

)δ

(
1+Wq

T1

)δ
+

(
1−Wq

T1

)δ

⎞

⎟
⎠

1
q

,

⎛

⎜⎜
⎝

(2)
1
q N δ

1
((
2 − N q

1

)δ + (
N q

1

)δ
) 1

q

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜⎜
⎝

(2)
1
q Wδ

N1
((

2−Wq
N1

)δ
+

(
Wq

N1

)δ
) 1
q

⎞

⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜
⎝

(
a1 − b1
a1 + b1

) 1
q

e
i2π

(
a′
1−b′1

a′
1+b′1

) 1
q

,

(
(2c1)

1
q

(d1 + c1)
1
q

)

e
i2π

⎛

⎝ (2c′1)
1
q

(d′
1+c′1)

1
q

⎞

⎠

⎞

⎟⎟
⎠
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and

δE2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

((
1 + T q

2

)δ − (
1 − T q

2

)δ

(
1 + T q

2

)δ + (
1 − T q

2

)δ

) 1
q

e

i2π

⎛

⎜
⎝

(
1+Wq

T2

)δ
−

(
1−Wq

T2

)δ

(
1+Wq

T2

)δ
+

(
1−Wq

T2

)δ

⎞

⎟
⎠

1
q

,

⎛

⎜⎜
⎝

(2)
1
q N δ

2
((
2 − N q

2

)δ + (
N q

2

)δ
) 1

q

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜⎜
⎝

(2)
1
q Wδ

N2
((

2−Wq
N2

)δ
+

(
Wq

N2

)δ
) 1
q

⎞

⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜
⎝

(
a2 − b2
a2 + b2

) 1
q

e
i2π

(
a′
2−b′2

a′
2+b′2

) 1
q

,

(
(2c2)

1
q

(d2 + c2)
1
q

)

e
i2π

⎛

⎝ (2c′2)
1
q

(d′
2+c′2)

1
q

⎞

⎠

⎞

⎟⎟
⎠

where a1 = (
1 + T q

1

)δ
, b1 = (

1 − T q
1

)δ
, c1 = (

N q
1

)δ
,

d1 = (
2 − N q

1

)δ
, a2 = (

1 + T q
2

)δ
, b2 = (

1 − T q
2

)δ
,

c2 = (
N q

2

)δ
, d2 = (

2 − N q
2

)δ
, a′

1 =
(
1 + Wq

T1

)δ

,

b′
1 =

(
1 − Wq

T1

)δ

, c′
1 =

(
Wq

N1

)δ

, d ′
1 =

(
2 − Wq

N1

)δ

,

a′
2 =

(
1 + Wq

T2

)δ

, b′
2 =

(
1 − Wq

T2

)δ
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2 =

(
Wq

N2

)δ

,

d ′
2 =

(
2 − Wq

N2

)δ

.

δE1 ⊕ δE2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(
a1−b1
a1+b1

) 1
q
e
i2π

(
a
′
1−b

′
1

a
′
1+b

′
1

) 1
q

,

(
(2c1)

1
q

(d1+c1)
1
q

)
e

i2π

⎛

⎜⎜
⎝

(
2c

′
1

) 1
q

(
d
′
1+c

′
1

) 1
q

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊕

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(
a2−b2
a2+b2

) 1
q
e
i2π

(
a
′
2−b

′
2

a
′
2+b

′
2

) 1
q

,

(
(2c2)

1
q

(d2+c2)
1
q

)
e

i2π

⎛

⎜⎜
⎝

(
2c

′
2

) 1
q

(
d
′
2+c

′
2

) 1
q

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(
a1−b1
a1+b1

+ a2−b2
a2+b2

1+
(
a1−b1
a1+b1

)(
a2−b2
a2+b2

)

) 1
q

e

i2π

⎛

⎜⎜⎜
⎝

a
′
1−b

′
1

a
′
1+b

′
1

+ a
′
2−b

′
2
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′
2+b

′
2
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⎛
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1−b

′
1

a
′
1+b

′
1

⎞

⎠

⎛
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′
2−b

′
2

a
′
2+b

′
2

⎞

⎠

⎞

⎟⎟⎟
⎠

1
q

,

⎛

⎝
2
(

c1c2
(d1+c1)(d2+c2)

) 1
q

(
1+

(
1− 2c1

d1+c1

)(
1− 2c2

d2+c2

)) 1
q

⎞

⎠e

i2π

⎛

⎜⎜⎜⎜⎜
⎝

2

⎛

⎝ c
′
1c

′
2(

d
′
1+c

′
1

)(
d
′
2+c

′
2

)

⎞

⎠

1
q

⎛

⎝1+
⎛

⎝1− 2c
′
1

d
′
1+c

′
1

⎞

⎠

⎛

⎝1− 2c
′
2

d
′
2+c

′
2

⎞

⎠

⎞

⎠

1
q

⎞

⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎝

(
a1a2−b1b2
a1a2+b1b2

) 1
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e
i2π

(
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′
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′
2
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′
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′
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′
1b

′
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) 1
q

,

(
2c1c2

(d1d2+c1c2)

) 1
q
e
i2π

(
2c

′
1c

′
2(

d
′
1d

′
2+c

′
1c

′
2

)

) 1
q

⎞

⎟⎟⎟⎟⎟
⎠
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Hence δ(E1 ⊕ E2) = δE1 ⊕ δE2.

3. The proof of part (4) is straightforward.
4. Let us consider the part (5), we have
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= (δ1 + δ2)E1.

Hence δ1E1 ⊕ δ2E1 = (δ1 + δ2)E1.

5. The proof of part (6) is straightforward.

Proof 4 Using the process of mathematical induction to
prove the Eq. (11), if n = 2, then.

Cq-ROFEWA(E1, E2, . . . , En) = ω1E1 ⊕ ω2E2

By Theorem 1, the result of ω1E1 ⊕ ω2E2 is also Cq-
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For n = 2, the result is kept. We suppose that it is true for
n = k, then the Eq. (11), we have
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We will prove for n = k + 1, such that
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For n = k + 1, the result is also kept. Hence the Eq. (11),
is kept for all n.

Proof 5 Let Cq-ROFEWA(E1, E2, . . . , En) =(
T q
i e

i2πWq
Ti , N q

i e
i2πWq

Ni

)
= Eq

i and Cq-ROFWA

(E1, E2, . . . , En) =
(
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)
= Ei .

Firstly, we check for real part of complex-valued member-
ship grades, such that
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At the same time, it is also kept for imaginary part of
complex-valued membership grade. Next, we check for real
part for non-membership grade, we get
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At the same time, it is also kept for imaginary part
of complex-valued non-membership grade. Then the score
value of the above, such that
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When S
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< S(Ei ), then by definition of score func-

tion, we have
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When S
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) = S(Ei ), then by definition of accuracy
function, we have
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Cq-ROFEWA(E1, E2, . . . , En) = Cq-ROFWA(E1, E2, . . . , En)

therefore
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Proof (Property 1: Idempotency)
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Similarly, when we consider g(y) = 2−y
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< 0, then the function is decreasing, so the
followings are kept.

Ni .min ≤ (2)
1
q

∏n
i=1N

ωi
i

(∏n
i=1

(
2 − N q

i

)ωi + ∏n
i=1

(
N q

i

)ωi
) 1
q

≤ Ni .max

It is also kept for the imaginary part of non-membership
grade, such that

WNi .min ≤ (2)
1
q

∏n
i=1 W

ωi
Ni

(∏n
i=1

(
2 − Wq

Ni

)ωi + ∏n
i=1

(
Wq

Ni

)ωi
) 1

q

≤ WNi .max

From the above discussion, we get
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3. The proof of property 3 is similar to property 2.
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