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Abstract
The synchronization-inspired clustering algorithm (Sync) is a novel and outstanding clustering algorithm,which can accurately
cluster datasets with any shape, density and distribution. However, the high-dimensional dataset with high dimensionality,
high noise, and high redundancy brings some new challenges for the synchronization-inspired clustering algorithm, resulting
in a significant increase in clustering time and a decrease in clustering accuracy. To address these challenges, an enhanced
synchronization-inspired clustering algorithm, namely SyncHigh, is developed in this paper to quickly and accurately cluster
the high-dimensional datasets. First, a PCA-based (Principal Component Analysis) dimension purification strategy is designed
to find the principal components in all attributes. Second, a density-based data merge strategy is constructed to reduce the
number of objects participating in the synchronization-inspired clustering algorithm, thereby speeding up clustering time.
Third, the KuramotoModel is enhanced to deal with mass differences between objects caused by the density-based data merge
strategy. Finally, extensive experimental results on synthetic and real-world datasets show the effectiveness and efficiency of
our SyncHigh algorithm.
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Introduction

Clustering uses an unsupervised way to uncover the hidden
rules and patterns of human society; it is an indispens-
able mean to mine the complex real-world data [1]. Over
the past few decades, a large number of excellent cluster-
ing algorithms have been proposed and expanded, and have
demonstrated their power in various fields, such as trans-
portation, meteorology, biology, and so on [2]. However,
with the advent of the era of big data, complex data in
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various applications have hundreds of thousands of dimen-
sions, and are characterized by high noise, irregularity and
imbalance [3]. In addition, the data dimension is getting
higher and higher, showing exponential growth. Faced with
these new features, traditional clustering algorithms perform
poorly and are unsatisfactory. The main reasons are as fol-
lows: (1) complex data are in a high-dimensional space and
are difficult to process; (2) there are a lot of redundancy
and noise attributes in high-dimensional data; (3) the dis-
tribution of data is uneven, and the datasets present various
irregular shapes; and (4) a lot of outliers are hidden in high-
dimensional data.

To complete the high-dimensional data clustering, exist-
ing methods are mainly divided into the following two
categories. The first category is subspace clustering, which
first sees each dimension as a subspace to perform local
clustering, and then integrates all local clustering results in
different subspaces to obtain the final result based on the
local correlation. The core of this algorithm is to find the
appropriate local correlation between different subspaces.
For example, Agrawal et al. [4] weighed each dimension to
determine the correlation of different subspaces; Chen et al.
[5] further divided high-dimensional attributes into differ-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-020-00191-y&domain=pdf
http://orcid.org/0000-0002-9952-5477


204 Complex & Intelligent Systems (2021) 7:203–223

Fig. 1 Illustration of
density-based data merge
strategy

(a) Synthetic dataset (b) Density-based merging data
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ent feature groups, and set different weights on the feature
groups to determine the relevance of different subspaces;
Yan and Lakshmi used multi-view [6] and rough set [7],
respectively, to measure the local correlation between differ-
ent subspaces. However, this algorithm cannot find outliers
well and is also sensitive to data distribution. The second
category is projected-based clustering, which first projects
high-dimensional data into low-dimensional space, and then
uses a traditional clustering algorithm to perform cluster-
ing in low-dimensional space. For example, PCA(Principal
Component Analysis) + K-means [8], LLE(Locally Linear
Embedding) + SpectralClustering [9], T-SNE(t-distributed
stochastic neighbor embedding) + DbScan [10]. Generally
speaking, PCA, LLE, Fisher, LDA (Latent Dirichlet Alloca-
tion), SNE, T-SNE are widely used dimensionality reduction
techniques. Among them, the accuracy of the PCA algo-
rithm is slightly worse than the LLE and T-SNE algorithms,
but the time efficiency is the best. The accuracy of the
LLE and T-SNE algorithms is the best, but the time com-
plexity is very high. Similarly, Kmeans, SpectralClustering,
DBSCAN(Density-BasedSpatialClustering ofApplications
with Noise), and DynamicClustering are themost commonly
used data clustering algorithms. Among them, Kmeans and
SpectralClustering have better time efficiency, but are sen-
sitive to noise and data distribution. The robustness and
clustering accuracy of DBSCAN and DynamicClustering
algorithms are better, but the time complexity is higher.
In summary, under the big data environment, the existing
high-dimensional data clustering algorithm has the follow-
ing problems: (1) the time complexity is high, which cannot
meet the real-time requirements of big data applications; (2)
the clustering results of the datasets with irregular shapes and
uneven distributions are not satisfactory; and (3) the outliers
in the data set cannot be well identified.

Based on the above challenges, the motivation of this
paper is to find an efficient and accurate high-dimensional
data clustering algorithm, which can quickly find cluster-
ing results and outliers from the high-dimensional datasets
with different shapes and different distributions under the
big data environment. According to the above motiva-
tion, synchronization-inspired clustering algorithm (Sync)
[11] is chosen as the basic clustering algorithm after care-
ful consideration. Because the Sync algorithm is a novel
dynamic clustering algorithm, it can accurately cluster dif-

ferent datasets with arbitrary shape, density and distribution
[12]. However, high time complexity and high-dimensional
attributes with high noise and high redundancy are new chal-
lenges for Sync algorithm to cluster high-dimensional data.
To address these challenges, this paper proposes an enhanced
synchronization-inspired clustering for high-dimensional
data, simply called SyncHigh. First, for removing the noise
and redundancy of high-dimensional attributes, PCAmethod
is used as preprocessing to find the core attributes and speed
up the dimensionality reduction. Second, for further decreas-
ing the time complexity, the idea of density is introduced into
the SyncHigh algorithm, and a density-based data merge
strategy is proposed to reduce the number of data objects
participating in the synchronization-inspired clustering algo-
rithm. Figure 1 shows the basic idea of density-based data
merge strategy. Figure 1a depicts the distribution of a syn-
thetic dataset with 2 clusters, where points with same color
belong to the same cluster. It is not difficult to find that there
are multiple dense regions in the dataset, as shown by the
red solid circle. Each dense region contains a large number
of data points, and these data points must belong to the same
cluster. That is to say, synchronization-inspired clustering
algorithm does not need to spend any time to determine the
class labels of these dense data, they can be merged into a
“big” data object with bigger mass, as shown by the red big
point in Fig. 1b. After merging these regions, the amount of
data participating in the synchronization-inspired clustering
algorithmwill be greatly reduced, the number of data objects
participating in the clustering processwill be greatly reduced,
and the time complexity of the clustering algorithm will be
greatly improved.

In summary, the main contributions of this paper are listed
as follows:

• PCA method is used as a preprocessing to quickly purify
dimensions of high-dimensional data, by removing noise
and redundant attributes.

• Adensity-based datamerge strategy is developed to reduce
the amount of data participating in the synchronization-
inspired clustering process and, thus, improve the time
efficiency, by merging all points in each density region
into one big point with bigger mass.

• An improved Kuramoto model is designed to replace the
traditional Kuramoto model for processing the data points
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with high weight formed by the density-based data merge
strategy.

• An enhanced synchronization-inspired clustering algo-
rithm (SyncHigh) is proposed to cluster high-dimensional
data, by integrating above three contributions.

The remainder of this paper is organized as follows:
section “Traditional synchronization-inspired clustering
(Sync)” shows some related preliminary knowledge about
Kuramoto Model and Sync algorithm. Section “Enhanced
Synchronization-Inspired Clustering for High-dimensional
data” presents the details of the enhanced synchronization-
inspired clustering algorithm (SyncHigh). Extensive experi-
mental evaluation is stated in section “Experimental Evalu-
ation”. Finally, the conclusion of this paper is summarized.

Traditional synchronization-inspired
clustering (Sync)

Synchronization is a universal phenomenon hidden in the
development and evolution of nature. The way it behaves
is that similar things naturally cluster together to form a
community. Inspired by the idea of synchronization, lots
of synchronization-inspired clustering algorithms have been
proposed [13, 14], Sync algorithm is a typical case [11]. This
algorithm can accurately cluster datasets of any shape, size,
and density without any previous distribution assumptions.
Meanwhile, this algorithm can effectively find abnormal data
and noise. The Kuramoto model is a common clustering
model for the synchronization-inspired clustering algorithm
(Sync). In this section, the details of the Kuramoto model
and the Sync algorithm are introduced separately.

Kuramotomodel

For a given dataset DS, it contains N data objects, and
each object x consists of M dimensions x� [x1,…,xi], i ∈
(1,…,M). The Kuramoto Model is used to cluster DS to
form multiple communities. This model treats each object
x as a coupling oscillator, and the M-dimensional attributes
of object x are regarded as the initial phase θ . Through a
dynamic coupling interaction processing, each object x inter-
acts dynamically with its neighbors to gradually change the
initial phase θ . After multiple interactions, objects with sim-
ilar attributes have the same phase, and objects with different
attributes have different phase. Finally, the objects are easily
grouped according to its phase information.

Definition 1 ( 1-neighborhood of an object x). In Kuramoto
Model, each object x interacts with its ε-neighborhood. The
ε-neighborhood of object x is defined as:

Nbε(x) � {y ∈ DS | dist(y, x) ≤ ε }, (1)

where DS is the dataset, x and y are two different objects
in DS, dist(y,x) is the distance between y and x (Euclidean
distance is default), ε is a threshold called the neighborhood
radius.

Based on the ε-neighborhood, the M attributes of each
object x are seen as the initial phase, and participate in a
dynamic coupling interaction process. The dynamic coupling
process of i-th dimension xi of object x is as follows:
dxi
dt

� ω +
S

|Nbε(x)|
∑

y∈Nbε(x)

sin(yi − xi ). (2)

Let dt � �t , then:

(3)

xi (t + 1) � xi (t) + �t · ω

+
�t · S

|Nbε (x (t))|
∑

y∈Nbε(x(t))

sin (yi (t) − xi (t)).

In the above formula,ω is the frequency of the object x. To
simplify, Bohm [11] assumes that all objects have a common
frequency ω, and can safely ignore the term �t · ω. S is a
constant indicating the coupling strength between all points.
Similarly, �t · S is also a constant for all objects, and can be
simplified to 1. Therefore, the dynamic coupling process of
i-th dimension xi of object x is expressed as:

xi (t + 1) � xi (t) +
1

|Nbε(x(t))|
∑

y∈Nbε(x(t))

sin(yi (t) − xi (t)).

(4)

It is worth noting that the dynamic coupling interaction
process will perform multiple iterations. In each iteration,
each dimension of each object will be dynamically coupled
with its ε-neighborhood as shown in the formula above.

To determine whether the dynamic coupling process is
over, a local order parameter rc is introduced to measure the
phase coherence of all objects, and defined as:

rc � 1

|DS|
∑

x∈DS

1

|Nbε(x)|
∑

y∈Nbε(x)

e−‖y−x‖. (5)

When rc converges to 1, it means all objects with simi-
lar attributes are coupled together. Therefore, the local order
parameter rc indicates the end of the dynamic coupling pro-
cess in the Kuramoto Model.

Synchronization-inspired clustering (Sync)

According to the Kuramoto model, a synchronization-
inspired clustering algorithm, called Sync [11], is developed
to cluster datasets with any shape, density and distribution.
This algorithm is very flexible, and can find noise and
abnormal objects in the dataset. The basic idea of the Sync
algorithm is as follows. Each object in the dataset is regarded

123



206 Complex & Intelligent Systems (2021) 7:203–223

Fig. 2 Dynamic coupling
interaction process of the Sync
algorithm. a Initial state of all
objects (t� 0): the blue circles
are the ε-neighborhood of three
samples. b, c Coupling changes
of object’s phase state in one
iteration (t� 1 or t� 2): the
black and red points are the state
before and after dynamic
coupling, respectively. d Final
state of all objects
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as an oscillator, and the M attributes are regarded as the
initial phase. Then, a dynamic coupling interaction process
is started to perform multiple iterations. In each iteration,
each dimension of each oscillator dynamically couples with
its ε-neighborhood, thereby changing its own phase value.
After each iteration, the local order parameter rc of all
oscillators increases gradually. Through many iterations,
the rc converges to 1, the Sync algorithm is over. The
dynamic coupling interaction process of the Sync algorithm
is described in Fig. 2.

In the figure, a two-dimensional dataset is displayed, and
consists of two clusters C1 and C2. In the initial step (t � 0),
each point is regarded as an oscillator, and the two dimen-
sions are set as the initial phase. Meanwhile, each oscillator
draws its ε-neighborhood. From t � 0 to t � T− 1, a dynamic
coupling process is started to go through multiple iterations
to change the initial phase, as shown in Fig. 2b, c. In each iter-
ation, some oscillators with similar attributes graduallymove
closer, and the distance between them gradually decreases.
When t � T, the local order parameter rc converges to 1, all
oscillators are separated into two clusters C1, C2 and some
outliers, as shown in Fig. 2d. It is worth noting that there are
three kinds of data points in the dynamic clustering process,
as shown in P1, P2 and P3 of Fig. 1a. The P1 is a bound-
ary point; its neighbors are located on one side. With the
dynamic clustering process, this point quickly moves closer
to its neighbors; P2 is a center point, and has more neighbors.
Its neighbors are located around it. During dynamic cluster-
ing process, P2 moves relatively slowly; P3 is a noise with
no neighbors around it. In the dynamic clustering process,
this point stays almost unchanged in its place.

In summary, the procedure of the Sync algorithm is as
follows. For simplicity, if you need more detailed pseudo
code, please refer to Ref. [11].

Step 1 At initial time (t � 0), without any interaction, all
objects in the dataset have their own initial phases.
According to a threshold ε, each object marks its
ε-neighborhood

Step 2 Start a dynamic coupling interaction process (from t
� 1 to t � T ). As time evolves, based on Eq. 4, each
object interacts dynamicallywith its ε-neighborhood
to change its phase value. Objects with similar
attributes gradually move closer, objects with dif-
ferent attributes move away from each other, and the
outliers stay almost in its place. After multiple iter-
ations, all objects are naturally divided into multiple
clusters and outliers

Step 3 Finally, when the local order parameter rc converges
to 1, the dynamic clustering process and the Sync
algorithm are over

Enhanced synchronization-inspired
clustering for high-dimensional data

In the era of big data, complex dataset is character-
ized by irregularity, high noise, and unevenness. The
synchronization-inspired clustering algorithm is very suit-
able for these characteristics to complete data clustering.
However, high dimensions and high time complexity are
new challenges for the synchronization-inspired clustering
algorithm to cluster high-dimensional data. Therefore, we
propose an enhanced synchronization-inspired clustering
algorithm, namely SyncHigh, to cluster high-dimensional
data in this section. In “PCA-based dimension purification”,
a PCA-based dimensional purification strategy is designed to
remove noise and redundancy of high-dimensional attributes.
In “Speeding up synchronization clustering based on local
density”, a density-based data merge strategy is developed
to speed up the clustering time. Combining the above two
strategies, the SyncHigh algorithm is described in detail in
“SyncHigh-Enhanced Synchronization-Inspired Clustering
for high-dimensional data”.

PCA-based dimension purification

High dimensions, together with irregularity, unevenness and
high noise, have become the basic features of current com-
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plex datasets. These features have brought great challenges
to traditional clustering algorithms, resulting in a serious
decline in clustering quality. The main reasons are as fol-
lows. First, high dimensions of dataset increase the time
and space complexity of the clustering algorithm. Second,
irregular and uneven data distribution makes it impossible
to accurately select clustering models and algorithms. Third,
some redundancy and noise attributes may have a negative
impact on the clustering algorithm and severely weaken the
clustering accuracy. Therefore, the dimension purification of
high-dimensional dataset is very important.

The high time complexity of the synchronization-inspired
clustering algorithm is the core optimization goal in this
paper. When choosing a dimensional purification method
that can perfectly embed the synchronization-inspired clus-
tering algorithm, we need to focus on time complexity, and
appropriately weaken the precision of dimensional purifi-
cation. When comparing the PCA, LLE, LDA, SNE, T-SNE
algorithms, we found that the accuracy of dimensional purifi-
cation of PCA is in the middle, but the time efficiency is the
fastest. Therefore, in this paper, PCA is selected as the prepro-
cessing method of the synchronization-inspired clustering
algorithm for dimensional purification of high-dimensional
dataset.

The basic process of PCAmethod is as follows [15]. First,
the high-dimensional dataset is formalized as a matrix where
each row is a data object and each column is a dimension.
Second, the matrix is regularized row by row to eliminate
differences in dimensional distribution. Then, the covari-
ance between any two dimensions is calculated to form
a covariance matrix. Next, the largest k eigenvalues and
eigenvectors of the covariance matrix are selected as the k
principle components of high-dimensional dataset. Lastly,
the product of the k eigenvalues and the original matrix
is the final low-dimensional dataset. However, PCA-based
dimension reduction strategy still has one problem needs to
be optimized. In the PCA algorithm, the parameter k needs
to be set manually and is not robust to various datasets.
In the real world, due to different data distribution, each
high-dimensional dataset has a different number of princi-
pal components; it may be 5, or 50, or even hundreds or
thousands. In other words, we cannot use a uniform k value
to select the principal components of all high-dimensional
datasets.

To optimize the above problem, this paper attempts to
find a more suitable and more general solution to replace
the parameter k. In the PCA, the largest k eigenvalues are

regarded as principal components. This means that we can
use the eigenvalues to determine the importance of each
dimension in the high-dimensional dataset. Therefore, based
on the eigenvalues, a new principal component score of each
dimension is designed as shown in Eq. 6. Based on this score,
a principal component holding rate sc is proposed as a new
parameter to replace the traditional parameter k, as shown
in Eq. 7. This new parameter is also a threshold, which is
the sum of the maximum principal component score in the
high-dimensional dataset. Comparing the two parameters, it
is not difficult to find that the parameter sc is more general
and robust than the traditional parameter k, and it is not sen-
sitive to the distribution and density of a high-dimensional
dataset. For example, the dataset DS1 has 1000 dimensions
where 10 dimensions are the principal components, and the
sc value of 10 dimensions is 95%. The dataset DS2 has 2000
dimensions where 300 dimensions are the principal compo-
nents, and the sc value of these dimensions is also 95%. If
the traditional parameter k is used, we need to set k � 10
and k � 200 for DS1 and DS2. Moreover, in the real world,
we cannot pre-know the number of principal components.
However, if the new parameter sc is used, we only need to
set a threshold 0.95 for two datasets.

Definition 2 (principal component score of a dimension)
Principal component score refers to the importance of each
dimension in all attributes, and is defined as:

PC-score(i) � eigenvaluei∑
j eigenvalue j

i, j ∈ [1 , M], (6)

where i or j is a dimension of high-dimensional data,
eigenvaluei is the eigenvalue of i-th dimension of the covari-
ance matrix.

Definition 3 (principal component holding rate of high-
dimensional dataset) Based on the descending order of PC
score, principal component holding rate sc is a threshold to
select the data attribute with the highest PC score, and is
defined as:

PC �
⎧
⎨

⎩i ∈ DESC
i∈[1,M]

[PC-score(i)]

∣∣∣∣∣∣

∑

i∈[1,M]

PC-score(i) ≤ sc

⎫
⎬

⎭, (7)

where i is a dimension of high-dimensional data, M is the
total number of dimensions, sc needs to be set manually, and
the range usually is [0.8–0.95].

According to the above optimization strategy, a PCA-
based dimension purification method is designed, as shown
in Algorithm 1.
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Algorithm 1  PCA-based dimension purification
Input:  (i) high-dimensional dataset DS, (ii) the threshold sc.
Output: low-dimensional data matrix after dimensionality reduction LDM.
Procedure: pca_dimension_purification(DS, sc):
1: Building an N  M data matrix DM from DS, each row is a data object and each column is a dimension.
2: Performing zero-mean processing for each row of DM, each row minus the mean of each dimension.
3: Generating the covariance matrix CM of the matrix DM, and getting the covariance between any two 

dimensions.
4: Calculating all eigenvalues and eigenvectors of the covariance matrix CM, and calculating the principal 

component score PC-score of each eigenvalue according to Equation 6.
5: Selecting top dimensions with the largest PC-score as the principal component, according to Equation 7.
6: Producing the final low-dimensional matrix LDM by the product of the eigenvalues of selected principal 

components and the original matrix DM.
7: return LDM.

×

Speeding up synchronization clustering based
on local density

High time complexity is a prominent challenge of synchro-
nization clustering algorithm to cluster high-dimensional
data. For this, a density-based datamerge strategy is proposed
in this paper to speed up the dynamic clustering process. In
the real world, irregular and uneven complex dataset usu-
ally has multiple dense regions, as shown by the red solid
circle in Fig. 1a. Each dense region usually has many data
points, and these data points must belong to the same cluster.
That is to say, these data points can determine their true label
without going through any clustering algorithm. Therefore,
merging each dense region into a ‘big’ pointwith biggermass
can greatly reduce the time complexity of the synchroniza-
tion clustering algorithm, as shown in Fig. 1b. Based on this
strategy, the clustering algorithm can be speeded up in two
ways. First, by merging each dense region into one bigger-
mass point, the amount of data participating in the dynamic
clustering algorithm will be greatly reduced. Second, after
merging dense regions, the neighbors of each data point that
need to be interacted in the dynamic clustering process will
be greatly reduced. To achieve the above strategy, two prob-
lems need to be solved.

(1) How to find dense regions? The purpose of merging
dense regions is to optimize the time complexity of the
synchronization-inspired clustering algorithm. Therefore,
the discovery scheme of dense region must fit the process of
synchronization-inspired clustering algorithm. At the begin-
ning of the synchronization clustering algorithm, each data
point needs to determine its 1-neighborhood based on the dis-
tance betweendata points. That is to say, the distance between
any two points is an effective way to measure dense region,
and it is very consistent with the synchronization-inspired
clustering algorithm. For that, we defined local density to
measure whether two data points belong to the same dense
region.

Definition 4 (local density). The goal of local density is to
determine whether two points are in the same dense region.
It is defined as:

Local_density(i , j) �
{
1, dist(i , j) ≤ dt
0, dist(i , j) > dt

, (8)

dt � dc × Average(dist(i , j)), [i, j ∈ N ], (9)

where i and j are two points, dist(i, j) is the distance between
i and j, dt is a distance threshold. To avoid differences in the
data distribution of different datasets, we need to optimize dt
and increase its robustness to adapt to all datasets. Therefore,
we use the average distance of all data points as the basis, and
use another parameter dc, ranging from 0 to 1, to increase
the robustness of dt, as shown in Eq. 9. Here, we believe that
if the distance between two points is greater than the average
distance of all points, then these two points are definitely not
dense points. Through the following experimental analysis,
the optimized value range of the parameter dc is [0–0.15].

Based on the local density, it is very easy to determine
whether two data points belong to the same dense region, so
as to find all dense regions in the dataset, as shown in Fig. 3a.
In the figure, there is a dense region circled by the red solid
line. If we enlarge this dense region, there is a shortest path
connecting all the data points in the region, and the distance
between adjacent nodes on the path is less than or equal to
dt. That is to say, as long as all data points with distances less
than or equal to dt are found, the dense area of the data set
will also be found naturally.

(2) How to make the merged “big” data point perfectly
embedded in the synchronization-inspired clustering algo-
rithm?When dense regions are found, we merge each dense
region into a “big” data point with bigger mass, thereby
reducing the time complexity of the synchronization clus-
tering algorithm. However, the merged “big” data point has
different mass and different neighbors compared to the reg-
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Fig. 3 Illustration of dense
region

(a) (b)

ular data point. To solve this problem, two aspects should be
considered.

Each merged “big” data point must dynamically interact
with its ε-neighborhood. Although all data points in a dense
region belong to the same label, it cannot be guaranteed that
each dense region is a separate cluster. In the other words,
multiple “big” data points may belong to a cluster. Therefore,
each merged “big” data point needs to be embedded into the
synchronization clustering process for getting the final class
label through dynamic interaction with its ε-neighborhood.
For this purpose, we need to define new attributes and ε-
neighborhood for a dense region.

Definition 5 (dense region). A dense region dr is a merged
“big” data point, and its attributes are defined as:

dr � 〈dim , mass〉,
mass � ‖ dr ‖,
dim � {

avg
(
dimi j

) ∣∣ i ∈ [1, M], j ∈ [1‖dr‖] }, (10)

where the attributes of dr consist of dimension dim and qual-
ity mass; the term mass indicates the number of data points
in the dr; the term dim represents the average value of each
dimension of all data points in the dr, dimij is the i-th dimen-
sion of the j-th data point.

Definition 6 ( 1-neighborhood of a dense region) The ε-
neighborhood of a dense region dr is the union of the
ε-neighborhood of all points in the dr (excluding all points
of dr). It is defined as:

Nbε(dr) �
{
y ∈

⋃

x∈dr
Nbε(x) and y /∈ dr

}
. (11)

Based on the above definitions, each dense region can be
regarded as a merged “big” data point to participate in the
synchronization-inspired clustering algorithm.

The ε-neighborhood of each regular data point needs
to be updated and compressed after the dense regions are

merged. It is inevitable that multiple neighbors of one regu-
lar data point are in the same dense region. When this dense
region is merged as a “big” data point, we need to update the
ε-neighborhood of this data point and compress the neigh-
bors belonging to the same dense region, so as to reduce the
amount of neighbors of this regular data point, as shown by
Fig. 3b. In the figure, the ε-neighborhood of a regular data
point (black dotted circle) contains 6 neighbors and intersects
with a dense region (red solid circle) at 3 green data points.
Since the 3 green points belong to the same cluster, these 3
green neighbors with a mass of 1 can be compressed into a
neighbor with a mass of 3. Through this strategy, the number
of ε-neighborhood of each data point will be greatly reduced,
thereby reducing the time overhead of each iteration in the
dynamic interaction process of the synchronization cluster-
ing algorithm.

Based on the above optimizations, a density-based data
merge strategy is proposed to speed up the synchronization-
inspired algorithm. The main process is as follows, and the
pseudo code is shown in Algorithm 2:

Step1, calculating the ε-neighborhood and local density
for each data point. The distance between any two data points
is first calculated based on the Euclidean distance. When the
distance is less than or equal to ε, then the two data points are
neighbors to each other and join each other’s ε-neighborhood.
When the distance is less than or equal to dt, the two data
points are locally dense and belong to the same dense area.
When all distances are calculated, the ε-neighborhoodof each
point is identified, and all dense points are also found.

Step2, Finding and merging the dense regions. When all
dense points are found, multiple independent shortest path
trees can be quickly found by judging whether there are
common data points, and each shortest path tree is a dense
region. After finding all the dense regions, the attributes and
ε-neighborhood of each dense region are calculated based on
Eqs. 10 and 11 respectively.

Step3, Compressing the ε-neighborhood of each regular
data point. Based on all dense regions, the ε-neighborhood
of each data point is compressed to reduce the number
of neighbors, so as to speed up the time overhead of the

123



210 Complex & Intelligent Systems (2021) 7:203–223

synchronization-inspired clustering algorithm. Finally, the
optimized dataset and ε-neighborhood of each data point are
used as the input of the synchronization clustering algorithm
to find the final clustering result.

Algorithm 2 density-based data merge strategy
Input:  (i) the dataset DS, (ii) the threshold dc, (iii) the threshold ε.
Output: the optimized dataset ODS and ε-neighborhood of each data point Nb.
Procedure data_merging(DS, dc, ε):
1: Initialize dense region list drlist=null, ODS=DS, Nb=null.
  //step 1
2: For any i , j in DS:

        //calculate ε-neighborhood
3:        If dist(i,j) ≤ ε:
4:             insert i into Nbε(j);
5:             insert j into Nbε(i);
          //calculate local density 
6:        If dist(i,j) ≤ (dc*AVERAGEDISTANCE):
7:             insert <i,j> into drlist;
8: End
  //step 2
9: For any <i,j> and <k,r> in drlist:
10:       If i==j or i==r or j==k or j==r:
11:             insert <i,j,k,r> into drlist, and remove <i,j> and  <k,r> from drlist;
12:             calculate attributes and ε-neighborhood of <i,j,k,r>;
13:End
14:remove all points in drlist from ODS;
15:insert the merged "big" data into ODS
   //step 3
16: For any Nbε(i) in Nb:
17:       compress the Nbε(i) based on the drlist;
18: End

SyncHigh-enhanced synchronization-inspired
clustering for high-dimensional data

Enhanced Kuramoto model

The traditional Kuramoto Model is a data model, which is
abstracted from the synchronization phenomenon in nature.
The core idea is that similar objects in nature will attract each
other and produce coupled motion. Similar objects reach a
synchronized state after multiple coupled motions, and all
objects have the same phase value. Dissimilar objects have
larger and larger phase differences after multiple coupling
movements. Equation 4 describes the definition of a dynamic
coupling motion of two objects. It should be noted that the
traditional Kuramoto Model assumes that each object has

the same mass or weight, and the coupling force between
two objects is the same.

xi (t + 1) � xi (t) +
1

|Nbε(x(t))|
∑

y∈Nbε(x(t))
sin(yi (t) − xi (t)).

(12)

However, after using the density-based data merge strat-
egy, the mass of different data points in a dataset is not
uniform, and themass of different neighbors of one data point
is not the same. For example, themass of amerged “big” data
point is 10, 20, or 30, and the mass of a regular data point
is 1; for one data point, one neighbor has a mass of 5 and
the other has a mass of 1. The different mass of data points
makes the traditional Kuramoto Model unsuitable. There-
fore, an enhanced Kuramoto Model is proposed in this paper
to handle this problem. Generally speaking, data points with
bigger mass have more influence on the neighbors than data
points with lower mass. So, we optimize the dynamic cou-
pling function between a data point and its neighbors, and
consider the mass difference of data points in each dynamic
interaction process. The optimized dynamic coupling func-
tion is defined as follows:
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xi (t + 1) � xi (t) +
1

mass (x)

×
∑

y∈Nbε(x(t)) sin (yi (t) − xi (t)) × mass (y)
∑

y∈Nbε(x(t)) mass (y)
,

(12)

where mass(x) is the mass of object x, xi is i-th dimension of
object x.When themass of all objects is 1, the above equation
can be simplified to Eq. 4.

In addition, the mass difference of data points also affects
the judgment of the current clustering state. Therefore, to
determine if the dynamic coupling process is over, a new
local order parameter rcnew is defined as:

rcnew � 1∑
x∈DS

mass(x)

∑

x∈DS

1∑
y∈Nbε(x(t))

mass(y)

∑
y∈Nbε(x)

(
e−‖y−x‖ × mass(y)

)
, (13)

when rcnew converges to 1, it means that all objects with sim-
ilar properties are coupled together, and indicates the end of
the dynamic clustering process. When the mass of all objects
is 1, the above equation can be simplified to Eq. 5.

SyncHigh algorithm

In summary, by integrating the above strategies, an
enhanced synchronization-inspired clustering algorithm for

high dimensional data, called SyncHigh, is proposed in this
paper. Themain process of SyncHigh algorithm is as follows,
the pseudo code is shown in Algorithm 3.

Step1, PCA-based dimension purification. The original
high-dimensional dataset and parameter sc are used as inputs,
and the optimized PCA is used to perform dimensional
purification to remove redundant and noise dimensions for
getting the low-dimensional dataset. The process of PCA-
based dimensional purification is shown in Algorithm 1.

Step2, density-based data merge. Taking the purified low-
dimensional dataset, parameters ε and dc as inputs, all dense
regions are discovered, each dense region is merged into a
“big” data point with bigger mass, and the ε-neighborhood
of each data point is updated and compressed, thereby reduc-
ing the amount of data participating in the next dynamic
interaction process. The process of density-based data merge
strategy is shown in Algorithm 2.

Step3, dynamic interaction based on the enhanced
Kuramoto Model. Taking the optimized dataset and the com-
pressed ε-neighborhood as inputs, the attributes of each data
are regarded as its initial phase. Based on the enhanced
Kuramoto Model, a dynamic interaction process is started
and gradually changes the phase value of each data point
through Eqs. 12 and 13. After multiple iterations, the data
points belonging to the same clusterwill have the samephase,
and the local order parameter rcnew converges to 1, then the
dynamic interaction process and the SyncHigh algorithm are
over.

Algorithm 3  Enhanced Synchronization-Inspired Clustering for High-dimensional Data
Input:  (i) high-dimensional dataset DS, (ii) parameter sc, (iii) parameter ε, (iv) parameter dc. 
Output: final clustering results rs.
Procedure SyncHigh(DS, sc, ε, dc)

//step 1 dimension purification
1:  Low-dimensional dataset LDS = pca_dimension_purification(DS, sc).

//step 2 merging dense regions
2:  The optimized dataset ODS, compressed ε-neighborhood Nb= data_merging(LDS, dc, ε).

//step 3 dynamic interaction
3:  While (rCnew < 1- ):
4:      For x in ODS:
5:          getting its ε-neighborhood Nbε(x) from Nb.
6:          using the equation 12 to calculate new phase of data x based on the Nbε(x).
7:      EndFor
8:      calculating the new round of local order parameter rcnew
9:   EndWhile
10:  Getting the final clustering result rs.
11:  Return rs.

Δ
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Complexity Analysis. Suppose N is the total number of
data points inDS,M is the number of data points in the com-
pressed dataset ODS. The time complexity of PCA-based
dimension purification is ignored because it is a prepro-
cessing. The time complexity of density-based data merge
strategy is O(N log N). And, the time complexity of the
dynamic interaction process is O(T×M×S×L), where T is
the number of iterations,M�N, S is the average number of
neighbors of each data point, L is the dimension after dimen-
sion purification. Therefore, the total time complexity of our
SyncHigh algorithm is O(N× logN) + O(T×M×S×L).

Experimental evaluation

Evaluation setup

Comparison Algorithms. To effectively verify the perfor-
mance of the SyncHigh algorithm, six representative cluster-
ing algorithms are selected as competitors. All comparison
algorithms are listed in Table 1, where the Kmeans, EMA,
Spectral Clustering and FAKM algorithms are considered
to be the best clustering algorithms for normal datasets
[16, 17], but the number of clusters needs to be manually
pre-specified in advance; The DbScan algorithm is a density-
based dynamic method, and the Sync algorithm is a native
algorithm inspired the synchronization dynamics; DbScan
and Sync algorithms have stronger adaptability, no need to
pre-specify the number of clusters. For all comparison algo-
rithms, recommended values of all parameters are used to get
the best experimental results.

Evaluationmetrics. To reasonably compare six algorithms
with respect to effectiveness, three widely used metrics are
selected to evaluate the quality of clustering. (1) Thefirstmet-
ric is the clustering accuracy (ACC) [23], which represents
the percentage of the obtained cluster label is the true label;
(2) the second metric is Normalized Mutual Information
(NMI) [24], which is defined as measuring the probabil-
ity of having common information in two partitions of one
dataset; (3) the third metric is the popular Adjusted Rand
index (RI) [25], which both considers the probability of the
obtained cluster label is the true label and the probability of
the obtained cluster label is the wrong label. Three metrics
scale between 0 and 1, and have the same characteristics: a
larger ACC/NMI/RI means a better performance.

Experimental Platform. We use a normal PC server
(ThinkPad L490) as the experimental platform. The server is
equipped with one 8-core i7 CPU, 8 GB main memory and
Windows 10 operating system. The SyncHigh algorithm is
programmed with Python and run with PyCharm as IDE. For
the other algorithms, the official python implementation is
downloaded from the websites of the corresponding authors.

Table 1 Comparison Algorithms

Algorithm Full name Implement

Kmeans [18] An efficient
approximation to the
K-means clustering for
massive data

Python

DbScan [19] DSets-DBSCAN: a
parameter-free
clustering algorithm

Python

Spectral Clustering [20] Global
discriminative-based
nonnegative spectral
clustering

Python

EMA [21] An Expectation–Maxi-
mization algorithm for
the Wishart mixture
model: Application to
movement clustering

Python

FAKM [22] Fast Adaptive K-Means
Subspace Clustering for
High-Dimensional Data

Python

Sync [11] Clustering by
synchronization

Python

SyncHigh Enhanced
Synchronization-
Inspired Clustering for
High Dimensional Data

Python

Sensitivity analysis of two parameters

The first objective of experimental evaluation is to observe
and validate the sensitivity of two parameters sc and dc in the
dimension purification strategy and the density-based data
merge strategy, respectively.

Sensitivity of parameter sc

Parameter sc is defined as a threshold to determine the
percentage of principal components of high-dimensional
attributes, then to decide the number of attributes that need
to participate in the synchronization-inspired clustering algo-
rithm. Usually, a larger sc value means a larger proportion
of principal components, means more core attributes will be
retained from the original high-dimensional attributes, and
indicates more calculation time will be spent. By adjusting
the parameter sc, SyncHigh can dynamically determine the
number of core attributes participated in synchronization-
inspired clustering, thereby balance and further optimize the
accuracy and timeliness of the clustering algorithm itself.

To evaluate the sensitivity of parameter sc, we select DS2
(synthetic dataset) and ring (real-world dataset) as the exper-
imental dataset, and observe the performance changes of the
algorithm from theACC,NMI andRIwhile gradually chang-
ing the value of sc. Figure 4a plots the sensitivity of the
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Fig. 4 Sensitivity of the parameter sc on two datasets

parameter sc on the DS2 dataset. From Fig. 4(a_1)–(a_3), it
is not difficult to find that, as sc continues to expand (from
0.5 to 1), the number of core attributes participating in the
clustering process is more and more, and the clustering qual-
ity (ACC, NMI, and RI) of SyncHigh algorithm is better and
better (from 0.4 to 0.9). It is worth noting that, when sc value
is greater than 0.85, the clustering quality (ACC, NMI, and
RI) of SyncHigh algorithm begins to enter a stable state, as
shown by the red dotted line in the figure. That is to say,
after entering the steady state, ACC, NMI and RI will not
change significantly with the increase of sc value. Figure 4b
plots the sensitivity of the parameter sc on the ring dataset.
From Fig. 4(b_1)–(b_3), we can easily find that, with the
continuous increase of sc (from 0.5 to 1), the ACC, NMI, RI
gradually increases (from 0.5 to 0.9), the clustering quality of
SyncHigh algorithm continues to improve. Like DS2, when
sc is greater than 0.8, the clustering quality of SyncHigh
algorithm tends to smooth and starts the steady state.

In addition, we repeatedly carry out a large number of
experiments on multiple synthetic and real-world datasets
to more fully observe the sensitivity of parameter sc. By
summarizing all experimental results, a simple conclusion
is obtained. That is SyncHigh algorithm usually gets a good
performance on the accuracy and effectiveness within the
range sc� [0.8–0.95]. Moreover, compared with the native

Sync algorithm, SyncHigh algorithmhas less clustering time,
and has similar and better clustering accuracy. Therefore, we
set parameter sc� 0.85 as the default value in the following
experiments.

Sensitivity of parameter dc

To avoid differences in the data distribution of different
datasets, the average distance between any two data points is
used as a basis, and parameter dc ranging from 0 to 1 is used
as a threshold for judging the local density, so as to determine
whether two data points belong to a same dense region. By
combining dc and average distance, the robustness of predict-
ing local density in different datasets are greatly improved.
If the distance between two points is less than the product
of dc and average distance, then these two data points are
dense, and belong to a same density region. If all dense data
points in the same region are merged into one big point, the
number of data objects participating in the clustering pro-
cess will be greatly reduced, and the clustering time will be
greatly optimized. Usually, a larger dc value indicates that
the data points are more likely to be dense, which means that
more data points will be predicted as the same label without
participating in the clustering process, and the required clus-
tering time is less. By adjusting the parameter dc, SyncHigh
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Fig. 5 Sensitivity of the parameter dc on two datasets

can better balance and further optimize the accuracy and time
overhead.

For fairness, we also select DS2 and ring as the exper-
imental datasets to observe the sensitivity of parameter dc
from ACC, NMI and RI. Figure 5a plots the curve of the per-
formance change of SyncHigh algorithm on the DS2 dataset.
From Fig. 5a_1–a_3, it is easy to know that parameter dc is
negatively correlated with ACC, NMI, ARI; these three met-
rics become smaller and smaller(from 0.9 to 0.4) with the
increasing parameter dc (from 0 to 0.4). It is worth noting
that, when dc value is smaller than 0.16, the clustering qual-
ity (ACC, NMI, and RI) of SyncHigh algorithm has been
in a stable state, as shown by the red dotted line in the fig-
ure. That is to say, as the dc value increases gradually, the
ACC, NMI, RI values do not fall fast. Like Fig. 5a, b plots
the curve of the performance change on the ring dataset.
Based on Fig. 5b_1–b_3, we can find similar situations.With
the continuous increase of dc (from 0 to 0.4), the ACC,
NMI, RI values gradually decrease (from 0.9 to 0.5), the
clustering quality of SyncHigh algorithm continues to dete-
riorate. When dc is smaller than 0.16, the clustering quality
of SyncHigh algorithm tends to smooth and keeps a steady
state. In other words, when dc is smaller than 0.16, multiple
dense points are merged reasonably and correctly to reduce
the clustering time overhead, and optimize clustering quality.
However, when dc is greater than 0.16, multiple dense points

aremistakenlymerged, which seriously affects the clustering
quality of our SyncHigh algorithm.

Based on the extensive experiments on multiple synthetic
and real-world datasets, a simple conclusion is obtained
experimentally. That is, within the range dc� [0–0.15],
SyncHigh algorithm can greatly reduce the time overhead
while ensuring the quality of clustering. Therefore, we set
parameter dc�0.1 as the default value in the following exper-
iments.

Evaluation results

Synthetic DataSets

The secondobjective of evaluation is to test the clusteringper-
formance of the SyncHigh algorithm on multiple synthetic
datasets, from the two optimization strategies, there metrics
(ACC, NMI, RI), and time efficiency.

DataSets generation To reasonably compare the effective-
ness of seven clustering algorithms, we use Scikit-learn, a
third-party machine learning python library, as a tool and
use the make_blobs function to generate several synthetic
high-dimensional datasets with Gaussian noise. The dataset
generation model is defined as genGaussSample(S#,D#,C#,
N#), where S# is the total number of data objects; D# is the
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Table 2 Synthetic datasets
Name Size (S#) Dimension (D#) Number of cluster (C#) Gaussian noise (N#) (%)

DS1 1000 100 3 10

DS2 3000 70 3 7

DS3 5000 60 3 6

DS4 7000 70 3 5

DS5 10000 80 3 6

DS6 12,000 90 3 9

DS7 15,000 60 3 5

Table 3 Results of two optimization strategies on synthetic datasets

DataSets (1) Dimension purification strategy (2) Density-based data merge strategy

Original attribute
size

Attribute size after
purification

Purification rate
(%)

Original dataset
size

Dataset size after
dense point
merging

Dense point
merging rate (%)

DS1 100 69 31 1000 715 29

DS2 70 51 27 3000 2154 28

DS3 60 46 23 5000 3627 27

DS4 70 55 21 7000 5341 24

DS5 80 64 20 10,000 7918 21

DS6 90 58 36 12,000 9427 21

DS7 60 36 40 15,000 11,156 26

data dimension; C# is the number of ground-truth cluster;
N# is the percentage of Gaussian noise in dataset.

By adjusting four parameters, we generate seven synthetic
datasets with ground-truth, as listed in Table 2. For reason-
ableness and effectiveness, seven datasets have different data
scale, attribute dimension, and noise percentage. The purpose
of this generation scheme is to make synthetic datasets closer
to the real-world datasets.

Results of two optimization strategies To weaken
the impact of high-dimensional attributes, based on the
synchronization-inspired clustering algorithm, two opti-
mization strategies are proposed to balance and optimize
time efficiency and clustering accuracy. (1) The first strat-
egy is dimension purification; its purpose is to find the core
principal components from the high-dimensional attributes.
By reducing the redundancy or noise attributes, SyncHigh
algorithm can effectively improve time efficiency and opti-
mize cluster accuracy. In Table 3, the optimization results
of the first strategy on 7 artificial datasets are listed from
the second column to the fourth column. Based on these
statistics, it is not difficult to find that the dimensional purifi-
cation strategy can effectively eliminate redundancy and
noise attributes. The average rate of dimensional purifica-
tion is greater than 25%, and the highest value is 40%(DS7).
(2) The second strategy is density-based data merge strategy;
its purpose is to reduce the amount of data participating in

the synchronization-inspired clustering process by merging
local dense points, thereby effectively improving the cluster-
ing time. The last three columns (five to seven columns) in
Table 3 show the optimization results of the second strategy.
It is easy to know that the average rate of merging local dense
points is greater than 24%, and the highest value is 29%(DS1
with highest dimension).

Clustering influence of two optimization strategies To
fairly verify the clustering influence of two optimization
strategies, we integrate the two strategies with the native
synchronization-inspired clustering algorithm (Sync) to form
two new algorithms, simple called Sync + PCA and Sync +
DDM. So far, native Sync, Sync + PCA, Sync + DDM and
SyncHigh have formed four comparison algorithms. And, we
will verify the clustering influence of the two optimization
strategies on 7 synthetic datasets with respect to clustering
accuracy and clustering time.

Table 4 lists the clustering accuracy influence of two opti-
mization strategies on synthetic datasets with respect to three
distinct metrics (ACC, NMI, and RI). In the table, the first
column is 7 synthetic datasets, the 2–5 columns are the ACC
performance of the 4 algorithms, the 6–9 columns are the
NMIperformanceof the 4 algorithms, and the10–13columns
are the RI performance of the 4 algorithms, respectively.
From Table 4, we make the following observations. (1) Four
algorithms achieve a good clustering performance on 7 syn-
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thetic datasets, and the average values of ACC, NMI and
RI both are greater than 0.8. (2) On the high-dimensional
datasets DS1 and DS6 (two rows in bold), the clustering per-
formance (ACC, NMI and RI) of Sync + PCA and Sync +
DDM algorithms both are better than the native Sync algo-
rithm, and slightly worse than the SyncHigh algorithm. This
shows that two optimization strategies are highly compat-
ible with the synchronization-inspired clustering algorithm,
and can improve the clustering accuracy on high-dimensional
datasets. (3)On other datasets, the Sync + PCA algorithm
has the best performance (ACC, NMI and RI), the SyncHigh
algorithm is closer to the Sync algorithm, and the Sync +
DDM algorithm has the worst performance. (4) In summary,
on 7 synthetic datasets, the PCA-based dimension purifica-
tion strategy can effectively purify high-dimensional data
attributes and improve clustering performance. However,
the performance of the density-based data merge strategy
is mediocre, and some non-dense nodes are misjudged. The
reason is that we use the Gaussian model to generate the
synthetic dataset, and its density distribution is relatively uni-
form.

Figure 6 further draws the clustering time influence of
two optimization strategies on synthetic datasets. In the fig-
ure, the first bar is the clustering time of the sync algorithm
(as a basis), the second bar is the time of the Sync + PCA
algorithm, the third bar is the time of the Sync + DDM algo-
rithm, the fourth bar is the time of the SyncHigh algorithm,
and the black or red digit is the rate of time saving. From
Fig. 6, we can get the following observations. (1) On the
7 datasets, two optimization strategies both can effectively
reduce the clustering time of the synchronization-inspired
algorithm. The average rate of time saving of the PCA-based
dimension purification strategy is about 9%, the average rate
of time saving of the density-based data merge strategy is
about 19%. This shows that the performance of the second
optimization strategy is slightly higher than the first opti-
mization strategy. (2) With the increase of data dimensions,
the performance of the two optimization strategies is getting
better and better. For example, the time saving rate on DS1
and DS6 is significantly higher than that on other datasets
(DS2, DS3, DS4, DS5 and DS7). (3) Focusing on Sync and
SyncHigh algorithms, it is easy to find that SyncHigh has a
better time efficiency than the Sync algorithm, the average
rate of time saving is about 28%, and the maximum rate is
32% on DS6.

Clustering performance comparison In this section, we
further compare the SyncHigh algorithmwith multiple state-
of-the-art algorithms from the clustering accuracy and clus-
tering time. Figure 7 shows the clustering accuracy (ACC,
NMI and RI) of multiple algorithms on 7 synthetic datasets.
In the 7 datasets, DS1 and DS6 have the highest dimensions,
respectively, 100 attributes and 90 attributes, as shown by
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Table 5 Timeliness results on synthetic datasets

Datasets/time(s) DS1 DS2 DS3 DS4 DS5 DS6 DS7

Kmeans 7.12 15.92 29.53 42.44 73.97 79.02 83.56

DbScan 34.78 66.14 84.02 98.47 150.87 176.48 198.47

Spectrual clustering 11.22 24.07 48.41 67.39 108.55 119.44 148.94

EMA 36.17 71.67 89.34 108.21 168.97 198.75 217.24

FAKM 23.73 42.78 68.85 79.49 133.94 156.51 165.17

Sync 25.59 41.92 65.45 85.45 121.45 142.45 159.45

SyncHigh 17.57(31%↓) 31.26(25%↓) 46.89(28%↓) 59.62(30%↓) 85.77(29%↓) 96.62(32%↓) 113.3(29%↓)

the red triangles in the figure. From Fig. 7, it is easy to get
the following observations. (1) Considering ACC, NMI and
RI together, seven algorithms both have good results, the
average value of three metrics is greater than 0.8. Moreover,
seven algorithms both show an unstable trend, and the met-
ric lines float up or down. Comparing the seven algorithms,
Sync, FAKMand SyncHigh aremost stable on the 7 datasets,
DbScan and SpectralClustering are next, Kmeans and EMA
are the worst. (2) Focusing on the attribute dimension, the
clustering accuracy (ACC, NMI, RI) of seven algorithms
on the low-dimensional datasets (DS2–DS5, DS7) is gen-
erally better than that on the high-dimensional datasets (DS1
and DS6). More specifically, seven algorithms have the low-
est ACC, NMI, RI on the DS1 and DS6. (3) Only consider
Sync and SyncHigh algorithms, we can see that the clus-
tering accuracy (ACC, NMI, RI) of the two algorithms is
relatively stable and very close on the 7 datasets.More specif-
ically, Sync algorithm has a slight advantage over SyncHigh
algorithmon low-dimensional datasets (DS4andDS7).How-
ever, on the high-dimensional datasets (DS1 and DS6), the
ACC, NMI and RI values of SyncHigh are better than that
of Sync algorithm. The main reason is that 7 datasets are
synthetic datasets; their data distribution is relatively uni-
form and does not show strong density. This results in the
mediocre performance of the density-based data merge strat-
egy, the performance of the SyncHigh algorithm is affected,
and the clustering accuracy of the SyncHigh algorithm is
slightly worse than that of the native Sync algorithm.

Table 5 further lists the time overhead of seven algo-
rithms on the 7 synthetic datasets. As shown in Table 5,
the time overhead of the Kmeans algorithm is least, fol-
lowed by the SyncHigh and SpectrualClustering algorithm,
then Sync, FAKM and DbScan, and EMA algorithm is slow-
est. Moreover, it is easy to find that two dynamic clustering
algorithms (DbScan and Sync) have more computation time
than Kmeans and SpectrualClustering. Considering DbScan,
FAKM and Sync algorithms, the time efficiency of the
three high-dimensional data clustering algorithms is rela-
tively close, and the time overhead of three algorithms is 3–5
times that of the Kmeans algorithm. Focusing on the Spec-
trualClustering and SyncHigh algorithms, when the dataset

Table 6 Real-world datasets

Name Size Dimension Number of cluster

Wine 178 13 3

Glass 214 9 6

Monks2 432 7 2

Emotions 593 72 6

Yeast 2417 103 14

Pageblocks 5473 10 5

Ring 7400 20 2

Penbased 10,092 16 10

is small (DS1, DS2, and DS3), the time cost of the Spec-
trualClustering algorithm is less than that of the SyncHigh
algorithm;However, as the dataset grows larger, the time cost
of the SyncHigh algorithm with the help of the dimension
purification strategy and density-based data merge strategy
is gradually smaller than the SpectrualClustering algorithm.
Finally, comparing the last two rows, the time overhead of the
SyncHigh algorithm is much smaller than that of the native
Sync algorithm on the 7 synthetic datasets, and the average
rate of time saving is 28%, as shown by the bold digit in
parentheses.

Real-World DataSets

The third objective of evaluation is to test the clustering per-
formance of the SyncHigh algorithm on several real-world
datasets, from the two optimization strategies, there metrics
(ACC, NMI, RI), and time efficiency.

DataSet selection To further evaluate the performance of
seven clustering algorithms, eight typical real-world datasets
with truth label are selected for this experiment, as listed in
Table 6. All chosen real-world datasets are publicly avail-
able from the UCI machine learning data repository (http://
archive.ics.uci.edu/ml/datasets/) and Knowledge extraction
beads on evolutionary learning dataset collection (https://
sci2s.ugr.es/keel/datasets.php). The eight real-world datasets
belong to different types, where wine is a chemical dataset,
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glass is a product dataset, monks2 is a problem dataset, emo-
tions is a music dataset, yeast is a bio-information dataset,
polblocks is a page dataset, penbased is a handwritten digits
dataset. Moreover, these eight datasets have different sizes,
dimensions and clusterswhere yeast and emotions are typical
high-dimensional datasets.

Results of two optimization strategies Like synthetic
datasets, we also validate the performance of dimension
purification strategy and density-based data merge strategy
on the 8 real-world datasets, as shown in Table 7. In the table,
the first column is 8 datasets, the second to fourth columns are
the optimization results of the first strategy, the five to seven
columns are the optimization results of the second strategy.
Through careful observation, it is easy to find the following
phenomenon. (1) From 2 to 4 columns, the rate of dimension
purification on 8 real-world datasets is very high (the aver-
age value exceeds 50% and the highest value has reached
71%), and significantly higher than the rate on the artificial
datasets (Table 3). This phenomenon implies that there are
more redundant and noise attributes in real-world datasets
than artificial datasets. (2) From 5 to 7 columns, the rate of
merging local dense points on the 8 real-world datasets is
very close, the average value is 25% and the maximum value
does not exceed 30%.Moreover, based on the comprehensive
comparison of Table 3 and Table 7, the rate of merging local
dense points on the real-world datasets is very close to the
synthetic datasets. This phenomenon shows that whether in
real-world datasets or synthetic datasets, there must be some
local dense areas.

Clustering influence of two optimization strategies In this
section, we also use Sync, Sync + PCA, Sync + DDM
and SyncHigh as the comparison algorithms, to verify the
clustering influence of the two optimization strategies on 8
real-world datasets from the aspects of clustering accuracy
and clustering time.

Table 8 presents the clustering accuracy influence of two
optimization strategies on real-world datasets. In the table,
the first column is 8 real-world datasets, the 2–5 columns are
the ACC value of the 4 algorithms, the 6–9 columns are the
NMI value, and the 10–13 columns are the RI value, respec-
tively. In addition, in the 8 real-world datasets, emotions and
yeast have the highest dimensions, 72 and 103, respectively.
From Table 8, some points can be easily discovered. (1) On
the 8 real-world datasets, two optimization strategies both
have a good clustering accuracy, the average value of ACC,
NMI and RI both are greater than 0.7. And the clustering
accuracy (ACC, NMI and RI) of Sync + PCA and Sync +
DDM algorithms both are better than the native Sync algo-
rithm, and slightlyworse than theSyncHigh algorithm. (2)As
the attribute dimension gradually increases, the performance
of the two optimization strategies is getting better and better.

The performance improvement of ACC, NMI and RI on two
high-dimensional datasets (emotions and yeast, as shown by
two rows in bold) both are better than those on other datasets.
(3) With the help of two optimization strategies, the cluster-
ing accuracy (ACC, NMI, and RI) of SyncHigh algorithm
is better than that of the native Sync algorithm. (4) Com-
pared with synthetic datasets (Table 4), the two optimization
strategies perform better on 8 real-world datasets, and have
a greater improvement on ACC, NMI and RI. The main rea-
son is that the data distribution of the real-world datasets is
more dense and regional, leading to greater effectiveness of
the two optimization strategies.

Figure 8 further plots the clustering time influence of two
optimization strategies, and analyzes the time speeded-up
performance on the 8 real-world datasets. In the figure, the
first bar is the time overhead of the native Sync algorithm (as
a basis), the second bar is the time overhead of the Sync +
PCA algorithm, the third bar is the time overhead of the Sync
+ DDM algorithm, the fourth bar is the time overhead of the
SyncHigh algorithm, and the black or red digit is the rate of
time saving. Based on Fig. 8, it is easy to find the follow-
ing things. (1) With the help of two optimization strategies,
the clustering time of the synchronization-inspired algorithm
has been greatly reduced. On the 8 real-world datasets, the
average rate of time saving of the PCA-based dimension
purification strategy is about 10%, the average rate of time
saving of the density-based datamerge strategy is about 24%.
This shows that the time saving performance of the density-
based data merge strategy is significantly higher than that of
the PCA-based dimension purification strategy. (2) Focusing
on the attribute dimension, the time saving rate of the two
optimization strategies is proportional to the attribute dimen-
sion of the dataset. That is to say, the higher the attribute
dimension of the dataset, the better the time saving rate of
the two optimization strategies. For instance, the time saving
rate on emotions and yeast is significantly higher than that
on other datasets (wine, glass, monks2, and so on). (3) Con-
sidering Sync and SyncHigh algorithms, the time efficiency
of SyncHigh algorithm is significantly higher than that of the
native Sync algorithm, as shownby the red digits in thefigure.
The average rate of time saving of the SyncHigh algorithm
is about 33%, and the maximum rate is 38% on emotions
dataset. (4) Compared with synthetic datasets (Fig. 6), two
optimization strategies show better performance on 8 real-
world datasets. The main reason is that the real-world dataset
has more noise and redundant properties, and presents the
stronger and clearer region dense feature.

Clustering performance comparison To verify the overall
performance of the SyncHigh algorithm, we further com-
pare the SyncHigh algorithm with multiple state-of-the-art
algorithms from the clustering accuracy and clustering time.
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Table 7 Results of two optimization strategies on real-world datasets

DataSets (1) Dimension purification strategy (2) Density-based data merge strategy

Original attribute
size

Attribute size after
purification

Purification rate Original dataset
size

Dataset size after
dense point
merging

Dense point
merging rate

Wine 13 6 54%↓ 178 138 22%↓
Glass 9 4 56%↓ 214 168 21%↓
Monks2 6 4 33%↓ 432 337 22%↓
Emotions 72 21 71%↓ 593 449 24%↓
Yeast 103 44 57%↓ 2417 1774 27%↓
Pageblocks 10 3 70%↓ 5472 4255 22%↓
Ring 20 15 25%↓ 7400 5517 25%↓
Penbased 16 6 53%↓ 10,992 8227 25%↓

Tim
e (s)

Tim
e (s)

wine glass monks2 emotions

yeast pageblocks ring penbased

38%

26%

12%

29%
20%

9%

34%

26%

8%

31%
22%

9%

37%

24%
13%

32%
26%

6%

33%

25%

8%

31%
20%

11%

Fig. 8 Clustering time influence of two optimization strategies on real-world datasets

Figure 9 shows the clustering accuracy of seven algo-
rithms on real-world datasets, where Fig. 9a plots the ACC
results, Fig. 9b plots the NMI results, Fig. 9c plots the RI
results, where a red triangle represents a high-dimensional
dataset in the figure. According to Fig. 9, we can also get the
following observations. (1) For three metrics (ACC, NMI,
and RI), seven algorithms display different benefits on the
real-world datasets. Overall, on the 8 real datasets, the ACC,
NMI, and RI value of seven algorithms change rapidly, as
shown in Fig. 9. Comparing the seven algorithms, Sync,
SyncHigh, FAKMandDbScan have the best clustering accu-
racy; SpectralClustering is next; Kmeans and EMA are the
worst. Moreover, Sync, FAKM and SyncHigh are more sta-

ble than other four algorithms on 8 real datasets. (2)Whenwe
consider the attribute dimension, theACC,NMI, andRI value
of six algorithms on the low-dimensional datasets (wine,
monk2 and pageblocks) are better than those on the high-
dimensional datasets (emotions andyeast).More specifically,
seven algorithms have the lowest ACC, NMI, RI on the emo-
tions and yeast datasets. And, the higher the dimension of a
dataset, theworse the clustering stability of seven algorithms.
(3) Only focusing on the Sync and SyncHigh algorithms, the
ACC, NMI, RI values of two algorithms are relatively stable
and very close on the 8 real datasets. SyncHigh algorithm
has an advantage over Sync algorithm on both the low-
dimensional datasets (wine, monk2 and pageblocks) and the
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(a) ACC vs DataSets (b) NM I vs DataSets

(c) RI vs DataSets

A
C

C

N
M

I

R
I

high dimensions

Fig. 9 Accuracy results on real-world Datasets

high-dimenisonal datasets (emotions and yeast). (4) When
considering the synthetic datasets and real-world datasets
together (Figs. 7 and 9), we can find that the clustering accu-
racy of seven algorithms on the synthetic datasets is better
than that on the real-world datasets. The average of ACC,
NMI and RI of seven algorithms on the real datasets is only
0.7, which is significantly lower than that on the synthetic
datasets (0.8).

Table 9 further lists the time cost of seven algorithms on
the 8 real-world datasets. From Table 9, some observations
can be easily discovered. (1) For the time cost, the clustering
time of Kmeans algorithm is minimum, SpectrualCluster-
ing and SyncHigh algorithm is next, then is Sync, FAKM
and DbScan, and EMA algorithm is maximum. (2) DbScan,
Sync, and SyncHigh as the dynamic clustering algorithms
usually need more time overhead than Kmeans and Spec-
trualClustering algorithms. (3) When we only consider the
SpectrualClustering and SyncHigh algorithms, we can get
similar observation with the synthetic datasets (Table 5).
When the scale of dataset is small (wine, glass, and monks2),
the time cost of the SpectrualClustering algorithm is less than
that of the SyncHigh algorithm. However, when the scale of
dataset is greater and greater, with the help of the dimension
purification strategy and density-based data merge strategy,
the time cost of the SyncHigh algorithm is gradually smaller

than that of the SpectrualClustering algorithm. (4) Focusing
on the last two rows, it is not difficult to find that the time cost
of the SyncHigh algorithm is much less than the time cost of
the native Sync algorithm on 8 real-world datasets. The time
saving rate on the two high-dimensional datasets (emotions
and yeast) has reached 38% and 37%, and the smallest rate of
time saving is 29% (penbased), as shown by the bold digit in
parentheses. (5) Comparing Tables 5 and 9, we can find that
the average rate of time saving of the SyncHigh algorithm on
the real-world datasets is 32%, which is greater than that on
the synthetic datasets (28%).

Conclusion

Timeliness is a great challenge for using the synchronization-
inspired algorithm to cluster the high-dimensional dataset
with high noise and high redundancy. In this paper, we
proposed an enhanced synchronization-inspired clustering
algorithm, namely SyncHigh, to quickly and accurately clus-
ter high-dimensional datasets. To reduce the dimensions,
we design a PCA-based dimension purification strategy to
remove redundancy and noise of all attributes, and then find
the principal components of the high-dimensional datasets
. To speed up the clustering time, a density-based data
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merge strategy is developed to reduce the number of data
objects participating in the synchronization-inspired cluster-
ing process. Additionally, to avoid the mass difference of
data points caused by the density-based data merge strategy,
we further improved the Kuramoto Model to ensure cluster-
ing accuracy. The parameter sensitivity, clustering accuracy,
computational complexity and the influence of two optimiza-
tion strategies have also been analyzed. Numerical results
on several synthetic datasets and real-world datasets have
demonstrated the timeliness and effectiveness of the pro-
posed algorithm.
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