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Abstract
The existing approaches of multicriteria decision-making (MCDM) process might yield unreliable and questionable results. The 
notable challenges of MCDM approaches are rank reversal paradox and uncertainty. The prime inspiration for researchers is the 
MCDM for hesitant fuzzy sets (HFSs). In some scenarios, the decision-makers could not choose one from numerous values while 
expressing their preferences. HFS which is the extension of fuzzy sets (FS) is found to be helpful in solving such decision-making 
(DM) problems. The DM process is revolutionized with the commencement of powerful and efficient tools of data representation 
for expressing vagueness and uncertainty in data sets as FSs (both generalized and hesitant ones). This paper copes with one such 
novel approach that involves entropy-based attribute weighting, followed by an evaluation of approximate sets in the fuzzy rough 
framework. Correlation of the input alternatives in respect of evaluation criteria and the output class is evaluated. With the fuzzy 
technique for ordered preference by similarity to ideal solutions (FTOPSIS), the generated correlation matrix is utilized for calculat-
ing the degree of closeness ( � ) of the output classes to the input alternatives. This paper made a novel contribution of performance 
indicator centered on FTOPSIS for the hesitant fuzzy rough domain. The proposed method’s efficiency is established through 
comprehensive and systematic experimentation on datasets utilized by researchers globally. The proposed algorithms prove its 
ability to handle datasets that involve human-like hesitant thinking in the MCDM system by contrasting with the existing ones.
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Introduction

For decades, MCDM has remained as an inexorable topic 
of research. Optimum selection of alternatives considerably 
affects the DM of picking a suitable one from a provided set 

of conflicting criteria. The uncertainty and vagueness involved 
with the human DM process could be effectually modeled by 
FS theory. MCDM embraces attributes, decision methods, 
selection criteria, and even subjective estimation of experts 
[1]. Improvisation in classical FSs [2] was done for handling 
the uncertainties and vagueness. Extended versions of FSs 
embrace fuzzy rough sets (FRS) [3] which could handle 
the indiscernible datasets effectually in a fuzzy framework. 
Researchers made countless attempts for incorporating real-
life complex scenarios that involve uncertainty into the data-
sets and solve it utilizing FTOPSIS [4–7]. It has now been 
meticulously adopted in several use cases on account of its 
simplicity, comprehensive mathematical concept along with 
computational efficiency. The extension of the classical TOP-
SIS approach in regard of fuzzy logic, namely FTOPSIS, has 
also been effectively implemented in disparate applications 
like Networks, Supply Chain Management, Defense Indus-
try, Construction, Healthcare, etc., FTOPSIS was employed 
in countless practical use cases, starting from choosing a suit-
able supplier for manufacturing through assessment of service 
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quality and ending at selection and ranking of the renewable 
energy (RE) sources, confirming that is widely implemented 
in innumerable practical issues. Additionally, the energy 
policies’ selection and ranking of the RE sources are the emi-
nent challenges tackled by FTOPSIS. Hence, there TOPSIS 
studies are becoming popular regarding the problems, which 
consider sustainable development, environment, and RE 
sources. Decision-makers present variable opinions for the 
alternatives, which brings uncertainty. HFS has an imperative 
role in modeling such uncertainty. This difference in opinions 
could be due to inadequate information or their different back-
grounds. Researchers have widely explored HFSs in respect of 
the aggregation operators (AOs), various information meas-
ures as well as their application on DM [8]. Expert assessment 
of the attributes is done utilizing probable membership values 
that the attribute could possibly take. HFSs were proffered by 
[9] and were intensively utilized by researchers in respect of 
AOs for DM [10–12]. An outline of trends and tools associ-
ated with HFSs was studied by [13]. A fusion of the Rough 
Sets (RS) model and HFSs was explored by [14] by render-
ing an axiomatic and constructive mathematical framework. 
Probabilistic and Pawlak’s models were propounded by [15]. 
Enhanced concept associated to approximate precision and 
roughness for hesitant fuzzy compatible rough space was 
examined by [16]. Dual HFSs and associated AOs were stud-
ied by [17]. Attribute reduction was intensively examined by 
[18]. The utilization of decision-theoretic RSs for the purpose 
of resolving DM problems in HFSs was carried out by [19]. 
However, it might be difficult or expensive to develop criteria 
set, wherein all criteria are independent in certain situations. 
In some real-life scenarios, on account of the higher uncer-
tainty of the situation and the restricted cognition of human 
thinking, it is hard for decision-makers to make a choice in 
selecting merely one alternative as of a candidate alternative 
set or evaluation arguments set to show their preference. They 
might highly hesitate amongst several alternatives or evalua-
tion arguments. In these similar scenarios, it is reasonable to 
formulate a new DM rule or build a tool that permits decision-
makers to express their judgments or preferences on several 
objects with individual degrees of hesitation. Consequently, 
it is requisite to comprehensively study the HFSs with inter-
active criteria and construct an MCDM approach by consider-
ing the interaction amongst criteria. This paper has brought 
about a pioneering work in the FRSs field as it bridges the gap 
from RSs to HFSs for attribute reduction. It can elevate the 
DM efficiency and lessen the decision pressure, because, here, 
the decision-makers are permitted to express their preference 
in form of entropy centered weighted attribute selection.

The forthcoming section handles preliminaries of hesitant 
FRSs, as well as RSs, and is followed by methodology and 
experimentation. A detailed explanation of proposed work 
and its implementation on two disparate cases of hesitant 
fuzzy data sets are done in subsequent sections.

Preliminaries

Here, the basic RS and FRS concepts are expounded in 
detail.

Definition 1  [20] Consider information system ‘I’, universes 
of discourse ‘X’, non-empty finite set ‘A’, and attribute value 
‘ Ya ’ where I = (X, A). for every a ∶ X → Ya for every a ∈ A . 
And, ‘A’ that is a decision system could be defined as 
A = (C ∪ D) , where C and D are a set of conditional and 
decision attributes, respectively. The core notion in RS 
theory exists in finding the lower approximations (LA) as 
well as upper approximations (UA) centered on IND (P)-
equivalence relation, where 

Definition 2  [20] If (x, y) ∈ IND(P) , then (x, y) is indiscern-
ible by ‘P’ attribute. Consider an equivalence class gener-
ated as of IND (P) as [x]P . Here, the LA is P

−
X and UA is P̄X , 

and both are evaluated as 

The tuples P
−
X and P̄X are termed an RS:

Definition 3  [20, 21] The considered positive region com-
prises all objects which could be positively classified to the 
classes of U/Q. The determination of dependence between 
the attributes is proffered by Eq. (3). 

By determining the change in the dependence, while a 
feature is added or removed, significance of the feature is 
evaluated by [20, 22].

The issue of crisp LA and UA adversely influences the 
classification accuracy and is effectually handled by FRS 
explained in [3, 23, 24].

Definition 4  The definitions of Membership functions for 
fuzzy LA and fuzzy UA are proffered as Eq. (4) 

 where Fi—fuzzy equivalence classes belonging to U/P.

A fuzzy positive area is then evaluated using extension 
principle as:

(1)IND(P) = {(x, y) ∈ U2|∀a ∈ P such that a(x) = a(y)}.

(2)
P
−
X = {x|[x]p ⊆ X}

P̄X = {x|[x]p ∩ X ≠ 0}.

(3)�P(Q) =
|POSP(Q)|

|U| .

(4)
𝜇P−X

(Fi) = inf
x
max{1 − 𝜇Fi

(x),𝜇X(x)}

𝜇P̄X(Fi) = sup
x

min{𝜇Fi
(x),𝜇X(x)},
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Likewise, a new Fuzzy dependence function could be 
evaluated as:

RS theory as introduced by Pawlak regards the infor-
mation subspaces in the sort of LA, UA, and boundary 
region, whereas the FRSs approximate the same subspaces 
as overlapping regions having certain membership values 
[25]. The FRSs’ concept was extended by Zhang et al. [26] 
and Chen et al. [27] for the cases embracing DM uncer-
tainty. Hesitant FRSs have been utilized effectually in the 
literary works for handling hesitant DM.

Hesitant fuzzy sets: basic concepts

Definition 5  Consider X as a reference set and, here, 
the HFSs A on the X set defined in respect of function 
hA(x) . While it is employed to X, it returns a sub set A as 
A = {⟨x, hA(x)⟩�x ∈ X} , where hA(x) could be called hesitant 
fuzzy elements (HFE) [10, 28] and it indicates the set of pos-
sible membership degrees of x ∈ X element to A.

Definition 6  For a given HFE (h), the lower bound as well 
as upper bound as per [29] are, 

Definition 7  The score function of the HFSs s(hA(x)) as per 
[29] is: 

However, the normalized score function could be prof-
fered as: 

(5)�POSP(Q)
(x) = sup

X∈U∕Q

�P−X
(x).

(6)�
�
P
(Q) =

|�POSP(Q)
(x)|

|U| .

(7)
h−(x) = minh(x)

h+(x) = maxh(x).

(8)
s(hA(x)) =

∑l(hA(x))

i=1
h
�(j)

A
(x)

l(hA(x))

where s(hA(x)) ∈ [(0, 1)].

(9)snij =
sij∑m

i=1
sij
.

Definition 8  If X, Y are the ‘2’ non-empty finite universes 
and as well R signifies “X to Y” hesitant fuzzy relationship, 
then (X, Y, R) is called Hesitant fuzzy rough approximations 
(HFRA) space. For any P ∈ HF(Y) , the LA and UA are indi-
cated by R

−
(P) and R̄(P) respectively [26], 

 where 

 where 

Definition 9  As X stands as a finite universe of discourse, 
Torra et al. [9] offered the succeeding operations on hesitant 
FRSs. For any P,Q ∈ HF(X) , then for all x ∈ X:

1.	 The union of HFSs A and B is 

2.	 The intersection of HFSs A and B is 

3.	 The complement of A is 

Definition 10  For HFSs A and B on X = {x1, x2 … x3} , their 
weights are provided as weight vector w = {w1,w2 …wn}

T 
with wi ≥ 1 and 

∑n

i=1
wi = 1 . The proposed correlation 

grounded on entropy-centric ordered weighted approach for 
HFRS is proffered as: 

(10)
R
−
(P) = {⟨y, hR−(P)(y)⟩�y ∈ Y}

R̄(P) = {⟨y, hR̄(P)(y)⟩�y ∈ Y},

(11)

hR−(P)(y) =

{
∧
y∈Y

h
𝜎(k)

Rc (x, y) ∨ h
𝜎(k)

A
(y)|k = 1, 2… l

}
, x ∈ X

hR̄(P)(y) =

{
∧
y∈Y

h
𝜎(k)

R
(x, y) ∨ h

𝜎(k)

A
(y)|k = 1, 2… l

}
, x ∈ X,

(12)l = max{l(hR(x, y)), l(hA(x, y))}.

(13)

hP∪Q(x) = hP(x) ∨ hQ(x) =
⋃

�1∈hP(x),�2∈hQ(x)

max(�1, �2).

(14)

hP∩Q(x) = hP(x) ∧ hQ(x) =
⋃

�1∈hP(x),�2∈hQ(x)

min(�1, �2)

(15)hPc (x) =∼ hP(x) =
⋃

�∈hP(x)

{1 − �}.

(16)

�m(A,B) =
�HFRS(A,B)

[�HFRS(A,A)]
1∕2[�HFRS(B,B)]

1∕2

=

�
∑n

i=1 wmi

�
1

li

�
li∑
j=1

h
�

A�(j)
(xi) ∗ h

�

B�(j)
(xi)

���

�
∑n

i=1 wmi

�
1

li

�
li∑
j=1

h
�

A�(j)
(xi) ∗ h

�

A�(j)
(xi)

���1∕2�∑n
i=1 wmi

�
1

li

�
li∑
j=1

h
�

B�(j)
(xi) ∗ h

�

B�(j)
(xi)

���1∕2
,
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 where �m(A,B) satisfies the below properties 

Proof 

1.	 It is highly straight forward.
2.	 The inequality �m(A,B) > 0 is obvious and to prove 

�m(A,B) ≤ 1 : 

By utilizing Cauchy’s Schwarz inequality, the above equa-
tion becomes:

Therefore:

(17)

(1) �m(A,B) = �m(B,A)

(2) 0 ≤ �m(A,B) ≤ 1;

(3) �m(A,B) = 1 if A = B.

(18)

�HFRS(A,B) =

n∑
i=1

wmi

(
1

li

(
li∑
j=1

h
�

A�(j)
(xi) ∗ h

�

B�(j)
(xi)

))

= wm1

(
1

l1

(
li∑
j=1

h
�

A�(j)
(xi) ∗ h

�

B�(j)
(xi)

))
+ wm2

(
1

l2

(
li∑
j=1

h
�

A�(j)
(xi) ∗ h

�

B�(j)
(xi)

))

⋯wmn

(
1

ln

(
li∑
j=1

h
�

A�(j)
(xi) ∗ h

�

B�(j)
(xi)

))

(19)= wm1

l1�
j=1

h
�

A�(j)
(xi)√
l1

∗
h

�

B�(j)
(xi)√
l1

+ wm2

l1�
j=1

h
�

A�(j)
(xi)√
l2

∗
h

�

B�(j)
(xi)√
l2

+⋯ + wmn

l1�
j=1

h
�

A�(j)
(xi)√
ln

∗
h

�

B�(j)
(xi)√
ln

.

(20)

�HFRS(A,B)
2 =

⎡⎢⎢⎢⎢⎢⎣

wm1

�
1

l1

�
li�
j=1

h2
A�(j)

(x1)

��
+ wm2

�
1

l2

�
li�
j=1

h2
A�(j)

(x2)

��

+⋯ + wmn

�
1

ln

�
li�
j=1

h2
A�(j)

(xi)

��

⎤⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎣

wm1

�
1

l1

�
li�
j=1

h2
B�(j)

(x1)

��
+ wm2

�
1

l2

�
li�
j=1

h2
B�(j)

(x2)

��

+⋯ + wmn

�
1

ln

�
li�
j=1

h2
B�(j)

(xi)

��

⎤⎥⎥⎥⎥⎥⎦

=

�
n�
i=1

wmi

�
1

li

�
li�
j=1

h2
A�(j)

(xi)

���
∗

�
n�
i=1

wmi

�
1

li

�
li�
j=1

h2
B�(j)

(xi)

���

(21)= �HFRS(A,A) �HFRS(B,B).

(22)�HFRS(A,B) ≤ �HFRS(A,A)
1∕2.�HFRS(B,B)

1∕2.

When A = B, then:

Definition 11  [30] Information entropy H(X) of knowledge 
X proffers the uncertainty measure about knowledge X and 
is evaluated as 

(23)h
�

A�(j)
(xi) = h

�

B�(j)
(xi), �HFRS(A,B) = 1.

(24)H(X) = −

n∑
i=1

p(Xi) logp(Xi).

Methodology

Here, a detailed and systematic description on the proposed 
mathematical design for DM in HFR framework is prof-
fered. The novelty exists in rendering weighted entropy 
centered optimum attribute selection method for assessing 
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correlation of the input alternatives with the output class in 
HFR domain. Entropy weight approach gauges value disper-
sion in DM and is the common weighting methodology. If 
the degree of dispersion is greater, then its degree of dif-
ferentiations will be greater, and can derive more informa-
tion. Moreover, the maximal weight must be provided to 
the index and vice versa. This entropy weighting approach 
always gives reliable and effective results. As per [9], the 
DM uncertainty could be best expounded with the employ-
ment of HFSs. The relevant attributes could be specified 
for further processing utilizing entropy centered evaluation 
of weights for the attributes. MCDM in HFS was exten-
sively studied by [10, 16]. Nevertheless, the performance 
indicators employed by Zhang et al. [29] render ambiguous 
outcomes on the dataset utilized in this work. Hence, these 
performance indicators are re-framed in the proposed model. 
As the fifth parameter, the FTOPSIS centered performance 
indicator is utilized to assess the alternatives appropriately. 
A detailed clarification of the approach is proffered below:

1.	 Consider an attribute set of { A1,A2, A3 …An } for an 
HFS in X = {x1, x2, x3 … xn} . The hesitant fuzzy deci-
sion matrix (HFDM) is 

	   Also consider R(xi, yj) as the relational matrix which 
shows the fuzzy relation from X → Y  where input is 
xi(xi ∈ X) and output is yj(y ∈ Y)

2.	 This step finds Sn which is the normalized score matrix 
(NSM), where S indicates a score matrix as per Defini-
tion 3

3.	 As provided in Definition 8, the entropy-based determi-
nation of weights of attributes is 

 where s̄ij signifies the NSM. Attribute weights are given 
is 

4.	 Calculation of correlation coefficient for every alterna-
tive Ai and the output yj is given in step 7.

5.	 Calculation of LA and UA spaces in respect of (X, Y, 
R) is symbolized as R

−
(P) and R̄(P) which are the ‘2’ 

approximate hesitant FRS.
6.	 Computation of the performance indices ( PIi ) [29] is 

detailed below: 

(25)D =

⎡⎢⎢⎢⎣

h11 h12 … h1n
h21 h21 … …

. … … …

hm1 … … hmn

⎤⎥⎥⎥⎦
.

(26)Ej = −
1

lnm

m∑
i=1

s̄ij ln s̄ij where j = 1… n,

(27)wmj =
1 − Ej∑n

j=1
(1 − Ej)

.

	   The applied decision rules are: 

1.	 If PI1 ∩ PI2 ∩ PI3 ∩ PI4 ≠ � , and then, the optimal 
output will be yk where k = PI1 ∩ PI2 ∩ PI3 ∩ PI4.

2.	 If PI1 ∩ PI2 ∩ PI3 ∩ PI4 = � , then optimal output 
would be yk where k = PI1 ∩ PI2 ∩ PI3.,

3.	 If PI1 ∩ PI2 ∩ PI3 = � , then optimal output will be 
yk where k = PIi ∩ PIj , i ≠ j and i, j = 2, 3, 4

4.	 The decision for optimal output shall be provided by 
PI1 when 1 and 2 are false

7.	 This work proposed the application of FTOPSIS to eval-
uate the degree of closeness ( � ) as performance indicator 
( PI5 ). A novel integration of FTOPSIS with the FRS 
centered MCDM renders an accurate and robust optimal 
DM system. The proposed performance indicator ( PI5 ) 
could be computed as follows: 

(a)	 Consider the correlation matrix between Ai and yj.
(b)	 Evaluate normalized correlation score matrix rij 

(c)	 Multiply each column with the weights decided 
by the experts to evaluate the weighted decision 
matrix vij 

(d)	 The maximum value of each column vector is 
determined and is the ideal positive solution v∗

j
 . 

Also, the ideal negative solution v−
j
 is determined.

(e)	 Evaluate the Euclidean distance (ED) from v∗
j
 to 

each alternative as, 

(f)	 Compute the ED between v−
j
 and each alternative 

as, 

(28)PI1 = max
yi∈Y

{s(hR−(P)(yi))}

(29)PI2 = max
yi∈Y

{s(hR̄(P)(yi))}

(30)PI3 = max(s(hR−(P)(yi)), s(hR̄(P)(yi)))

(31)PI4 = max
yi∈Y

{�m(P,R(x, y)}.

(32)
rij =

xij�∑n

i=1
x2
ij

.

(33)vij = wijrij.

(34)D+(xj) =

√√√√ n∑
j=1

(v∗
j
− vij)

2.
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(g)	 The � renders a rational solution to the problem 
of ascertaining optimum attributes for a specific 
dataset. Find � for every alternative as: 

This work proposes � as the PI5 , an additional per-
formance indicator in fuzzy rough approach. The deci-
sion rules are also enhanced accordingly to have rules 
which assist in choosing input samples having maximal 

(35)D−(xj) =

√√√√ n∑
j=1

(v−
j
− vij)

2.

(36)�(xj) =
D−(xj)

D−(xj) + D+(xj)
.

correlation with the class and � regarding the output 
parameters. The rules are re-framed as:

1.	 If PI1 ∩ PI2 ∩ PI3 ∩ PI4 ∩ PI5 ≠ � , then optimal output 
will be yk where k =  PI1 ∩ PI2 ∩ PI3 ∩ PI4 ∩ PI5.

2.	 If PI1 ∩ PI2 ∩ PI3 ∩ PI4 ∩ PI5 = � , then optimal output 
would be yk where k =  (PI1 ∩ PI2 ∩ PI3) ∪ (PI4 ∪ PI5).

3.	 If PI1 ∩ PI2 ∩ PI3 = � , then optimal output will be yk 
with k =  (PI1 ∩ PI2) ∪ (PI4 ∪ PI5).

4.	 If PI1 ∩ PI2 = � , then optimal output would be yk ; here, 
k =  (PI4 ∪ PI5).

5.	 If (PI4 ∪ PI5) = � , then optimal output will be PI5.

Experimentation and implementation

Experimentation is made on two datasets. A medical diagnosis 
dataset which is utilized by [6, 31, 32] is proffered as Table 1. 
Medical diagnosis dataset has patients A = {A1,A2,A3,A4} 
who show the symptoms are evinced as x = {x1, x2, x3, x4, x5} 
where x1 indicates “temperature”,x2 stands for “headache”,x3 
stands for “stomach pain”,x4 stands for “cough”, and x5 
stands for “chest pain”. The probable diseases are evinced as 
Y = {y1, y2, y3, y4} where y1 stands for “Viral fever”,y2 stands 
for “Malaria”,y3 stands for “Typhoid”, and y4 stands for “Chest 
problem”. Table 2 indicates the values that are possible as per 

Table 1   HFS for symptoms 
shown by the patients

(Ai, xi) x1 x2 x3 x4 x5

A1 {0.8, 0.5, 0.7} {0.6, 0.8, 0.7} {0.2, 0.1, 0.5} {0.6, 0.8, 0.5} {0.1, 0.2, 0.4}
A2 {0.4, 0.2, 0.6} {0.4, 0.2, 0.6} {0.6, 0.8, 0.7} {0.1, 0.7, 0.4} {0.1, 0.3, 0.5}
A3 {0.8, 0.2, 0.4} {0.8, 0.5, 0.4} {0.2, 0.4, 0.6} {0.0, 0.1, 0.3} {0.0, 0.1, 0.3}
A4 {0.6, 0.8, 0.2} {0.5, 0.3, 0.8} {0.3, 0.5, 0.6} {0.7, 0.8, 0.5} {0.3, 0.4, 0.4}

Table 2   Diagnosis of the patient 
according to symptoms

(xi, yi) y1 y2 y3 y4

x1 0.4 0.7 0.3 0.1
x2 0.3 0.2 0.6 0.2
x3 0.1 0 0.2 0.8
x4 0.4 0.7 0.2 0.2
x5 0.1 0.1 0.1 0.2

Fig. 1   Correlation matrix 
between the input alterna-
tive (patients) and the outputs 
(diseases)
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the expert information. Grounded on the steps described in 
methodology, correlation matrix is proffered as Fig. 1 and is 
calculated. It is followed by the evaluation of LA and UA sets. 
The proposed performance indicator ( PI5 ) is evaluated utiliz-
ing the FTOPSIS technique as elucidated in Step 7. Finally, the 
rules stated in the proposed work are applied for diagnosis of 
the disease. Table 3 evinces the calculations for ideal positive 
and negative solutions, and � . Performance indicator PI5 pro-
vides � between the input samples and the outputs. Hence, for 
the medical diagnosis problem,y1 exhibits greater � to the input 
samples, i.e., patients. This result is completely consistent with 
the outcomes acquired utilizing the performance indicators 
proposed by [16]

However, the below example clearly emphasizes the neces-
sity of the proposed performance indicator i.e.PI5 as PI1 to 
PI4 performance indicators produced ambiguous results. 
Consider the following HFS in X = {x1, x2, x3, x4, x5} which 
indicates the decision given by the risk evaluation commit-
tee. Let A = {A1,A2 …A10} be the ten firms to be evaluated 
on the basis of criteria { x1:managers’ work experience, x2
:profitability, x3:operating capacity, x4 : ability of paying debt, 
and x5 : market competition}. The outcome is also provided as 
imprecise membership values as evaluated by the risk evalu-
ation committee in the form of FS which is a special form 
of hesitant set [1]. The corresponding HFDM is proffered as 
Table 4. Y = {y1, y2, y3} where y1 : corporate stability index, 
y2 : survival index and y3:long-term economical growth. Let 
the correlation between the criteria xi and Y is provided by 
the risk evaluation committee as indicated in Tables 4 and 5.

The algorithm commences with the evaluation of score 
matrix for Table 6 as expounded in Definition 7. The evalu-
ated score matrix is proffered in Table 6.

The NSM given in Table 7 facilitates the evaluation of 
entropy and weights (as in Definition 8) to have optimal 
attributes.

The NSM given in Table 8 facilitates the evaluation of 
entropy and weights (as in Definition 8) for the computation 
of optimal attributes:

The weight vector wj symbolizes the significance of the 
attributes. Therefore, further steps involve the computation 
of the weighted decision matrix proffered as Table 9 which 

(37)Ej = [ 0.978 0.978 0.975 0.944 0.976 ]

(38)wj = [ 0.146 0.150 0.167 0.373 0.164 ].

Table 3   Calculations for degree of closeness according to fuzzy 
TOPSIS technique

A y1 y2 y3 y4

A1 0.950 0.850 0.900 0.644
A2 0.710 0.550 0.720 0.840
A3 0.860 0.730 0.870 0.550
A4 0.899 0.790 0.820 0.680
MAX (ideal positive solution) 0.950 0.850 0.900 0.840
MIN (negative solution) 0.710 0.550 0.720 0.550
Euclidean distance from max 0.843 0.742 0.849 0.742
Euclidean distance from min 0.918 0.861 0.921 0.861
Degree of closeness 0.614 0.613 0.610 0.534

Table 4   Hesitant fuzzy input decision matrix

R(Ai, xj) x1 x2 x3 x4 x5

A1 {0.3, 0.4, 
0.5}

{0.4, 0.5} {0.8} {0.5} {0.2, 0.3}

A2 {0.4, 0.6} {0.6, 0.8} {0.2, 0.3} {0.3, 0.4} {0.6, 0.7, 
0.9}

A3 {0.5, 0.7} {0.9} {0.3, 0.4} {0.3} {0.8, 0.9}
A4 {0.3, 0.4, 

0.5}
{0.8, 0.9} {0.7, 0.9} {0.1, 0.2} {0.9, 1.0}

A5 {0.8, 1.0} {0.8, 1.0} {0.4, 0.6} {0.8} {0.7, 0.8}
A6 {0.4, 0.5, 

0.6}
{0.2, 0.3} {0.9, 1.0} {0.5} {0.3, 0.4, 

0.5}
A7 {0.6} {0.7, 0.9 {0.8} {0.3, 0.4} {0.4, 0.7}
A8 {0.9, 1.0} {0.7, 0.8} {0.4, 0.5} {0.5, 0.6} {0.7}
A9 {0.4, 0.6} {1.0} {0.6, 0.7} {0.2, 0.3} {0.9, 1.0}
A10 {0.9} {0.6, 0.7} {0.5, 0.8} {1.0} {0.7, 0.8, 

0.9}

Table 5   Hesitant fuzzy output 
decision matrix

R(xi, yj) y1 y2 y3

x1 0.4 0.7 0.3
x2 0.3 0.2 0.4
x3 0.1 0.8 0.6
x4 0.4 0.6 0.7
x5 0.1 0.1 0.4

Table 6   Score matrix for HFS

x1 x2 x3 x4 x5

A1 0.4 0.45 0.8 0.5 0.25
A2 0.5 0.7 0.25 0.35 0.73
A3 0.6 0.9 0.35 0.3 0.85
A4 0.4 0.85 0.8 0.15 0.95
A5 0.9 0.9 0.5 0.8 0.75
A6 0.5 0.25 0.8 0.5 0.4
A7 0.6 0.8 0.8 0.35 0.55
A8 0.95 0.75 0.45 0.55 0.7
A9 0.5 1.0 0.65 0.25 0.95
A10 0.9 0.65 0.65 1.0 0.8
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is attained by multiplying the elements of Table 8 with 
their respective column weights given by wj . Table 9 is 
same as Table 1, but the only difference is that the length 
of all sequences is made the same by extending the higher 
membership value for a specific sequence as stated by [1]. 
This updation in the HFDM is needed for the evaluation 
of the correlation matrix.

Table 9 is then utilized to evaluate the correlation coef-
ficient �HFRS(Ai, yi) utilizing Definition 10. This further ena-
bles the calculation of �m(Ai, yi) as evinced in Fig. 2

Figure 2 signifies the correlation of the ten firms Ai which 
were to be evaluated centered on the criteria { x1:manag-
ers’ work experience, x2:profitability, x3:operating capacity, 
x4 : ability of paying debt, and x5:market competition with 
Y = {y1, y2, y3} , where { y1 : corporate stability index, y2 : sur-
vival index as well as y3 : long-term economical growth. The 
output y1 has a maximal degree of correlation (0.213) to the 
input samples A8 , while the output y2 has 0.205 (higher) to 
the input samples A5 , and the output y3 has 0.219 (higher) to 
the input samples A1 and A7 . As given in the methodology, 
the upper HFRA and lower HFRA are evaluated utilizing 
Definition 8. The outcomes are proffered as Tables 10 and 11

For calculating the performance indices, the equivalent 
score matrices of LA and UA hesitant FRSs are needed. 
These sets are evaluated and even tabulated as Table 12 and 
13.

Calculation for PI5 grounded on FTOPSIS approach is 
then carried out. The correlation matrix which is the input 
matrix for FTOPSIS is evaluated. Figure 2 details those cor-
relation matrices between input samples and output samples. 

Table 7   Normalized score matrix

x1 x2 x3 x4 x5

A1 0.06 0.06 0.13 0.11 0.04
A2 0.08 0.10 0.04 0.07 0.11
A3 0.10 0.12 0.06 0.06 0.12
A4 0.06 0.12 0.13 0.03 0.14
A5 0.14 0.12 0.08 0.17 0.11
A6 0.08 0.03 0.13 0.11 0.06
A7 0.10 0.11 0.13 0.07 0.08
A8 0.15 0.10 0.07 0.12 0.10
A9 0.08 0.14 0.11 0.05 0.14
A10 0.14 0.09 0.11 0.21 0.12

Table 8   HFDM with repetition 
in required membership values

R(Ai, xj) x1 x1 x1 x2 x2 x2 x3 x3 x3 x4 x4 x4 x5 x5 x5

A1 0.3 0.4 0.5 0.4 0.5 0.5 0.8 0.8 0.8 0.5 0.5 0.5 0.2 0.5 0.5
A2 0.4 0.6 0.6 0.6 0.8 0.8 0.2 0.3 0.3 0.3 0.4 0.4 0.6 0.7 0.9
A3 0.5 0.7 0.7 0.9 0.9 0.9 0.3 0.4 0.4 0.3 0.3 0.3 0.8 0.9 0.9
A4 0.3 0.4 0.5 0.8 0.9 0.9 0.7 0.9 0.9 0.1 0.2 0.2 0.9 1 1
A5 0.8 1 1 0.8 1 1 0.4 0.6 0.6 0.8 0.8 0.8 0.7 0.8 0.8
A6 0.4 0.5 0.6 0.2 0.3 0.3 0.9 1 1 0.5 0.5 0.5 0.3 0.4 0.5
A7 0.6 0.6 0.6 0.7 0.9 0.9 0.8 0.8 0.8 0.3 0.4 0.4 0.4 0.7 0.7
A8 0.9 1 1 0.7 0.8 0.8 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7
A9 0.4 0.6 0.6 1 1 1 0.6 0.7 0.7 0.2 0.3 0.3 0.9 1 1
A10 0.9 0.9 0.9 0.6 0.7 0.7 0.5 0.5 0.5 1 1 1 0.7 0.8 0.9

Table 9   Weighted hesitant fuzzy decision matrix

R(Ai, xj) x1 x1 x1 x2 x2 x2 x3 x3 x3 x4 x4 x4 x5 x5

A1 0.044 0.058 0.073 0.060 0.075 0.075 0.133 0.133 0.133 0.187 0.187 0.187 0.033 0.082
A2 0.058 0.088 0.088 0.090 0.120 0.120 0.033 0.050 0.050 0.112 0.149 0.149 0.098 0.115
A3 0.073 0.102 0.102 0.135 0.135 0.135 0.050 0.067 0.067 0.112 0.112 0.112 0.131 0.148
A4 0.044 0.058 0.073 0.120 0.135 0.135 0.117 0.150 0.150 0.037 0.075 0.075 0.148 0.164
A5 0.117 0.146 0.146 0.120 0.150 0.150 0.067 0.100 0.100 0.298 0.298 0.298 0.115 0.131
A6 0.058 0.073 0.088 0.030 0.045 0.045 0.150 0.167 0.167 0.187 0.187 0.187 0.049 0.066
A7 0.088 0.088 0.088 0.105 0.135 0.135 0.133 0.133 0.133 0.112 0.149 0.149 0.066 0.115
A8 0.131 0.146 0.146 0.105 0.120 0.120 0.067 0.083 0.083 0.187 0.224 0.224 0.115 0.115
A9 0.058 0.088 0.088 0.150 0.150 0.150 0.100 0.117 0.117 0.075 0.112 0.112 0.148 0.164
A10 0.131 0.131 0.131 0.090 0.105 0.105 0.083 0.083 0.083 0.373 0.373 0.373 0.115 0.131
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The weights for yi for the further calculations are presumed 
to be 1 as all the outputs yi are equally significant. Figure 3 
indicates the ideal positive solution and ideal negative solu-
tion as expounded in step 7. This follows the ED calcula-
tion which is evinced in Tables 14 and 15. Finally, Fig. 4 
indicates � calculation.

Figure 4 evinces � of the ‘Y’ output in respect of the 
input samples. The output y1 has higher � (0.58) to the 
input samples Ai which means that the ten firms could 
provide a better corporate stability as contrasted to long-
term economical growth and survival index. That means 
the output of the survival index ( y2 ) as well as long-term 
economical growth ( y3 ) gives � of 0.44 and 0.51 to the 

Fig. 2   Correlation between input samples and output space

Table 10   The lower HFRA

(yj, hR−(AI )
(yj)) y1 y2 y3

R
−
(A1) (0.6, 0.6, 0.6) (0.3, 0.4, 0.5) (0.5, 0.5, 0.5)

R
−
(A2) (0.6, 0.6, 0.6) (0.2, 0.3, 0.3) (0.3, 0.4, 0.4)

R
−
(A3) (0.6, 0.6, 0.6) (0.3, 0.4, 0.4) (0.3, 0.3, 0.3)

R
−
(A4) (0.6, 0.6, 0.6) (0.3, 0.4, 0.4) (0.3, 0.3, 0.3)

R
−
(A5) (0.6, 0.6, 0.6) (0.4, 0.6, 0.6) (0.7, 0.7, 0.7)

R
−
(A6) (0.6, 0.6, 0.6) (0.4, 0.5, 0.5) (0.5, 0.5, 0.5)

R
−
(A7) (0.6, 0.6, 0.6) (0.9, 0.4, 0.4) (0.3, 0.4, 0.4)

R
−
(A8) (0.6, 0.6, 0.6) (0.4, 0.5, 0.5) (0.5, 0.5, 0.5)

R
−
(A9) (0.6, 0.6, 0.6) (0.4, 0.4, 0.4) (0.3, 0.3, 0.3)

R
−
(A10) (0.9, 0.9, 0.9) (0.9, 0.9, 0.9) (0.6, 0.6, 0.6)

Table 11   The upper HFRA

(yj, hR̄(AI )
(yj)) y1 y2 y3

R̄(A1) (0.8, 0.8, 0.8) (0.4, 0.5, 0.5) (0.4, 0.5, 0.5)
R̄(A2) (0.6, 0.7, 0.9) (0.6, 0.8, 0.9) (0.6, 0.6, 0.6)
R̄(A3) (0.8, 0.9, 0.9) (0.8, 0.9, 0.9) (0.6, 0.7, 0.7)
R̄(A4) (0.9, 0.9, 0.9) (0.9, 0.9, 0.9) (0.6, 0.6, 0.6)
R̄(A5) (0.7, 0.8, 0.8) (0.8, 0.8, 0.8) (0.7, 0.7, 0.7)
R̄(A6) (0.9, 0.9, 0.9) (0.4, 0.4, 0.5) (0.4, 0.5, 0.6)
R̄(A7) (0.8, 0.8, 0.8) (0.7, 0.8, 0.8) (0.6, 0.6, 0.6)
R̄(A8) (0.7, 0.7, 0.7) (0.7, 0.8, 0.8) (0.7, 0.7, 0.7)
R̄(A9) (0.9, 0.9, 0.9) (0.9, 0.9, 0.9) (0.6, 0.6, 0.6))
R̄(A10) (0.9, 0.9, 0.9) (0.7, 0.8, 0.9) (0.7, 0.7, 0.7)

Table 12   Score function of 
lower hesitant fuzzy RS

(yj, hR−(AI )
(yj)) y1 y2 y3

R
−
(A1) 0.6 0.4 0.5

R
−
(A2) 0.6 0.26 0.36

R
−
(A3) 0.6 0.36 0.3

R
−
(A4) 0.6 0.36 0.3

R
−
(A5) 0.6 0.53 0.7

R
−
(A6) 0.6 0.46 0.5

R
−
(A7) 0.6 0.56 0.36

R
−
(A8) 0.6 0.46 0.5

R
−
(A9) 0.6 0.4 0.3

R
−
(A10) 0.9 0.9 0.6

Table 13   Score function of upper hesitant fuzzy RS

(yj, hR̄(Ai)
(yj)) y1 y2 y3

R̄(A1) 0.8 0.46 0.46
R̄(A2) 0.73 0.76 0.6
R̄(A3) 0.86 0.86 0.66
R̄(A4) 0.9 0.9 0.6
R̄(A5) 0.76 0.8 0.7
R̄(A6) 0.9 0.43 0.5
R̄(A7) 0.8 0.76 0.6
R̄(A8) 0.7 0.76 0.7
R̄(A9) 0.9 0.9 0.6
R̄(A10) 0.9 0.8 0.7
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input samples which are lower on considering the output 
y1 . Tables 10, 11, 12, 13, 14, and 15 finally help in (PIi) 
calculation of as proffered in Table 16

Table 16 implies that the entire alternatives cannot be 
estimated utilizing an algorithm that is recommended 
in [16]. Column 6 has a letter I written for alternatives 
A3,A4,A9 and A10.Those alternatives have PI2 carrying 
two values. Zhang et al.’s algorithm [29] does not render a 
solution for these cases. Nevertheless, the proposed algo-
rithm incorporated an additional performance indicator PI5 
that is centered on FTOPSIS, and this is capable of having 
a solution to the aforesaid ambiguity. The � betwixt the 
input alternatives and output aids the fuzzy rough centered 
MCDM in making a suitable decision. Therefore, the pro-
posed work exclusively renders correlations betwixt the 
input alternatives and the output in line with the evalua-
tion criterion. It is concluded as of the aforesaid outcomes 
that the proposed DM can be properly employed to resolve 
the manifold and DM issues with completely unidentified 
attribute weights. The proposed work renders a helpful 
means for managing multicriteria fuzzy DM issues within 
attribute weights. An appropriate entropy weighting meth-
odology derives the attribute weights as per alternative, and 
it picks the best alternative as per them.

Conclusion

The proposed work methodically modeled the MCDM 
for hesitant FRSs. An additional performance parameter 
“FTOPSIS centered � ” is also proposed here to resolve 
ambiguous cases effectively. And, this is confirmed via 
implementations on multiple datasets. Correlation matrix 
which shows the correlation of input alternatives with the 
output class grounded on a certain set of criteria eventu-
ally assists in computing the proposed FTOPSIS centered 
performance index. Entropy-centric weighing of the attrib-
ute aids in selecting the relevant as well as non-redundant 
attributes. Grounded on the volume of information, this 
entropy approach finds the index’s weight for the attrib-
utes, which is the objective fixed weight methodology. The 

Fig. 3   Ideal positive and negative solutions

Table 14   Calculation of ED for an ideal positive solution

ED between the positive ideal solution and each alternative

A1 0.000841 6.4E−05 0
A2 0.000225 0.002116 0.000256
A3 0.0004 0.002116 0.000361
A4 0.003844 0.002209 0.000529
A5 0.000025 0.000676 0.0001
A6 0.001444 0 9E−06
A7 0.0004 0.000144 0
A8 0 0.000361 8.1E−05
A9 0.001369 0.001849 0.000225
A10 0.000225 0.001156 0.000289∑n

j=1
(v∗

j
− vij)

2 0.008773 0.010691 0.00185
D+(xj) 0.093664 0.103397 0.043012

Table 15   Calculation of ED for ideal negative solution

ED between the ideal negative solution and each alternative

A1 0.001089 0.001521 0.000529
A2 0.002209 0.000001 4.9E−05
A3 0.001764 0.000001 0.000016
A4 0 0 0
A5 0.003249 0.000441 0.000169
A6 0.000576 0.002209 0.0004
A7 0.001764 0.001225 0.000529
A8 0.003844 0.000784 0.000196
A9 0.000625 0.000016 6.4E−05
A10 0.002209 0.000169 3.6E−05∑n

j=1
(v−

j
− vij)

2 0.017329 0.006367 0.001988
D−(xj) 0.13164 0.079793 0.044587

Fig. 4   Degree of closeness between input and output samples
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disorder degrees of the attributes and their utility in the 
system information are ascertained by Entropy. Finally, the 
evaluations of upper HFRA and lower approximate HFRA 
further facilitate the selection of optimum attributes. Thus, 
a generic approach which is hybrid entropy-centric optimal 
attribute selector, i.e., RSs and HFSs, shall effectually assist 
the researchers in vagueness and uncertain DM problems 
without an ambiguity. Utilizing this proposed entropy weight 
centric approach, the weights of the attributes are found and 
the appropriate attributes are selected which eradicates the 
disturbances (caused by man) and makes outcomes as per 
facts. The entropy weight together with FTOPSIS method 
is clear, simple, and reasonable when contrasted to fuzzy 
synthetic assessment and other evaluation approaches. Nev-
ertheless, the entropy weighting approach merely regards the 
numerical discrimination degrees of the attribute index and 
disregards rank discrimination. These shortcomings signify 
that the entropy approach could not exactly reflect the sig-
nificance of the index weight, thus causing distorted DM 
results. This problem can well be tackled in future.

In addition, knowledge reduction is the notable content 
for the research of RS theory. Therefore, in the future, the 
proposed algorithm can be extended grounded on interval-
valued FRSs and type 2 FSs for knowledge reduction under 
complete information systems.
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