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Abstract
For the deployment and startup of microservice instances in different resource centres, we propose an optimization problem 
model based on the evolutionary multi-objective theory. The objective functions of the model consider the computation and 
storage resource utilization rate, load balancing rate, and actual microservice usage rate in resource service centres. The 
constraints of the model are the completeness of service, total amount of storage resources, and total number of microser-
vices. In this study, a knowledge-driven evolutionary algorithm (named MGR-NSGA-III) is proposed to solve the problem 
model and seek the optimal deployment and startup strategy of microservice instances in different resource centres. The 
proposed model and solution have been evaluated via real data experiments. The results show that our approach is better 
than the traditional microservice instance deployment and startup strategy. The average computation rate, storage idle rate, 
and actual microservice idle rate were 13.21%, 5.2%, and 16.67% lower than those in NSGA-III, respectively. After 50, 100, 
and 150 evolutionary generations in serval operations, the population members in NGR-NSGA-III dominated the popula-
tion members in NSGA-III 6,270, 3,581, and 7,978 times in average, respectively, which means that NGR-NSGA-III can 
converge to the optimal solution much quicker than NSGA-III.

Keywords Multi-objective optimization · NSGA-III · MGR-NSGA-III · Microservice

Introduction

Benefiting from the revolution of SOA (service-oriented 
architecture) [13] and cloud technology, microservices tech-
niques have been developed and applied in many applica-
tions [26]. Compared with microservices, traditional single 
applications have many limitations, especially when there 
are a large number of users in different regions and with 
different business needs. A single application means that a 
war package contains all the functions of the project. The 
scalability, fault tolerance, stability, and invulnerability of 
single applications are clearly insufficient to adapt to the 
rapid development of mobile internet, which is widely used 
for large-scale distributed concurrent users. Therefore, 
microservice-based applications research has attracted 
wide attention [14, 26]. Microservices decompose tradi-
tional single-application tasks into independent microser-
vices horizontally or vertically to meet different business 
and functional requirements. Each decomposed service can 
run multiple instances individually.

Microservices are flexible, scalable, and highly avail-
able. (a) Flexibility means that each service instance can 
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be flexibly deployed in multiple servers or cloud resource 
centres on the condition of sufficient network communica-
tion bandwidth and computing and storage resources [10]; 
(b) scalability is the ability to start and shut down instances 
according to the user’s concurrent needs. These operations 
should be adaptable to a dedicated service module. For 
example, in e-commerce microservices, the concurrent user 
payment services suddenly increase at a certain time while 
other services (such as user registration service and ERP 
service) are unchanged. In that case, the system should only 
expand the payment service ability rather than the entire 
service. Therefore, the flexible extension mechanism of 
microservices can provide users with high concurrent ser-
vices while saving resources. (c) High availability is another 
typical feature of the microservices. The resources required 
for the microservice instances are relatively small, and each 
microservices can start multiple instances at the same time. 
It can perform multi-service hot standby operations on 
certain key services to improve the stability of the entire 
application. In summary, due to the above characteristics, 
microservices are an effective method when there is a large 
number of users and access devices and massive concur-
rent requests [1, 11] for applications of mobile internet and 
internet of things.

Many large-scale network application companies or 
enterprises (e.g., Amazon [27], IBM [6], eBay [24], Twit-
ter [19], Alibaba [21], Tencent [35]) are gradually adopting 
microservice-based architecture. Microservices can provide 
powerful and flexible expansion in many applications. How-
ever, there are also some problems which need to be solved 
urgently. One of the most critical issues is the microservice 
deployment and startup optimization problem. The main 
problem is that some microservices in multiple locations 
need to be started to provide services for a large number of 
users distributed over a wide area. How and where should 
the instance of these microservices be started in the con-
straint of hardware resources, service delays, and service 
reliability? This is the core problem of service centre con-
figuration and schedules. The difficulty of this problem lies 
in the following: (a) many factors (computing or storage 
resource usage rate, service efficiency, and load balancing 
indicators) in various servers and service centres are mutu-
ally constrained, and it is difficult to achieve an optimal 
solution on all targets in all centres. (b) The computational 
complexity is high, and it is difficult to find the optimal solu-
tion in polynomial time using traditional optimization algo-
rithms. (c) The startup and service requests for microservice 
instances have certain dynamics, and the solution strategy 
needs to be quickly solved to meet the actual needs.

The contributions of this paper are as follows: (a) a multi-
objective optimization model is constructed for microser-
vices deployment and startup strategy. (b) A knowledge-
driven evolutionary algorithm (Multi-Generations Reference 

NSGA-III, MGR-NSGA-III) is proposed to choose the elite 
solutions in each evolutionary generation by considering the 
lineages of the population members. (c) A number of multi-
objective algorithms are compared to solve the microser-
vices deployment and startup problem in real datasets.

According to the authors’ knowledge, this is the first study 
to model the microservices deployment and startup problem 
based on multi-objective optimization on the server side. 
The model is evaluated by applying a microservice system 
to typical datasets in New York and Tokyo. The simulation 
experiment shows that the solution is feasible and supports 
the deployment and startup of microservices.

The remainder of this paper is organized as follows: Sec-
tion “Related works” provides a brief review of the multi-
objective optimization model of microservices deployment 
and startup strategy. Section “Problem definition and multi-
objective model” proposes a multi-objective optimization 
model of problem. MGR-NSGA-III algorithm is proposed 
in Section “Multi-generations reference NSGA-III”. Section 
“Experiment analysis” presents a comparative analysis and 
summary of the experiments.

Related works

The research of service computing mainly focuses on the 
traditional web service composition problem [3, 15]. The 
traditional solution is to provide users with the most appro-
priate service combination strategy from the perspective of 
optimizing service quality indicators, such as service per-
formance indicators, energy indicators, and service secu-
rity indicators [32]. This article provides a good review of 
service computing; however, it does not discuss the appli-
cation of the algorithm in service computing, and it lacks 
experimental results.

In the cloud service environment, the service deployment 
strategy problem consists of the following aspects. The qual-
ity of service (QoS) of composite services plays an impor-
tant role in the deployment value chain and partner collabo-
ration in the manufacturing field [29]. Qos is an evaluation 
system which is used to evaluate performance of the ser-
vices, including comprehensive evaluation of service avail-
ability, accessibility, reliability, legality, security, success 
rate, access volume, response time, etc. The cloud service 
was adopted to improve the service quality in the intelligent 
manufacturing field [16]. The synthetic genetic algorithm 
was used to solve the service deployment and composition 
problem. For the QoS-based service composition problem, 
a service composition solution based on the multi-constraint 
optimal path problem model was proposed [12] by optimiz-
ing the correlation between various QoS factors. The results 
of some experiments show that the solution achieves good 
performance of QoS in cloud computing. However, when the 
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number of available services in the service pool is increased, 
these solutions become very inefficient. As the services 
manufactured by the cloud are complementary and interact 
with each other, it is hard to select a service composition 
group. The swarm differential evolution algorithm [34] and 
the hybrid grey wolf group optimization algorithm [4] were 
introduced into the cloud manufacturing large-scale service 
deployment problem.

Optimal service deployment and combination strategies 
have been used to extend the lifespan of the internet of things 
(IoT). A game and evolutionary theory-based method was 
proposed [18] to solve the optimal service composition strat-
egy of IoT. The life cycle of IoT services can be extended 
by seeking a load-balancing optimal service arrangement 
strategy for multiple devices. In addition, a heuristic strat-
egy was used to schedule user requests and services in IoT 
applications [22] to achieve a supply and demand equilib-
rium between users and service providers in heterogeneous 
environments.

Microservices are applied to provide users with high-
quality and high-performance services while minimizing the 
cost of hosting user services. The quality and performance 
of microservices are affected by some major factors [17]. 
These factors include the flexibility of the deployment infra-
structure, load balancing, changing service providers, infra-
structure reservations, memory size, etc. Low cost means 
that service providers have high resource usage rates. Under 
the condition of the FAAS (function as a service) technol-
ogy architecture concept, this paper [2] proposes an event-
driven and scalable service environment to determine which 
and how service instances need to be started. However, this 
strategy is based on function calls rather than resource 
requirements. In this case, the policy is implemented on 
the server. Therefore, the FAAS needs to be expanded to 
respond to the user requests. In this way, microservices 
can provide users with more scalable services. However, 
a limitation is that the expansion of FAAS is not efficient 
and transferable. The server needs to be restarted and rede-
ployed every time the physical resources are expanded. One 
solution is the composite service instance startup strategy. 
The server can dynamically start and end different service 
instances according to the global user requirements. Thus, 
a combination optimization strategy of the entire server can 
be obtained without restarting the physical server. In [9], 
the microservices allocation strategy in the heterogeneous 
microservices environment was studied. An efficient real-
time dynamic microservices scheduling strategy that enables 
users to schedule their requests after the microservices have 
been deployed was proposed.

The services/microservices deployment and composition 
scheduling strategies mentioned above can adapt to differ-
ent QoS indicators. The advantage of microservices is that 
it can produce adaptive deployment strategies for different 

requirements. However, most of the microservice startup 
strategies are not efficient because they adopt a fixed total 
amount [1, 2, 14] and determine the number of fixed micros-
ervice instances startup based on the number of pre-esti-
mated resources in the resource centre. The resource usage 
rate and load balance rate are low in traditional methods for 
microservices. Therefore, a new microservices deployment 
and startup method is needed.

The multi-objective evolutionary algorithms (MOEAs) 
have proved their effectiveness in solving multi-objective 
optimization problems [16]. MOEAs mainly include multi-
objective genetic algorithms (NSGA, NSGA-II, NSGA-III, 
SPEA-II, etc.) [7, 23], multi-objective optimization based on 
decomposition [28, 31], multi-objective optimization based 
on artificial immune system [25, 34] and some other meth-
ods and applications [5, 33]. Their evolutionary nature based 
on population members makes it possible to obtain compu-
tational goals of multiple targets in a single run. Therefore, 
the MOEAs can solve the microservices deployment and 
startup problem.

Problem definition and multi‑objective 
model

The illustration of the microservices deployment and startup 
problem is shown in Fig. 1. Assume that several resource 
centres (RCs) are distributed in space, and each one has 
two kinds of resources: computation and storage resources. 
The startup of each microservice instances will consume a 
certain amount of resources. At the same time, a large num-
ber of service users are distributed in the same space. Each 
user requires one or more microservice instances to be ser-
viced. The problem of microservice deployment and startup 

Fig. 1  The illustration of microservices deployment and startup prob-
lem
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is to seek the optimal number of the running microservice 
instances in each resource centre. With this optimal strategy, 
the resources can be used efficiently, and the load balance in 
each RC can be increased.

According to the needs of microservices deployment, 
the optimal model should be constructed based on a typi-
cal multi-objective optimization model. Before the model is 
constructed, some definitions are provided as follows:

Definition 1 Resource centres (RC). A resource centre is an 
entity that provides an environment for the deployment and 
startup of microservice instances. It contains computation 
and storage resources, and it can be distributed in different 
locations.

Assuming that there is a number N of RCs 
i n  t h e  s p a c e ,  RC =

{
rc1, rc2,… , rcN

}
 ,  e a c h 

resource centre contains two types of informa-
tion (resource and location), which can be described 
a s rci =

(
RRes

(
r_comi, r_stoi

)
, RLoc

(
r_lati, r_loni

))
,

where RRes
(
r_comi, r_stoi

)
represents the existing compu-

tation resources comi and storage resources stoi in the i-th 
RC. To facilitate the model solution, the computation and 
storage resources are all normalized to a specific real value. 
Loc

(
lati, loni

)
 are the latitude and longitude of the i-th RC 

location.

Definition 2 Microservice collection (Microservices, 
MS). In this paper, the microservice collection refers to 
some independent functional services that are separate 
from a single big application. It can be described as fol-
lows: MS =

{
s1, s2,… , sK

}
 represents K independent 

microservices that are separate from a single application. 
si =

(
SRes

(
r_comi, r_stoi

))
, i ∈ [1,K] represents the com-

putation and storage resources of the i-th microservice when 
its instance is deployed and started up.

Definition 3 User collection (Users, U). User collection 
refers to the consumers of microservices. Each user may 
consume a single microservice or a sequence of several 
microservices. Users are independent individuals.

It is assumed that there are M users in the space described 
as Users =

{
u1, u2,… , uM

}
 . Each user contains two types of 

information (service request information and location infor-
mation), asui =

(
UReq

(
Si
(
sp,… , sk

))
, ULoc

(
u_lati, u_loni

))
,i ∈ [1,M], 0 < p < k < K  ,  where UReq

(
Si
(
sp,… , sk

))
 

is the current requirement of the i-th user, and 
ULoc

(
u_lati, u_loni

)
 is the current location of the 

microservice.

Definition 4 Microservice instances deployment and startup 
strategy (MDSS). For a number of N resource centres in the 
space RC =

{
rc1, rc2,… , rcN

}
 , the microservice instances 

MS =
{
s1, s2,… , sK

}
deployment and startup strategy is 

expressed as Strategy(RC,MS) . The mathematical expres-
sions are as (1):

where rc1
(
x11,… , x1K

)
 represents MDSS in resource centre 

1.x11indicates the number of startup instances of microser-
vice 1 in resource centre 1.

The multi-objective optimization model for this prob-
lem is as Eq. (1).

It is assumed that there are a number of N resource 
centres RC =

{
rc1, rc2,… , rcN

}
 in space ℝ , K functionally 

independent microservices MS =
{
s1, s2,… , sK

}
 , and M 

users Users =
{
u1, u2,… , uM

}
 , and the decision vector 

x = Strategy(RC,MS) is a continuous independent variable.

where F(x) is the objective function of this model gi(x) and 
hj(x) represent two different constraints. L is the number 
of objective functions, m is the number of inequality con-
straints, and n is the number of equality constraints in the 
model. The model has five objective functions: computation 
and storage resource utilization efficiency, the real idle rate, 
and the computation and storage load balancing ratios. The 
five objective functions are defined as follows:

Objective functions

The first objective function calculates the computation 
resource idle rate, which is defined as f1(x).

whererci
(
xi1,… , xiK

)
 represents the number of microser-

vices that are running at the i-th resource centre.
The SRes

(
r_com1,… , r_comK

)
represents the vector of 

computational resources consumed by the microservices. 
RRes

(
r_comi

)
 represents the existing computational 

resource value of the i-th resource centre.
Similarly, the second objective function storage 

resource idle rate is defined as f2(x).

(1)Strategy(RC,MS) =
[
rc1

(
x11,… , x1K

)
, rc2

(
x21,… , x2K

)
,… , rcN

(
xN1,… , xNK

)]T
,

(2)

⎧⎪⎨⎪⎩

min
x∈�

F(x) = min
�
f1(x), f2(x),… , fL(x)

�T
s.t.gi(x) ≤ 0(i = 1, 2,… ,m),

hj(x) = 0(j = 1, 2,… , n)

,

f1(x) = 1 −

N∑
i=1

rci
(
xi1,… , xiK

)
⋅ SRes

(
r_com1,… , r_comK

)T
RRes

(
r_comi

)
/

N,
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The third objective function is the real idle rate of the 
microservice. In general, a single microservice instance 
can be used for several service requests once it is started 
up. However, when the number of service requests exceeds 
the maximum load of a single microservice instance, extra 
instances need to be started. The maximum number of 
service users that a single microservice can handle can be 
represented as MSMaxUsers =

[
mu1,mu2,… ,muK

]
 . It is 

expected that the load of each microservice should be fully 
used.

The real idle rate for microservices is defined as f3(x).

where RealUserNum
(
sj, rci

)
 is the actual number of users of 

microservice sj at the resource centre rci . The calculation 
method will be described in detail later as the result of the 
service discovery strategy in Section III.

Under the premise of this user’s service discovery strat-
egy, the feasible solution must satisfy the constraints (see the 
constraint section below), and the user can get at least one 
available microservice. At the same time, the microservice 
instance that is started up in each resource will identify the 
number of users as RealUserNum

(
sj, rci

)
.

The fourth objective function is the computation load bal-
ancing ratio among the resource centres. It is not good for 
some resource centres to maintain high-load operation for a 
long time while other resource centres are idle.

The load balancing rate is calculated as f4(x).

The fifth objective function is the storage load balancing 
ratio in the resource centres. The storage load balancing ratio 
is used to measure the storage balance degree of the resource 
centre. Generally, due to the existence of data synchronization 
tasks between resource centres, a resource centre with a large 

f2(x) = 1 −

N∑
i=1

rci
(
xi1,… , xiK

)
⋅ SRes

(
r_sto1,… , r_stoK

)T
RRes

(
r_stoi

)
/

N.

f3(x) = 1 −

N∑
i=1

K∑
j=1

RealUserNum
(
sj, rci

)

ServAbility
(
xij,muj

)
/

(KN),

ServAbility
(
xij,muj

)
=

{
xijmuj if xij ≠ 0

1, if xij = 0
,

f4(x) =
N∑
i=1

�
ComUsage

�
rci

�
− ComUsage(RC)

�2

,

ComUsage
�
rci

�
=

rci(xi1,…,xiK)⋅SRes(r_com1,…,r_comK)
T

RRes(r_comi)
,

ComUsage(RC) =
K∑
i=1

rci(xi1,…,xiK)⋅SRes(r_com1,…,r_comK)
T

K∑
i=1

RRes(r_comi)

.

amount of data storage may synchronize data to another one. 
It often occupies a large amount of communication resources 
and might cause congestion in services. Therefore, to reduce 
the data synchronization overhead, the storage load balancing 
of the resource centre should be considered.

The storage load balancing ratio is computed as f5(x).

Constraints

There are four constraints in the model. They are described 
as follows:

The first constraint is the completeness constraint 
of the service g1(x) . All microservices must be guar-
anteed to start at least one instance in RC. The math-
ematical expression of the constraint is as follows:g1(x) ∶
xij ≥ 1, 1 ≤ i ≤ N, 1 ≤ j ≤ K.N is the number of resource 
centres, and K is the number of microservices in the single 
service.

The second constraint is the total amount of computation 
resource constraint g2(x) . Because the computation resource 
in each RC is limited, the amount of computing resources 
occupied by started-up service instances cannot exceed its 
total amount.

The third is the storage resource constraint g3(x) . The 
amount of storage resources occupied by started-up service 
instance cannot exceed the total amount in each RC.

The fourth constraint is the total number of service 
sequence constraints g4(x) . The total amount of all started-
up microservice instances should be bigger than the total 
amount of user demand for microservices. The expression 
is as follows:

f5(x) =
N∑
i=1

�
StoUsage

�
rci

�
− StoUsage(RC)

�2

,

StoUsage
�
rci

�
=

rci(xi1,…,xiK)⋅SRes(r_sto1,…,r_stoK)
T

RRes(r_stoi)
.

StoUsage(RC) =
K∑
i=1

rci(xi1,…,xiK)⋅SRes(r_sto1,…,r_stoK)
T

K∑
i=1

RRes(r_stoi)

.

g2(x) ∶ rci
(
xi1,… , xiK

)
⋅ SRes

(
r_sto1,… , r_stoK

)T
< RRes

(
r_stoi

)
, 1 ≤ i ≤ N.

g3(x) ∶ rci
(
xi1,… , xiK

)
⋅ SRes

(
r_com1,… , r_comK

)T
< RRes

(
r_comi

)
, 1 ≤ i ≤ N.

g4(x) ∶

M∑
i=1

UserReq
(
ui, sj

)
≤

N∑
i=1

xijmuj, 1 ≤ j ≤ K.
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UserReq
(
ui, sj

)
 indicates whether the i-th user has requested 

the service; it returns 1 if so and returns 0 if not. muj indi-
cates the maximum number of service users that j-th 
microservice.

Optimization problem model

In summary, the microservice deployment and startup 
strategy model based on multi-objective optimization is 
described as follows:

Assuming that the MS set O =
{
o1, o2,… , oK

}
 , for the 

s o l u t i o n  s p a c e  d e c i s i o n  v e c t o r  x ∈ �

,x =

⎡
⎢⎢⎢⎣

rc1
�
x11, x12,… x1K

�
,

rc2
�
x21, x22,… x2K

�
,

… ,

rcN
�
xN1, xN2,… xNK

�

⎤
⎥⎥⎥⎦

T

 , and the model is

It can be known from the description of the model that the 
problem is a typical NP-hard problem. The problem is diffi-
cult to solve using the traditional polynomial method. There-
fore, it is necessary to seek the evolutionary computation 
method.

Multi‑generations reference NSGA‑III

In this paper, multi-generations reference NSGA-III (MGR-
NSGA-III) is proposed to solve the problem. Compared 
with other multi-objective optimization algorithms such as 
NSGA-III, SPEA-II, etc., MGR-NSGA-III can quickly con-
verge to the optimal solution and effectively find the Pareto 
frontier.

Non-dominated sorted genetic algorithm (NSGA) and 
its variants are one of the most classic algorithms for solv-
ing multi-objective optimization problems [20]. NSGA is 
a multi-objective optimization algorithm based on the 
Pareto frontier to optimize multiple targets. The NSGA-II 
algorithm [8] is also known as the non-dominated sorting 
genetic algorithm with elite strategy. It can find a way 
to retain the elite solutions as the next generation’s par-
ents according to the dominance relationship between the 

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
x∈�

F(x) = min
�
f1(x), f2(x),… , f5(x)

�T
,

s.t.g1(x) ∶ xij ≥ 1, 1 ≤ i ≤ N, 1 ≤ j ≤ K,

g2(x) ∶ rci
�
xi1,… , xiK

�
⋅ SRes

�
r_sto1,… , r_stoK

�T
lt;RRes

�
r_stoi

�
, 1 ≤ i ≤ N,

g3(x) ∶ rci
�
xi1,… , xiK

�
⋅ SRes

�
r_com1,… , r_comK

�T
lt;RRes

�
r_comi

�
, 1 ≤ i ≤ N,

g4(x) ∶
M∑
i=1

UserReq
�
ui, sj

�
≤

N∑
i=1

xijmuj, 1 ≤ j ≤ K.

offspring. NSGA-III [7], also known as the reference point 
non-dominated sorting genetic algorithm and based on the 
NSGA-II computational framework, further improves the 
elites retention strategy. It uses a reference point strategy 
based on maintaining population diversity. It improves the 
computational efficiency of seeking multiple elite solu-
tions in the non-dominated layer.

The MGR-NSGA-III uses a knowledge-driven popu-
lation selection method (named the learning elite popu-
lation selection method) which was designed based on 
the NSGA-III in the non-dominated level. The learning 
elite population selection method can record the domi-
nance level of historical generations. It can select elite 
population members with high genetically pure lineage 
as the knowledge driven and use them for the mutation of 
the next generation. The descendants which are inherited 

by high dominated-level ancestors are more likely to be 
selected. The selection of the population is based not only 
on this generation of inheritance but also the knowledge 
about lineage of the population. The mutation and crosso-
ver of the population, which refer the potential lineage, 
are more suitable for solving multi-objective optimization 
problems.

Main process

Once the microservices and users are allocated in the space, 
the system should decide how and where the microservice 
instances starts up and how users can access the microser-
vices. The main process to handle this problem is shown in 
Fig. 2. First, the microservice allocation vector is initiated 
in RC, including the real starting up microservice vector, 
remaining computation and storage ability vector and user 
access vector. Second, the optimal deployment and starting 
up solution is calculated by the MGR-NSGA-III (the solving 
details will be explained in next section), and the microser-
vices will be initiated according to this solution. Then, users 
and microservices will be matched. For every user in the 
users’ set, find the nearest service by location, if the service 
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is available, complete the matching process of this user, and 
if not, continue to find the nearest service location, until 
all user’s find the services, then stop the matching process. 
RC will evaluate the variation of the user requests to decide 
whether it is necessary to recompute the optimal policy by 
MGR-NSGA-III.

MGR‑NSGA‑III

1. Algorithm’s solving process

MGR-NSGA-III integrates the evolutionary mechanism 
of NSGA-III with the lineage. Rather than considering the 
dominance and crowding degree between population mem-
bers, the elite strategy selection will compute the lineage of 
the population and compare their historic relationship of par-
ents. In the same situation, population members with higher 
unsorted-dominated rank ancestry are selected.

Fig. 2  Main process framework 
of microservices deployment 
and startup problem
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The input of the algorithm is the previous generation 
population Pt (if it is the first generation, the popula-
tion is randomly initialized), the reference point set of 
the population (calculation method in [7]). First, a set 
of population Qt , lineage collection Lineaget , is initial-
ized. Then, crossover and mutation of the population are 
operated, and the lineages are stored in the offspring; 

see lines 1–2 of Algorithm  1. The detailed calcula-
tion process Offspring_Lineage

(
Pt

)
 will be displayed in 

Algorithm 2. The parent Pt and offspring Ztare incorpo-
rated into JointPt+1 ; then, using the non-dominated sort-
ing of JointPt+1 , a result set 

(
R1,R2,… ,

)
 is obtained, and 

the resulting rank code is stored as a lineage collection 
Lineraget+1 to the current population. See lines 4–5 in 
Algorithm 1. Second, the dominated solution of the pre-
vious i levels is selected until the number of solutions of 
the first i + 1 levels is greater than the maximum popu-
lation size. Then, besides the solution of the previous i 
levels, some solutions are selected from the solutions in 
the i + 1th level according to their reference point distance 
and lineage rank list until the population size is equal to 
the maximum population size. For its selection proces-
sion, see line 12–25 in Algorithm 1. Calculate the ideal 
point, extreme points, and reference points and then obtain 
the reference vectors [7]. ConsHyper(Qt, ExtremPointst+1) 
function is a definition in paper [7], which indicates that 
combined population members Qt and ExtremPointst+1are 
projected on a hyper-plane and a clustering operation is 
performed on the hyper-plane to select a desired number 
of clusters. Find the solutions that are near the reference 
vectors and have high lineage rank list of ancestors as can-
didates of the next generation population. The details on 
this selection process will be displayed in Algorithm 3.

2. Encoding

This paper employs a binary encoding method. The 
length of the encoding is determined by the maximum 
number of microservice instances that a single resource 
centre initiate. This paper assumes that each resource cen-
tre can initiate 16 microservice instances. Therefore, the 
number of initiated instances in a resource centre can be 
expressed by a four-digit binary code. Obviously, the total 
length of the binary code is 4 × N × K.

3. Crossover and mutation operation

Based on the traditional crossover and mutation strat-
egy, a lineage crossover is proposed. According to the non-
dominated sorting results of the parents, it aggregates the 
ancestry lineage to the offspring in the crossover process. 
At the same time, to maintain the freshness of the lineage, 
the loss mechanism of the ancestral lineage of distance 
is adopted. The calculation of the lineage crossover and 
mutation process is as Algorithm 2.
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Algorithm 2 first initializes the result list Ot and line-
age list Lineaget . Then, all of the population members are 
traversed, and the two adjacent bodies are crossed by the 
traditional strategy; see lines 2–4. To ensure that the number 
of lineage rank lists does not exponentially explode with the 
increase in evolutionary generations, a reduction strategy is 
introduced here. A max threshold number of lineage rank 
lists in each population is defined as MaxLineageNum ; if 
the number of lineage rank lists in the parent population 
exceeds this threshold, the MaxLineageNum/2 lineage rank 
value of the ancestors will be removed from the far distance 
to nearby. The freshness of the lineage is also guaranteed 
in that way; see lines 5–8. Then, the contents of the parent 
linage rank lists are merged with the offspring. Finally, the 
offspring are mutated by probability; see lines 9–11.

4. Selection operation

In this paper, the knowledge-driven population selection 
strategy uses the lineage calculation of the candidate set, 
which is based on the NSGA-III reference point distance 
calculation. The calculation process is as follows:

When selecting the optimal object based on the reference 
point in the 20th row of Algorithm 1, it is necessary to sort 
the selection according to the lineage. The specific process 
is as in Algorithm 3.

Algorithm 3 aims to find the best population members 
in the fl rank. On the selection of non-dominated solutions, 
the lineage factor is considered in the retention strategy of 
the elite solution. First, the nearest distance population set 
of the reference point rp is found. If the number of sets is 
larger than 0, then there are two cases. The first is that if the 
number of the nearest distance population set of rp in Qt is 0, 
then the nearest distance population of rp will be selected; 
the second is that if the number of the nearest distance popu-
lation set of rp in Qt is bigger than 0, then a population with 
the best historical lineage is selected according to the aver-
age lineage rank sorting.

Fig. 3  How offspring lineage is inherited from parents
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the next nearest one by distance. Repeat this until all users 
discover available microservices.

Details on the calculation process are in Algorithm 4. 
The first step is to initialize the actual microservice start 
quantity vector realMicroServicesStart of each resource 
centre, the remaining resource vector of each resource 
centre remMicSerAbility , and the user list served by each 
resource centre userServiced , as in lines 2–6. Then, trav-
erse each user in uLs to find the most suitable resource 
centre service. For each service request in the user service 
request list, initialize the access identifier of each resource 
centre to 0; see lines 8–9. Recursively search for the near-
est resource service centre that meets the user’s location 
condition. If it is found, continue to find the next service. 
If not, return ‘false’; see lines 10–13. Finally, return ‘true’ 
when all services for all users are found in all resource 
centres.

T h e  i m p l e m e n t a t i o n  o f  t h e  f u n c t i o n 
findNeaSerbyLo(mSer,user,cLs) is shown in Algorithm 5. 
The basic process consists of several steps. First, find the 
nearest resource centre that has not been visited which is 
identified by CenterFoundFlag based on the user’s loca-
tion. Get the RC number neLoCenterwith the function 
findNeSerbyLo(user.location) return value. If it returns -1, 
then all resource centres have already been visited, there 
is no solution, return ‘false’; see lines 2–3. Second, deter-
mine if there is an available service in the resource centre 
that matches the user’s needs. If the number of services 

An example of the lineage rank list process is presented 
in picture 3. Assume that two population members with 
lineage rank list [1, 1, 1, 1, 2] and [1, 1, 2, 2, 3, 3, 4] need 
to crossover. The MaxLineageNumber is 6. First, the rank 
list of each population will be calculated and added into 
the lineage rank list, assumed to be 3 and 1. Then, the line-
age rank lists of the two population members are updated 
to [1, 1, 1, 1–3] and [1, 1, 1, 2, 2, 3, 3, 4]. As the limitation 
of the max number of lineages, we use the latest half of 
the parents’ lineage rank list to crossover, which are [1, 1, 
3] and [1, 1–3]. Finally, after crossing each rank element, 
we obtain the offspring’s lineage [1, 1, 1, 1–3, 3] as shown 
in Fig. 3.

5. Match users and microservices provider algorithm

When the best deployment strategy is found, some 
matching algorithms between users and microservice pro-
viders should be applied to validate the strategy in the real 
service environment.

The user service policy mentioned in the previous sec-
tion adopts a distance-based service selection algorithm as 
in Algorithm 4. First, for each user, the nearest available 
microservices is searched for according to the location 
principle; then, the microservices are checked for whether 
they have reached the maximum service load. If not, this 
user request is sent to the service; otherwise, search for 
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is greater than or equal to 1, the user will be added to 
the service user list of this centre, and the list of avail-
able services in this resource centre is updated by add-
ing this service; see lines 3–6; if not, the access identifier 
CenterFoundFlag of the resource centre will be changed 
to 1. The most suitable service of the user is recursively 
searched for; see lines 9–11.

6. Algorithm complexity analysis

The main process of the microservices deployment strat-
egy comprises two parts: the MGR-NSGA-III and match-
ing users with services. The complexity of MGR-NSGA-
III is as follows. Algorithm 1 shows the whole process of 
MGR-NSGA-III. Algorithm 2 and Algorithm 3 need to be 
computed once for each generation of iterations in MGR-
NSGA-III. It is assumed that T represents the number of 
objective functions, Q represents the population size, 
G is the maximum allowable number of lineage in each 

population, and H is the reference number. The compu-
tational time complexity for the insertion of lineage with 
the 2Q population members in Algorithm 1 rows 2–8 is 
O(Q) logT−2 Q in extreme cases (i.e., each linage requires 
computational choices, and each lineage has the maximum 
allowable number). Each reference computation complexity 
is O(T ⋅ Q ⋅ H) , and each crossover and merging time of the 
lineage is O

(
Q ⋅ G2

)
 . The computational complexity cho-

sen for the lineage of each generation is O(Q ⋅ G) logT−2 Q , 
so the computational complexity of each generation in 
MGR-NSGA-III is due to O(Q ⋅ G) logT−2 Q + O

(
Q ⋅ G2

)
 + 

O(T ⋅ Q ⋅ H) . The complexity of Algorithm  4 is O(N)
+O(M ⋅ K) (this assumes that each user contains a request 
for all K microservices, which is actually less than K). The 
essence of Algorithm 5 is a recursive calculation with a 
complexity of O

(
M2

)
 during which insertion and selection 

of pedigrees is required. Because in each generation of 
Algorithm 1, we should use Algorithm 4 and Algorithm 5 to 
evaluate the population, the whole process of the strategy is 
MaxIterations ⋅ (O(Q ⋅ G) logT−2 Q + O

(
Q ⋅ G2

) + O(T ⋅ Q ⋅ H) + O
(
M2

)
 

 + O(M ⋅ K)).

Experiment analysis

Datasets

Two real datasets were used in the experiment. One data-
set was the New York social network user check-in data-
set, which is used to simulate different users distributed in 
different spaces to request services for different RCs at the 
same time. The other dataset was the Tokyo social network 
user check-in dataset [30]. A microservice dataset is a typi-
cal data application service system where a single appli-
cation system is divided into ten microservices: reporting, 
administrator management, GIS, message transmission, data 
quality censor, data collection, data comprehensive mainte-
nance, settlement, data visualization displays, and permis-
sion controls.

Table 1  Values of regular parameters in different algorithms

Parameter name MGR-NSGA-III MGR-NSGA-III SPEA-II

crossover Simulated binary lineage crossover Simulated binary crossover Simulated binary crossover
crossoverProbability 0.9 0.9 0.9
crossoverDistributionIndex 20 20 20
mutation Polynomial mutation Polynomial mutation Polynomial mutation
mutationProbability 1.0/numberOfVariables() 1.0/numberOfVariables() 1.0/numberOfVariables()
distributionIndex 20 20 20
MaxIterations 30/50/100/150/200 30/50/100/150/200 30/50/100/150/200
MaxPopulationSize referencePoints.size() referencePoints.size() Same as MGR-NSGA-III
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Parameters

In this paper, MGR-NSGA-III is proposed to solve the 
microservices deployment and starting up strategy problem. 
The experimental parameters were as follows:

 (i) There are five resource centres in New York and 
Tokyo that are dedicated to the operation of the data 
service microservice system;

 (ii) Each resource centre has 300 units of computing 
resources and 300 units of storage resources;

 (iii) Starting a microservice instance requires 20 units 
of computing resources and 10 units of storage 
resources, and each instance can serve 10 users at 
the same time.

The MGR-NSGA-III value of regular parameter is shown 
in Table 1.

The main configuration of the computer used in the exper-
iments is as follows: CPU Intel(R) Core (TM) i7-5600U 2.6 
GHZ, 8G RAM memory.

After 20 operations to take the average running time for 
each algorithm, Fig. 4 shows the running time of different 
algorithms in different datasets. As the figure shows, solving 
the problem using SPEA-II would cost much more time than 
using NSGA-III and MGR-NSGA-III, especially when the 
number of iterations is larger. Additionally, MGR-NSGA-III 
requires a slightly longer time to compute in both datasets 
than NSGA-III. MGR-NSGA-III improves the selection and 
retention strategy of the elite solutions, it retains those elites 
with better lineage. Compared with SPEA-II and NSGA-III, 
these selection and retention calculations require a certain 
amount of resources, but they can get better solutions, so it 
has greater advantages in indicators such as average calcula-
tion rate, storage idle rate, and actual microservice idle rate.

(a) NYC Dataset                           (b)TKY Dataset
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Fig. 4  Calculation time comparison of different iterations of different algorithms
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Fig. 5  Comparison of objective function under different microservice 
scheduling strategies

Algorithms

NSGA-III and SPEA-II are chosen as competitor algorithms. 
Among the multi-objective optimization algorithms, SPEA2 
and NSGA-III are two representative elite algorithms, which 
have become the standard for comparing the performance of 
other multi-objective optimization evolutionary algorithms. 
MGR-NSGA-III is developed from NSGA-III, thus, to dem-
onstrate its effectiveness, NSGA-III is chosen. SPEA-II, as 
is known, is a classic multi-objective optimizer, which is 
often chosen as baseline competitor algorithm. Besides, 
SPEA2 can also be used to solve the problem of Microser-
vices deployment problem. Considering all above reasons, 
SPEA2 and NSGA-III were selected to be compared with 
MGR-NSGA-III.
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From the optimal frontier solutions of these algorithms, 
several sets of solutions were selected to compare the tra-
ditional microservice deployment strategies without multi-
objective function optimization. The results are shown in 
Fig. 4.

Figure 5 shows the deployment policy of the fixed aver-
age start service instance under the traditional combined 
microservice strategy after 20 operations for each algorithm. 
The resource idle rate is relatively high, and the actual usage 
rate of the service is low. The computation resource idle 
rate, storage resource idle rate, and actual idle rate of the 
traditional microservices deployment strategy in NSGA-
III were 13.21%, 5.2%, and 16.67% higher, respectively. 
Compared with the traditional method, the calculation and 
storage resource idle rates of the traditional microservices 
deployment and startup strategy in MGR-NSGA-III were 

60.51% and 2.2% higher, respectively, while the actual idle 
rate of microservices was 4.62% higher. In summary, the 
microservices deployment strategy based on multi-objective 
optimization has better service performance.

Furthermore, different evolutionary multi-objective algo-
rithms have different performance. We will compare the 
MGR-NSGA-III that we proposed with classic methods as 
follows:

It can be seen from Figs. 6, 7 and 8 that the stability of 
the three multi-objective optimization algorithms is good 
under different evolutionary generation conditions. The 
range of the optimal solutions became consistent after 
200 iterative generations. From the uniform variation of 
the distribution of the solution, the five objective func-
tions of MGR-NSGA-III remained basically unchanged 
before the 100th generation, and the distribution of f(3) 
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Fig. 6  Box chart of different generations for MGR-NSGA-III
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Fig. 7  Box chart of different generations for NSGA-III
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Fig. 8  Box chart of different generations for SPEA-II
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converges greatly at the 150th generation. The upper and 
lower quartile range changed from 0.32–0.6 to 0.23–0.52. 
The convergence speed of MGR-NSGA-III was faster than 
that of SPEA-II and NSGA-III. In NSGA-III and SPEA-II, 
there was no significant change in the value distribution 

DN and DAN express the dominated relationship between 
the two population sets. The convergences of different algo-
rithms were also compared by DN and DAN.

It can be seen from Fig. 9a that the convergence rate of 
the MGR-NSGA-III solution was higher. When the evolu-
tionary calculation reached 50 generations, the NSGA-III 
and SPEA-II solutions were dominated by MGR-NSGR-
III (DN of 6270 and 23,134, respectively). In addition, the 
DN of the solutions in MGR-NSGR-III was significantly 
high after 100 generations compared with SPEA-II (DN is 
30,657). It can also be seen in Fig. 9b of the figure that after 
50 generations, DAN in MGR-NSGA-III reached 577 and 
729 compared with NSGA-III and SPEA-II, respectively. 
Afterwards, DAN reached 607 and 1,039. Therefore, MGR-
NSGA-III is clearly more efficient in calculating the optimal 
strategy for running microservice instances.

Figures 10 and 11 show the dominating solutions num-

ber between MGR-NSGA-III and NSGA-III or SPEA-II. 
From Fig. 10, it can be seen that of the 50/100/150 gen-
erations the maximum DN of the population is more than 
30. The maximum DN in 150 generations is even higher 
than 60 in Fig. 10d. Using MGR-NSGA-III, the number 
of dominated population can be increased. In addition, the 

(a) MGR-NSGA-III DN comparison                         (b) MGR-NSGA-III DAN comparison
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Fig. 9  Comparison of MGR-NSGA-III with NSGA-III and SPEA-II solutions in dominance

range of each target, and the final convergence value was 
slightly worse than that of MGR-NSGA-III. Finally, the 
upper quartile and lower quartile range converged between 
0.3 and 0.6 in NSGA-III and SPEA-II.

Definition 5 Dominating number (DN). Assuming popula-
tion set A and population set B, the dominating number of A 
to B is defined as the following equation: 

 

Definition 6 Dominating absolutely number (DAN). Assum-
ing population set A and population set B, the dominating 
absolutely number of A to B is defined as the following 
equation: 

DN =

|A|∑
i=1

Dom
(
Ai,B

)
, Dom

(
Ai,Bj

)
= 1, ifBj is completely dominated byAi , and vice versaDom

(
Ai,Bj

)
= 0.

DAN =

|A|∑
i=1

Dom
(
Ai,B

)
, Dom

(
Ai,B

)
= 1, if ∃Bj ∈ B , Ai completelydominates Bj, and vice versa Dom

(
Ai,B

)
= 0.
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(a) 30 generations                                       (b) 50 generations

(c) 100 generations                                      (d) 150 generations

(e) 200 generations
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MGR-NSGA-III algorithm has a good convergence rate for 
computations of less than 200 generations. As shown in 
Fig. 11, the dominated number may be more than 120/100 
in the 50/100th generation compared with SPEA-II.

A comparison between different microservice deployment 
and startup strategies based on multi-objective optimization 
was made. It can be seen from the red circles in Fig. 12, 
the number of started-up microservices with NSGA-III and 
SPEA-II is extremely high (as in Fig. 12a) or low (as in 
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Fig. 12b) in different resource centres, indicating poor load 
balancing. Conversely, the startup load in MGR-NSGA-III 
is relatively balanced as in Fig. 12c, d.

The hypervolume values of different algorithms are com-
pared. The hyper volume [5] is popularly used to evaluate 
the convergence and distribution of MOEAs’ solutions.

NSGA-III, SPEA-II, and MGR-NSGA-III are used to 
solve the microservice deployment optimization problem. 
The calculations have been performed 20 times. It can be 
seen in Fig. 13 that MGR-NSGA-III represented by the 
blue part is slightly better than the other two algorithms, 
especially in the 4th and 5th calculation results, the hyper 
volume value is significantly higher than the other two algo-
rithms. Moreover, the average values of the hyper volume 
of the three algorithms with 20 times are shown in Table 2, 
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Fig. 12  Real deployment and startup results of microservices in different evolutionary algorithms
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Table 2  Average value of hypervolume in different algorithms

Algorithms Average value of 
hyper volume with 20 
times

SPEA-II 0.582211
NSGA-III 0.602875
MGR-NSGA-III 0.633464



1170 Complex & Intelligent Systems (2021) 7:1153–1171

1 3

MGR-NSGA-III algorithm can get the highest average value 
of hyper volume when comparing with SPEA-II and NSGA-
III as well.

Conclusion

Microservices split a complex application into a number of 
multiple sub-services with well-defined boundaries. The dis-
tributed deployment of these sub-services to different ser-
vice centres provides services for users with the advantages 
of flexibility, scalability, and high availability. However, a 
series of problems have arisen in the use of microservices, 
and the optimization of deployment and startup microser-
vices is one of the key challenges.

This paper introduces a knowledge-driven evolution-
ary algorithm for the deployment and startup problem of 
microservices for the first time. It improves this NSGA-III 
by considering the lineage knowledge of each generational 
population using MGR-NSGA-III. First, a microservices 
deployment and startup problem model based on multi-
objective optimization was constructed. Some objective 
functions and constraints of the problem were defined. Sec-
ond, NSGA-III was improved by knowledge driven to solve 
the microservice deployment and startup problem. Finally, 
several experiments were presented to evaluate the perfor-
mance of different methods. A comprehensive evaluation 
of the algorithm’s time efficiency, convergence degree and 
calculation effect were given. In conclusion, MGR-NSGA-
III works well on microservice deployment and start-up 
problems.

In the future work, the heterogeneity of microservices 
and resource centres needs to be considered. Some users’ 
service requirements should also be further studied. It is 
necessary to further improve the multi-objective algorithm 
to meet various users’ demands.
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