
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2021) 7:1153–1171
https://doi.org/10.1007/s40747-020-00180-1

ORIGINAL ARTICLE

Multi‑objective microservice deployment optimization
via a knowledge‑driven evolutionary algorithm

Wubin Ma1 · Rui Wang1 · Yuanlin Gu2 · Qinggang Meng2 · Hongbin Huang1 · Su Deng1 · Yahui Wu1

Received: 8 March 2020 / Accepted: 13 July 2020 / Published online: 30 August 2020
© The Author(s) 2020

Abstract
For the deployment and startup of microservice instances in different resource centres, we propose an optimization problem
model based on the evolutionary multi-objective theory. The objective functions of the model consider the computation and
storage resource utilization rate, load balancing rate, and actual microservice usage rate in resource service centres. The
constraints of the model are the completeness of service, total amount of storage resources, and total number of microser-
vices. In this study, a knowledge-driven evolutionary algorithm (named MGR-NSGA-III) is proposed to solve the problem
model and seek the optimal deployment and startup strategy of microservice instances in different resource centres. The
proposed model and solution have been evaluated via real data experiments. The results show that our approach is better
than the traditional microservice instance deployment and startup strategy. The average computation rate, storage idle rate,
and actual microservice idle rate were 13.21%, 5.2%, and 16.67% lower than those in NSGA-III, respectively. After 50, 100,
and 150 evolutionary generations in serval operations, the population members in NGR-NSGA-III dominated the popula-
tion members in NSGA-III 6,270, 3,581, and 7,978 times in average, respectively, which means that NGR-NSGA-III can
converge to the optimal solution much quicker than NSGA-III.

Keywords Multi-objective optimization · NSGA-III · MGR-NSGA-III · Microservice

Introduction

Benefiting from the revolution of SOA (service-oriented
architecture) [13] and cloud technology, microservices tech-
niques have been developed and applied in many applica-
tions [26]. Compared with microservices, traditional single
applications have many limitations, especially when there
are a large number of users in different regions and with
different business needs. A single application means that a
war package contains all the functions of the project. The
scalability, fault tolerance, stability, and invulnerability of
single applications are clearly insufficient to adapt to the
rapid development of mobile internet, which is widely used
for large-scale distributed concurrent users. Therefore,
microservice-based applications research has attracted
wide attention [14, 26]. Microservices decompose tradi-
tional single-application tasks into independent microser-
vices horizontally or vertically to meet different business
and functional requirements. Each decomposed service can
run multiple instances individually.

Microservices are flexible, scalable, and highly avail-
able. (a) Flexibility means that each service instance can

 * Rui Wang
 ruiwangnudt@gmail.com

 Wubin Ma
 mawubin417@gmail.com

 Yuanlin Gu
 y.gu@lboro.ac.uk

 Qinggang Meng
 q.meng@lboro.ac.uk

 Hongbin Huang
 hb_huang@nudt.edu.cn

 Su Deng
 su_deng@nudt.edu.cn

 Yahui Wu
 yahui_wu@nudt.edu.cn

1 Science and Technology on Information System Engineering
Laboratory, National University of Defense Technology,
Changsha 410073, China

2 Computer Science Department, Loughborough University,
Loughborough 4LF 3TU, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-020-00180-1&domain=pdf

1154 Complex & Intelligent Systems (2021) 7:1153–1171

1 3

be flexibly deployed in multiple servers or cloud resource
centres on the condition of sufficient network communica-
tion bandwidth and computing and storage resources [10];
(b) scalability is the ability to start and shut down instances
according to the user’s concurrent needs. These operations
should be adaptable to a dedicated service module. For
example, in e-commerce microservices, the concurrent user
payment services suddenly increase at a certain time while
other services (such as user registration service and ERP
service) are unchanged. In that case, the system should only
expand the payment service ability rather than the entire
service. Therefore, the flexible extension mechanism of
microservices can provide users with high concurrent ser-
vices while saving resources. (c) High availability is another
typical feature of the microservices. The resources required
for the microservice instances are relatively small, and each
microservices can start multiple instances at the same time.
It can perform multi-service hot standby operations on
certain key services to improve the stability of the entire
application. In summary, due to the above characteristics,
microservices are an effective method when there is a large
number of users and access devices and massive concur-
rent requests [1, 11] for applications of mobile internet and
internet of things.

Many large-scale network application companies or
enterprises (e.g., Amazon [27], IBM [6], eBay [24], Twit-
ter [19], Alibaba [21], Tencent [35]) are gradually adopting
microservice-based architecture. Microservices can provide
powerful and flexible expansion in many applications. How-
ever, there are also some problems which need to be solved
urgently. One of the most critical issues is the microservice
deployment and startup optimization problem. The main
problem is that some microservices in multiple locations
need to be started to provide services for a large number of
users distributed over a wide area. How and where should
the instance of these microservices be started in the con-
straint of hardware resources, service delays, and service
reliability? This is the core problem of service centre con-
figuration and schedules. The difficulty of this problem lies
in the following: (a) many factors (computing or storage
resource usage rate, service efficiency, and load balancing
indicators) in various servers and service centres are mutu-
ally constrained, and it is difficult to achieve an optimal
solution on all targets in all centres. (b) The computational
complexity is high, and it is difficult to find the optimal solu-
tion in polynomial time using traditional optimization algo-
rithms. (c) The startup and service requests for microservice
instances have certain dynamics, and the solution strategy
needs to be quickly solved to meet the actual needs.

The contributions of this paper are as follows: (a) a multi-
objective optimization model is constructed for microser-
vices deployment and startup strategy. (b) A knowledge-
driven evolutionary algorithm (Multi-Generations Reference

NSGA-III, MGR-NSGA-III) is proposed to choose the elite
solutions in each evolutionary generation by considering the
lineages of the population members. (c) A number of multi-
objective algorithms are compared to solve the microser-
vices deployment and startup problem in real datasets.

According to the authors’ knowledge, this is the first study
to model the microservices deployment and startup problem
based on multi-objective optimization on the server side.
The model is evaluated by applying a microservice system
to typical datasets in New York and Tokyo. The simulation
experiment shows that the solution is feasible and supports
the deployment and startup of microservices.

The remainder of this paper is organized as follows: Sec-
tion “Related works” provides a brief review of the multi-
objective optimization model of microservices deployment
and startup strategy. Section “Problem definition and multi-
objective model” proposes a multi-objective optimization
model of problem. MGR-NSGA-III algorithm is proposed
in Section “Multi-generations reference NSGA-III”. Section
“Experiment analysis” presents a comparative analysis and
summary of the experiments.

Related works

The research of service computing mainly focuses on the
traditional web service composition problem [3, 15]. The
traditional solution is to provide users with the most appro-
priate service combination strategy from the perspective of
optimizing service quality indicators, such as service per-
formance indicators, energy indicators, and service secu-
rity indicators [32]. This article provides a good review of
service computing; however, it does not discuss the appli-
cation of the algorithm in service computing, and it lacks
experimental results.

In the cloud service environment, the service deployment
strategy problem consists of the following aspects. The qual-
ity of service (QoS) of composite services plays an impor-
tant role in the deployment value chain and partner collabo-
ration in the manufacturing field [29]. Qos is an evaluation
system which is used to evaluate performance of the ser-
vices, including comprehensive evaluation of service avail-
ability, accessibility, reliability, legality, security, success
rate, access volume, response time, etc. The cloud service
was adopted to improve the service quality in the intelligent
manufacturing field [16]. The synthetic genetic algorithm
was used to solve the service deployment and composition
problem. For the QoS-based service composition problem,
a service composition solution based on the multi-constraint
optimal path problem model was proposed [12] by optimiz-
ing the correlation between various QoS factors. The results
of some experiments show that the solution achieves good
performance of QoS in cloud computing. However, when the

1155Complex & Intelligent Systems (2021) 7:1153–1171

1 3

number of available services in the service pool is increased,
these solutions become very inefficient. As the services
manufactured by the cloud are complementary and interact
with each other, it is hard to select a service composition
group. The swarm differential evolution algorithm [34] and
the hybrid grey wolf group optimization algorithm [4] were
introduced into the cloud manufacturing large-scale service
deployment problem.

Optimal service deployment and combination strategies
have been used to extend the lifespan of the internet of things
(IoT). A game and evolutionary theory-based method was
proposed [18] to solve the optimal service composition strat-
egy of IoT. The life cycle of IoT services can be extended
by seeking a load-balancing optimal service arrangement
strategy for multiple devices. In addition, a heuristic strat-
egy was used to schedule user requests and services in IoT
applications [22] to achieve a supply and demand equilib-
rium between users and service providers in heterogeneous
environments.

Microservices are applied to provide users with high-
quality and high-performance services while minimizing the
cost of hosting user services. The quality and performance
of microservices are affected by some major factors [17].
These factors include the flexibility of the deployment infra-
structure, load balancing, changing service providers, infra-
structure reservations, memory size, etc. Low cost means
that service providers have high resource usage rates. Under
the condition of the FAAS (function as a service) technol-
ogy architecture concept, this paper [2] proposes an event-
driven and scalable service environment to determine which
and how service instances need to be started. However, this
strategy is based on function calls rather than resource
requirements. In this case, the policy is implemented on
the server. Therefore, the FAAS needs to be expanded to
respond to the user requests. In this way, microservices
can provide users with more scalable services. However,
a limitation is that the expansion of FAAS is not efficient
and transferable. The server needs to be restarted and rede-
ployed every time the physical resources are expanded. One
solution is the composite service instance startup strategy.
The server can dynamically start and end different service
instances according to the global user requirements. Thus,
a combination optimization strategy of the entire server can
be obtained without restarting the physical server. In [9],
the microservices allocation strategy in the heterogeneous
microservices environment was studied. An efficient real-
time dynamic microservices scheduling strategy that enables
users to schedule their requests after the microservices have
been deployed was proposed.

The services/microservices deployment and composition
scheduling strategies mentioned above can adapt to differ-
ent QoS indicators. The advantage of microservices is that
it can produce adaptive deployment strategies for different

requirements. However, most of the microservice startup
strategies are not efficient because they adopt a fixed total
amount [1, 2, 14] and determine the number of fixed micros-
ervice instances startup based on the number of pre-esti-
mated resources in the resource centre. The resource usage
rate and load balance rate are low in traditional methods for
microservices. Therefore, a new microservices deployment
and startup method is needed.

The multi-objective evolutionary algorithms (MOEAs)
have proved their effectiveness in solving multi-objective
optimization problems [16]. MOEAs mainly include multi-
objective genetic algorithms (NSGA, NSGA-II, NSGA-III,
SPEA-II, etc.) [7, 23], multi-objective optimization based on
decomposition [28, 31], multi-objective optimization based
on artificial immune system [25, 34] and some other meth-
ods and applications [5, 33]. Their evolutionary nature based
on population members makes it possible to obtain compu-
tational goals of multiple targets in a single run. Therefore,
the MOEAs can solve the microservices deployment and
startup problem.

Problem definition and multi‑objective
model

The illustration of the microservices deployment and startup
problem is shown in Fig. 1. Assume that several resource
centres (RCs) are distributed in space, and each one has
two kinds of resources: computation and storage resources.
The startup of each microservice instances will consume a
certain amount of resources. At the same time, a large num-
ber of service users are distributed in the same space. Each
user requires one or more microservice instances to be ser-
viced. The problem of microservice deployment and startup

Fig. 1 The illustration of microservices deployment and startup prob-
lem

1156 Complex & Intelligent Systems (2021) 7:1153–1171

1 3

is to seek the optimal number of the running microservice
instances in each resource centre. With this optimal strategy,
the resources can be used efficiently, and the load balance in
each RC can be increased.

According to the needs of microservices deployment,
the optimal model should be constructed based on a typi-
cal multi-objective optimization model. Before the model is
constructed, some definitions are provided as follows:

Definition 1 Resource centres (RC). A resource centre is an
entity that provides an environment for the deployment and
startup of microservice instances. It contains computation
and storage resources, and it can be distributed in different
locations.

Assuming that there is a number N of RCs
i n t h e s p a c e , RC =

{
rc1, rc2,… , rcN

}
 , e a c h

resource centre contains two types of informa-
tion (resource and location), which can be described
a s rci =

(
RRes

(
r_comi, r_stoi

)
, RLoc

(
r_lati, r_loni

))
,

where RRes
(
r_comi, r_stoi

)
represents the existing compu-

tation resources comi and storage resources stoi in the i-th
RC. To facilitate the model solution, the computation and
storage resources are all normalized to a specific real value.
Loc

(
lati, loni

)
 are the latitude and longitude of the i-th RC

location.

Definition 2 Microservice collection (Microservices,
MS). In this paper, the microservice collection refers to
some independent functional services that are separate
from a single big application. It can be described as fol-
lows: MS =

{
s1, s2,… , sK

}
 represents K independent

microservices that are separate from a single application.
si =

(
SRes

(
r_comi, r_stoi

))
, i ∈ [1,K] represents the com-

putation and storage resources of the i-th microservice when
its instance is deployed and started up.

Definition 3 User collection (Users, U). User collection
refers to the consumers of microservices. Each user may
consume a single microservice or a sequence of several
microservices. Users are independent individuals.

It is assumed that there are M users in the space described
as Users =

{
u1, u2,… , uM

}
 . Each user contains two types of

information (service request information and location infor-
mation), asui =

(
UReq

(
Si
(
sp,… , sk

))
, ULoc

(
u_lati, u_loni

))
,i ∈ [1,M], 0 < p < k < K , where UReq

(
Si
(
sp,… , sk

))

is the current requirement of the i-th user, and
ULoc

(
u_lati, u_loni

)
 is the current location of the

microservice.

Definition 4 Microservice instances deployment and startup
strategy (MDSS). For a number of N resource centres in the
space RC =

{
rc1, rc2,… , rcN

}
 , the microservice instances

MS =
{
s1, s2,… , sK

}
deployment and startup strategy is

expressed as Strategy(RC,MS) . The mathematical expres-
sions are as (1):

where rc1
(
x11,… , x1K

)
 represents MDSS in resource centre

1.x11indicates the number of startup instances of microser-
vice 1 in resource centre 1.

The multi-objective optimization model for this prob-
lem is as Eq. (1).

It is assumed that there are a number of N resource
centres RC =

{
rc1, rc2,… , rcN

}
 in space ℝ , K functionally

independent microservices MS =
{
s1, s2,… , sK

}
 , and M

users Users =
{
u1, u2,… , uM

}
 , and the decision vector

x = Strategy(RC,MS) is a continuous independent variable.

where F(x) is the objective function of this model gi(x) and
hj(x) represent two different constraints. L is the number
of objective functions, m is the number of inequality con-
straints, and n is the number of equality constraints in the
model. The model has five objective functions: computation
and storage resource utilization efficiency, the real idle rate,
and the computation and storage load balancing ratios. The
five objective functions are defined as follows:

Objective functions

The first objective function calculates the computation
resource idle rate, which is defined as f1(x).

whererci
(
xi1,… , xiK

)
 represents the number of microser-

vices that are running at the i-th resource centre.
The SRes

(
r_com1,… , r_comK

)
represents the vector of

computational resources consumed by the microservices.
RRes

(
r_comi

)
 represents the existing computational

resource value of the i-th resource centre.
Similarly, the second objective function storage

resource idle rate is defined as f2(x).

(1)Strategy(RC,MS) =
[
rc1

(
x11,… , x1K

)
, rc2

(
x21,… , x2K

)
,… , rcN

(
xN1,… , xNK

)]T
,

(2)

⎧⎪⎨⎪⎩

min
x∈�

F(x) = min
�
f1(x), f2(x),… , fL(x)

�T
s.t.gi(x) ≤ 0(i = 1, 2,… ,m),

hj(x) = 0(j = 1, 2,… , n)

,

f1(x) = 1 −

N∑
i=1

rci
(
xi1,… , xiK

)
⋅ SRes

(
r_com1,… , r_comK

)T
RRes

(
r_comi

)
/

N,

1157Complex & Intelligent Systems (2021) 7:1153–1171

1 3

The third objective function is the real idle rate of the
microservice. In general, a single microservice instance
can be used for several service requests once it is started
up. However, when the number of service requests exceeds
the maximum load of a single microservice instance, extra
instances need to be started. The maximum number of
service users that a single microservice can handle can be
represented as MSMaxUsers =

[
mu1,mu2,… ,muK

]
 . It is

expected that the load of each microservice should be fully
used.

The real idle rate for microservices is defined as f3(x).

where RealUserNum
(
sj, rci

)
 is the actual number of users of

microservice sj at the resource centre rci . The calculation
method will be described in detail later as the result of the
service discovery strategy in Section III.

Under the premise of this user’s service discovery strat-
egy, the feasible solution must satisfy the constraints (see the
constraint section below), and the user can get at least one
available microservice. At the same time, the microservice
instance that is started up in each resource will identify the
number of users as RealUserNum

(
sj, rci

)
.

The fourth objective function is the computation load bal-
ancing ratio among the resource centres. It is not good for
some resource centres to maintain high-load operation for a
long time while other resource centres are idle.

The load balancing rate is calculated as f4(x).

The fifth objective function is the storage load balancing
ratio in the resource centres. The storage load balancing ratio
is used to measure the storage balance degree of the resource
centre. Generally, due to the existence of data synchronization
tasks between resource centres, a resource centre with a large

f2(x) = 1 −

N∑
i=1

rci
(
xi1,… , xiK

)
⋅ SRes

(
r_sto1,… , r_stoK

)T
RRes

(
r_stoi

)
/

N.

f3(x) = 1 −

N∑
i=1

K∑
j=1

RealUserNum
(
sj, rci

)

ServAbility
(
xij,muj

)
/

(KN),

ServAbility
(
xij,muj

)
=

{
xijmuj if xij ≠ 0

1, if xij = 0
,

f4(x) =
N∑
i=1

�
ComUsage

�
rci

�
− ComUsage(RC)

�2

,

ComUsage
�
rci

�
=

rci(xi1,…,xiK)⋅SRes(r_com1,…,r_comK)
T

RRes(r_comi)
,

ComUsage(RC) =
K∑
i=1

rci(xi1,…,xiK)⋅SRes(r_com1,…,r_comK)
T

K∑
i=1

RRes(r_comi)

.

amount of data storage may synchronize data to another one.
It often occupies a large amount of communication resources
and might cause congestion in services. Therefore, to reduce
the data synchronization overhead, the storage load balancing
of the resource centre should be considered.

The storage load balancing ratio is computed as f5(x).

Constraints

There are four constraints in the model. They are described
as follows:

The first constraint is the completeness constraint
of the service g1(x) . All microservices must be guar-
anteed to start at least one instance in RC. The math-
ematical expression of the constraint is as follows:g1(x) ∶
xij ≥ 1, 1 ≤ i ≤ N, 1 ≤ j ≤ K.N is the number of resource
centres, and K is the number of microservices in the single
service.

The second constraint is the total amount of computation
resource constraint g2(x) . Because the computation resource
in each RC is limited, the amount of computing resources
occupied by started-up service instances cannot exceed its
total amount.

The third is the storage resource constraint g3(x) . The
amount of storage resources occupied by started-up service
instance cannot exceed the total amount in each RC.

The fourth constraint is the total number of service
sequence constraints g4(x) . The total amount of all started-
up microservice instances should be bigger than the total
amount of user demand for microservices. The expression
is as follows:

f5(x) =
N∑
i=1

�
StoUsage

�
rci

�
− StoUsage(RC)

�2

,

StoUsage
�
rci

�
=

rci(xi1,…,xiK)⋅SRes(r_sto1,…,r_stoK)
T

RRes(r_stoi)
.

StoUsage(RC) =
K∑
i=1

rci(xi1,…,xiK)⋅SRes(r_sto1,…,r_stoK)
T

K∑
i=1

RRes(r_stoi)

.

g2(x) ∶ rci
(
xi1,… , xiK

)
⋅ SRes

(
r_sto1,… , r_stoK

)T
< RRes

(
r_stoi

)
, 1 ≤ i ≤ N.

g3(x) ∶ rci
(
xi1,… , xiK

)
⋅ SRes

(
r_com1,… , r_comK

)T
< RRes

(
r_comi

)
, 1 ≤ i ≤ N.

g4(x) ∶

M∑
i=1

UserReq
(
ui, sj

)
≤

N∑
i=1

xijmuj, 1 ≤ j ≤ K.

1158 Complex & Intelligent Systems (2021) 7:1153–1171

1 3

UserReq
(
ui, sj

)
 indicates whether the i-th user has requested

the service; it returns 1 if so and returns 0 if not. muj indi-
cates the maximum number of service users that j-th
microservice.

Optimization problem model

In summary, the microservice deployment and startup
strategy model based on multi-objective optimization is
described as follows:

Assuming that the MS set O =
{
o1, o2,… , oK

}
 , for the

s o l u t i o n s p a c e d e c i s i o n v e c t o r x ∈ �

,x =

⎡
⎢⎢⎢⎣

rc1
�
x11, x12,… x1K

�
,

rc2
�
x21, x22,… x2K

�
,

… ,

rcN
�
xN1, xN2,… xNK

�

⎤
⎥⎥⎥⎦

T

 , and the model is

It can be known from the description of the model that the
problem is a typical NP-hard problem. The problem is diffi-
cult to solve using the traditional polynomial method. There-
fore, it is necessary to seek the evolutionary computation
method.

Multi‑generations reference NSGA‑III

In this paper, multi-generations reference NSGA-III (MGR-
NSGA-III) is proposed to solve the problem. Compared
with other multi-objective optimization algorithms such as
NSGA-III, SPEA-II, etc., MGR-NSGA-III can quickly con-
verge to the optimal solution and effectively find the Pareto
frontier.

Non-dominated sorted genetic algorithm (NSGA) and
its variants are one of the most classic algorithms for solv-
ing multi-objective optimization problems [20]. NSGA is
a multi-objective optimization algorithm based on the
Pareto frontier to optimize multiple targets. The NSGA-II
algorithm [8] is also known as the non-dominated sorting
genetic algorithm with elite strategy. It can find a way
to retain the elite solutions as the next generation’s par-
ents according to the dominance relationship between the

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
x∈�

F(x) = min
�
f1(x), f2(x),… , f5(x)

�T
,

s.t.g1(x) ∶ xij ≥ 1, 1 ≤ i ≤ N, 1 ≤ j ≤ K,

g2(x) ∶ rci
�
xi1,… , xiK

�
⋅ SRes

�
r_sto1,… , r_stoK

�T
lt;RRes

�
r_stoi

�
, 1 ≤ i ≤ N,

g3(x) ∶ rci
�
xi1,… , xiK

�
⋅ SRes

�
r_com1,… , r_comK

�T
lt;RRes

�
r_comi

�
, 1 ≤ i ≤ N,

g4(x) ∶
M∑
i=1

UserReq
�
ui, sj

�
≤

N∑
i=1

xijmuj, 1 ≤ j ≤ K.

offspring. NSGA-III [7], also known as the reference point
non-dominated sorting genetic algorithm and based on the
NSGA-II computational framework, further improves the
elites retention strategy. It uses a reference point strategy
based on maintaining population diversity. It improves the
computational efficiency of seeking multiple elite solu-
tions in the non-dominated layer.

The MGR-NSGA-III uses a knowledge-driven popu-
lation selection method (named the learning elite popu-
lation selection method) which was designed based on
the NSGA-III in the non-dominated level. The learning
elite population selection method can record the domi-
nance level of historical generations. It can select elite
population members with high genetically pure lineage
as the knowledge driven and use them for the mutation of
the next generation. The descendants which are inherited

by high dominated-level ancestors are more likely to be
selected. The selection of the population is based not only
on this generation of inheritance but also the knowledge
about lineage of the population. The mutation and crosso-
ver of the population, which refer the potential lineage,
are more suitable for solving multi-objective optimization
problems.

Main process

Once the microservices and users are allocated in the space,
the system should decide how and where the microservice
instances starts up and how users can access the microser-
vices. The main process to handle this problem is shown in
Fig. 2. First, the microservice allocation vector is initiated
in RC, including the real starting up microservice vector,
remaining computation and storage ability vector and user
access vector. Second, the optimal deployment and starting
up solution is calculated by the MGR-NSGA-III (the solving
details will be explained in next section), and the microser-
vices will be initiated according to this solution. Then, users
and microservices will be matched. For every user in the
users’ set, find the nearest service by location, if the service

1159Complex & Intelligent Systems (2021) 7:1153–1171

1 3

is available, complete the matching process of this user, and
if not, continue to find the nearest service location, until
all user’s find the services, then stop the matching process.
RC will evaluate the variation of the user requests to decide
whether it is necessary to recompute the optimal policy by
MGR-NSGA-III.

MGR‑NSGA‑III

1. Algorithm’s solving process

MGR-NSGA-III integrates the evolutionary mechanism
of NSGA-III with the lineage. Rather than considering the
dominance and crowding degree between population mem-
bers, the elite strategy selection will compute the lineage of
the population and compare their historic relationship of par-
ents. In the same situation, population members with higher
unsorted-dominated rank ancestry are selected.

Fig. 2 Main process framework
of microservices deployment
and startup problem

Begin

Initial service
allocation

Get deployment
and startup

solution of MGR-
NSGA-III

Match Users and
Microserivces
according to

solution

Evaluation of
users request

change

Yes

MGR-NSGA-III

Match Users and Microserivces Algorithm

Begin

Initial population
with number N

Non-dominated
sorting

Selection,
Crossover,
Mutation

First generation
With number 2N

Evolutional
generation 2

Combine the
population

Generate new parent population
Non-dominated

sorting

Selection new
population

Reference points
computation

Lineage
computation

Selection,
Crossover,
Mutation

Max generations constraint

Stop

generation +1

Begin

Initial service
allocation

For every user

For every service
request in user

Find service by location

YesNo

Yes

1160 Complex & Intelligent Systems (2021) 7:1153–1171

1 3

The input of the algorithm is the previous generation
population Pt (if it is the first generation, the popula-
tion is randomly initialized), the reference point set of
the population (calculation method in [7]). First, a set
of population Qt , lineage collection Lineaget , is initial-
ized. Then, crossover and mutation of the population are
operated, and the lineages are stored in the offspring;

see lines 1–2 of Algorithm 1. The detailed calcula-
tion process Offspring_Lineage

(
Pt

)
 will be displayed in

Algorithm 2. The parent Pt and offspring Ztare incorpo-
rated into JointPt+1 ; then, using the non-dominated sort-
ing of JointPt+1 , a result set

(
R1,R2,… ,

)
 is obtained, and

the resulting rank code is stored as a lineage collection
Lineraget+1 to the current population. See lines 4–5 in
Algorithm 1. Second, the dominated solution of the pre-
vious i levels is selected until the number of solutions of
the first i + 1 levels is greater than the maximum popu-
lation size. Then, besides the solution of the previous i
levels, some solutions are selected from the solutions in
the i + 1th level according to their reference point distance
and lineage rank list until the population size is equal to
the maximum population size. For its selection proces-
sion, see line 12–25 in Algorithm 1. Calculate the ideal
point, extreme points, and reference points and then obtain
the reference vectors [7]. ConsHyper(Qt, ExtremPointst+1)
function is a definition in paper [7], which indicates that
combined population members Qt and ExtremPointst+1are
projected on a hyper-plane and a clustering operation is
performed on the hyper-plane to select a desired number
of clusters. Find the solutions that are near the reference
vectors and have high lineage rank list of ancestors as can-
didates of the next generation population. The details on
this selection process will be displayed in Algorithm 3.

2. Encoding

This paper employs a binary encoding method. The
length of the encoding is determined by the maximum
number of microservice instances that a single resource
centre initiate. This paper assumes that each resource cen-
tre can initiate 16 microservice instances. Therefore, the
number of initiated instances in a resource centre can be
expressed by a four-digit binary code. Obviously, the total
length of the binary code is 4 × N × K.

3. Crossover and mutation operation

Based on the traditional crossover and mutation strat-
egy, a lineage crossover is proposed. According to the non-
dominated sorting results of the parents, it aggregates the
ancestry lineage to the offspring in the crossover process.
At the same time, to maintain the freshness of the lineage,
the loss mechanism of the ancestral lineage of distance
is adopted. The calculation of the lineage crossover and
mutation process is as Algorithm 2.

1161Complex & Intelligent Systems (2021) 7:1153–1171

1 3

Algorithm 2 first initializes the result list Ot and line-
age list Lineaget . Then, all of the population members are
traversed, and the two adjacent bodies are crossed by the
traditional strategy; see lines 2–4. To ensure that the number
of lineage rank lists does not exponentially explode with the
increase in evolutionary generations, a reduction strategy is
introduced here. A max threshold number of lineage rank
lists in each population is defined as MaxLineageNum ; if
the number of lineage rank lists in the parent population
exceeds this threshold, the MaxLineageNum/2 lineage rank
value of the ancestors will be removed from the far distance
to nearby. The freshness of the lineage is also guaranteed
in that way; see lines 5–8. Then, the contents of the parent
linage rank lists are merged with the offspring. Finally, the
offspring are mutated by probability; see lines 9–11.

4. Selection operation

In this paper, the knowledge-driven population selection
strategy uses the lineage calculation of the candidate set,
which is based on the NSGA-III reference point distance
calculation. The calculation process is as follows:

When selecting the optimal object based on the reference
point in the 20th row of Algorithm 1, it is necessary to sort
the selection according to the lineage. The specific process
is as in Algorithm 3.

Algorithm 3 aims to find the best population members
in the fl rank. On the selection of non-dominated solutions,
the lineage factor is considered in the retention strategy of
the elite solution. First, the nearest distance population set
of the reference point rp is found. If the number of sets is
larger than 0, then there are two cases. The first is that if the
number of the nearest distance population set of rp in Qt is 0,
then the nearest distance population of rp will be selected;
the second is that if the number of the nearest distance popu-
lation set of rp in Qt is bigger than 0, then a population with
the best historical lineage is selected according to the aver-
age lineage rank sorting.

Fig. 3 How offspring lineage is inherited from parents

1162 Complex & Intelligent Systems (2021) 7:1153–1171

1 3

the next nearest one by distance. Repeat this until all users
discover available microservices.

Details on the calculation process are in Algorithm 4.
The first step is to initialize the actual microservice start
quantity vector realMicroServicesStart of each resource
centre, the remaining resource vector of each resource
centre remMicSerAbility , and the user list served by each
resource centre userServiced , as in lines 2–6. Then, trav-
erse each user in uLs to find the most suitable resource
centre service. For each service request in the user service
request list, initialize the access identifier of each resource
centre to 0; see lines 8–9. Recursively search for the near-
est resource service centre that meets the user’s location
condition. If it is found, continue to find the next service.
If not, return ‘false’; see lines 10–13. Finally, return ‘true’
when all services for all users are found in all resource
centres.

T h e i m p l e m e n t a t i o n o f t h e f u n c t i o n
findNeaSerbyLo(mSer,user,cLs) is shown in Algorithm 5.
The basic process consists of several steps. First, find the
nearest resource centre that has not been visited which is
identified by CenterFoundFlag based on the user’s loca-
tion. Get the RC number neLoCenterwith the function
findNeSerbyLo(user.location) return value. If it returns -1,
then all resource centres have already been visited, there
is no solution, return ‘false’; see lines 2–3. Second, deter-
mine if there is an available service in the resource centre
that matches the user’s needs. If the number of services

An example of the lineage rank list process is presented
in picture 3. Assume that two population members with
lineage rank list [1, 1, 1, 1, 2] and [1, 1, 2, 2, 3, 3, 4] need
to crossover. The MaxLineageNumber is 6. First, the rank
list of each population will be calculated and added into
the lineage rank list, assumed to be 3 and 1. Then, the line-
age rank lists of the two population members are updated
to [1, 1, 1, 1–3] and [1, 1, 1, 2, 2, 3, 3, 4]. As the limitation
of the max number of lineages, we use the latest half of
the parents’ lineage rank list to crossover, which are [1, 1,
3] and [1, 1–3]. Finally, after crossing each rank element,
we obtain the offspring’s lineage [1, 1, 1, 1–3, 3] as shown
in Fig. 3.

5. Match users and microservices provider algorithm

When the best deployment strategy is found, some
matching algorithms between users and microservice pro-
viders should be applied to validate the strategy in the real
service environment.

The user service policy mentioned in the previous sec-
tion adopts a distance-based service selection algorithm as
in Algorithm 4. First, for each user, the nearest available
microservices is searched for according to the location
principle; then, the microservices are checked for whether
they have reached the maximum service load. If not, this
user request is sent to the service; otherwise, search for

1163Complex & Intelligent Systems (2021) 7:1153–1171

1 3

is greater than or equal to 1, the user will be added to
the service user list of this centre, and the list of avail-
able services in this resource centre is updated by add-
ing this service; see lines 3–6; if not, the access identifier
CenterFoundFlag of the resource centre will be changed
to 1. The most suitable service of the user is recursively
searched for; see lines 9–11.

6. Algorithm complexity analysis

The main process of the microservices deployment strat-
egy comprises two parts: the MGR-NSGA-III and match-
ing users with services. The complexity of MGR-NSGA-
III is as follows. Algorithm 1 shows the whole process of
MGR-NSGA-III. Algorithm 2 and Algorithm 3 need to be
computed once for each generation of iterations in MGR-
NSGA-III. It is assumed that T represents the number of
objective functions, Q represents the population size,
G is the maximum allowable number of lineage in each

population, and H is the reference number. The compu-
tational time complexity for the insertion of lineage with
the 2Q population members in Algorithm 1 rows 2–8 is
O(Q) logT−2 Q in extreme cases (i.e., each linage requires
computational choices, and each lineage has the maximum
allowable number). Each reference computation complexity
is O(T ⋅ Q ⋅ H) , and each crossover and merging time of the
lineage is O

(
Q ⋅ G2

)
 . The computational complexity cho-

sen for the lineage of each generation is O(Q ⋅ G) logT−2 Q ,
so the computational complexity of each generation in
MGR-NSGA-III is due to O(Q ⋅ G) logT−2 Q + O

(
Q ⋅ G2

)
 +

O(T ⋅ Q ⋅ H) . The complexity of Algorithm 4 is O(N)
+O(M ⋅ K) (this assumes that each user contains a request
for all K microservices, which is actually less than K). The
essence of Algorithm 5 is a recursive calculation with a
complexity of O

(
M2

)
 during which insertion and selection

of pedigrees is required. Because in each generation of
Algorithm 1, we should use Algorithm 4 and Algorithm 5 to
evaluate the population, the whole process of the strategy is
MaxIterations ⋅ (O(Q ⋅ G) logT−2 Q + O

(
Q ⋅ G2

) + O(T ⋅ Q ⋅ H) + O
(
M2

)

 + O(M ⋅ K)).

Experiment analysis

Datasets

Two real datasets were used in the experiment. One data-
set was the New York social network user check-in data-
set, which is used to simulate different users distributed in
different spaces to request services for different RCs at the
same time. The other dataset was the Tokyo social network
user check-in dataset [30]. A microservice dataset is a typi-
cal data application service system where a single appli-
cation system is divided into ten microservices: reporting,
administrator management, GIS, message transmission, data
quality censor, data collection, data comprehensive mainte-
nance, settlement, data visualization displays, and permis-
sion controls.

Table 1 Values of regular parameters in different algorithms

Parameter name MGR-NSGA-III MGR-NSGA-III SPEA-II

crossover Simulated binary lineage crossover Simulated binary crossover Simulated binary crossover
crossoverProbability 0.9 0.9 0.9
crossoverDistributionIndex 20 20 20
mutation Polynomial mutation Polynomial mutation Polynomial mutation
mutationProbability 1.0/numberOfVariables() 1.0/numberOfVariables() 1.0/numberOfVariables()
distributionIndex 20 20 20
MaxIterations 30/50/100/150/200 30/50/100/150/200 30/50/100/150/200
MaxPopulationSize referencePoints.size() referencePoints.size() Same as MGR-NSGA-III

1164 Complex & Intelligent Systems (2021) 7:1153–1171

1 3

Parameters

In this paper, MGR-NSGA-III is proposed to solve the
microservices deployment and starting up strategy problem.
The experimental parameters were as follows:

 (i) There are five resource centres in New York and
Tokyo that are dedicated to the operation of the data
service microservice system;

 (ii) Each resource centre has 300 units of computing
resources and 300 units of storage resources;

 (iii) Starting a microservice instance requires 20 units
of computing resources and 10 units of storage
resources, and each instance can serve 10 users at
the same time.

The MGR-NSGA-III value of regular parameter is shown
in Table 1.

The main configuration of the computer used in the exper-
iments is as follows: CPU Intel(R) Core (TM) i7-5600U 2.6
GHZ, 8G RAM memory.

After 20 operations to take the average running time for
each algorithm, Fig. 4 shows the running time of different
algorithms in different datasets. As the figure shows, solving
the problem using SPEA-II would cost much more time than
using NSGA-III and MGR-NSGA-III, especially when the
number of iterations is larger. Additionally, MGR-NSGA-III
requires a slightly longer time to compute in both datasets
than NSGA-III. MGR-NSGA-III improves the selection and
retention strategy of the elite solutions, it retains those elites
with better lineage. Compared with SPEA-II and NSGA-III,
these selection and retention calculations require a certain
amount of resources, but they can get better solutions, so it
has greater advantages in indicators such as average calcula-
tion rate, storage idle rate, and actual microservice idle rate.

(a) NYC Dataset (b)TKY Dataset

20 40 60 80 100 120 140 160 180 200 220
0

200

400

600

800

1000

1200

1400

C
om

pu
tin

tg
Ti

m
e

(s
)

Iterations

NSGA-III-NYC
SPEA-II-NYC
MGR-NSGA-III-NYC

20 40 60 80 100 120 140 160 180 200 220
0

200

400

600

800

1000

1200

1400

1600

C
om

pu
tin

g
Ti

m
e(

s)

Iterations

NSGA-III-TKY
SPEA-II-TKY
MGR-NSGA-III-TKY

Fig. 4 Calculation time comparison of different iterations of different algorithms

F1

F2

F3

F4

F5

0.0 0.2 0.4 0.6 0.8
Value of F(X)

F(
X)

 SPEA-II Method
 MGR-NSGA-III Method
 NSGA-III Method
 Traditional Method

Fig. 5 Comparison of objective function under different microservice
scheduling strategies

Algorithms

NSGA-III and SPEA-II are chosen as competitor algorithms.
Among the multi-objective optimization algorithms, SPEA2
and NSGA-III are two representative elite algorithms, which
have become the standard for comparing the performance of
other multi-objective optimization evolutionary algorithms.
MGR-NSGA-III is developed from NSGA-III, thus, to dem-
onstrate its effectiveness, NSGA-III is chosen. SPEA-II, as
is known, is a classic multi-objective optimizer, which is
often chosen as baseline competitor algorithm. Besides,
SPEA2 can also be used to solve the problem of Microser-
vices deployment problem. Considering all above reasons,
SPEA2 and NSGA-III were selected to be compared with
MGR-NSGA-III.

1165Complex & Intelligent Systems (2021) 7:1153–1171

1 3

From the optimal frontier solutions of these algorithms,
several sets of solutions were selected to compare the tra-
ditional microservice deployment strategies without multi-
objective function optimization. The results are shown in
Fig. 4.

Figure 5 shows the deployment policy of the fixed aver-
age start service instance under the traditional combined
microservice strategy after 20 operations for each algorithm.
The resource idle rate is relatively high, and the actual usage
rate of the service is low. The computation resource idle
rate, storage resource idle rate, and actual idle rate of the
traditional microservices deployment strategy in NSGA-
III were 13.21%, 5.2%, and 16.67% higher, respectively.
Compared with the traditional method, the calculation and
storage resource idle rates of the traditional microservices
deployment and startup strategy in MGR-NSGA-III were

60.51% and 2.2% higher, respectively, while the actual idle
rate of microservices was 4.62% higher. In summary, the
microservices deployment strategy based on multi-objective
optimization has better service performance.

Furthermore, different evolutionary multi-objective algo-
rithms have different performance. We will compare the
MGR-NSGA-III that we proposed with classic methods as
follows:

It can be seen from Figs. 6, 7 and 8 that the stability of
the three multi-objective optimization algorithms is good
under different evolutionary generation conditions. The
range of the optimal solutions became consistent after
200 iterative generations. From the uniform variation of
the distribution of the solution, the five objective func-
tions of MGR-NSGA-III remained basically unchanged
before the 100th generation, and the distribution of f(3)

 30 generations 100 generations 150 generations 200 generations

f(1) f(2) f(3) f(4) f(5)
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ge

f(1)
f(2)
f(3)
f(4)
f(5)

f(1) f(2) f(3) f(4) f(5)
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ge

f(1)
f(2)
f(3)
f(4)
f(5)

f(1) f(2) f(3) f(4) f(5)
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ge

f(1)
f(2)
f(3)
f(4)
f(5)

f(1) f(2) f(3) f(4) f(5)
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ge

f(1)
f(2)
f(3)
f(4)
f(5)

Fig. 6 Box chart of different generations for MGR-NSGA-III

 30 generations 100 generations 150 generations 200 generations

f(1) f(2) f(3) f(4) f(5)
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ge

f(1)
f(2)
f(3)
f(4)
f(5)

f(1) f(2) f(3) f(4) f(5)
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ge

f(1)
f(2)
f(3)
f(4)
f(5)

f(1) f(2) f(3) f(4) f(5)
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ge

f(1)
f(2)
f(3)
f(4)
f(5)

f(1) f(2) f(3) f(4) f(5)
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ge
f(1)
f(2)
f(3)
f(4)
f(5)

Fig. 7 Box chart of different generations for NSGA-III

30 generations 100 generations 150 generations 200 generations

f(1) f(2) f(3) f(4) f(5)
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ge

f(1)
f(2)
f(3)
f(4)
f(5)

f(1) f(2) f(3) f(4) f(5)
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ge

f(1)
f(2)
f(3)
f(4)
f(5)

f(1) f(2) f(3) f(4) f(5)
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ge

f(1)
f(2)
f(3)
f(4)
f(5)

f(1) f(2) f(3) f(4) f(5)
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ge

f(1)
f(2)
f(3)
f(4)
f(5)

Fig. 8 Box chart of different generations for SPEA-II

1166 Complex & Intelligent Systems (2021) 7:1153–1171

1 3

converges greatly at the 150th generation. The upper and
lower quartile range changed from 0.32–0.6 to 0.23–0.52.
The convergence speed of MGR-NSGA-III was faster than
that of SPEA-II and NSGA-III. In NSGA-III and SPEA-II,
there was no significant change in the value distribution

DN and DAN express the dominated relationship between
the two population sets. The convergences of different algo-
rithms were also compared by DN and DAN.

It can be seen from Fig. 9a that the convergence rate of
the MGR-NSGA-III solution was higher. When the evolu-
tionary calculation reached 50 generations, the NSGA-III
and SPEA-II solutions were dominated by MGR-NSGR-
III (DN of 6270 and 23,134, respectively). In addition, the
DN of the solutions in MGR-NSGR-III was significantly
high after 100 generations compared with SPEA-II (DN is
30,657). It can also be seen in Fig. 9b of the figure that after
50 generations, DAN in MGR-NSGA-III reached 577 and
729 compared with NSGA-III and SPEA-II, respectively.
Afterwards, DAN reached 607 and 1,039. Therefore, MGR-
NSGA-III is clearly more efficient in calculating the optimal
strategy for running microservice instances.

Figures 10 and 11 show the dominating solutions num-

ber between MGR-NSGA-III and NSGA-III or SPEA-II.
From Fig. 10, it can be seen that of the 50/100/150 gen-
erations the maximum DN of the population is more than
30. The maximum DN in 150 generations is even higher
than 60 in Fig. 10d. Using MGR-NSGA-III, the number
of dominated population can be increased. In addition, the

(a) MGR-NSGA-III DN comparison (b) MGR-NSGA-III DAN comparison

20 40 60 80 100 120 140 160 180 200 220
0

5000

10000

15000

20000

25000

30000

35000
D

N

Generations

Compared with NSGA-III
Compared with SPEA-II

20 40 60 80 100 120 140 160 180 200 220

200

400

600

800

1000

1200

D
AN

Generations

Compared with NSGA-III
Compared with SPEA-II

Fig. 9 Comparison of MGR-NSGA-III with NSGA-III and SPEA-II solutions in dominance

range of each target, and the final convergence value was
slightly worse than that of MGR-NSGA-III. Finally, the
upper quartile and lower quartile range converged between
0.3 and 0.6 in NSGA-III and SPEA-II.

Definition 5 Dominating number (DN). Assuming popula-
tion set A and population set B, the dominating number of A
to B is defined as the following equation:

Definition 6 Dominating absolutely number (DAN). Assum-
ing population set A and population set B, the dominating
absolutely number of A to B is defined as the following
equation:

DN =

|A|∑
i=1

Dom
(
Ai,B

)
, Dom

(
Ai,Bj

)
= 1, ifBj is completely dominated byAi , and vice versaDom

(
Ai,Bj

)
= 0.

DAN =

|A|∑
i=1

Dom
(
Ai,B

)
, Dom

(
Ai,B

)
= 1, if ∃Bj ∈ B , Ai completelydominates Bj, and vice versa Dom

(
Ai,B

)
= 0.

1167Complex & Intelligent Systems (2021) 7:1153–1171

1 3

(a) 30 generations (b) 50 generations

(c) 100 generations (d) 150 generations

(e) 200 generations

3

4

1

2

4

11

1

222

3

25

13

2

3

2

1

2

3

8

5

4

1

2

111

33

4

1111

2

1

4

11

8

15

11

14

8

2

33

1

12

33

1

2

11

2

8

1

3

2

1

2

4

2

1

10

2

44

9

1

4

6

3

1

2

111

2

5

4

8

6

44

7

2

3

1

10

1

7

11

2

11 1

2

1

3

111

11

2

3

6

8

10

5

22

3

2

1

2

11

10

5

1

10

1

2

3

111

8

1

22

3

1

2

11

10

2

1

22

11

2

1

2

3

22

1

2

12

33

4

2

4

1

2

3

22

1

4

33

5

1

7

4

13

2

1

33

1

2

5

14

22

11

2

33

2

9

6

1

2

7

1

2

11

2

3

2

11

2

4

7

4

11

22

3

1

5

6

1111

5

2

1

222

5

3

1

22

11

2

33

1

3

1

2 2

1

18

1

3

111

2

3

5

1

2

0 200 400 600
0

10

20
D

om
in

at
ed

nu
m

be
r

Population

Compare with NSGA-III

0 200 400 600
0

20

40
Compare with NSGA-III

D
om

in
at

ed
nu

m
be

r

Population

44

more than 40

0 200 400 600 800 1000
0

5

10

15

20

25

30
Compared with NSGA-III

D
om

in
at

ed
nu

m
be

r

Population
500 1000

0

10

20

30

40

50

60

70 Compared with NSGA-III

D
om

in
at

ed
nu

m
be

r

Population

62

56

0 500 1000
0

10

20

Compared with SPEA-II

D
om

in
at

ed
nu

m
be

r

Pupulation

Fig. 10 Comparison of MGR-NSGA-III with NSGA-III in dominating solutions for different generations

1168 Complex & Intelligent Systems (2021) 7:1153–1171

1 3

MGR-NSGA-III algorithm has a good convergence rate for
computations of less than 200 generations. As shown in
Fig. 11, the dominated number may be more than 120/100
in the 50/100th generation compared with SPEA-II.

A comparison between different microservice deployment
and startup strategies based on multi-objective optimization
was made. It can be seen from the red circles in Fig. 12,
the number of started-up microservices with NSGA-III and
SPEA-II is extremely high (as in Fig. 12a) or low (as in

snoitareneg 05 (b)

 snoitareneg 03 (a)

snoitareneg 051(d) snoitareneg 001 (c)

(e) 200 generations

0 200 400 600
0

20

40

60

80

100

D
om

in
at

ed
 n

um
be

r

Population

 Compared with SPEA-II

0 200 400 600
0

20

40

60

80

100

120

140 Compared with SPEA-II

D
om

in
at

ed
 n

um
be

r

Population

127

0 200 400 600 800 1000
0

20

40

60

80

100

120 Compared with SPEA-II

D
om

in
at

ed
 n

um
be

r

Population

more than 100

500 1000
0

10

20

30

40

50

60

70 Compared with SPEA-II

D
om

in
at

ed
 n

um
be

r

Population

500 1000
0

5

10

15

20

25

30 Compared with SPEA-II

D
om

in
at

ed
 n

um
be

r

Population

Fig. 11 Comparison of MGR-NSGA-III with SPEA-II in dominating solutions for different generations

1169Complex & Intelligent Systems (2021) 7:1153–1171

1 3

Fig. 12b) in different resource centres, indicating poor load
balancing. Conversely, the startup load in MGR-NSGA-III
is relatively balanced as in Fig. 12c, d.

The hypervolume values of different algorithms are com-
pared. The hyper volume [5] is popularly used to evaluate
the convergence and distribution of MOEAs’ solutions.

NSGA-III, SPEA-II, and MGR-NSGA-III are used to
solve the microservice deployment optimization problem.
The calculations have been performed 20 times. It can be
seen in Fig. 13 that MGR-NSGA-III represented by the
blue part is slightly better than the other two algorithms,
especially in the 4th and 5th calculation results, the hyper
volume value is significantly higher than the other two algo-
rithms. Moreover, the average values of the hyper volume
of the three algorithms with 20 times are shown in Table 2,

(a) NSGA-III (b) SPEA-II

(c) MGR-NSGA-III 1 (d) MGR-NSGA-III 2

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

10

M
ic

ro
Se

rv
ic

es
 In

st
an

ce
s

MicroServices Number

RC 1
RC 2
RC 3
RC 4
RC 5

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

10

M
ic

ro
Se

rv
ic

es
 In

st
an

ce
s

MicroServices Number

RC 1
RC 2
RC 3
RC 4
RC 5

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

10

M
ic

ro
Se

rv
ic

es
 In

st
an

ce
s

MicroServices Number

RC 1
RC 2
RC 3
RC 4
RC 5

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

10

M
ic

ro
Se

rv
ic

es
 In

st
an

ce
s

MicroServices Number

RC 1
RC 2
RC 3
RC 4
RC 5

Fig. 12 Real deployment and startup results of microservices in different evolutionary algorithms

1 2 3 4 5 6 7 8 9 1011121314151617181920
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
yp

er
 V

ol
um

e

Computing Times

SPEA-II
NSGA-III
MGR-NSGA-III

Fig. 13 Comparison of different algorithms in hyper volume

Table 2 Average value of hypervolume in different algorithms

Algorithms Average value of
hyper volume with 20
times

SPEA-II 0.582211
NSGA-III 0.602875
MGR-NSGA-III 0.633464

1170 Complex & Intelligent Systems (2021) 7:1153–1171

1 3

MGR-NSGA-III algorithm can get the highest average value
of hyper volume when comparing with SPEA-II and NSGA-
III as well.

Conclusion

Microservices split a complex application into a number of
multiple sub-services with well-defined boundaries. The dis-
tributed deployment of these sub-services to different ser-
vice centres provides services for users with the advantages
of flexibility, scalability, and high availability. However, a
series of problems have arisen in the use of microservices,
and the optimization of deployment and startup microser-
vices is one of the key challenges.

This paper introduces a knowledge-driven evolution-
ary algorithm for the deployment and startup problem of
microservices for the first time. It improves this NSGA-III
by considering the lineage knowledge of each generational
population using MGR-NSGA-III. First, a microservices
deployment and startup problem model based on multi-
objective optimization was constructed. Some objective
functions and constraints of the problem were defined. Sec-
ond, NSGA-III was improved by knowledge driven to solve
the microservice deployment and startup problem. Finally,
several experiments were presented to evaluate the perfor-
mance of different methods. A comprehensive evaluation
of the algorithm’s time efficiency, convergence degree and
calculation effect were given. In conclusion, MGR-NSGA-
III works well on microservice deployment and start-up
problems.

In the future work, the heterogeneity of microservices
and resource centres needs to be considered. Some users’
service requirements should also be further studied. It is
necessary to further improve the multi-objective algorithm
to meet various users’ demands.

Acknowledgements This work was supported by the National Natu-
ral Science Foundation of China (61773390), the Hunan Youth elite
program(2018RS3081), the scientific key research project of National
University of Defense Technology (ZK18-02-09, ZZKY-ZX-11-04)
and the key project of 193-A11-101-03-01..

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

 1. Alshuqayran N, Ali N, Evans R (2018) Towards micro service
architecture recovery: an empirical study. In: IEEE international
conference on software architecture (ICSA), 2018. IEEE, pp
47–4709

 2. Back T, Andrikopoulos V (2018) Using a microbenchmark to
compare function as a service solutions. In: European confer-
ence on service-oriented and cloud computing. Springer, pp
146–160

 3. Bouzary H, Chen FF (2018) Service optimal selection and com-
position in cloud manufacturing: a comprehensive survey. Int J
Adv Manuf Technol 97:795–808

 4. Bouzary H, Chen FF (2019) A hybrid grey wolf optimizer algo-
rithm with evolutionary operators for optimal QoS-aware ser-
vice composition and optimal selection in cloud manufacturing.
Int J Adv Manuf Technol 101:2771–2784

 5. Cai X, Sun H, Zhang Q, Huang Y (2019) A grid weighted sum
pareto local search for combinatorial multi and many-objective
optimization. IEEE Trans Syst Man Cybern 49:3586–3598

 6. Daya S, Van Duy N, Eati K, Ferreira CM, Glozic D, Gucer V,
Gupta M, Joshi S, Lampkin V, Martins M (2016) Microservices
from theory to practice: creating applications in IBM Bluemix
using the microservices approach. IBM Redbooks

 7. Deb K, Jain H (2014) An evolutionary many-objective opti-
mization algorithm using reference-point-based nondominated
sorting approach, part I: solving problems with box constraints.
IEEE Trans Evolut Comput 18:577–601

 8. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elit-
ist multiobjective genetic algorithm: nSGA-II. IEEE Trans Evol
Comput 6:182–197

 9. Filip I-D, Pop F, Serbanescu C, Choi C (2018) Microservices
scheduling model over heterogeneous cloud-edge environments as
support for iot applications. IEEE Internet Things J 5:2672–2681

 10. Hassan S, Bahsoon R, Kazman R (2019) Microservice transition
and its granularity problem: a systematic mapping study. arXiv
preprint arXiv :19031 1665

 11. Heorhiadi V, Jamjoom HT, Rajagopalan S (2017) Failure recovery
testing framework for microservice-based applications. Google
Patents

 12. Huang J, Li S, Duan Q, Yu R, Yu S (2017) QoS correlation-aware
service composition for unified network-cloud service provision-
ing. In: 2016 IEEE global communications conference (GLOBE-
COM). IEEE, pp 1–6

 13. Jamshidi P, Pahl C, Mendonça NC, Lewis J, Tilkov S (2018)
Microservices: the journey so far and challenges ahead. IEEE
Softw 35:24–35

 14. Kwan A, Jacobsen H-A, Chan A, Samoojh S (2016) Microservices
in the modern software world. In: Proceedings of the 26th annual
international conference on computer science and software engi-
neering. IBM Corp., pp 297–299

 15. Lahmar F, Mezni H (2018) Multicloud service composition: a
survey of current approaches and issues. J Softw: Evolut Process
30:e1947

 16. Li B, Li J, Tang K, Yao X (2015) Many-objective evolutionary
algorithms: a survey. ACM Comput Surv 48:13–30

 17. Lloyd W, Ramesh S, Chinthalapati S, Ly L, Pallickara S (2018)
Serverless computing: An investigation of factors influencing
microservice performance. In: IEEE international conference on
cloud engineering (IC2E), 2018. IEEE, pp 159–169

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/190311665

1171Complex & Intelligent Systems (2021) 7:1153–1171

1 3

 18. Na J, Lin K-J, Huang Z, Zhou S (2015) An evolutionary game
approach on IOT service selection for balancing device energy
consumption. In: 2015 IEEE 12th international conference on
e-business engineering, 2015. IEEE, pp 331–338

 19. Piccialli F, Benedusi P, Amato F (2018) S-InTime: a social cloud
analytical service oriented system. Future Gen Comput Syst
80:229–241

 20. Qu B, Zhu Y, Jiao Y, Wu M, Suganthan PN, Liang J (2018) A
survey on multi-objective evolutionary algorithms for the solution
of the environmental/economic dispatch problems. Swarm Evolut
Comput 38:1–11

 21. Ren Z, Wang W, Wu G, Gao C, Chen W, Wei J, Huang T (2018)
Migrating web applications from monolithic structure to micros-
ervices architecture. In: Proceedings of the tenth Asia-Pacific
symposium on internetware. ACM, pp 7–18

 22. Samanta A, Li Y, Esposito F (2019) Battle of microservices:
towards latency-optimal heuristic scheduling for edge comput-
ing. In: IEEE NetSoft

 23. Seada H, Deb K (2015)Effect of selection operator on NSGA-III
in single, multi, and many-objective optimization. In: Evolution-
ary computation (CEC). pp 2915–2922

 24. Sharma D, Anandan R, Manikandan A, Narayanan K, Paul CS
(2018) Building micro service for user engagement. Int J Eng
Technol 7:420–422

 25. Syahputra R, Soesanti I(2017) An artificial immune system algo-
rithm approach for reconfiguring distribution network. In: AIP
conference proceedings. AIP Publishing, 020017

 26. Viggiato M, Terra R, Rocha H, Valente MT, Figueiredo E (2018)
Microservices in practice: a survey study. arXiv preprint arXiv
:18080 4836

 27. Villamizar M, Garces O, Ochoa L, Castro H, Salamanca L, Verano
M, Casallas R, Gil S, Valencia C, Zambrano A (2016) Infrastruc-
ture cost comparison of running web applications in the cloud

using AWS lambda and monolithic and microservice architec-
tures. In: 16th IEEE/ACM international symposium on cluster,
cloud and grid computing (CCGrid), 2016. IEEE, pp 179–182

 28. Wang R, Zhang Q, Zhang T (2016) Decomposition-based algo-
rithms using pareto adaptive scalarizing methods. IEEE Trans
Evol Comput 20:821–837

 29. Wang T, Li C, Yuan Y, Liu J, Adeleke IB (2019) An evolutionary
game approach for manufacturing service allocation management
in cloud manufacturing. Comput Ind Eng 133:231–240

 30. Yang D, Zhang D, Zheng VW, Yu Z (2015) Modeling user activity
preference by leveraging user spatial temporal characteristics in
LBSNs. IEEE Trans Syst Man Cybern Syst 45:129–142

 31. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary
algorithm based on decomposition. IEEE Trans Evol Comput
11:712–731

 32. Zhang Y, Tao F, Liu Y, Zhang P, Cheng Y, Zuo Y (2019) Long/
short-term utility aware optimal selection of manufacturing ser-
vice composition towards Industrial Internet platform. IEEE Trans
Ind Inf

 33. Zheng X, Wang L (2016) A collaborative multiobjective fruit fly
optimization algorithm for the resource constrained unrelated par-
allel machine green scheduling problem. IEEE Trans Syst Man
Cybern: Syst 99:1–11

 34. Zhou J, Yao X (2017) Multi-population parallel self-adaptive dif-
ferential artificial bee colony algorithm with application in large-
scale service composition for cloud manufacturing. Appl Soft
Comput 56:379–397

 35. Zhu X (2018) Case II: micro platform, major innovation—
WeChat-based ecosystem of innovation. In: China’s technology
innovators. Springer, pp 33–52

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/180804836
http://arxiv.org/abs/180804836

	Multi-objective microservice deployment optimization via a knowledge-driven evolutionary algorithm
	Abstract
	Introduction
	Related works
	Problem definition and multi-objective model
	Objective functions
	Constraints
	Optimization problem model

	Multi-generations reference NSGA-III
	Main process
	MGR-NSGA-III

	Experiment analysis
	Datasets
	Algorithms
	Parameters

	Conclusion
	Acknowledgements This work was supported by the National Natural Science Foundation of China (61773390), the Hunan Youth elite program(2018RS3081), the scientific key research project of National University of Defense Technology (ZK18-02-09, ZZKY-ZX-11-04
	References

