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Abstract
Nonlinear phenomena are often encountered in various practical systems, and most of the nonlinear problems in science and 
engineering can be simply described by nonlinear equation, effectively solving nonlinear equation (NE) has aroused great 
interests of the academic and industrial communities. In this paper, a robust zeroing neural network (RZNN) activated by 
a new power versatile activation function (PVAF) is proposed and analyzed for finding the solutions of dynamic nonlinear 
equations (DNE) within fixed time in noise polluted environment. As compared with the previous ZNN model activated 
by other commonly used activation functions (AF), the main improvement of the presented RZNN model is the fixed-time 
convergence even in the presence of noises. In addition, the convergence time of the proposed RZNN model is irrelevant to 
its initial states, and it can be computed directly. Both the rigorous mathematical analysis and numerical simulation results 
are provided for the verification of the effectiveness and robustness of the proposed RZNN model. Moreover, a successful 
robotic manipulator path tracking example in noise polluted environment further demonstrates the practical application 
prospects of the proposed RZNN models.

Keywords  Nonlinear equation (NE) · Neural network (NN) · Recurrent neural network (RNN) · Fixed-time convergence · 
Zeroing neural network (ZNN) · Robust neural network (RZNN) · Activation function (AF) · Power versatile activation 
function (PVAF)

Introduction

With the developments in modern science and technology, 
more and more natural phenomena and social problems 
cannot be simply depicted by linear relationship, and they 
should be described by complex nonlinear models, which 
makes the nonlinear science one of the most hottest research 
spots [1–10]. In addition, most of the complex nonlinear 
models can be summarized by nonlinear equations, and solv-
ing nonlinear equation is of great importance for revealing 
the inner laws of these phenomena, especially for some prac-
tical scientific and engineering problems.

In the past decades, iterative methods have been com-
monly used in finding the solutions of nonlinear equation 
(NE), and the Newton iterative is one of the most effec-
tive methods, which converges to the theoretical roots of 
the nonlinear equations quadratically [11]. To improve the 
convergence performance of the Newton iterative for solv-
ing NE, many improved Newton-like iterations have been 
reported [12–20]. However, the computational workload 
increases dramatically with the increasing order of the NE, 
which greatly decreases the effectiveness and accurateness 
of the iteration method owing to its intrinsic serial-process-
ing limitations [21].

In recent years, the study of complex networks spans 
many different fields such as mathematics, life sciences, and 
engineering [22–29]. The exploration of extremely complex 
topological structures and network dynamics has become 
a hot topic [30–36]. Among them, the recurrent neural 
network (RNN) develops very fast because of its inherent 
advantages of parallel processing and easy hardware imple-
mentation, and it has been deeply studied and investigated 
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[37]. As one of the most effective computational approaches 
for finding the solutions of various equations [38–40], it has 
been widely applied in scientific and engineering fields 
[41–44]. The gradient-based neural network (GNN) and 
ZNN are two kinds of classic RNN, and the GNN is very 
effective and suitable to deal with large-scale static com-
putational problems owing to its intrinsic advantages of 
parallel-processing ability. However, because the derivative 
information of the involved equation is not considered, the 
GNN approach cannot handle dynamic problems effectively. 
ZNN is a special RNN proposed in [45], and it has become 
an indispensable computational tool in dealing with time-
varying problems. Comparing with GNN, ZNN has better 
robustness and effectiveness, and it has been widely used for 
solving dynamic equations [46–48].

The convergence performance and robustness of the ZNN 
are closely related to its activation functions (AFs), and 
choosing different AF will result in different robustness and 
effectiveness of the ZNN model. Considering the above facts, 
various novel AFs are proposed for the improvement of the 
ZNN [49, 50]. A specially constructed AF (sign-bi-power AF, 
SBPAF) [51] enables the ZNN model to develop from expo-
nential convergence to finite time convergence, which further 
strengthens the real-time computing capabilities of the ZNN 
model. Noise and interference are inevitable for any dynamic 
system, which seriously deteriorate the accuracy and effi-
ciency of the existing neural network models. However, noise 
compatibility is rarely considered in the existing ZNN models, 
and they are vulnerable to be attacked by various noises. For 
the purpose of improving its noise compatibility, a NTZNN 
model is proposed in [52, 53], and it works properly under 
various noises, but it only achieves exponential convergence, 
not finite time convergence or fixed time convergence. Con-
sidering the above issues, an NNTZNN model activated by a 
new versatile AF (VAF) is presented in [54], and the model in 
[54] achieves fixed-time convergence and noise suppression 
simultaneously, which is a milestone for the development of 
ZNN. To further improve the effectiveness and robustness of 
the ZNN, a RZNN model activated by a new PVAF for solv-
ing DNE is proposed in this work.

The key contributions and innovations are summarized 
below.

(1)	 A new PVAF is presented to greatly improve the con-
vergence performance and robustness of the ZNN.

(2)	 Based on the proposed new PVAF, a RZNN model is 
designed for finding the solution DNE, and detailed 
mathematical analysis of the robustness and fast con-
vergence of the RZNN model is provided.

(3)	 Numerical simulated results are conducted to further verify 
the better robustness, effectiveness and fixed-time conver-
gence of the RZNN model even in the noise polluted envi-
ronment. Problem formulation and RZNN model.

In this section, the problem formulation is presented first. 
Then, the design steps of the ZNN and RZNN models for 
solving DNE are introduced.

Dynamic nonlinear equation (DNE)

In mathematics, the DNE can be summarized below:

In Eq. (1), t is time, x(t) is the unknown dynamic parame-
ter, and f(·) is the nonlinear function, and we assume that the 
DNE in (1) is solvable, and it at least has one solution. The 
purpose of this work is to design a NN to find the dynamic 
solution x(t) of the DNE (1) within fixed-time in the noise 
polluted environment, and the design procedure of the ZNN 
model for solving DNE (1) is introduced in the following 
part.

ZNN model for solving DNE

ZNN is a powerful and effective tool for solving dynamic 
problems. According to Ref. [45], the ZNN model for solv-
ing DNE can be constructed below:

First, let us define a dynamic error function e(t):

Here, if e(t) converges to 0, and the state solution x(t) will 
satisfy f(x(t), t) = 0. Solving the DNE in (1) is equivalent to 
enforce e(t) converges to 0.

Then, the following formula is adopted for the conver-
gence of e(t):

where γ > 0 is an adjustable parameter related to convergence 
performance, and σ(·) is an AF.

At last, substituting (2) into (3), the ZNN models for solv-
ing DNE is realized in Eq. (4).

AF is closely related to the effectiveness and robustness 
of the ZNN model, and any monotonically increasing odd 
AF could be considered as AF for the ZNN model [55, 56]. 
The commonly used AFs for the ZNN model are listed in 
the following Table 1.

It is worthy to mention that noise suppression and fast 
convergence are two important performance indicators of 
nonlinear dynamics. Many researchers have been devoted 
to finding effective AFs to improve the convergence perfor-
mance of the ZNN model, and all the AFs listed in Table 1 
can enforce the ZNN model exponentially or finite-time 

(1)f (x(t), t) = 0 ∈ R

(2)e(t) = f (x(t), t)

(3)
de(t)

dt
= −��(e(t))

(4)
𝜕f

𝜕x
ẋ(t) = −𝛾𝜎(f (x(t), t)) −

𝜕f

𝜕t
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stable in ideal no-noise environment. However, noise sup-
pression ability of the ZNN model is rarely considered in 
the previous works. A new RZNN model simultaneously 
achieves noise suppression and fixed-time convergence will 
be introduced in the following part.

RZNN model

The new PVAF of this work is presented below:

where p > 0, q > 0, k1> 0, k2> 0, p ≠ q, and sgn(·) is the sig-
num function.

Based on the PVAF (5), the RZNN model for solving 
DNE (1) is presented as follow:

The RZNN model with additive noises is also presented 
in Eq. (7):

where n(t) is the additive noise.

RZNN model analysis

As the basis of discussing and analyzing the RZNN model, 
the following Lemma 1 should be presented in advance.

Generally, a RNN could be depicted by the following dif-
ferential dynamic system:

where x(t) ∈ ℝ
n stands for a suitable sized state. Let x(0) 

=  x0 present a suitable sized initial state for the dynamic 
system (8), and assume x(t) = 0 standing for the equilibrium 

(5)�(x) = (a|x|p + b|x|q)ksgn(x) + cx + dsgn(x)

(6)
𝜕f

𝜕x
ẋ(t) = −𝛾𝜎(f (x(t), t)) −

𝜕f

𝜕t

(7)
𝜕f

𝜕x
ẋ(t) = −𝛾𝜎(f (x(t), t)) −

𝜕f

𝜕t
+ n(t)

(8)ẋ(t) = 𝜙(x(t), t), t ∈ [0,+∞)

point of the dynamic system (8). There are several theories 
for the convergence the dynamic system (8).

Definition 1  [57–60]. The origin of the dynamic system (8) 
will be globally finite-time stable if the system is asymptoti-
cally and globally stable; and there exists a locally bounded 
setting time function T: ℝn

→ ℝ + ∪{0} , such that x(t, 
x0) = 0 for all t ≥ T(x0).

Definition 2  [61–63]. The origin of the dynamic system (8) 
will be globally finite-time stable if the system is globally 
finite-time stable and the settling time function T is glob-
ally bounded, i.e., there exists a constant tf∈ℝ+ satisfying 
tf≥ T(x0) for all x0∈ℝn.

Lemma 1  [57, 64]. If there exists a radially continuous 
unbounded function V: ℝn → ℝ + ∪{0} such that V(ζ) = 0 
for ζ∈Ω and any solution ζ(t) satisfies

where the constant parameters a, b, p, q, k >0, pk >1, qk <1. 
Then the set Ω is globally fixed-time attractive for the 
dynamic system (8), and the upper bound convergence time 
is

RZNN model analysis without noise

In this part, the RZNN for solving DNE (1) without noise 
will be analyzed.

Theorem 1  If the DNE (1) is solvable, the neural state solu-
tion x(t) of the RZNN model (6) with any random initial state 

(9)V̇(𝜁) ≤ −(aVp(𝜁) + bVq(𝜁))k

(10)Tmax =
1

ak(pk − 1)
+

1

bk(1 − qk)

Table 1   Commonly used AFs Activation functions Formulations

Linear activation function (LAF) σ(x) =  x
Power activation function (PAF) σ(x) =  xk k >3 and k is an odd integer
Bi-power activation function (BPAF) σ(x) = (1 − exp(− ξ x))/(1+exp(− ξ x)) ξ >1
Power-sigmoid activation function (PSAF)

�(x) =

{
x
p, |x| ≥ 1

1+e−�−e−�x

1−e−�+e−�x
, otherwise

Hyperbolic sine activation function (HSAF) σ(x) = (exp(ξ x) − exp(− ξ x))/2 ξ >1
Sign-bi-power activation function (SBPAF) σ(x) = (|x|k+ |x|1/k)sgn(x)/2 0< k <1
Versatile activation function (VAF) �(x) =

(
a1|x|� + a2|x|�

)
sgn(x) + a3x + a4sgn(x)
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x(0) converges to the theoretical roots x*(t) of DNE (1) in 
fixed time ts:

Proof  According to Eq. (3), the dynamic error function e(t) 
of RZNN model (6) can be expressed as:

As the new PVAF (5) is used, we adopt v(t) =  |e(t)| as the 
Lyapunov function candidate, and the time differentiation of 
v(t) can be expressed as:

Then, based on Lemma 1, the bounded time ts can be 
directly obtained as:

ts ≤
1

�ak(pk − 1)
+

1

�bk(1 − qk)

(11)
de(t)

dt
= −��(e(t))

(12)

dv(t)

dt
= ė(t)sgn(e(t)) = −𝛾𝜎(e(t))sgn(e(t))

= −𝛾

((
a
|||eij(t)

|||
p

+ b
|||eij(t)

|||
q)k

sgn(e(t))

+ce(t) + dsgn(e(t)))sgn(e(t))

= −𝛾
((

a|e(t)|p + b|e(t)|q
)k

+ c|e(t)| + d
)

≤ −𝛾
(
a|e(t)|p + b|e(t)|q

)k

= −

(
𝛾
1∕k(avp(t) + bvq(t))

)k

ts ≤ tmax =
1

�ak(pk − 1)
+

1

�bk(1 − qk)

RZNN model analysis with noise

Noises are inevitable for any dynamic system, and the RZNN 
model (7) with various noises will be considered in this part.

Case 1: polluted by dynamic disappearing noise (DDN)

When the n(t) in (7) is a DDN, the following Theorem 2 
ensures the stability of the RZNN model (7).

Theorem 2  If the DNE (1) is solvable, and the dynamic sys-
tem is polluted by a DDN, which satisfies |n(t)| ≤ δ|e(t)| and 
γc ≥ δ (δ ∈ (0, +∞)). The neural state solution x(t) of the 
RZNN model (7) with any random initial state x(0) converges 
to the theoretical roots x*(t) of DNE (1) in fixed time ts:

Proof  According to Eq. (3), e(t) of RZNN model (7) can 
also be expressed as:

Here, we adopt v(t) =  |e(t)|2 as the Lyapunov func-
tion candidate, and the time differentiation of v(t) can be 
expressed as:

As the new PVAF (5) is used, |n(t)| ≤ δ|e(t)| and γc ≥ δ, 
the following result can be obtained:

Based on Lemma 1, the bounded time ts can be directly 
obtained as:

ts ≤
1

�ak(pk − 1)
+

1

�bk(1 − qk)

(13)
de(t)

dt
= −��(e(t)) + n(t)

(14)
dv(t)

dt
= 2e(t)ė(t) = 2e(t)(−𝛾𝜎(e(t)) + n(t))

(15)

dv(t)

dt
= 2e(t)ė(t) = 2e(t)(−𝛾𝜎(e(t)) + n(t))

= 2e(t)
(
−𝛾

((
a|e(t)|p + b|e(t)|q

)k
sgn(e(t)) + ce(t) + dsgn(e(t))

)
+ n(t)

)

= −2𝛾
((

a|e(t)|p + b|e(t)|q
)k|e(t)| + c|e(t)|2 + d|e(t)|

)
+ 2e(t)n(t)

= −2𝛾

(
a|e(t)|

(
p+1∕k

)

+ b|e(t)|

(
q+1∕k

))k

+ 2
(
e(t)n(t) − 𝛾c|e(t)|2

)
− 2𝛾d|e(t)|

≤ −2𝛾

(
a|e(t)|

(
p+1∕k

)

+ b|e(t)|

(
q+1∕k

))k

+ 2
(
𝛿|e(t)|2 − 𝛾c|e(t)|2

)

≤ −2𝛾

(
a|e(t)|

(
p+1∕k

)

+ b|e(t)|

(
q+1∕k

))k

= −

(
(2𝛾)

1∕k

(
a|v(t)|

(
pk+1

2k

)

+ b|v(t)|
(

qk+1

2k

)))k

As the bounded time ts is independent on the initial state 
of the system, and the RZNN model (6) is fixed-time stable 
in no noise environment.� ■
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Based on the above analysis, we can conclude that the 
RZNN model (7) polluted by DDN converges to the theoreti-
cal solution of DNE (1) within a bounded time ts, and ts is 
also irrelevant to the initial state of the system. � ■

Case 2: polluted by dynamic non‑disappearing noise 
(DNDN)

When the n(t) in (7) is a DNDN, the following Theorem 3 
ensures the stability of the RZNN model (7).

Theorem 3  If the DNE (1) is solvable, and the dynamic sys-
tem is polluted by a DNDN, which satisfies |n(t)| ≤ δ and 
γd ≥ δ (δ∈ (0, +∞)). The neural state solution x(t) of the 
RZNN model (7) with any random initial state x(0) converges 
to the theoretical roots x*(t) of DNE (1) in fixed time ts:

Proof  Similar to the proof of Theorem 2, we still choose 
the Lyapunov function candidate v(t) =  |e(t)|2 to prove the 
fixed time convergence of the RZNN model (7) polluted by 
DNDN. The time differentiation of v(t) is

As the new PVAF (5) is used, |n(t)| ≤ δ and γd ≥ δ, the 
following result can be obtained:

(16)

ts ≤ tmax =
1

2�ak
((

pk+1

2k

)
k − 1

) +
1

2�bk
(
1 − (

qk+1

2k
)k
)

=
1

�ak(pk − 1)
+

1

�bk(1 − qk)

ts ≤
1

�ak(pk − 1)
+

1

�bk(1 − qk)

(17)
dv(t)

dt
= 2e(t)ė(t) = 2e(t)(−𝛾𝜎(e(t)) + n(t))

(18)

dv(t)

dt
= 2e(t)ė(t) = 2e(t)(−𝛾𝜎(e(t)) + n(t))

= 2e(t)
(
−𝛾

((
a|e(t)|p + b|e(t)|q

)k
sgn(e(t)) + ce(t) + dsgn(e(t))

)
+ n(t)

)

= −2𝛾
((

a|e(t)|p + b|e(t)|q
)k|e(t)| + c|e(t)|2 + d|e(t)|

)
+ 2e(t)n(t)

= −2𝛾

(
a|e(t)|

(
p+1∕k

)

+ b|e(t)|

(
q+1∕k

))k

+ 2(e(t)n(t) − 𝛾d|e(t)|) − 2𝛾c|e(t)|2

≤ −2𝛾

(
a|e(t)|

(
p+1∕k

)

+ b|e(t)|

(
q+1∕k

))k

+ 2(𝛿|e(t)| − 𝛾d|e(t)|)

≤ −2𝛾

(
a|e(t)|

(
p+1∕k

)

+ b|e(t)|

(
q+1∕k

))k

= −

(
(2𝛾)

1∕k

(
a|v(t)|

(
pk+1

2k

)

+ b|v(t)|
(

qk+1

2k

)))k

Based on Lemma 1, the bounded time tb can be directly 
obtained as:

Based on the above analysis, we can conclude that the 
RZNN model (7) polluted by DNDN converges to the theo-
retical solution of DNE (1) within a bounded time ts, and ts 
is also irrelevant to the initial state of the system. � ■

It is worthy to point out that Theorems 1, 2 and 3 dem-
onstrate that the proposed RZNN model activated by the 
proposed PVAF (5) not only has the ability to converge to 
the theoretical solution X*(t) of DSE (1) in fixed-time ts, but 
also has the ability of rejecting interference and noises, and 
these are two important improvements of the ZNN model.

Numerical simulated verification

By adopting a new PVAF, a novel RZNN model is designed 
in Sect. 2, and its noise compatibility is analyzed and veri-
fied in Sect. 3. In this section, the numerical simulation 
results of the RZNN model in a noise-polluted environment 
for solving the DNE (1) are presented. In addition, the ZNN 
model (4) for solving the DNE (1) activated by the SBPAF 
in Table 1 is also provided for the purpose of comparison.

To verify the effectiveness and robustness of RZNN 
model (7), the following DNE is considered, and the design 
parameters are k1= k2= 5, γ = 1, p =5, q = 25.

(19)

ts ≤ tmax =
1

2�ak
((

pk+1

2k

)
k − 1

) +
1

2�bk
(
1 −

(
qk+1

2k

)
k
)

=
1

�ak(pk − 1)
+

1

�bk(1 − qk)

(20)
f (x(t), t) = 0.01(x − cos 2t)(x − cos 2t − 5)(x + cos 2t + 5)
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The theoretical solutions of the DNE (20) are x*(t) = 
cos(2t), x*(t) = cos(2t)+ 5, x*(t) =  − cos(2t) − 5. First, 
RZNN model (6) and ZNN model (4) activated by the 
SBPAF for solving the DNE (20) without noise is presented, 
then the RZNN model (7) and ZNN model (4) activated by 
the SBPAF for solving the DNE (20) attacked by various 
noises are considered.

Generating from ten any arbitrary initial state x(0) ∈ 
[− 10, 10], RZNN model (6) with k =2 (the parameter k in 
PVAF (5) is set as 2) and ZNN model (4) activated by the 
SBPAF are used to solve DNE (20) without noise. Figure 1 
is the neural state solutions x(t) generated by RZNN model 
(6) and ZNN model (4) activated by the SBPAF in no noise 
environment. The red dotted curves are the theoretical solu-
tions of the above DNE (20), and the solid blue curves are 
neural state solutions generated by RZNN model (6) and the 
ZNN model (4). Figure 2 is the simulated residual errors of 
the two models.

As seen in Figs. 1 and 2, the RZNN model (6) and ZNN 
model (4) activated by the SBPAF are both effective for solv-
ing DNE (20) in no noise environment, but their conver-
gence time is different. The ZNN model (4) activated by the 
SBPAF spends about 2.5 s to find the solution of the DNE 
(20), while the RZNN model (6) only spends about 0.1 s, 
and the RZNN model (6) is more effective and superior for 
solving DNE in no noise environment.

It is worthy to point out that the convergence performance 
of the RZNN model (6) is closely related to the parameter k 
in PVAF (5), and we can adopt different k values to control 
the convergence speed of the RZNN model (6), which has 
better practical application prospects than the ZNN model 
(4).

Then, the RZNN model (7) and ZNN model (4) activated 
by the SBPAF for solving the DNE (20) with the following 
four kinds of noises in Table 2 are considered.

Figure 3 is the neural state solutions x(t) generated 
by the RZNN model (7) and ZNN model (4) activated 
by the SBPAF for solving DNE (20) attacked by PN n(t) 
=  2cos(t), and Fig. 4 is the simulated residual errors of 
the two models.

As seen in Figs. 3 and 4, we can conclude that the ZNN 
model (4) activated by the SBPAF for solving DNE is very 

Fig. 1   Solved by the RZNN model (6) and ZNN model (4) for solv-
ing DNE (20) without noise

Fig. 2   Transient residual errors │e(t)│of the RZNN model (6) and 
ZNN model (4) activated by the SBPAF for solving DNE (20) with-
out noise

Table 2   Different noises

No. Noise item Expression

1 Periodic noise (PN) n(t) = 2cos(t)
2 Constant noise (CN) n(t) = 1
3 Non-disappearing noise (NDN) n(t) = 0.15t
4 Disappearing noise (DN) n(t) = exp(− t)
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vulnerable to PN. When being attacked by PN, the neural 
state solutions of RZNN model (7) still converge to the 
theoretical solutions of DNE (20) effectively, but the ZNN 
model (4) activated by the SBPAF fails to solve the DNE 
(20), which demonstrates that the RZNN model (7) has bet-
ter robustness than ZNN model (4) activated by the SBPAF 
under periodic noise attacks.

At last, more simulation results of the RZNN model (7) 
and ZNN model (4) activated by the SBPAF attacked by 
other different types of noises for solving the DNE (20) are 
considered. Figures 5, 6, 7, 8, 9 and 10 present the simula-
tion results of the RZNN model (7) and ZNN model (4) 
attacked by the following other three types noises: CN n(t) 
= 1, NDN n(t) = 0.15t and DN n(t) = exp(− t). Following 
Figs. 5, 6, 7, 8, 9 and 10, it can be observed that the external 
noises seriously deteriorate the convergence performance of 
the ZNN model (4) activated by the SBPAF, and it cannot 
obtain the accurate solutions of the DNE (20) when attacked 
by external noises. However, the RZNN model (7) always 
converges very quickly to the theoretical solutions of the 

Fig. 3   Solved by the RZNN model (7) and ZNN model (4) for solv-
ing DNE (20) attacked by PN n(t) = 2cos(t). a State trajectories of the 
RZNN model (7) attacked by PN n(t) = 2cos(t). b State trajectories of 
the ZNN model (4) attacked by PN n(t) =  2cos(t)

Fig. 4   Transient residual errors │e(t)│of the RZNN model (7) 
and ZNN model (4) activated by the SBPAF for solving DNE (20) 
attacked by PN n(t) = 2cos(t). a State trajectories of the RZNN model 
(7) attacked by CN n(t) =1. b State trajectories of the ZNN model (4) 
attacked by CN n(t) = 1

Fig. 5   Solved by the RZNN model (7) and ZNN model (4) for solv-
ing DNE (20) attacked by CN n(t) = 1
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Fig. 6   Transient residual errors │e(t)│of the RZNN model (7) and 
ZNN model (4) activated by SBPAF for solving DNE (20) attacked 
by CN n(t) =  1. a State trajectories of the RZNN model (7) attacked 
by NDN n(t) = 0.15t. b State trajectories of the ZNN model (4) 
attacked by NDN n(t) = 0.15t 

Fig. 7   Solved by the RZNN model (7) and ZNN model (4) for solv-
ing DNE (20) attacked by NDN n(t) = 0.15t 

Fig. 8   Transient residual errors │e(t)│of the RZNN model (7) and 
ZNN model (4) activated by SBPAF attacked by NDN n(t) = 0.15t. 
a State trajectories of the RZNN model (7) attacked by DN n(t) = 
exp(− t). b State trajectories of the ZNN model (4) attacked by DN 
n(t) = exp(− t)

Fig. 9   Solved by the RZNN model (7) and ZNN model (4) for solv-
ing DNE (20) attacked by DN n(t) = exp(− t)
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DNE (20) under various noise disturbances, which further 
demonstrates the better robustness of the RZNN model (7). 
Moreover, we can also observe that the convergence speed 
of the RZNN model (7) is proportional to the parameter k 
in PVAF (5), which is a great improvement of the proposed 
RZNN model (7).

In summary, based on the above simulation example, we 
can conclude that the proposed RZNN model (7) is more 
effective in solving DNE in noise polluted environment. 
More importantly, compared to the ZNN model (4) acti-
vated by the SBPAF, the proposed RZNN model (7) has 
the advantages of better robustness, effectiveness, and fixed 
time convergence.

Robotic applications

With the development of artificial intelligence, the 
researches and applications of robots have aroused great 
interests in the academic and industrial communities in 
recent years [44, 65]. In this section, kinematic control of 
a mobile manipulator (MM) using the RZNN model (7) 
attacked by dynamic non-disappearing noise is considered. 
In addition, the ZNN model (4) activated by SBPAF is also 
applied to complete the same task for the purpose of com-
parison. The geometric model of the MM was introduced 
in Ref. [66]. According to Ref. [66], the forward kinematic 
equation of a MM can be described below:

In Eq.  (21), r(t) represents the end-effector position, 
θ(t) is the joint angel, ξ(·) is a nonlinear mapping function 
between the end-effector and the joint angel. Generally, the 
position level Eq. (21) is converted to the velocity level kin-
ematic equation.

where J(θ) =  əξ(θ)/əθ denotes the Jacobian matrix.
The RZNN model (7) and the ZNN (4) activated by 

SPBAF are both used to the kinematic control of MM. The 
kinematic control models are shown as follows:

(21)r(t) = �(�(t))

(22)ṙ(t) = J(𝜃)𝜃̇(t)

where σ1(·) stands for the proposed PVAF (5), and σ2(·) 
stands for the SBPAF in Table 1.

Equations (23) and (24) are the kinematic control models 
of the MM using the RZNN and ZNN activated by SPBAF, 
respectively. n(t) =  0.05t stands for non-vanishing noise.

Let us allocate a double circle for the MM to track, and 
the initial state of the MM is set as θ(0) = [0, 0, π/6, π/3, π/6, 
π/3, π/3, π/3]T, and task duration is 10 s. The experiment 
results are displayed in Figs. 11 and 12.

Figures 11 and 12 are the trajectory tracking results of 
MM generated by the proposed RZNN (7) and the ZNN (4) 
with NDN n(t) =  0.05t, respectively.

Following Figs. 11 and 12, it is clear that the end-effector 
of the MM controlled by the proposed RZNN completes 
the double-circle path tracking task exactly, and its tracking 
errors are less than 0.6 mm when attacked by NDN, while 
the end-effector of the MM controlled by the ZNN model 
(4) cannot complete the double-circle path tracking task. The 
successful completion of double-circle tracking mission fur-
ther validates the robustness and effectiveness of the RZNN.

(23)J(𝜃(t))𝜃̇ = ṙ(t) − 𝛾𝜎1(r(t) − 𝜁 (𝜃(t))) + n(t)

(24)J(𝜃(t))𝜃̇ = ṙ(t) − 𝛾𝜎2(r(t) − 𝜁 (𝜃(t))) + n(t)

Fig. 10   Transient residual errors │e(t)│of a the RZNN model (7), 
b ZNN model (4) activated by the SBPAF for solving DNE (20) 
attacked by DN n(t) = exp(− t)
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Conclusion

In this work, a novel power-versatile activation function 
(PVAF) is presented. Based on the novel PVAF, a new 
RZNN model is proposed and analyzed for online finding 
of the solutions of DNE in noise-polluted environment. The 
fixed-time convergence of the proposed RZNN model is 
verified by rigorous mathematical analysis when attacked 
by various noises. In simulations, the ZNN model activated 

by the commonly used SBPAF for solving DNE in same 
conditions are also provided, and the comparison results 
demonstrate that the proposed RZNN model solves DNE 
effectively and accurately in noise polluted environment, 
while the ZNN model activated by SBPAF cannot solve the 
DNE properly in the same conditions. In addition, a success-
ful completion of the noise-disturbed double-circle tracking 
task further verifies the practical application prospects of the 
proposed RZNN model.

Fig. 11   Trajectory tracking results of MM generated by the proposed RZNN (7) with NVN n(t) = 0.05t. a Whole tracking trajectories. b Motion 
trajectories of the mobile platform. c Desired path and actual trajectory. d Tracking errors at the joint position level
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