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Abstract
A great challenge in operational research is to apply time-efficient algorithms to find the optimal solutions to the travelling 
salesman problem (TSP) and its many variations. The TSP with time windows (TSPTW) arises due to intense pressure for 
business to improve customer service. As online shopping becomes more popular, customer satisfaction increases if customers 
can decide when their orders are delivered to them. Customers may choose a time window, which is defined by an earliest 
delivery time and a latest delivery time, during which the package is delivered. Delivering packages to multiple customers is 
a typical TSPTW. One main challenge for a delivery business is to determine the size of the time window (i.e., the difference 
between the latest and earliest delivery times), which affects delivery cost and customer satisfaction. Although many previous 
studies investigated the TSPTW, none of those focused on the size of time windows. This study is the first that experiments 
with different time window sizes and determines their impact on tour duration, customer satisfaction, and solution time of 
the optimal delivery routes. The experiment results show that increasing the size of the time window decreases tour dura-
tion and customer satisfaction and increases solution time. Decreasing the size of the time window increases tour duration 
and customer satisfaction and decreases solution time. A small solution time is necessary for the scheduling of deliveries to 
many customers. A large solution time prevents a delivery business from delivering packages using optimal routes, which 
increases delivery cost and decreases customer satisfaction. The results of this study indicate that a general guideline for 
business is to allow customers to choose a time window size that is within the cost limit but is sufficiently small to maximize 
customer satisfaction and optimize delivery routes.
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Introduction

Home delivery business such as DHL [29], FedEx [17], and 
UPS [33] guarantees delivery to customers on a chosen day. 
These industry leaders provide a delivery time window of 
one day. As the competition among home delivery business 
intensifies, companies compete in two fronts. First, compa-
nies try to deliver products to customers as fast as possible. 

For example, Amazon has been providing two-day deliveries 
for several years and has recently started one-day deliveries 
for selected products. This is a dramatic improvement for 
customer satisfaction since some other companies are still 
offering 7–10 days for deliveries. Secondly, companies try 
to let customers choose a narrower delivery window so that 
customers are present when packages are delivered. This is 
preferred by many customers and is especially important 
for high-value packages, packages require signatures (e.g., 
alcohol products), or customers in densely populated areas.

While companies have made strides in shortening the lead 
time between the order time and delivery time, there is lim-
ited progress in allowing customers to choose a reasonably 
small delivery time window [5, 26]. Due to unpredictable 
traffic and conditions of the delivery vehicle, driver perfor-
mance, and other factors, companies are reluctant to commit 
to small delivery time windows. If a delivery is not com-
pleted in the specified time window, the company may incur 
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financial loss and subject to other consequences such as law-
suits. The risk of providing customers with small delivery 
time windows can be factored into the delivery cost. The 
fundamental challenge in determining the size of the deliv-
ery time window is how to quantify the tradeoff between 
delivery cost and customer satisfaction when the size of time 
windows changes. Managers and practitioners intuitively 
understand that a small-time window increases delivery 
cost and customer satisfaction. There is a strong need to 
determine how the delivery cost and customer satisfaction 
change as the size of the delivery time window changes. This 
article answers this important question through mathemati-
cal modeling and case studies.

This article applies an innovative mathematical model 
[15] that obtains the optimal delivery route within seconds 
for a typical home package delivery problem with approxi-
mately 40 customers. To the best of the authors’ knowledge, 
this research is the first study that conducts sensitivity analy-
sis and investigates how the delivery cost and customer satis-
faction vary as the size of the delivery time window changes. 
Results show that smaller time windows increase delivery 
cost but improve customer satisfaction whereas larger time 
windows decrease the delivery cost but negatively affect 
customer satisfaction. There is a range for the size of the 
delivery time windows that balances customer satisfaction 
and delivery cost.

Background

Recent development in the travelling salesman problem with 
time windows (TSPTW) focused on four areas: mathemati-
cal modeling, travel times, time windows, and electric or 
hybrid vehicles. Yuan et al. [32] proposed lifted versions 
of the subtour elimination constraints. Papalitsas et al. [28] 
formulated the TSPTW as a quadratic unconstrained binary 
optimization problem and used quantum computing to solve 
the model. These mathematical modeling tools continue to 
extend the applications of the TSPTW. Since the travel time 
between nodes is stochastic rather than deterministic in 
many applications, several studies expanded the TSPTW to 
include varying travel times. Montero et al. [25] used integer 
linear programming to model the time-dependent TSPTW, 
where the travel time depends on the travel speed, and devel-
oped an exact algorithm to solve the model. Arigliano et al. 
[2] also investigated and solved the time-dependent TSPTW 
using the branch-and-bound algorithm.

Several studies focused on time windows in the TSPTW. 
For example, Fachini and Armentano [11] proposed 
exact and heuristic dynamic programming algorithms for 
the TSPTW in which the size of time windows may be 
increased. In other words, the service of a customer may 
start before the earliest service time or complete after the 

latest service time with a penalty cost. Similarly, Avraham 
and Raviv [3] studied the TSPTW with soft time windows 
and introduced a specialized branch-and-bound algorithm 
and an adaptive large neighborhood search heuristic for the 
problem. The size of time windows in these studies varies 
from a few time units to a few hundred time units. These 
studies did not determine how delivery cost or customer 
satisfaction may be affected by the size of time windows. 
Instead, these studies assumed that the size of time windows 
could vary and focused on various algorithms that solved 
the TSPTW.

The package delivery problem studied in this article is 
related to the general vehicle routing problem. In both the 
package delivery and vehicle routing problems, the opti-
mal route of a vehicle is identified to minimize either the 
total travel distance or travel time of the vehicle. The vehi-
cle routing problem has been studied since 1960s [4, 6, 8, 
9, 12, 14, 18–21, 27]. Haghani and Jung [13] presented a 
genetic algorithm to solve a pick-up or delivery vehicle rout-
ing with soft time windows. The study considered multiple 
vehicles with different capacities, real-time service requests, 
and dynamic travel times between destinations. Almoustafa 
et al. [1] improved a branch-and-bound method to solve the 
asymmetric distance-constrained vehicle routing suggested 
by Laporte et al. [20]. Chen et al. [7] formulated a real-
time time-dependent vehicle routing with time windows as a 
series of mixed-integer programming models and developed 
a heuristic algorithm, which included route construction and 
improvement. Spliet and Gabor [31] proposed a formulation 
of a time window asymmetric vehicle routing and developed 
two variants of a column generation algorithm to solve the 
linear programming relaxation of this formulation. Kritz-
inger et al. [16] applied a variable neighborhood search 
algorithm to solve the time-dependent vehicle routing with 
time windows.

Mathematical model and experiments

Package delivery business face multi-facet challenges in 
profitability and customer satisfaction. For example, the 
Chinese e-commerce giant, JD.com, makes 90% of Chinese 
deliveries within 24 h and 57% of their deliveries arrive 
within 12 h [22]. JD.com has forgone most profit to build 
up its nationwide logistics system, including 65,000 staff 
couriers who deliver on bicycles and in small vans in China. 
A key component determining the cost segmentation and 
profit margin is the total travel distance or tour duration 
(total delivery time) of a delivery vehicle. A shorter travel 
distance or tour duration decreases the cost and increases 
the profit margin. On the other hand, customer satisfaction 
in package delivery is affected by the lead time between 
issuing and receiving the order, choices of delivery (e.g., 
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time windows for delivery), and other subtle and underlying 
factors such as packaging of the order and greetings from 
the delivery personnel.

The profitability and customer satisfaction are often con-
flicting objectives. A longer lead time helps increase profit-
ability by reducing the inventory and order processing cost. 
A delivery company also prefers to deliver packages during 
time periods with less traffic, and group customers that are 
geographically close for deliveries during the same time 
period. All these cost-reduction practices negatively affect 
customer satisfaction. There are several ways to improve 
customer satisfaction. For example, a short lead time greatly 
enhances customer satisfaction and increases a company’s 
competitiveness, but negatively impacts the company’s prof-
itability [22]. For another example, allowing customers to 
choose a delivery time window during which the delivery is 
made greatly improves customer satisfaction but unavoid-
ably increases cost. This study investigates how the size of 
the time window affects the tradeoff between cost and cus-
tomer satisfaction.

The cost is determined by the tour duration and solution 
time. The tour duration is the total delivery time. The solu-
tion time is the time it takes to solve the mathematical model 
and identify the optimal delivery route. The cost increases 

as the tour duration or solution time increases and decreases 
as the tour duration or solution time decreases. Customer 
satisfaction is determined by the size of the delivery time 
window. Customer satisfaction increases when the size of 
the delivery time window decreases and decreases when the 
size of the delivery time window increases.

The package delivery problem studied in this research 
is a TSPTW. This TSPTW is modeled as an integer linear 
programming model (Table 1; [15]). The model is applied 
to a set of benchmark instances [10], https​://homep​ages.dcc.
ufmg.br/~rfsil​va/tsptw​/) and the General Algebraic Mode-
ling System (GAMS) is used to solve the instances and find 
the optimal routes that minimize the tour duration. The size 
of delivery time windows in the benchmark problems is sys-
tematically adjusted to determine its impact on the tradeoff 
between cost and customer satisfaction. The mathematical 
model [15] adopted in this research requires the least amount 
of computation time to identify the optimal routes and is 
readily available for adjusting delivery time windows.

Equation (1) in Table 1 is the objective function of the 
mathematical model and aims to minimize the tour dura-
tion of a package delivery vehicle. Equations (2)–(8) are 
constraints. Equation (2) initiates the arrival time of the 
vehicle at the first node (customer). Equations (3) and (7) 

Table 1   Mathematical model for the TSPTW [15]

Sets
C Customers {1, 2,… , c}

N Nodes in the network {0, 1, 2,… , c + 1}

N0 Nodes that the vehicle can depart {0, 1,… , c}

N+ Nodes that the vehicle can visit {1, 2,… , c + 1}

Decision variables
xij Binary variable, i ∈ N0, j ∈ N+ . xij = 1 if the vehicle travels from i to j ; otherwise 

xij = 0

ti Time at which the vehicle arrives at i , i ∈ N+

tj Time at which the vehicle arrives at j , j ∈ N+

Parameters
ai The earliest time that the delivery can be made to customer i,i ∈ C

bi The latest time that the delivery can be made to customer i , i ∈ C

tij Travel time from i to j , i ∈ N0, j ∈ N+

Mathematical formulation
mintc+1 (1)
subject to
ti − t0ix0i ≥ 0 ∀i ∈ C (2)
ti ≥ ai ∀i ∈ C (3)
ti − tj +

(

bi − aj + tij
)

xij ≤ bi − aj ∀i ∈ C, j ∈ {C ∶ j ≠ i} (4)
∑

i ∈ N0

i ≠ j

xij = 1 ∀j ∈ C (5)

∑

j ∈ N+

j ≠ i

xij = 1 ∀i ∈ C (6)

ti ≤ bi ∀i ∈ C (7)
ti + ti0 ≤ tc+1 ∀i ∈ C (8)

https://homepages.dcc.ufmg.br/~rfsilva/tsptw/
https://homepages.dcc.ufmg.br/~rfsilva/tsptw/
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define a time window for each node within which the vehi-
cle may arrive and deliver the package. Equation (4) is an 
innovative step-by-step sub-tour elimination constraint. 
When xij = 1 , indicating that the vehicle travels from i to j , 
Eq. (4) becomes tij ≤ tj − ti and ensures that the difference 
between the arrival times at i and j is at least the travel time 
from i to j , When xij = 0 , indicating that the vehicle does 
not travel from i to j , Eq. (4) becomes ti − tj ≤ bi − aj . There 
are two possible scenarios: the vehicle arrives at i before 
it arrives at j , or the vehicle arrives at j before it arrives 
at i . If the vehicle arrives at i before it arrives at j , Eq. (4) 
can be rewritten as tj − ti ≥ aj − bi . Since the vehicle arrives 
at j after it arrives at i , aj − bi is the minimum difference 
between tj and ti , Eq. (4) always holds. If the vehicle arrives 
at j before it arrives at i , bi − aj in Eq. (4) is the maximum 
difference between ti and tj , and Eq. (4) always holds. Equa-
tions (5) and (6) ensure that the delivery vehicle visits each 
node (customer) once and only once. Equation (8) deter-
mines the tour duration.

The main purpose of this study is to investigate how the 
size of time windows affects tour duration, customer satis-
faction, and solution time of the mathematical model. The 
size of delivery time windows may vary in many different 
ways. The experiments in this study use the problems in the 
TSPTW library [30] and systematically change the size of 
time windows. Each problem in the TSPTW library includes 
multiple time windows, each of which is defined by an earli-
est time and a latest time within which the delivery must be 
made to the customer. This study adjusts the size of time 
windows using three approaches, proportion, normalization, 
and stepwise. The proportion approach multiplies the size 
of each time window by the same coefficient. The difference 

between the sizes is magnified (with a coefficient greater 
than one) or diminished (with a coefficient less than one). 
The normalization approach ensures that all time windows 
have the same size. The difference between the sizes become 
zero. The stepwise approach takes a middle-of-the-road path 
and increases or decreases the size of each time window by 
two units (one unit for each side of a time window) at a time. 
The difference between the sizes remain the same.

In the proportion approach, the size of a time window is 
increased or decreased by multiplying a coefficient between 
“0” and “∞.” The earliest and latest times of a time window 
are adjusted by the same amount to produce the change in the 
size of the time window. Figure 1 illustrates the proportion 
approach. Si is the size of a time window i in the TSPTW 
library [30]. ai is the earliest delivery time of the time win-
dow i and bi is the latest delivery time of the time window 
i . Si = bi − ai . The experiments multiply six coefficients, 0, 
0.5, 1, 2, 10, and ∞, and Si to produce six time windows, 0, 
0.5Si , Si , 2 Si , 10 Si , and ∞, as represented by six orange bars 
from left to right in Fig. 1, respectively. Each time window’s 
earliest and latest delivery times, a∗

i
 and b∗

i
 , are obtained by 

adjusting ai and bi , respectively, by the same amount. For 
example, to produce a time window with a size of 0.5Si , a∗i  
of the time window is ai + 0.25Si and b∗

i
 of the time window 

is bi − 0.25Si . The size of the time window is, therefore, 
b
∗
i
− a

∗
i
=
(

b
i
− 0.25S

i

)

−
(

a
i
+ 0.25S

i

)

=
(

b
i
− a

i

)

− 0.5S
i

= S
i
− 0.5S

i
= 0.5S

i
.

The normalization approach adjusts time windows to 
ensure that all time windows have the same size. The experi-
ments use two different ways to produce the same size for 
all time windows: equal maximum size and equal minimum 
size. Table 2 illustrates the normalization approach. Suppose 

Fig. 1   Proportional adjustment of time windows

Table 2   Example of 
normalization of time windows

i Time Windows in the TSPTW 
library

Adjusted time windows with 
equal maximum size

Adjusted time windows 
with equal minimum size

a
i

b
i

S
i

a
∗
i

b
∗
i

S
∗
i

a
∗
i

b
∗
i

S
∗
i

1 0 10 10 0 60 60 0 10 10
2 20 40 20 0 60 60 25 35 10
3 30 50 20 10 70 60 35 45 10
4 50 90 40 40 100 60 65 75 10
5 40 100 60 40 100 60 65 75 10
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there are five-time windows in a benchmark problem in the 
TSPTW library. The maximum size of these five-time win-
dows is 60, which is the size of time window i = 5 . The 
minimum size of these five-time windows is 10, which is 
the size of time window i = 1 . In the experiments with equal 
maximum size, the size of all five-time windows is adjusted 
and is equal to 60. As in the proportion approach, both the 
earliest delivery time ai and the latest delivery time bi are 
adjusted by the same amount in the normalization approach. 
One exception is for time window i = 1 . Since a

1
= 0 and 

cannot decrease further, b
1
 increases by 50. In the experi-

ments with equal minimum size, the size of all five-time 
windows is adjusted and is equal to 10, and both ai and bi 
are adjusted by the same amount.

The stepwise approach decreases ai and increases bi by 
one time unit at the same time. This incremental adjustment 
of one unit continues until the size of the time window is 
sufficiently large and equivalent to infinity. The stepwise 
approach captures the granularity of how changes in the size 
of a time window affects cost and customer satisfaction.

Results and discussion

The experiments implement the mathematical model 
(Table 1) in GAMS and uses five benchmark problems (n20.
w20.0001, n20.w20.0002, n20.w20.0003, n20.w20.0004, 
and n20.w20.0005) in the TSPTW library (Silva and Urru-
tia, 2012) to find the optimal delivery routes that minimize 
the tour duration. The size of time windows in the experi-
ments is adjusted according to the three approaches outlined 

in Sect. 3, proportion, normalization, and stepwise. The 
mathematical model is solved using GAMS win64 24.0.2 
on a computer with Intel i7 CPU 870 @ 2.93 GHz, 12.0 GB 
RAM, and Windows 10 Enterprise. To illustrate how the size 
of time windows is adjusted, Appendices 1, 2, and 3 show 
adjusted time windows for the benchmark problem n20.
w20.0001 according to the proportion, normalization, and 
stepwise approaches, respectively. The maximum allowed 
solution time for GAMS is set to one hour. If it takes more 
than one hour to solve the mathematical model and find the 
optimal routes, GAMS terminates after one hour and pro-
vides the best delivery route and minimum tour duration up 
to that point. Table 3 shows the experiment results of the 
proportion approach.

Table 3 depicts solution times (seconds) of finding the 
optimal delivery routes and tour durations (seconds) of 
optimal delivery routes for five benchmark problems in the 
TSPTW library (Silva and Urrutia, 2012). The size of time 
windows is adjusted proportionally. There are 17 different 
sizes from “0” to “∞.” When the size is “∞,” there is no 
requirement for a time window within which the delivery 
must be completed; packages may be delivered to a cus-
tomer at any time. The tour duration with “Inf.” indicates 
that feasible delivery routes do not exist and the model is 
infeasible. In other words, no delivery routes can satisfy all 
delivery time windows. Dumas et al. [10] prepared these 
five benchmark problems and their feasible solution space 
is relatively small. When the size of time windows Si ’s is 
reduced, the feasible region becomes smaller and the model 
may become infeasible.

Table 3   Experiment results of time windows adjusted using the proportion approach

Size of time windows 0 0.2S
i
0.4S

i
0.6S

i
0.8S

i
S
i

1.2S
i
1.4S

i
1.6S

i
1.8S

i
2S

i
3S

i
4S

i
5S

i
10S

i
20S

i
∞

Benchmark problem n20.w20.0001
Solution time 0.02 0.02 0.02 0.02 0.02 0.10 0.11 0.18 0.20 0.23 0.24 0.36 2.92 1.75 10.42 3600 3600
Tour duration Inf Inf Inf Inf Inf 391 390 389 389 389 389 371 366 364 328 233 204
Benchmark problem n20.w20.0002
Solution time 0.02 0.02 0.02 0.02 0.15 0.15 0.25 0.26 0.27 0.28 0.28 1.16 308.38 632.313 1661.67 3600 3600
Tour duration Inf Inf Inf Inf 301 299 297 293 291 290 287 276 222 255 203 183 181
Benchmark problem n20.w20.0003
Solution time 0.02 0.02 0.02 0.02 0.03 0.05 0.05 0.06 0.07 0.07 0.17 0.41 0.53 1.03 2925.92 3600 3600
Tour duration Inf Inf Inf Inf 408 407 406 406 405 406 404 401 364 353 311 223 218
Benchmark problem n20.w20.0004
Solution time 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.05 0.16 0.17 0.19 0.72 1.06 3.31 3.94 3600 3600
Tour duration Inf Inf Inf Inf Inf 406 405 402 402 401 401 399 397 395 381 351 195
Benchmark problem n20.w20.0005
Solution time 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.05 0.05 0.19 0.19 0.39 1.29 1.49 3600 3600 3600
Tour duration Inf Inf Inf Inf Inf 368 367 364 363 361 360 352 345 335 279 245 198
Tour duration and customer satisfaction decrease
Solution time increases
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The highlighted (yellow) column with the size Si in 
Table 3 includes experiment results for the original time 
windows Si ’s in the five benchmark problems. As the size of 
delivery time windows increases, both tour duration and cus-
tomer satisfaction decrease, and the solution time increases. 
Decreasing customer satisfaction is due to the increasing 
size of time windows. Smaller tour duration generally incurs 
less delivery cost. Larger solution time increases delivery 
cost. Results in Table 3 show that there is a tradeoff between 
the delivery cost and customer satisfaction. Larger time win-
dows decrease the delivery cost and customer satisfaction. 
When the size of the time window is too large, however, 
the delivery cost will not decrease further and may increase 
because the solution time is too large and the optimal deliv-
ery route is not obtained. Smaller time windows increase 
the delivery cost and customer satisfaction. When the size 
of the time window is too small, however, customer satisfac-
tion decreases because feasible delivery routes do not exist.

Table 3 reveals that the ideal size of time windows is 
between Si and 3Si . When the size is larger than 3Si , cus-
tomer satisfaction deteriorates and the delivery cost may 
increase because the optimal delivery route is not obtained. 
When the size is smaller than Si , feasible delivery routes may 
not exist. When the size is between Si and 3Si , the solution 
time is at most a little over one second and its impact on the 
delivery cost is negligible. To reduce the delivery cost, larger 
time windows should be used for delivery operations. To 
increase customer satisfaction, smaller time windows should 
be made available to customers.

The highlighted (yellow) column with the size Si in 
Table 4 shows the same results as those in the highlighted 
(yellow) column in Table 3 for the original time windows 
Si ’s in the five benchmark problems. When the size of all 
time windows is the same as the minimum size, none of 
the problems has any feasible solution and solution time is 
relatively small. When the size of all time windows is the 
same as the maximum size, all five problems are feasible and 
the minimum tour duration is identified. The solution time 
is larger and the largest solution time is around one second. 
Comparing the results for the original time windows Si ’s 
and time windows with the same maximum size, the lat-
ter has worse customer satisfaction but does not decrease 
tour duration significantly. The maximum decrease in tour 
duration is 10 s (= 407–397) or about 2.5%. The tradeoff 
between delivery cost (tour duration and solution time) and 
customer satisfaction (size of time windows) is not clear for 
the normalization approach. When the size of time windows 
increases, the tour duration only decreases slightly.

The stepwise approach increases the size of the time win-
dows gradually with the same amount of adjustment at each 
step. Table 5 shows the experiment results of the stepwise 
approach for problem n20.w20.0001 in the TSPTW library 
[30]. In the first experiment in Table 5, the original time 

windows Si ’s in problem n20.w20.0001 are used to find the 
minimum tour duration and the solution time. The results for 
the original time windows Si ’s are highlighted in yellow in 
Table 5. These are the same as those for Si ’s in Tables 3 and 
4. In each experiment that follows, the size of time windows 
increases by two seconds; this is achieved by decreasing 
ai , the earliest delivery time, and increasing bi , the latest 
delivery time, by one second at the same time. The tour 
duration and solution time of each experiment are included 
in Table 5.

Figure 2 is a histogram that visualizes tour durations in 
Table 5. Figure 2 clearly shows that the minimum tour dura-
tion decreases as the size of time windows increases. This 
is mainly because a larger time window leads to a larger 
feasible region, which in turn results in a better optimal solu-
tion, i.e., a smaller tour duration. Figure 3 shows how the 
solution time in Table 5 changes as the size of time win-
dows increases. The solution time remains small, around 
a few second or less, until the time window reaches Si+90, 
which requires a solution time of about 744 s. For time win-
dows that are larger than Si+90, the solution time varies but 
mostly remains relatively large. Table 5 and Fig. 3 show 
that large solution times can occur when time windows are 
large enough.

The stepwise approach also reveals the tradeoff between 
customer satisfaction and delivery cost. As the size of time 
windows increases (Fig. 2), customer satisfaction decreases 
while the tour duration decreases and solution time remains 
stable, indicating reduced delivery cost. There is a caveat 
when the time windows become too large. Figure 3 shows 
that the solution time of identifying the minimum tour 

Table 4   Experiment results of time windows adjusted using the nor-
malization approach

Size of time win-
dows

Time windows 
with equal mini-
mum size

Si Time windows with 
equal maximum 
size

Benchmark problem n20.w20.0001
Solution time 0.02 0.10 0.70
Tour duration Inf 391 387
Benchmark problem n20.w20.0002
Solution time 0.02 0.15 0.19
Tour duration Inf 299 291
Benchmark problem n20.w20.0003
Solution time 0.02 0.05 1.02
Tour duration Inf 407 397
Benchmark problem n20.w20.0004
Solution time 0.02 0.03 0.14
Tour duration Inf 406 405
Benchmark problem n20.w20.0005
Solution time 0.02 0.03 0.04
Tour duration Inf 368 361
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duration increases dramatically when the size of time win-
dows reaches Si+90. In other words, a common and intuitive 
practice by many delivery companies to adopt large delivery 
time windows leads to both poor customer satisfaction and 
high cost (the optimal route is not obtained due to large 
solution time). While certain items may be delivered without 
customers being present, poor customer satisfaction resulted 
from large delivery time windows is exacerbated by the fact 

that sometimes customers are forced to wait at home for 
deliveries (e.g., alcohol deliveries, weather conditions, and 
requests by the senders).

The experiment results of the three approaches, pro-
portion, normalization, and stepwise, provide important 
guidelines for determining time windows in-home delivery 
operations. First, customers of many delivery operations can 
choose the best time for a delivery to be made. A delivery 

Table 5   Experiment results of 
time windows adjusted using 
the stepwise approach for 
problem n20.w20.0001

Size of 
time win-
dow

Tour 
duration 
(s)

Solution 
time (s)

Size of 
time win-
dow

Tour 
duration 
(s)

Solution 
time (s)

Size of 
time win-
dow

Tour 
duration 
(s)

Solution 
time (s)

Si 391 0.10 Si+34 372 0.27 Si+68 355 5.09
Si+2 390 0.17 Si+36 371 0.66 Si+70 354 4.63
Si+4 389 0.13 Si+38 370 0.44 Si+72 353 2.06
Si+6 388 0.09 Si+40 369 1.16 Si+74 352 1.78
Si+8 387 0.17 Si+42 368 0.92 Si+76 351 2.86
Si+10 387 0.14 Si+44 367 1.47 Si+78 350 4.05
Si+12 387 0.08 Si+46 366 1.41 Si+80 349 11.41
Si+14 387 0.23 Si+48 365 2.06 Si+82 348 7.14
Si+16 387 0.19 Si+50 364 0.99 Si+84 347 29.69
Si+18 387 0.30 Si+52 363 1.73 Si+86 346 3.22
Si+20 387 0.42 Si+54 362 2.44 Si+88 345 8.56
Si+22 387 0.52 Si+56 361 1.74 Si+90 344 743.92
Si+24 387 0.89 Si+58 360 3.59 Si+92 343 128.31
Si+26 387 0.77 Si+60 359 0.72 Si+94 342 1.52
Si+28 387 0.75 Si+62 358 1.56 Si+96 341 2772.81
Si+30 387 1.22 Si+64 357 1.53 Si+98 340 126.36
Si+32 385 1.13 Si+66 356 1.70 Si+100 339 1508.92

Fig. 2   Tour durations of the stepwise approach summarized in Table 5
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company should provide customers with an appropriate size 
of the delivery time window to balance customer satisfaction 
and cost of delivery. This is a multi-objective optimization 
problem. Secondly, there is a tradeoff between customer sat-
isfaction and delivery cost (Tables 3 and 5). Better customer 
satisfaction (smaller delivery time windows) require a higher 
delivery cost (larger tour duration). Thirdly, when the size of 
time windows is too small, it becomes infeasible to deliver 
to multiple customers and satisfy all delivery time windows 
(Tables 3 and 4). On the other hand, when the size of time 
windows is too large, the time it takes to find the minimum 
tour duration increases significantly (Table 3 and 5). A deliv-
ery company should avoid delivery time windows that are 
too small or too large.

Conclusions

This study investigates the impact of the size of delivery 
time windows on customer satisfaction and delivery cost. 
The results of this study suggest that a delivery company 
should not use delivery time windows that are either too 
small or too large. Extremely small time windows render 
the delivery operations infeasible; multiple deliveries cannot 
be completed to satisfy narrow time windows. Extremely 
large time windows not only lead to poor customer satisfac-
tion but also require a significant amount of solution time to 
find the minimum tour duration, which is not obtained and, 
therefore, increases the delivery cost. Conventional wisdom 
suggests that large time windows reduce the delivery cost 
because delivery companies have more flexibility in choos-
ing delivery routes with large delivery time windows. The 

results of this study show that it becomes practically infea-
sible (solution time exceeds one hour) to find the delivery 
route that minimizes the tour duration when time windows 
are too large. Extremely large time windows result in poor 
customer satisfaction and high delivery cost and require sig-
nificant solution time for route planning.

This study also suggests that there is a tradeoff between 
customer satisfaction and delivery cost. As the size of time 
windows increases, both customer satisfaction and deliv-
ery cost decrease. The latter is due to smaller tour dura-
tion resulted from larger time windows. Future research 
may determine the most appropriate size of delivery time 
windows for a variety of companies that deliver packages 
to homes and businesses. One approach is to develop multi-
objective optimization models that take into consideration 
of multiple objectives such as customer satisfaction, tour 
duration, and solution time, and various constraints such as 
road traffic, municipality ordinances and codes, and labor 
standards.

This study experiments with five benchmark problems in 
the TSPTW library [30], which also includes other bench-
mark problems. There are many more TSPTW benchmark 
problems that are available in the public domain (e.g., [23, 
24]. Another important future research direction is to expand 
this study and conduct experiments on additional benchmark 
problems. These additional experiments are expected to vali-
date the conclusions obtained in this study and may provide 
more insight into the tradeoff between customer satisfaction 
and cost when the size of time windows is adjusted in the 
home delivery business.

Fig. 3   Solution times of the stepwise approach summarized in Table 5
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Appendix 1: Adjusted time windows 
of the benchmark problem n20.w20.0001 
using the proportion approach
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Appendix 2: Adjusted time windows 
of the benchmark problem n20.w20.0001 
using the normalization approach
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Appendix 3: Adjusted time windows 
of the benchmark problem n20.w20.0001 
using the stepwise approach
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6 3 109 2 110 1 111
7 54 177 53 178 52 179
8 127 234 126 235 125 236
9 202 311 201 312 200 313
10 0 71 0 72 0 73
11 0 97 0 98 0 99
12 31 138 30 139 29 140
13 30 144 29 145 28 146
14 92 202 91 203 90 204
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16 0 111 0 112 0 113
17 0 61 0 62 0 63
18 0 90 0 91 0 92
19 0 81 0 82 0 83
20 0 69 0 70 0 71
21 227 348 226 349 225 350
22 0 456 0 457 0 458
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