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Abstract
The aim of this paper is to present novel algorithms for solving the multiple attribute decision-making problems under
the normal intuitionistic fuzzy set environment. Normal intuitionistic and interval-valued intuitionistic sets are the essential
mechanisms for influencing the decision-making queries with anonymous and indeterminant data by engaging a degree of
membership and non-membership of normal distribution data in quantitative terms. Holding these features in mind and united
the idea of hesitation degree, this paper presents some improved score functions to rank the normal intuitionistic and interval-
valued intuitionistic sets. The advantage of these proposed functions is to overwhelm the weakness of the existing functions
and will aid to rank the given objects in a more consistent way. The numerous salient features of the proposed functions are
studied. Later, we develop two new algorithms for interval-valued as well as crisp numbers based on the proposed functions
to solve multiple attribute decision-making problems. The given approaches have been confirmed with numerical examples
and the advantages, as well as comparative analysis, are furnished to shows its influence over existing approaches.

Keywords Multiple attribute decision-making · Interval-valued set · Normal distribution functions · Normal intuitionistic
fuzzy set · Score function

Introduction

Multiple attribute decision making (MADM) belongs to the
process of getting optimal alternatives in complicated situa-
tions via synthetically assessing the values ofmultiple criteria
of all alternatives given by a group of domain experts [1,2].
In this process, there are two crucial tasks. The first one is
to call the environment where the consequences of different
criteria are measured adequately, while the second task is
to aggregate the related information. However, in any case,
because of the lack of learning and other factors, it is greatly
troublesome- if not difficult express the data. Originally, the
data which accesses the alternatives is ordinarily taken as a
crisp number. However, in many cases, it is difficult for a
person to opt for a suitable one due to the presence of sev-
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eral kinds of uncertainties in the data, which may occur due
to a lack of knowledge or human error. To access it com-
pletely, a theory of fuzzy set (FS) [3] and its extension such
as intuitionistic fuzzy set (IFS) [4], cubic intuitionistic fuzzy
set [5], interval-valued IFS (IVIFS) [6], linguistic interval-
valued IFS [1], are used by the researchers.

In all these existing theories, an object is assessed in terms
of their membership grade ς and non-membership grade υ

such that ς + υ ≤ 1 for ς, υ ∈ [0, 1]. However, for IVIFSs,
each object is followed by defining two grades of member-
ships named as membership, [ς, ς ] and non-membership,
[υ, υ] with the constraints that ς + υ ≤ 1 for each number
lying between [0, 1]. After their existence, many researchers
have described the basic operational laws and aggregation
operators to solve MADM problems. For instance, Xu and
Yager [7] presented weighted averaging operators for the
pairs of intuitionistic fuzzy numbers (IFNs). Garg [8] pre-
sented interactive aggregation operators for IFNs. In [9,10],
authors have acted the averaging and geometric operators
for IVIFSs. Ye [11] established the accuracy function to
rank the different interval-valued IFNs (IVIFNs). Afterward,
Nayagamet al. [12] overcome theweaknesses ofYe’smethod
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by establishing a new accuracy function for IVIFNs. Wang
et al. [13] gave a score function for IVIFNs based on the
prospect value function and employed them to solve the
MADM problems. Garg [14] presented a generalized score
function to overcome the deficiencies observed in the exist-
ing studies. Xing et al. [15] proposed a ranking approach
for IFNs based on the Euclidean distance. Zhang et al. [16]
presented a score function on IVIFS with preference param-
eters for different types of decision-makers. Wang and Chen
[17] introduces a MADM method based on the linear pro-
gramming methodology and the score, accuracy functions of
IVIFNs. Zeng et al. [18] developed a MADM method and
modified VIKOR (“VlseKriterijumska Optimizacija I Kom-
promisno Resenje”) method based on the score function of
IFNs. Nguyen [19] presented a generalized p-norm based
score function for IVIFNs.

Traditionally, all the above current studies exhibited that
the information is handled by the experts are either in the form
of IFNs or IVIFNs. Although the aforementioned approaches
to rank the given numbers hold great care by the researchers
but still, some problems appear. Firstly, the approaches based
on IFSs and IVIFSs are operating under the discrete set of
the universe and hence do not tell the clear picture for the
fuzzy concept such as “good”, “bad” and so on. Secondly,
whether all themembership degree values in the subintervals,
[ς, ς ] for IVIFS and [ς, 1− υ] for IFS, have the same prob-
abilities? If not, then what kind of distribution will they be?.
Furthermore, it is worth noting that in the real world, a lot
of economic and social phenomenon conform to the normal
distribution, such as “random measurement error”, “the use-
ful lifespan of productions”, etc. Thus, there is a necessity to
consider the behavior of these variables also. To address in a
more detail manner, consider a case of IFS Awhich is charac-
terized by amembership functionς(xi ) andnon-membership
υ(xi ) and hence the membership degree of xi ∈ A lying in
the interval [ς(xi ), 1 − υ(xi )]. In general, the most influen-
tial value of membership value of xi from [ς(xi ), 1− υ(xi )]
which has the property of largest probability is derived as
the median value given by ς = (ς(xi ) + 1 − υ(xi ))/2.
On the other hand, the probabilities of the other values are
distributed according to this rule: “With the distance away
from ς becomes bigger, the probability becomes smaller.”
Therefore, the distribution of the probabilities to express the
membership values of xi on the subinterval [ς(xi ), 1−υ(xi )]
follows a normal distribution function. Yang and Ko [20]
defined the normal fuzzy number to express the uncertain-
ties in the data while Li et al. [21] compares them with the
triangular or trapezoidal fuzzy numbers. Prompted by this
fuzzy number, Lv et al. [22] presented the concept of normal
distribution fuzzy sets (NFSs) and a method to display the
membership degrees in an IFSs by a series of normal dis-
tribution functions with parameters a (expected values) and
σ (variance), and denoted as NFS(a, σ ). The normal fuzzy

numbers (NFNs) have broadly used and several advantages
such as all the physical aspects and production activities are
well represented by such numbers; the higher derivative of
the normal membership function is continuous.

Based on the advantages of the normal fuzzy numbers,
Wang and Li [23] extended the IFS to the normal IFS
(NIFS) by considering themembership and non-membership
degrees of the element as a normal fuzzy number, which have
much more pragmatic sense than the other IFNs such as tri-
angular, trapezoidal numbers, linguistic numbers and so on.
For instance, concerning the stochastic happenings the life-
length of the electric bulb, the average and the variance of a
lifetime of production are 100 and 2 respectively, which are
expressed as an NFN(100,2). However, due to the ambiguity
present in the information, an expert gives a certain degree
of membership as 80% and 10% as a negation degree to
ensure the life-length of the electric bulb. Such information
is drawn more closely with the normal intuitionistic fuzzy
number (NIFN) as ((100, 2), 0.8, 0.1). Hence, NIFNs can
show the stochastic phenomena better than NFNs as well as
IFNs. After their existence, some researchers have contin-
ued their theories to solve the MADM problem by defining
somedifferent kinds of approaches.Wang andLi [23] defined
the induced aggregation operators for NIFNs to solve the
MADM problems. Wang and Li [24] presented the weighted
aggregation operators for a different NIFNs. Wang et al. [25]
developed theMADMapproach for NIFNs by using the con-
cept of score function based on the relative entropy. Wang
et al. [26] proposed some generalized induced aggregation
operators for NIFNs to solve the decision-making problems.

Later on, Liu and Teng [27] has extended the concept
of NIFS to the normal IVIFS (NIVIFS) by considering
the interval-valued degrees of the membership and non-
membership functions which follows the normal fuzzy
numbers. Since it is always better for an expert to design their
information in terms of interval numbers rather than a crisp
number. Hence, there is less loss of information in normal
IVIFNs (NIVIFNs) than NIFNs. To aggregate the different
pairs of the NIVIFNs, Liu and Teng [27] put forward the
average and geometric aggregation operators. Further, they
also defined some basic operational laws as well as some
score and accuracy functions to rank the numbers. Hence,
the study conducted under the normal fuzzy set environment
is one of the most broadly practiced and authentic tasks to
access the information. Although many other scholars have
introduced the aggregation operators to aggregate the infor-
mation, simultaneously an important phase during solving
the MADM problems is to order the numbers. For it, some
scholars have put forward the rankingmethods by using score
and accuracy functions, but it is observed that theyhave a vital
shortcoming in some cases. In the existing score functions of
NIFN andNIVIFN, it is observed that it requires only the pair
of the membership and non-membership degrees but entirely
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ignores the hesitance degree into the analysis, which is illog-
ical. Hence, under some cases, such existing score functions
will inadequate to classify the numbers (demonstrated in
Examples 1, 2). It is noted that in day-to-day situation, there
is a need to consider simultaneously the membership and
hesitancy degrees to define an efficient score function. For
instance, in a NIFN I = ((a, σ ), ςI , υI), when ςI > υI
then it means a decision will more likely to support the state-
ment, while when ςI < υI then an impact on the decision
is more likely towards the oppose. Hence, there is a need
to recognize the hesitation index during the analysis. So to
address it completely, a more generalized score function for
NIFS and NIVIFS has been proposed in this manuscript and
subsequently MADM methods for solving the problems.

Thus, taking the advantages of the normal fuzzy set to
express the information with wide confidence, the present
work enhances the study on the normal intuitionistic and
interval-valued intuitionistic set by defining more general-
ized score functions to rank their numbers. The following
are the main objectives of this paper.

(1) to develop new score functions for NIFS and NIVIFS
to rank them.

(2) to build two algorithms, based on score functions
and aggregation operators, to interpret decision-making
concerns.

(3) to demonstrate the approach with a numerical example
to explore the study.

To complete the objective 1, we employ the normal fuzzy
numbers to express the rating of the expert during their
evaluation and hence present a more generalized score and
accuracy functions. The proposed functions overcome the
drawbacks of the exiting functions under certain cases. The
salient features of the proposed functions are also studied.
Objective 2 is accomplished by establishing the twoMADM
methods based on the proposed functions, in which prefer-
ences related to each alternative are expressed in terms of
crisp and interval normal fuzzy numbers. Finally, the fea-
sibility of the approaches has been demonstrated through
numerical examples and validate it by comparing their results
with the several existing approaches results for fulfilling the
last objective.

The rest of the text is organized as follows. Section 2
presents basic concepts related to normal fuzzy set, NIFS
and NIVIFS. In Sect. 3, we present improved score func-
tions for normal intuitionistic sets under a crisp and interval
environment. The effectiveness, as well as the properties of
the proposed functions, are also described in this section. In
Sect. 4, we offer two algorithms based on proposed func-
tions to solve the MADM problems. The applicability of the
presented algorithms is demonstrated in Sect. 5 and compare

their results with several existing approaches. Finally, Sect. 6
concludes the paper.

Preliminaries

In this section, we define the basic features of the normal
intuitionistic and interval-valued intuitionistic fuzzy sets over
the universal set X .

Normal intuitionistic fuzzy sets

Definition 1 [4] An intuitionistic fuzzy set “I” in a set X is
defined as :

I = {(x, ςI(x), υI(x)) | x ∈ X } (1)

where ςI , υI : X → [0, 1] such that 0 ≤ ςI(x) ≤ 1 and
0 ≤ υI(x) ≤ 1 and 0 ≤ ςI(x) + υI(x) ≤ 1. The pair
I = (ςI , υI) is called as an intuitionistic fuzzy number
(IFN) [7].

Definition 2 [20] A normal distribution fuzzy set I is char-
acterized by a set of normal distribution functions {ψi (z)},
for each ψi (z), such that

ai = E(ψi (z)), σi = Var(ψi (z)) ≥ 1/
√
2π (2)

Here ai , σi represents the mean and variance of the normal
distribution functions {ψi (z)}.
Remark 1 Thenull setψN is defined asψN={(xi ,0,1/

√
2π) |

xi ∈ X }, the universal set is defined asψ = {(xi , 1, 1/
√
2π) |

xi ∈ X }.
Definition 3 [20] A normal distribution fuzzy set (NFS) I is
express as

I = {(xi , (ai , σi ), ςI(xi )) | xi ∈ X } (3)

where ςI represent the membership function presented as

ςI(x) = e
−
(
x − a

σ

)2
; σ > 0 (4)

Definition 4 [23] A normal intuitionistic fuzzy set (NIFS)
over X is defined as

IN = {(xi , (ai , σi ), ςI(xi ), υI(xi )) | xi ∈ X }

where membership and non-membership functions are pre-
sented as

ςI(x) = ςIe−( x−a
σ

)2 , x ∈ X (5)

and υI(x) = 1 − (1 − υI)e−( x−a
σ

)2 , x ∈ X (6)
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such that 0 ≤ ςI , υI ≤ 1 and 0 ≤ ςI + υI ≤ 1 holds.

Remark 2 From the definition, we conclude

(1) When ςI = 1 and υI = 0, then NIFS reduces to NFS.
(2) A pair ((a, σ ), ς, υ) is called normal intuitionistic

fuzzy number (NIFN).

Definition 5 [23] The complement of NIFS IN is defined as

Ic
N = {(xi , (ai , σi ), υI(xi ), ςI(xi )) | xi ∈ X }

Definition 6 [23] For NIFN I = ((a, σ ), ςI , υI), score
functions are stated as

S1(I) = a (ςI − υI) , S2(I) = σ (ςI − υI) , (7)

while accuracy functions are given as

H1(I) = a (ςI + υI) , H2(I) = σ (ςI + υI) (8)

Based on these functions, a comparison law between two
different NIFNs are stated as follows:

Definition 7 [23] For two NIFNs I1 and I2, an order relation
between them is stated as:

(1) If S1(I1) > S1(I2), then I1 > I2.
(2) If S1(I1) = S1(I2) and H1(I1) > H1(I2), then I1 >

I2.
(3) If S1(I1) = S1(I2) and H1(I1) = H1(I2), then

(a) If S2(I1) < S2(I2), then I1 > I2.
(b) If S2(I1) = S2(I2) and H2(I1) < H2(I2), then

I1 > I2.
(c) If S2(I1) = S2(I2) and H2(I1) = H2(I2), then

I1 = I2.

Definition 8 [26] For the collection of “n” NIFNs I j =(
(a j , σ j ), ς j , υ j

)
, a normal intuitionistic fuzzy weighted

geometric averaging (NIFWGA) operator is defined as

NIFWGA(I1, I2, . . . , In)

=
⎛
⎝
⎛
⎝ n∏

j=1

a
ω j
j ,

n∏
j=1

a
ω j
j

√√√√ n∑
j=1

ω jσ
2
j

a2j

⎞
⎠ ,

n∏
j=1

ς
ω j
j ,

1 −
n∏
j=1

(
1 − υ j

)ω j

⎞
⎠ (9)

where ω j is the weight of I j such that ω j > 0 and∑n
j=1 ω j = 1

Normal interval-valued intuitionistic fuzzy sets

Definition 9 [6] An IVIFS I in X is described as

I = {〈x, ςI(x), υI(x)〉 | x ∈ U}, (10)

whereςI(x) =
[
ςI(x), ςI(x)

]
andυI(x) = [υI(x), υI(x)

]
are the subsets of [0, 1], and represents the MDs (“member-
ship degrees”) andNMDs (“non-membership degrees”) such
that 0 ≤ ςI(x)+υI(x) ≤ 1 for all x ∈ X . For accessibility,
this pair is inscribed as I = ([ςI , ςI ], [υI , υI ]) is called an
IVIFNwith the requirement that [ςI , ςI ], [υI , υI ] ⊆ [0, 1]
and ςI + υI ≤ 1.

Definition 10 [27] A normal interval-valued intuitionistic
fuzzy set (NIVIFS) over X is defined as

IN =
{(

xi , (ai , σi ),
[
ςI(x), ςI(x)

]
,[

υI(x), υI(x)]) | xi ∈ X
}

(11)

where ai , σi represents the mean and variance of the normal
distribution functions.

Remark 3 From the Definition 10, we find

(1) When ςI(x) = ςI(x) and υI(x) = υI(x) for all
x ∈ X then NIVIFS reduces to NIFS.

(2) A pair ((a, σ ), [ςI , ςI ], [υI , υI ]) is called normal
IVIFN (NIVIFN) with the requirement that ai , σi > 0,
[ςI , ςI ], [υI , υI ] ⊆ [0, 1] and ςI + υI ≤ 1.

Definition 11 [27] For a NIVIFN I =
(
(a, σ ), [ςI , ςI ],

[υI , υI ]), score functions are defined as

S′
1(I) = a

(
ςI + ςI − υI − υI

2

)
,

S′
2(I) = σ

(
ςI + ςI − υI − υI

2

)
(12)

while the accuracy functions are given as

H ′
1(I) = a

(
ςI + ςI + υI + υI

2

)
,

H ′
2(I) = σ

(
ςI + ςI + υI + υI

2

)
(13)

Definition 12 [27] An order relation between two NIVIFNs
I1 and I2 is stated as:

(1) If either S′
1(I1) > S′

1(I2), or S′
1(I1) = S′

1(I2),
H ′
1(I1) > H ′

1(I2) holds, then I1 > I2.
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(2) If S′
1(I1) = S′

1(I2) and H ′
1(I1) = H ′

1(I2), then
(a) When S′

2(I1) < S′
2(I2), implies I1 > I2.

(b) When S′
2(I1) = S′

2(I2) and H ′
2(I1) < H ′

2(I2),
implies that I1 > I2.

Definition 13 [27] For a collection of “n” NIVIFNs I j =(
(a j , σ j ),

[
ς
j
, ς j

]
,
[
υ j , υ j

])
, a normal interval-valued

intuitionistic fuzzy weighted geometric averaging (NIV-
IFWGA) operator is defined as

NIVIFWGA(I1, I2, . . . , In)

=
⎛
⎝
⎛
⎝ n∏

j=1

a
ω j
j ,

n∏
j=1

a
ω j
j

√√√√ n∑
j=1

ω jσ
2
j

a2j

⎞
⎠ ,

⎡
⎣ n∏

j=1

(
ς
j

)ω j
,

n∏
j=1

(
ς j
)ω j

⎤
⎦ ,

⎡
⎣1 −

n∏
j=1

(
1 − υ j

)ω j
, 1 −

n∏
j=1

(
1 − υ j

)ω j

⎤
⎦
⎞
⎠ (14)

where ω j > 0 is the weight of I j such that
∑n

j=1 ω j = 1

Shortcoming of the existing score functions

In this section, we have presented some shortcomings of the
existing score functions which are defined inDefinition 6 and
Definition 11 as below.

Example 1 Let I1 = ((2, 0.2), 0.6, 0.3) and I2 = ((3, 0.3),
0.4, 0.2) are two NIFNs. In order to find out the biggest
NIFN among I1 and I2, we compute the score function val-
ues by using Eq. (7) and get S1(I1) = 0.6, S1(I2) = 0.6,
S2(I1) = 0.06, S2(I2) = 0.06 and accuracy values by Eq.
(8) are H1(I1) = 1.8, H1(I2) = 1.8, H2(I1) = 0.18,
H2(I2) = 0.18. Therefore, based on comparison law defined
in Definition 7, we conclude that I1 = I2. But it is clearly
seen that I1 �= I2 and hence these functions are unable to
classify the given numbers.

Example 2 Let I1 = ((6, 0.2), [0.15, 0.25], [0.05, 0.15])
and I2 = ((3, 0.1), [0.30, 0.50], [0.1, 0.3]) be two NIV-
IFNs. To compute the biggest one among them, we calculate
the score values of them by Eq. (12) and get S′

1(I1) = 0.6,
S′
1(I2) = 0.6, S′

2(I1) = 0.02, S′
2(I2) = 0.02. Since

S′
1(I1) = S′

1(I2) and S′
2(I1) = S′

2(I2), hence we calcu-
late the accuracy values by Eq. (13) and get H ′

1(I1) = 1.8,
H ′
1(I2) = 1.8, H ′

2(I1) = 0.06, H ′
2(I2) = 0.06. It is clearly

seen from these values and by Definition 12 that I1 and I2
are equivalent. But this is not true. Therefore, the existing
score functions are unable to distinguish between these two
NIVIFNs.

Hence, from these two examples, we can see that the func-
tions defined in Eqs. (7), (8) and in Eqs. (12), (13) fails to
discriminate between the pairs of NIFNs and NIVIFNs in
termsof ranking. Therefore, in order to handle it, an improved
score function has been proposed in the next section by suf-
ficiently considering the indeterminacy information between
the pairs of the NIFNs and NIVIFNs.

Proposed improved score functions

In this section, we define a improved score function for the
pairs of NIFNs as well as NIVIFNs to rank them. The salient
features of the proposed measure are also investigated.

Proposed score functions for NIFNs

From Eq. (7), it has been observed that the existing score
functions depend only on the degrees of the membership
and non-membership of the NIFN. In day-to-day situation,
there is a need to consider simultaneously the membership
and hesitancy degrees to define an efficient score function.
For a NIFN I = ((a, σ ), ςI , υI), when ςI > υI then it
means a decision will more likely to support the statement,
while when ςI < υI then an impact on the decision is more
likely towards the oppose. Hence, there is a need to add the
hesitation index πI = 1 − ςI − υI relative to I such that
ςI+ πI

2 and υI+ πI
2 are called favorable and against degrees

relative to I for x ∈ X . This further means that when ςI >

υI then πI has positive impact on it, while when ςI <

υI then πI has a negative impact on it, which makes S(I)

increases and decreases respectively. Thus, by considering
the importance of hesitation index, we define a new score
function as follows:

Definition 14 Let I = ((a, σ ), ςI , υI) be NIFN, then new
improved score functions M1(I) and M2(I) based on the
hesitation degree are defined as

M1(I) = a

(
ςI − 3υI + 1

2

)
(15)

M2(I) = σ

(
ςI − 3υI + 1

2

)
(16)

where M1(I) ∈ [−a, a] and M2(I) ∈ [−σ, σ ].
Based on the proposed score functions, we give the fol-

lowing comparison law for any two NIFNs I1 and I2 as
Definition 15 LetI1 andI2 be twoNIFNsandM1(·),M2(·)
be their score functions respectively. Then, a comparison rule
I1 > I2 hold if either of the following condition met.

(1) M1(I1) > M1(I2).
(2) M1(I1) = M1(I2) and M2(I1) < M2(I2).
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Proposed score functions for NIVIFNs

From Definition 11, it is again concluded that the existing
score functions depend only on the degrees of the mem-
bership. However, there is a need to consider the degree of
hesitancy between them also during the analysis. For it, an
interval hesitancy degree [πI , πU

I ] = [1−ςI−υI , 1−ςI−
υI ] relative to NIVIFN I =

(
(a, σ ), [ςI , ςI ], [υI , υI ]

)
is

added into the analysis such that ςI+ πI
2 , ςI+ πI

2 are called

favorable degrees relative to I, and υI + πI
2 , υI + πI

2 are
called against degrees relative to I. Thus, due to consider-
ing the importance of membership degrees and the hesitancy
index, we define an improved score function for NIVIFN as
follows:

Definition 16 An improved score functionM′
1(I) andM′

2(I)

of an NIVIFN I = ((a, σ), [ςI , ςI ], [υI , υI ]), based on
the hesitation degrees, is defined as

M′
1(I) = a

(
ςI + ςI − 3(υI + υI) + 2

4

)
(17)

and M′
2(I) = σ

(
ςI + ςI − 3(υI + υI) + 2

4

)
(18)

Based on it, the following comparison law is defined as

Definition 17 Let I1 and I2 be two NIVIFNs and M′
1(·),

M′
2(·) be their score functions respectively, then

(i) If M′
1(I1) > M′

1(I2), then I1 > I2.
(ii) If M′

1(I1) = M′
1(I2) and M′

2(I1) < M′
2(I2), then

I1 > I2.

Remark 4 In particular, when ςI = ςI = ςI and υI =
υI = υI , then M′

1(·), M′
2(·) reduces to M1(·) and M2(·)

respectively.

Effectiveness of the proposed score functions

To illustrate the effectiveness of the proposed score functions
for NIFNs and NIVIFNs, consider the Examples 1 and 2
again here.

Example 3 If we utilize the proposed score functions M1

and M2 on the consider data of the Example 1, then we get
M1(I1) = 0.7, M1(I2) = 1.2. Since M1(I1) ≤ M2(I2)
and thus according to the Definition 15, we get I1 ≺ I2, i.e.,
the NIFN I2 is better than NIFN I1.
Example 4 Consider the data as given in Example 2 where
we observed that the existing functions are unable to classify
between the sets. In order to distinguish them, if we apply our
proposed functionM′

1 to the data thenwegetM′
1(I1) = 2.7,

M′
1(I2) = 1.2. Hence, by Definition 17, we conclude that

I1 is the better than I2.

Properties of the proposed score functions

In this section, we studied some characteristics of the pro-
posed score functions for NIFN and NIVIFN in detail.

Property 1 Let I1 = ((a1, σ1), ς1, υ1) and I2 = ((a2, σ2),
ς2, υ2) be two comparable NIFNs such that a1 ≤ a2, σ1 ≥
σ2, ς1 ≤ ς2 and υ1 ≥ υ2, i.e., I1 < I2 then M1(I1) ≤
M1(I2) and M2(I1) ≥ M2(I2).
Proof LetI1 = ((a1, σ1), ς1, υ1) andI2 = ((a2, σ2), ς2, υ2)
be two comparable NIFNs such that a1 ≤ a2, σ1 ≥ σ2,
ς1 ≤ ς2 and υ1 ≥ υ2 which implies that I1 < I2. By the
definition of the improved score functions M1, we have

M1(I1) = a1

(
ς1 − 3υ1 + 1

2

)

and M1(I2) = a2

(
ς2 − 3υ2 + 1

2

)

Sinceς1 ≤ ς2 andυ1 ≥ υ2 whichgives thatς2−3υ2+1 ≥
ς1 − 3υ1 + 1 and hence M1(I1) ≤ M1(I2). Similarly, we
can prove that M2(I1) ≥ M2(I2). �

This relation has been explainedwith a numerical example
as follow.

Example 5 Let I1 = ((8, 0.4), 0.8, 0.1) and I2 = ((7, 0.6),
0.6, 0.3) be two comparable NIFNs. Clearly seen that I1 >

I2. Now, by using the expression of the proposed score func-
tion M1, we get

M1(I1) = 8

(
0.8 − 3 × 0.1 + 1

2

)
= 6 and

M1(I2) = 7

(
0.6 − 3 × 0.3

2

)
= 2.45

Hence M1(I1) ≥ M1(I2) holds.
Property 2 For NIFN I = ((a, σ ), ςI , υI), the proposed
improved score function M1(I) and M2(I), lies between
[−a, a] and [−σ, σ ] respectively.
Proof Since I = ((a, σ ), ςI , υI) be NIFN which implies
that ςI , υI ∈ [0, 1] and ςI +υI ≤ 1. Thus, 1−ςI −υI ≥ 0
and hence by Eq. (15),

M1(I) = a

(
ςI − 3υI + 1

2

)

= a

(
ςI − υI + 1 − ςI − υI

2

)
≥ a (ςI − υI) ≥ −a
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Also,

M1(I) = a

(
ςI − 3υI + 1

2

)
= a

(
ςI + 1

2
− 3υI

2

)

≤ a

(
ςI + 1

2

)
≤ a

Hence, −a ≤ M1(I) ≤ a. Similarly, we can obtain
M2(I) ∈ [−σ, σ ] for NIFN I = ((a, σ ), ςI , υI). �
Property 3 For a NIFN I, the proposed score function
M1(I) and the existing score function S1(I) satisfy the
inequality M1(I) ≥ S1(I).

Proof Consider I = ((a, σ ), ςI , υI) be a NIFN such that
0 ≤ ςI , υI ≤ 1 and ςI +υI ≤ 1. Therefore, 1−ςI −υI ≥
0. Hence, by expression of M1(I) and S1(I), given in Eqs.
(15) and (7) respectively, we have

M1(I) − S1(I) = a

(
ςI − 3υI + 1

2

)
− a (ςI − υI)

≥ a

(
1 − ςI − υI

2

)
≥ 0

Hence, the result hold. �
Property 4 Let I = ((a, σI), ςI , υI) be NIFN. Then
M1(I) + M1(Ic) ≤ a and M2(I) + M2(Ic) ≤ σ .

Proof Since Ic = ((a, σI), υI , ςI) be the complement of
the NIFN I = ((a, σI), ςI , υI), then by the definition of
the M1(I), we have

M1(I) + M1(Ic) = a

(
ςI − 3υI + 1

2

)
+ a

(
υI − 3ςI + 1

2

)

= a

(
2 − 2ςI − 2υI

2

)
= a

(
1 − ςI − υI

)
≤ a

Similarly, we get M2(I) + M2(Ic) ≤ σ . �
Property 5 For a NIFN I = ((a, σ ), ςI , υI), the proposed
score function M1(I) and existing function S1(I) satisfies

the relation M1(I) = S1(I) + a
(πI
2

)
, where πI is the

hesitancy degree of I.
Proof For NIFN I = ((a, σ ), ςI , υI) and by Eqs. (7), (15),
we have

M1(I) − S1(I) = a

(
ςI − 3υI + 1

2

)
− a (ςI − υI)

= a

(
ςI − 3υI + 1 − 2ςI + 2υI

2

)

= a
(πI
2

)

�Property 6 (Zero Property) If NIFN I = ((a, σ ), 0, 1) then
M1(I) = −a and M2(I) = −σ .

Proof For I = ((a, σ ), 0, 1) and by Eqs. (15), (16), we get
M1(I) = a

( 0−3+1
2

) = −a and M2(I) = σ
( 0−3+1

2

) =
−σ . �
Property 7 (One Property) If NIFN I = ((a, σ ), 1, 0) then
M1(I) = a and M2(I) = σ .

Proof For NIFN I = ((a, σ ), 1, 0), we get M1(I) =
a
( 1−0+1

2

) = a and M2(I) = σ
( 1−0+1

2

) = σ . �
Property 8 For a subset I = ((a, σ ), ςI , 1 − ςI) of NIFN,
theproposed score functions reduce toM1(I) = a (2ςI − 1)
and M2(I) = σ (2ςI − 1).

Proof As I = ((a, σ ), ςI , υI) be NIFN then from Eq. (15),
we have

M1(I) = a

(
ςI − 3(1 − ςI) + 1

2

)

= a

(
4ςI − 2

2

)
= a (2ςI − 1)

Similarly, we have

M2(I) = σ

(
ςI − 3(1 − ςI) + 1

2

)

= σ

(
4ςI − 2

2

)
= σ (2ςI − 1)

�
Remark 5 For an arbitrary NIFN I = ((a, σ ), ςI , υI), we
conclude the following observations:

(1) ForNIFN,whenςI+υI = 1, i.e.,when there is no hesi-
tancy between the pairs ofmembership degrees then the
proposed function M1(I) becomes the existing func-
tion S1(I) as defined by Wang and Li [23] in Eq. (7).

(2) For any two NIFNs I and J such that πI = πJ then
I > J if υI < υJ and ςI > ςJ holds.

(3) If υI (or ςI ) be same for any two NIFNs then the one
having the smaller (or the larger) πI has higher priority.

On the other hand, the proposed score functions M′
1

and M′
2 also satisfy the Properties 1–8 for NIVIFN I =(

(a, σ ),
[
ςI , ςI

]
,
[
υI , θI

])
, which are stated (without

proof) as below.

(P1) For any two comparable NIVIFNs I1 and I2, if I1 < I2
then M′

1(I1) < M′
1(I2) and M′

2(I1) > M′
2(I2).
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(P2) For NIVIFN I, the proposed improved score functions
M′

1(I) lies between [−a, a] and M′
2(I) lies between

[−σ, σ ].
(P3) The functions M′

1 and S′
1 for a NIVIFN I satisfy the

inequality M′
1(I) ≥ S′

1(I).
(P4) For NIVIFN I, M′

1(I) + M′
1(Ic) ≤ a and M′

2(I) +
M′

2(Ic) ≤ σ .
(P5) The score functionsM′

1(I) and S′
1(I) for any NIVIFN

I satisfy the relation, M′
1(I) = S′

1(I) + a
(πI
2

)
.

(P6) (Zero Property) If NIVIFN I = ((a, σ ), [0, 0], [1, 1])
then M′

1(I) = −a and M′
2(I) = −σ .

(P7) (One Property) If NIVIFN I = ((a, σ ), [1, 1], [0, 0])
then M′

1(I) = a and M′
2(I) = σ .

(P8) For a subset I = ((a, σ ), [ςI , ςI ], [1 − ςI , 1 − ςI ])
of NIVIFN, the proposed score functions becomes
M′

1(I) = a(2ςI − 1) and M′
2(I) = σ(2ςI − 1).

Decision-making approach based
on the proposed score functions

In this section, we present a decision-making algorithm for
solving the MADM problems.

Consider a set of alternatives V1,V2, . . . ,Vm which
are evaluated by an expert under the different attributes
B1,B2, . . . ,Bn and gives their preferences either in terms
of NIFNs or NIVIFNs. Let ω = (ω1, ω2, . . . , ωn) be the
weight vector assigned to the given attributes B j such that
ω j > 0 and

∑n
j=1 ω j = 1. Then, themethod for determining

the finest alternative(s) by employing the proposed functions
are summarized in the following algorithms.

Algorithm 1:When ratings are given under the NIFS
environment

When an expert evaluate the given alternatives Vi under dif-
ferent attributes B j and represent their values in terms of
NIFNs β̃i j = ((̃ai j , σ̃i j ), ς̃i j , υ̃i j ) where ς̃i j and υ̃i j , respec-
tively, represent the degree that the alternative Vi satisfies
and dissatisfaction the criteria B j such that ς̃i j , υ̃i j ∈ [0, 1]
and ς̃i j + υ̃i j ≤ 1. The representation of the characteristic
for alternatives Vi (i = 1, 2, . . . ,m) is given by

Vi = {(B1, (̃ai1, σ̃i1), ς̃i1, υ̃i1) , (B2, (̃ai2, σ̃i2), ς̃i2, υ̃i2) ,

. . . , (Bn, (̃ain, σ̃in), ς̃in, υ̃in)} (19)

Then, the following are the steps summarized based on
the proposed score function to obtain the best alternative(s).

Step 1: Arrange the collective information of the expert in
the decision matrix M = (β̃i j )m×n as

M =

B1 B2 . . . Bn⎛
⎜⎜⎝

⎞
⎟⎟⎠

V1 β̃11 β̃12 . . . β̃1n

V2 β̃21 β̃22 . . . β̃2n
...

...
...

. . .
...

Vm β̃m1 β̃m2 . . . β̃mn

Step 2: Normalize the decision matrix M = (β̃i j )m×n , if
required, into the matrix R = (�i j )m×n where
�i j = ((ai j , σi j ), ςi j , υi j ) has been obtained as fol-
lows.
For benefit attribute:

ai j = ãi j
max
i

(̃
ai j
) , σi j = σ̃i j

max
i

(
σ̃i j
) · σ̃i j

ãi j
,

ςi j = ς̃i j , υi j = υ̃i j (20)

For cost attribute:

ai j =
min
i

(̃
ai j
)

ãi j
, σi j = σ̃i j

max
i

(
σ̃i j
) · σ̃i j

ãi j
,

ςi j = υ̃i j , υi j = ς̃i j (21)

Step 3: Aggregate the collection information of the alterna-
tive Vi with expert evaluation βi j , j = 1, 2, . . . , n
intoβi , i = 1, 2, . . . ,m by usingNIFWGAoperator
as defined in Eq. (22), as

NIFWGA(βi1, βi2, . . . , βin)

=
⎛
⎝
⎛
⎝ n∏

j=1

a
ω j
i j ,

n∏
j=1

a
ω j
i j

√√√√ n∑
j=1

ω jσ
2
i j

a2i j

⎞
⎠ ,

n∏
j=1

(
ςi j
)ω j , 1 −

n∏
j=1

(
1 − υi j

)ω j

⎞
⎠ (22)

Step 4: Compute the score value of the obtained aggregated
number βi = ((ai , σi ), ςi , υi ) , i = 1, 2, . . . ,m as

M1(βi ) = ai

(
ςi − 3υi + 1

2

)
(23)

If score values are equal for any two indices then
compute the score function values for them by using
Eq. (24).

M2(βi ) = σi

(
ςi − 3υi + 1

2

)
(24)
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Step 5: Rank the given alternatives based on the descending
values of score values of βi and hence select the best
one(s).

Algorithm 2:When ratings are given under the
NIVIFS environment

When an expert evaluate the given alternatives Vi under
different attributes B j and represent their values in terms

of NIVIFNs γ̃i j =
(
(̃ai j , σ̃i j ),

[
ς̃
i j

, ς̃ i j

]
,
[
υ̃i j , υ̃i j

])
such

that
[
ς̃
i j

, ς̃ i j

]
,
[
υ̃i j , υ̃i j

]
⊆ [0, 1] and ς̃ i j + υ̃i j ≤ 1. Then,

the following are the steps summarized to find the best alter-
native(s).

Step 1: Arrange the collective information of the expert in
the decision matrix M = (γ̃i j )m×n as

M =

B1 B2 . . . Bn⎛
⎜⎜⎝

⎞
⎟⎟⎠

V1 γ̃11 γ̃12 . . . γ̃1n
V2 γ̃21 γ̃22 . . . γ̃2n
...

...
...

. . .
...

Vm γ̃m1 γ̃m2 . . . γ̃mn

Step 2: Normalize the matrix M, if required, into the
matrix R = (γi j )m×n where γi j = (

(ai j , σi j ),

[ς
i j

, ς i j ], [υi j , υi j ]
)
has been obtained as

For benefit attribute:

ai j = ãi j
max
i

(̃
ai j
) , σi j = σ̃i j

max
i

(
σ̃i j
) · σ̃i j

ãi j
,

ς
i j

= ς̃
i j

, ς i j = ς̃ i j , υi j = υ̃i j , υi j = υ̃i j (25)

For cost attribute:

ai j =
min
i

(̃
ai j
)

ãi j
, σi j = σ̃i j

max
i

(
σ̃i j
) · σ̃i j

ãi j
,

ς
i j

= υ̃i j , ς i j = υ̃i j , υi j = ς̃
i j

, υi j = ς̃ i j (26)

Step 3: Aggregate the collection information of the alterna-
tive Vi with expert evaluation γi j , j = 1, 2, . . . , n
into γi , i = 1, 2, . . . ,m by using NIVIFWGA oper-

ator as defined in Eq. (27) as

NIVIFWGA(γi1, γi2, . . . , γin)

=
⎛
⎜⎝
⎛
⎜⎝ n∏

j=1

a
ω j
i j ,

n∏
j=1

a
ω j
i j

√√√√√ n∑
j=1

ω jσ
2
i j

a2i j

⎞
⎟⎠ ,

⎡
⎣ n∏

j=1

(
ς
i j

)ω j
,

n∏
j=1

(
ς i j
)ω j

⎤
⎦ ,

⎡
⎣1 −

n∏
j=1

(
1 − υi j

)ω j
, 1 −

n∏
j=1

(
1 − υi j

)ω j

⎤
⎦
⎞
⎠
(27)

Step 4: Compute the score value of the obtained aggre-
gated number γi = ((ai , σi ), [ς i

, ς i ], [υi , υ i ]), i =
1, 2, . . . ,m as

M′
1(γi ) = ai

(
ς
i
+ ς i − 3(υi + υi ) + 2

4

)
(28)

If score values are equal for any two indices then
compute the score values for them by using Eq. (29).

M′
2(γi ) = σi

(
ς
i
+ ς i − 3(υi + υi ) + 2

4

)
(29)

Step 5: Rank the given alternatives based on the descending
values of score values of γi and hence select the best
one(s) according to Definition 17.

Illustrate examples

To demonstrate the working of the above-defined algorithms,
we illustrate them with case studies that can be read as fol-
lows.

When evaluations are taken in NIFNs

Example 6 Indian rural society is changing and transforming
in many aspects, including jobs, business structures, trans-
portation facilities, and communication systems. Therefore,
people in rural areas migrate to big cities to find more oppor-
tunities. To stop this immigration, the Indian government
wants to provide all facilities in the rural areas, for this
good road connectivity of the rural areas with the cities must
require. In that direction, the Government of India has started
numerous projects to build or to repair the roads and hence
issued the global tender to select the contractor for these
projects in the newspaper and considered the four attributes
required for its namely, tender price (B1), completion time
(B2), contractor background (B3), financial status (B4)
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with ω = (0.4, 0.2, 0.25, 0.15)T as a weight vector. After
screening, only four contractors (i.e., alternatives) namely,
Jaihind Road Builders Pvt. Ltd. (V1), J.K. Construction (V2),
Bull quick Infrastructure Pvt. Ltd. (V3), Relcon Infra Projects
Ltd. (V4) remain present to bid these projects. The target of
the problem is to find the best contractor for the required
project. The evaluation of these strategies is in terms of nor-
mal fuzzy numbers taken by the evaluators/experts under the
criteria defined above. To access the best alternatives among
the given ones, we implemented the steps of the proposed
Algorithm 1 here.

Step 1: Assume the given alternatives are evaluated by an
expert and gives their rating in terms of NIFNs. Such
values are represented in Table 1.

Step 2: The attributes B1 and B2 are the cost types while
others are the benefit types. Thus, by Eqs. (20) and
(21), we obtain the normalized values of each NIFN
and the results are represented in Table 2.

Step 3: By utilizing the NIFWGA operator as defined in Eq.
(22), to aggregate the given information βi j , j =
1, 2, 3, 4 of the Table 2, the collective values βi ’s of
each alternative Vi are obtained as

β1 = ((0.9264, 0.0849), 0.3366, 0.5389) ,

β2 = ((0.8001, 0.0527), 0.3495, 0.5496) ,

β3 = ((0.8989, 0.0601), 0.4431, 0.5223) ,

and β4 = ((0.7356, 0.0898), 0.3413, 0.5929) .

Step 4: By Eq. (23), the score values of collective number
obtained through NIFWGA operator are computed
as M1(β1) = −0.1297, M1(β2) = −0.1198,
M1(β3) = −0.0557 and M1(β4) = −0.1608.

Step 5: From the values of M1’s, we obtain that M1(β3) >

M1(β2) > M1(β1) > M1(β4) and hence by
applying the Definition 15, the ranking order of the
alternatives is taken as V3 � V2 � V1 � V4, where
�means “preferred to”. From this ordering,we com-
pute theV3 is the best alternative for the desired task.

The feasibility of the approach has been verified by car-
rying a comparative study with some existing approaches
[24–26] under the NIFS environment and the outcomes are
compiled inTable 3. From this investigation, it has been noted
that the best alternative obtained by using [24,25] approaches
is V2 rather than V3, which is due to the fact that their score
function is unable to consider the degree of the hesitation
during the analysis. Therefore, they are unable to completely
justify the information during the decision-making process.

When evaluations are taken in NIVIFNs

In this section, we demonstrate the working of stated Algo-
rithm 2 with a numerical example.

Example 7 Consider a well-recognized university that wants
to appoint an outstanding professor in the research and devel-
opment center. For it, they have issued a notice in a newspaper
for the application regarding the desired post. Against the
advertisement, the director of the Institute constitute a com-
mittee for short-listing the candidate based on the threemajor
factors namely B1, research publications, B2 : number of
Ph.D. supervised and B3 : number of research project han-
dled whose weight vector is ω = (0.35, 0.25, 0.40)T . Based
on these preferences information, a committee has shortlisted
the four applicants Vi , i = 1, 2, 3, 4 and called them for the
personal interview where they have evaluated them and rate
their preferences in terms of NIVIFNs γ̃i j . Then to access
the best alternatives among them, we implemented the steps
of the proposed Algorithm 2 here.

Step 1: The rating values of each applicant is given by an
expert and are summarized in Table 4.

Step 2: Since all the attributes are of benefit types, so we
normalized the given information γ̃i j into γi j by
using Eq. (25). The obtained numbers are recorded
in Table 5.

Step 3: Utilize NIVIFWGA operator defined in Eq. (27) to
aggregate the rating of Table 5 and the collective
values γi ’s of each alternative Vi are obtained as

γ1 = ((0.7213, 0.1161), [0.2297, 0.4266], [0.3674, 0.4898]) ,

γ2 = ((0.7298, 0.0300), [0.5102, 0.7384], [0.1614, 0.2616]) ,

γ3 = ((0.8643, 0.0332), [0.3824, 0.5578], [0.2260, 0.3618]) ,

and γ4 = ((0.6685, 0.0559), [0.4799, 0.5864], [0.1000, 0.2263]) .

Step 4: ByEq. (28),we compute the score values of the num-
bers obtainedbyNIVIFWGAoperator asM′

1(I1) =
0.0153, M′

1(I2) = 0.3612, M′
1(I3) = 0.2543,

M′
1(I4) = 0.3489.

Step 5: Based on these score values, we obtain the ranking
order of the given alternatives as V2 � V4 � V3 �
V1 and hence V2 is the best applicant for the post.
Here � refers “preferred to”.

To examine the appearance of the stated Algorithm 2 with
the existing approach [27], we execute the given information
based on the various operators as suggested in Liu and Teng
[27]. For instance, when we aggregate the given informa-
tion corresponding to each alternative by using NIVIFWAA
operator [27], then the aggregated values are obtained as
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Table 1 Decision matrix in
terms of NIFNs

B1 B2 B3 B4

V1 ((3.0, 0.4), 0.7, 0.2) ((7, 0.6), 0.6, 0.3) ((5, 0.4), 0.6, 0.2) ((7, 0.6), 0.6, 0.3)

V2 ((4.0, 0.2), 0.6, 0.3) ((8, 0.4), 0.8, 0.1) ((6, 0.7), 0.8, 0.2) ((5, 0.3), 0.7, 0.3)

V3 ((3.5, 0.3), 0.6, 0.4) ((6, 0.2), 0.6, 0.3) ((5.5, 0.6), 0.5, 0.5) ((6, 0.4), 0.8, 0.1)

V4 ((5.0, 0.5), 0.8, 0.2) ((7, 0.5), 0.6, 0.2) ((4.5, 0.5), 0.8, 0.2) ((7, 0.2), 0.7, 0.1)

Table 2 Normalized data

B1 B2 B3 B4

V1 ((1.0000, 0.1067), 0.2, 0.7) ((0.8571, 0.0857), 0.3, 0.6) ((0.8333, 0.0457), 0.6, 0.2) ((1.0000, 0.0857), 0.6, 0.3)

V2 ((0.7500, 0.0200), 0.3, 0.6) ((0.7500, 0.0333), 0.1, 0.8) ((1.0000, 0.1167), 0.8, 0.2) ((0.7143, 0.0300), 0.7, 0.3)

V3 ((0.8571, 0.0514), 0.4, 0.6) ((1.0000, 0.0111), 0.3, 0.6) ((0.9167, 0.0935), 0.5, 0.5) ((0.8571, 0.0444), 0.8, 0.1)

V4 ((0.6000, 0.1000), 0.2, 0.8) ((0.8571, 0.0595), 0.2, 0.6) ((0.7500, 0.0794), 0.8, 0.2) ((1.0000, 0.0095), 0.7, 0.1)

Table 3 Comparative study for
the Example 6

Overall score value of Ranking order

V1 V2 V3 V4

Wang and Li [24] − 0.1231 − 0.0021 −0.0386 −0.0101 V2 � V4 � V3 � V1

Wang et al. [25] − 0.0964 0.0192 − 0.0189 0.0122 V2 � V4 � V3 � V1

Wang et al. [26] − 0.1874 − 0.1602 −0.0713 −0.1850 V3 � V2 � V4 � V1

Table 4 Input data in the form of NIVIFNs

B1 B2 B3

V1 ((3, 0.4), [0.4, 0.5], [0.3, 0.4]) ((5, 0.6), [0.4, 0.6], [0.2, 0.4]) ((7, 0.6), [0.1, 0.3], [0.5, 0.6])
V2 ((4, 0.2), [0.6, 0.7], [0.2, 0.3]) ((6, 0.4), [0.6, 0.7], [0.2, 0.3]) ((5, 0.3), [0.4, 0.8], [0.1, 0.2])
V3 ((6, 0.3), [0.3, 0.6], [0.3, 0.4]) ((5, 0.2), [0.5, 0.6], [0.3, 0.4]) ((6, 0.4), [0.4, 0.5], [0.1, 0.3])
V4 ((5, 0.5), [0.7, 0.8], [0.1, 0.2]) ((7, 0.5), [0.6, 0.7], [0.1, 0.3]) ((3, 0.2), [0.3, 0.4], [0.1, 0.2])

Table 5 Normalized data in the form of NIVIFNs

B1 B2 B3

V1 ((0.5000, 0.1067), [0.4, 0.5], [0.3, 0.4]) ((0.7143, 0.1200), [0.4, 0.6], [0.2, 0.4]) ((1.0000, 0.0857), [0.1, 0.3], [0.5, 0.6])
V2 ((0.6667, 0.0200), [0.6, 0.7], [0.2, 0.3]) ((0.8571, 0.0444), [0.6, 0.7], [0.2, 0.3]) ((0.7143, 0.0300), [0.4, 0.8], [0.1, 0.2])
V3 ((1.0000, 0.0300), [0.3, 0.6], [0.3, 0.4]) ((0.7143, 0.0133), [0.5, 0.6], [0.3, 0.4]) ((0.8571, 0.0444), [0.4, 0.5], [0.1, 0.3])
V4 ((0.8333, 0.1000), [0.7, 0.8], [0.1, 0.2]) ((1.0000, 0.0595), [0.6, 0.7], [0.1, 0.3]) ((0.4286, 0.0222), [0.3, 0.4], [0.1, 0.2])

Table 6 Comparative analysis
for the Example 7

Method Score value of the alternatives Ranking

V1 V2 V3 V4 order

NIVIFWAA [27] −0.0187 0.3182 0.1777 0.3147 V2 � V4 � V3 � V1

NIVIFOWAA [27] −0.0095 0.3148 0.1763 0.3147 V2 � V4 � V3 � V1

NIVIFWGA [27] −0.0724 0.3012 0.1523 0.2474 V2 � V4 � V3 � V1

NIVIFOWGA [27] −0.0690 0.2986 0.1522 0.2474 V2 � V4 � V3 � V1

NIVIFWAA normal interval-valued intuitionistic fuzzy weighted arithmetic averaging, NIVIFOWAA normal
interval-valued intuitionistic fuzzy orderedweighted arithmetic averaging,NIVIFWGA normal interval-valued
intuitionistic fuzzy weighted geometric averaging, NIVIFOWGA normal interval-valued intuitionistic fuzzy
ordered weighted geometric averaging
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γ1 = ((0.7536, 0.1016), [0.2944, 0.4590], [0.3325, 0.4704]),
γ2 = ((0.7333, 0.0301), [0.5296, 0.7449], [0.1516, 0.2551]),
γ3 = ((0.8714, 0.0316), [0.3950, 0.5627], [0.1933, 0.3565])
and γ4 = ((0.7131, 0.0588), [0.5476, 0.6565], [0.1000,
0.2213]). By using the existing score function S ′

1, we get
the score values of each alternative as S ′

1(γ1) = −0.0187,
S ′
1(γ2) = 0.3182, S ′

1(γ3) = 0.1777 and S ′
1(γ4) = 0.3147.

Similarly,we can perform the other operators to aggregate the
numbers and the resultant values of the alternatives obtained
through different operators and the final ranking order are
listed in Table 6.

From the table, it can clearly be seen that the most opti-
mal alternative is V2, and it coincides with the result of the
proposed approach.

Conclusion

The key contribution of the work can be summarized below.

(1) The examined study employs the normal intuitionistic
fuzzy numbers to express the vagueness in the data.
The normal fuzzy numbers have widely used and sev-
eral advantages such as all the natural phenomena and
production activities are well expressed by such num-
bers; the higher derivative of the normal membership
function is continuous. Thus, it will represent the data
in a better manner than other fuzzy numbers.

(2) To rank the different NIFNs and/or NIVIFNs, we pro-
posed some new improved score functions by adding
the degree of the hesitancy into the given functions,
to overcome the impediments of existing score and
accuracy functions [23,27]. The various properties of
the stated functions are discussed. On the other hand,
the supremacies of the proposed functions to rank the
given numbers over the existing functions are described
through counter-intuitive cases (Examples 1, 2).

(3) Also, from the stated functions, it has been achieved
that by setting a zero hesitancy degree corresponding to
given numbers, the proposed functions defined in Eqs.
(15) and (17) reduces to the existing functions as Eqs.
(7) and (12) respectively, under the NIFS and NIVIFS
environment.

(4) Two new algorithms based on the stated functions are
defined to solve the MADM problems with NIFS and
NIVIFS information. In these approaches, different val-
ues of the alternatives are aggregated by using weighted
operators and then finally the obtained numbers are
ranked by using the stated score functions.

(5) To demonstrate the appearance of the stated algorithms,
a numerical example is given and compare their results
with the existing studies [24–27]. It is concluded from
this study that the proposed work gives more reason-

able ways to handle the fuzzy information to solve the
practical problems.

In the future, we shall lengthen the application of the pro-
posed measures to the diverse fuzzy environment as well as
different fields of application such as supply chain manage-
ment, emerging decision problems, brain hemorrhage, risk
evaluation, etc [28–31].
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