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Abstract
The balance between the exploration and the exploitation plays a significant role in the meta-heuristic algorithms, especially
when they are used to solve large-scale optimization problems. In this paper, we propose a multiple-strategy learning particle
swarm optimization algorithm, called MSL-PSO, to solve problems with large-scale variables, in which different learning
strategies are utilized in different stages. At the first stage, each individual tries to probe some positions by learning from
the demonstrators who have better performance on the fitness value and the mean position of the population. All the best
probed positions, each of which has the best fitness among all positions probed by its corresponding individual, will compose
a new temporary population. The temporary population will be sorted on the fitness values in a descending order, and will
be used for each individual to find its demonstrators, which is based on the rank of the best probed solution in the temporary
population and the rank of the individual in the current population, to learn using a new strategy in the second stage. The first
stage is used to improve the exploration capability, and the second one is expected to balance the convergence and diversity
of the population. To verify the effectiveness of MSL-PSO for solving large-scale optimization problems, some empirical
experiments are conducted, which include CEC2008 problems with 100, 500, and 1000 dimensions, and CEC2010 problems
with 1000 dimensions. Experimental results show that our proposed MSL-PSO is competitive or has a better performance
compared with ten state-of-the-art algorithms.

Keywords Large-scale optimization · Multiple-strategy learning particle swarm optimization · Two-stage searching
mechanism

Introduction

Optimization problems can be seen everywhere, for example,
the optimization of the water distribution network [36], the

Hao Wang and Mengnan Liang are co-first authors.

B Chaoli Sun
chaoli.sun.cn@gmail.com

Hao Wang
h_wang_cn@163.com

Mengnan Liang
liangmn5@163.com

Guochen Zhang
imzgc@hotmail.com

Liping Xie
xieliping@tyust.edu.cn

1 Department of Computer Science and Technology, Taiyuan
University of Science and Technology, Taiyuan 030024,
China

optimization strategy of the resource allocation [16], the task
assignment [19], and many others [1,12,21,24,39–41,48,50,
72]. As a maximum optimization problem can be transferred
to a minimum one by multiplying −1, in this paper, only
theminimization problems are considered. Themathematical
model of a minimization problem can be described in the
following:

min f (x) (1)

s.t. x ∈ �D, (2)

where D is the dimension of the problem, and f (x) is the
objective of the optimization. Meta-heuristic optimization
algorithms, including evolutionary algorithms [11,14], and
swarm optimization algorithms [15,20,26,27,31,32,44,46,
56] have been paid more and more attention and applied suc-
cessfully in many optimization problems [23,27,43,52,70]
because of its ease of usage and independence on the char-
acteristics of the optimization problems.
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Traditional meta-heuristics have shown excellent abili-
ties for solving lower dimensional optimization problems.
However, their performances would deteriorate dramatically
when the number of dimensions exceeds 100 [6], called
large-scale optimization problems, because of the curse of
dimensionality [34,59]. The search processwill then stagnate
into a local optimum and, therefore, result in a premature
convergence. Thus, it is critical to enhance the diversity
of the population so as to improve the exploration capa-
bility for tackling the large-scale optimization problems.
Some approaches have been proposed for solving problems
with large-scale dimensions, which can be divided into two
categories: cooperative coevolution (CC) methods and new
learning strategies.

1. The cooperative coevolutionarymethods adopt the divide-
and-conquer strategy, which decomposes the popula-
tion into a number of subpopulations and solves them
independently. Many algorithms based on cooperative
coevolutionary frameworks for large-scale optimization
problems have been proposed, such as cooperative coevo-
lutionary genetic algorithms [2,3,22,42,55,69] coopera-
tive coevolutionary PSO (CCPSO) [30], and cooperative
coevolutionary DE (DECC) [29,37,51,64–67], etc. The
methods are efficient when the optimization problems
are separable. However, the performance is not so good
when the problems are nonseparable. Therefore, differ-
ent decomposition strategies, such as random dynamic
grouping [66], multilevel dynamic grouping [67], and
differential grouping [29,38], have been proposed. Also,
it is obvious that the performance of CC algorithms is
highly sensitive to the decomposition strategies for dif-
ferent classes of optimization problems.

2. In each meta-heuristic algorithm, the learning strategy
plays a significant role to find an optimal solution.
Therefore, researchers try to develop different learning
strategies for meta-heuristic algorithms so as to enhance
the exploration capability of the population, which aims
to promote the chances of escaping from local optima [5–
8,17,18,25,28,47,58]. The performance of exploration is
improved by keeping the diversity of the population.
However, more evaluations on the objective functions are
required for the final convergence.

In recent years, the surrogate-assisted evolutionary algo-
rithms, such as SA-COSO [54], SHPSO [68], and MGP-
SLPSO [57], have been paid attention for solving computa-
tionally expensive high-dimensional problems (generally not
more than 100 dimensions). However, not so many methods
have been proposed for solving computationally expensive
large-scale optimization problems. Ivanoe De Falco et al.
[9,10] decomposed the large-scale optimization problems
into some lower-dimensional sub-problems and optimized

using the surrogate-assisted optimization algorithms and
parallel computing techniques. Sun et al. [53] proposed
to solve large-scale optimization problems by a modified
PSO algorithm assisted by the fitness estimation strategy.
Generally, the number of exact fitness evaluation in the
surrogate-assisted evolutionary algorithms for solving a com-
putationally expensive problem is very limited, which will
not be considered in this paper. That is, only the large-scale
optimization problems with cheap fitness evaluation are con-
sidered to be solved in this paper, in which a large number
of fitness evaluations are allowed.

To balance between the exploration and exploitation in
solving large-scale optimization problems, in this paper, we
propose amultiple strategy learning particle swarmoptimiza-
tion (MSL-PSO) method, in which two steps with different
learning strategies are proposed to generate a newpopulation.
At the first step, the current population will be sorted from
the worst to the best based on the fitness values, and each
individual will probe different positions by learning from its
demonstrators and the mean position of the current popu-
lation. The best position probed by each individual will be
kept and compose a temporary population, which will also
be sorted from the worst to the best based on their fitness
values. Each individual will update its position by learning
demonstrators fromdifferent sub-sets of the temporary popu-
lation,which is used to balance the convergence anddiversity.
Similar to those learning strategies that have been proposed,
such as SL-PSO [6], CSO [5], and DEGLSO [63], etc., our
MSL-PSO method also focuses on the learning strategy that
concerns the trade-off between the convergence and diversity
of the population.

The remainder of this paper is organized as follows. The
section “Related work” gives a brief introduction on the
canonical particle swarm optimization (PSO) algorithm and
the methods for solving the large-scale optimization prob-
lems. Our proposed MSL-PSO algorithm is described in
detail in the section “The proposed algorithm”. In the section
“Experimental studies”, experiments are conducted to verify
the effectiveness and efficiency of MSL-PSO by comparison
with ten state-of-the-art algorithms. Finally, the conclusion
of this paper is given in the section “Conclusion”.

Related work

Particle swarm optimization

The particle swarm optimization (PSO), which simulates the
bird flocking or fish schooling,was proposed byKennedy and
Eberhart [13], is one of the swarm optimization algorithms.
In PSO, each individual has its own velocity and position,
which will be updated using the following equations:
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vid(t + 1) = ωvid(t) + c1r1(pid(t)

−xid(t)) + c2r2(gd(t) − xid(t)) (3)

xid(t + 1) = xid(t) + vid(t + 1), (4)

where vi (t) = (vi1(t), vi2(t), . . . , vi D(t)) and xi (t) =
(xi1(t), xi2(t), . . . , xiD(t)) represent the velocity and posi-
tion of individual i at t th generation, respectively. pi (t) =
(pi1(t), pi2(t), . . . , piD(t)) and g(t) = (g1(t), g2(t), . . . ,
gD(t)) are the best historical position of individual i and the
swarm, respectively. w is called the inertia weight, c1 and c2
are two cognitive parameters, and r1 and r2 are two random
number generated uniformly in the range of [0, 1]. The PSO
algorithm has been shown better convergence performance;
however, it is not good for solving large-scale optimization
problems [6]. Therefore, different PSOvariants, such as CSO
[5], SL-PSO [6], LLSO [61] and DEGLSO [63], have been
proposed, in which different learning strategies were utilized
in the swarm optimization algorithms to improve the diver-
sity of PSO so as to enhance the exploration capability.

Optimization of the large-scale problems

Generality, the meta-heuristic algorithms proposed for solv-
ing large-scale optimization problems can be classified into
two categories. One is the cooperative coevolutionary meta-
heuristic algorithms, and the other is the meta-heuristic
methods with efficient learning strategies.

Cooperative coevolutionary algorithms

The cooperative coevolution (CC) mechanism divides the
large-scale problem into a number of small subproblems,
and then optimize them separately using the canonical meta-
heuristics. Generally, there are also two categories of CC
evolutionary algorithms according to the decomposition
strategies: the static and dynamic decomposition strategies.
The static decomposition strategy first detects the correla-
tionship between variables and then decompose them in a
fixed way before the optimization. For example, Omidvar et
al. [37] proposed a differential grouping (DG) strategy, in
which the problem is separated into a number of small sub-
problems.Mei et al. [33] extended the DGmethod to identify
the independent subproblems to be optimized by a covari-
ance matrix adaptation evolution strategy. Different to the
static decomposition strategy, the variables are decomposed
to different subproblems at different generations, which
can be further classified into random-based decomposition
and learning-based decomposition. Li et al. [29] proposed
CCPSO2 for large-scale optimization problems, in which
the randomgroupingwas adopted to decompose the variables
into subcomponents dynamically. However, the performance
will be deteriorated when the problem is nonseparable. Ray

andYao [45] proposed an adaptive variable partitioningbased
on the correlation, which was utilized in the cooperative
coevolutionary algorithms to deal with nonseparable prob-
lems.

The decomposition strategy plays significant importance
in the cooperative coevolutionary algorithms. Poor decom-
position will deteriorate the performance the algorithms, and
also, it will be inefficient when all variances of the problem
are correlated to each other.

New learning strategies for meta-heuristic algorithms

Different to the cooperative coevolutionary algorithms, some
learning strategies are proposed to be put into the meta-
heuristic algorithms to improve the diversity of the popu-
lation, and thus enhance the exploration capability of the
algorithms. In ourmethod, we focus on studying a new learn-
ing strategy for PSO to find a global optimal solution for
the large-scale optimization problems. Therefore, only PSO
variants for large-scale optimization were reviewed in this
section. Cheng and Jin [5] proposed a competitive swarm
optimizer (CSO) algorithm, in which a random competition
strategy was utilized and any individual with a better fitness
value in a pair will be the winner. Instead of learning from the
personal best position of the individual and of the swarm, in
CSO, the loser in the pair will learn from its winner. Inspired
by CSO, Yang et al. [62] proposed a segment-based pre-
dominant learning swarm optimizer (SPLSO), in which the
dimension will be divided into a number of segments and
variables in different segments will be evolved by learning
from different exemplars. The social learning PSO [6] was
also proposed by Cheng and Jin, in which the population
will be sorted according to the fitness and each individual
will learn from its demonstrators [4] who have better fitness
values than this individual. Later, Yang et al. [61] separated
the population into a number of levels based on the fitness
values, and each individual will learn from particles in two
higher layers.

The proposed algorithm

The trade-off between the convergence and diversity of the
population is crucial for meta-heuristic algorithms to solve
large-scale optimization problems, because the search space
will increase exponentially when the dimension of the prob-
lem increases [62], which will put significant challenges to
find the global optimal solution. PSO has been shown to be
implemented easily and has quick convergence capability.
However, the diversity of the population will be lost quickly
after some generations because of the quick convergence of
the algorithm. Therefore, the PSOalgorithm is not efficient to
solve large-scale optimization problems. SomePSOvariants,
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such as CSO [5], SL-PSO [6], SPLSO [62], and LLSO [61],
have put forward different learning strategies to improve the
diversity of the population to solve large-scale optimization
problems. In this paper, we propose a multi-strategy learning
particle swarm optimization (MSL-PSO) method, in which
the idea of social learning proposed in [6] is adopted to update
the position of each individual in the population. However,
different to the SL-PSO algorithm, two stages with different
learning strategies are used to generate a new population. In
the first stage, each individual will probe some positions by
learning from its demonstratorswhohavebetter fitness values
than this individual and the mean position of the population.
The best probed position, which has theminimal fitness value
among all of its probed positions, will be kept. All the best
probed positions at current generation will compose a tem-
porary population, which will be sorted fromworst to best on
the fitness values. Then, in the second stage, a new strategy,
which is used to balance the diversity and convergence, will
be used to update the velocity and position of each individ-
ual. In the following, we will give a detailed description of
the proposed method.

The overall framework of MSL-PSO

Algorithm 1 gives a pseudocode of theMSL-PSO algorithm.
A population Pop will be initialized, and the fitness of each
individual in Pop will be evaluated. While the stopping cri-
teria is not met, the following process will be repeated: all
individualswill be sorted on the fitness values in a descending
order. Each individual will probe Kmax positions by learning
from its demonstrators and the mean position of the current
population. The best probed position, which has the min-
imum fitness value among Kmax positions, will be kept for
each individual (lines 6–7). All of these best probed positions
will compose a temporary population NPop. Then, individ-
uals in the NPop will also be sorted on their fitness values in
a descending order. Afterwards, each individual i will find
two sub-sets of NPop, one is composed of all individuals
whose rank in NPop is between the rank of individual i in
the sorted NPop and that of individual i in the sorted Pop,
and the other is composed of all individuals whose rank is
larger than that of individual i in the sorted NPop, for select-
ing demonstrators to update its velocity using the strategy
proposed in our method (line 11). At each generation, an
individual will explore Kmax + 1 different positions by the
two learning criteria, and all of these Kmax +1 positions will
be evaluated using the objective function. Therefore, there
will be Kmax +1 fitness evaluations for each solution at each
generation, and the total number of fitness evaluations will be
(Kmax +1)∗NP, where NP is the size of current population.

Algorithm 1: The pseudocode of MSL-PSO
Input: Population size N P , the number of maximal fitness

evaluations MAX_FES;
Output: The optimal solution and its fitness;

1 Initialization of a population Pop;
2 Evaluate the fitness of each individual in Pop, f es = N P;
3 while f es ≤ MAX_FES do
4 Sort the population in a descending order;
5 for i = 1 : N P do
6 Probe Kmax positions using the social learning

technique proposed in [6] for individual i ; (Refer to
Algorithm 2)

7 Evaluate these Kmax positions and keep the best
solution among these Kmax solutions;

8 end for
9 Sort the new population NPop, which is composed of the

best probed position of each individual in Pop, in a
descending order;

10 for i = 1 : N P do
11 Find two sub-sets in the new population NPop for the

social learning of individual i , and the population Pop
will be updated; (Refer to Algorithm 3)

12 end for
13 f es = f es + (Kmax + 1) ∗ N P;
14 end while
15 Output the optimal solution and its fitness value;

Fig. 1 Population sorting

Position probing

Algorithm 2 gives the detail on how an individual probes dif-
ferent positions by social learning technique proposed in [6].
Similar to SL-PSO [6], all individuals in the current popula-
tion will be sorted in a descending order based on the fitness
value, which is shown in Fig. 1. Suppose that the rank of
individual i is j , and then, individuals that have larger rank
than j are all demonstrators of individual i .

For each individual i , Kmax positions will be probed
using Eqs. (5) and (6) by learning from the demonstrators
to improve the exploration capability of the population:

vvkid = rk1 ∗ vid(t) + rk2 ∗ (x jd(t) − xid(t))

+φ ∗ rk3 ∗ (x̄d(t) − xid(t)) (5)

xxkid = xid(t) + vvkid , (6)

where k = 1, 2, . . . , Kmax; Kmax is the maximum number of
probation for each individual. vvki = (vvki1, vvki2, . . . , vvki D)

and xxki = (xxki1, xx
k
i2, . . . , xx

k
i D) represent the velocity

and position that individual i learns from its demonstra-
tors at kth time, respectively. vi (t) = (vi1, vi2, . . . , vi D) and
xi (t) = (xi1, xi2, . . . , xiD) are the velocity and position of
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individual i at generation t , respectively. x̄(t) = 1
NP

∑NP
i=1 xi

is the mean position of the population at generation t . rk1 , r
k
2 ,

and rk3 are random numbers uniformly generated in the range
of [0, 1] at kth time. φ is a constant called the social learning
probability which is used to define the degree to learn from
the mean position of the population. Note that the Kmax posi-
tions have little probability to be same, because the individual
will choose different demonstrators to learn on each dimen-
sion. It can be easily imaged that more positions are probed
by learning from demonstrators, more chances it will have to
find a better solution at each generation. However, the com-
putational resources will be quickly exhausted, because too
many fitness evaluations will be consumed at each genera-
tion, which, in turn, will impede the population to explore the
search space and, correspondingly, will not be able to find a
good optimal solution. On the other hand, the less positions
are probed, the less probability it has to find a better solution
at each generation. The best probed position with the min-
imum fitness value among Kmax solutions will be kept and
denoted as xc (line 9 in Algorithm 2), and its corresponding
velocity is denoted as vc.

Algorithm 2: Position probing
Input: individual i ;
Output: the best probed position xci ;

1 for k = 1 : Kmax do
2 for d=1:D do
3 Randomly select one individual from its

demonstrators;
4 Update the velocity on dth dimension using Eq. (5);
5 end for
6 Generate kth candidate position using Eq. (6);
7 end for
8 Evaluate the fitness values of these candidate positions;
9 xci = argmin{ f (xx1), f (xx2), . . . , f (xxKmax )};

Position updating

The convergence and diversity are two key factors in find-
ing the global optimal solutions for large-scale optimization
problems. A good performance on the diversity can improve
the exploration capability, while a good performance on the
convergence can speed up locating at the optimal position.
Therefore, in the second stage of MSL-PSO, we propose a
new strategy, in which the demonstrators of each individual
are selected from two sub-sets ofNPop,which is composedof
all best probed positions, i.e., NPop = {xc1, xc2, . . . , xcNP},
to update the velocity of each individual in the population
Pop. Equations (7) and (8) show how to update the veloc-
ity and position of each individual in the stage of position

updating for each individual:

vid(t + 1) = r1 ∗ vcid + r2 ∗ (xc jd − xcid(t))

+φ ∗ r3 ∗ (xckd − xcid(t)) (7)

xid(t + 1) = xcid + vid(t + 1). (8)

In Eqs. (7) and (8), vci = (vci1, vci2, . . . , vciD) and xci =
(xci1, xci2, . . . , xciD) are the velocity and position, respec-
tively, of the best probed position for individual i . j and k
represent the two demonstrators in NPop for individual i to
learn on dimension d. φ is the social learning probability
which has the same meaning to that in Eq. (5).

Figure 2 gives a simple example to show how to select two
demonstrators in the second stage. In Fig. 2, demonstrator_1
and demonstrator_2 represent two sub-sets for individual i
to choose demonstrators to learn, respectively. For each indi-
vidual i , we have its rank in Pop and rank in NPop. When
the rank of the best probed position of individual i in the
NPop is worse than the rank of the individual i in the Pop, it
means that it falls behind more other individuals in the NPop
compared to it does in the Pop. For example in Fig. 2a, the
rank of xci in NPop is k, and the rank of xi (t) in Pop is j ,
k < j , then the demonstrators between k and j will be used to
guide the individual to exploit a better solution. Conversely,
when the rank of the best probed position of an individual
i in NPop is better than that of the individual i in Pop, it
means that the best probed position has a better performance
among NPop than the individual i in Pop. To prevent prema-
ture convergence, we also learn from some losers of the best
probe solution. Seen from Fig. 2b, we can see that j < k,
and the losers between j and k will be selected as one of the
demonstrators. The other demonstrator is selected from the
sub-set demonstrator_2 which is composed of all individuals
that have better fitness than the best probed position.

Algorithm 3 gives the pseudocode of the position updat-
ing. Each individual i will update its velocity and position
according to Eqs. ( 7) and (8), respectively. The global best
position gbest will be updated if a new position is better than
it.

Algorithm 3: Position updating
Input: the best probe position of individual i (xci );
Output: the position of individual i at generation t + 1;

1 Update the velocity and position using Eqs. (7) and (8),
respectively;

2 Evaluate the fitness value of individual i ;
3 if f (xi (t + 1)) < f (gbest) then
4 gbest = xi (t + 1);
5 f (gbest) = f (xi (t + 1));
6 end if
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Table 1 Summary of the CEC2008 benchmark functions

Function name Properties Search range

F1 Shifted sphere function Unimodal; shifted; separable; scalable; [−100, 100]D
F2 Schwefel’s problem Unimodal; shifted; non-separable; scalable; [−100, 100]D
F3 Shifted Rosenbrok’s function Multi-modal; shifted; non-separable; scalable; [−100, 100]D
F4 Shifted Rastrigin’s function Multi-modal; shifted; separable; scalable; [−5, 5]D
F5 Shifted Griewank’s function Multi-modal; shifted; non-separable; scalable; [−600, 600]D
F6 Shifted Ackley’s function Multi-modal; shifted; separable; scalable; [−32, 32]D
F7 Fast fractal ’double dip’ function Multi-modal; Non-separable;Scalable; [−1, 1]D

Fig. 2 A simple example to show the method in the second stage

Experimental studies

Experimental setup and benchmark functions

To verify the performance of MSL-PSO, a series of experi-
ments are conducted on CEC2008 and CEC2010 large-scale
benchmark problems. The main characteristics of these two
function sets are summarized in Tables 1 and 2.

The parameter settings of MSL-PSO are given in the fol-
lowing: the population size NP is set to 100 if the dimension
is not larger than 100, and otherwise, NP= M + �(D/10)�,
where M = 100 and D is the dimension of the problem.
The social learning probability φ is set to D/M ∗ 0.01. The
number of dimensionality D is set to 100, 500, and 1000 for
CEC2008 test problems and 1000 for CEC2010 benchmark
problems, respectively. The algorithm will be run 20 times
independently on each problem. The stopping criteria are

Fig. 3 The experimental results on the 1000-dimensional CEC2010
F9 problem obtained by the proposed method with different maximum
number of candidate positions

that the maximum number of function evaluation reaches
3000 ∗ D. Generally, more candidate positions provided,
more chances to find a better optimal solution. However,
the number of fitness evaluation will be consumed much
quicker if more candidate positions are considered. On the
contrary, less positions are probed, less probability it has to
find a better solution at each generation. To see which value
is best for assisting the proposed method to obtain good opti-
mal solutions, we compare the mean optimal solutions of the
1000-dimensionalCEC2010F9problemobtainedby the pro-
posedmethod using different maximumnumber of candidate
positions. Figure 3 gives the mean results of 20 independent
runs with 1, 2, 3, and 4 positions probed by each individ-
ual at each generation, respectively. From Fig. 3, we can see
that the performance of MSL-PSO is best when the maxi-
mum number of probed position is set to 3. Therefore, in our
experiments, only three positions are probed for each indi-
vidual by learning from its demonstrators, i.e., Kmax = 3.

Comparisons to theMSL-PSO variants

From the detailed description of MSL-PSO, we can see that
there are two stages to generate a new position for each indi-
vidual. To see the performance of our proposed method, we
first compare the results obtained on F6 and F9, which are
multi-model and uni-model, respectively, with two MSL-
PSO variants, in which one variant uses the first stage of
MSL-PSO only (denoted as mSL-PSO) and the other one
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Table 2 Summary of the CEC2010 benchmark functions

Function name Properties Search range

F1 Shifted elliptic
function

Unimodal;
shifted; sepa-
rable; scalable;

[−100, 100]D

F2 Shifted Rastri-
gin’s function

Multi-modal;
shifted; separa-
ble; scalable;

[−5, 5]D

F3 Shifted Ackley’s
function

Multi-modal;
shifted; separa-
ble; scalable;

[−32, 32]D

F4 Single-group
shifted and m-
rotated elliptic
function

Unimodal;
shifted; single-
group m-rotated;
single-group
m-rotated;

[−100, 100]D

F5 Single-group
shifted and
m-rotated Rastri-
gin’s function

Multi-modal;
shifted; single-
group m-rotated;
single-group
m-non-separable;

[−5, 5]D

F6 Single-group
shifted and m-
rotated Ackley’s
function

Multi-modal;
shifted; single-
group m-rotated;
single-group
m-non-separable;

[−32, 32]D

F7 Single-group
shifted and m-
dimensional
Schwefel’s prob-
lem

Unimodal;
shifted;
single-group
m-non-separable;

[−100, 100]D

F8 Single-group
shifted and m-
dimensional
Rosenbrock’s
function

Multi-modal;
shifted;
single-group
m-non-separable;

[−100, 100]D

F9 D
2m -group shifted
and m-rotated
elliptic function

Unimodal;
shifted; D

2m -
group m-rotated;
D
2m -group m-
Non-separable

[−100, 100]D

F10 D
2m -group shifted
and m-rotated
Rastrigin’s func-
tion

Multi-modal;
shifted; D

2m -
group m-rotated;
D
2m -group m-
Non-separable

[−5, 5]D

replaces the strategyused in the second stagewith the strategy
proposed in SL-PSO (denoted as SL-PSOs). Table 3 gives the
statistical results of these algorithms on CEC2010 F6 and F9
benchmark problems with 1000 dimensions. Each algorithm
is run independently for 20 times on each test problem, and
the Wilcoxon rank sum test with a significance level of 0.05
is applied to assess whether the performance of a solution
obtained by one of the two compared algorithms is expected
to be better than the other [60]. In Table 3, ‘+’,‘≈’, and ‘−’
represent that MSL-PSO is significantly better, equivalent

to, and worse than the compared algorithms, respectively,
according to the Wilcoxon rank sum test on the mean fitness
values. The best mean optimal solution on each benchmark
problem is highlighted with an underline. From Table 3, we
can see that our proposedMSL-PSO can obtain better results
than mSL-PSO and SL-PSOs on both of these problems,
which showed that the method using two stages is effective
to solve large-scale optimization problems.
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Table 2 continued

Function name Properties Search range

F11 D
2m -group Shifted
and m-rotated
Ackley’s func-
tion

Multi-modal;
Shifted; D

2m -
group m-rotated;
D
2m -group m-
Non-separable

[−32, 32]D

F12 D
2m -group
Shifted and
m-dimensional
Schwefel’s prob-
lem

Unimodal;
Shifted;
D
2m -group m-
Non-separable

[−100, 100]D

F13 D
2m -group
Shifted and
m-dimensional
Rosenbrock’s
function

Multi-modal;
Shifted;
D
2m -group m-
Non-separable

[−100, 100]D

F14 D
m -group shifted
and m-rotated
elliptic function

Unimodal;
shifted; D

m -
group m-rotated ;
D
m -group m-Non-
separable

[−100, 100]D

F15 D
m -group shifted
and m-rotated
Rastrigin’s func-
tion

Multi-modal;
shifted; D

m -
group m-rotated ;
D
m -group m-Non-
separable

[−5, 5]D

F16 D
m -group shifted
and m-rotated
Ackley’s func-
tion

Multi-modal;
shifted; D

m -
group m-rotated ;
D
m -group m-Non-
separable

[−32, 32]D

F17 D
m -group shifted
m-dimensional
Schwefel’s func-
tion

Unimodal;
shifted; D

m -group
m-Non-separable
;

[−100, 100]D

F18 D
m -group shifted
m-rotated Rosen-
brock’s function

Multi-modal;
shifted; D

m -group
m-Non-separable

[−100, 100]D

F19 Shifted Schwe-
fel’s problem

Unimodal;
shifted; fully-
nonseparable

[−100, 100]D

F20 Shifted Schwe-
fel’s problem

Multi-modal;
shifted; fully-
nonseparable

[−100, 100]D

Table 3 Comparisons on the mean values and standard deviation between MSL-PSO and its variants on CEC2010 F6 and F9 test problems with
1000 dimensions (D = 1000)

mSL-PSO SL-PSOs MSL-PSO

F6 Mean 1.42E−07 (+) 1.48E−07 (+) 9.07E-08

Std 2.72E−09 7.14E−09 7.11E-01

F9 Mean 4.53E+07 (+) 6.96E+07 (+) 1.23E+07

Std 2.40E+06 6.97E+06 1.13E+06
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Fig. 4 Comparison on CEC
2008
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Table 4 Comparisons of the mean value and standard deviation between MSL-PSO and other algorithms on CEC2008 test problems with 100
dimensions (D = 100)

SL-PSO CCPSO2 MLCC Sep-CMA-ES EPUS-PSO DMS-L-PSO MSL-PSO

F1 Mean 1.09e−27 7.73e−14 6.82e−14 9.02e−15 7.47e−01 0.00e-00 6.97e−28

Std 3.50e−28 3.23e−14 2.32e−14 5.53e−15 1.70e−01 0.00e−00 3.14e−28

F2 Mean 9.45e−06 6.08e+00 2.53e+01 2.31e+01 1.86e+01 3.65e+00 5.03e-06

Std 4.97e−06 7.83e+00 8.73e+00 1.39e+01 2.26e+00 7.30e−01 1.70e-06

F3 Mean 5.74e+02 4.23e+02 1.50e+02 4.31e+00 4.99e+03 2.83e+02 9.15e+01

Std 1.67e+02 8.65e+02 5.72e+01 1.26e+01 5.35e+03 9.40e+02 1.85e+01

F4 Mean 7.46e+01 3.98e−02 4.39e−13 2.78e+02 4.71e+02 1.82e+02 1.18e+02

Std 1.21e+01 1.99e−01 9.21e−14 3.43e+01 5.94e+01 2.16+01 9.34e+01

F5 Mean 0.00e+00 3.45e−03 3.41e−14 2.96e−04 3.72e−01 0.00e−00 0.00e+00

Std 0.00e+00 3.45e−03 7.87e−14 1.48e−03 5.60e−02 0.00e−00 0.00e+00

F6 Mean 2.10e−14 1.44e−13 1.11e−13 2.12e+01 2.06e+00 0.00e−00 1.78e−14

Std 5.22e−15 3.06e−14 7.87e−15 4.02e−01 4.40e−01 0.00e−00 7.72e−15

F7 Mean −1.48e+03 −1.50e+03 −1.54e+03 −1.39e+03 −8.55e+02 −1.14e+03 -2.45e+03

Std 1.90e+01 1.04e+01 2.52e+00 2.64e+01 8.48e+00 8.48e+00 1.00e+00

Table 5 Comparisons of the mean value and standard deviation between MSL-PSO and other algorithms on CEC2008 test problems with 500
dimensions (D = 500)

SL-PSO CCPSO2 MLCC Sep-CMA-ES EPUS-PSO DMS-L-PSO MSL-PSO

F1 Mean 7.24e−24 7.73e−14 4.30e−13 2.25e−14 8.45e+01 0.00e+00 6.83e-24

Std 2.20e−25 3.23e−14 3.31e−14 6.10e−15 6.40e+00 0.00e+00 3.30e-25

F2 Mean 3.47e+01 5.69e+01 6.67e+01 2.12e+02 4.35e+01 6.89e+01 3.11e+01

Std 1.03e+00 4.21e+01 5.70e+00 1.74e+01 9.51e−01 2.01e+00 7.14e−01

F3 Mean 6.10e+02 7.24e+02 9.25e+02 2.93e+02 5.77e+04 4.67e+07 4.85e+02

Std 1.87e+02 1.54e+02 1.73e+02 3.59e+01 8.04e+03 5.87e+06 3.43e+02

F4 Mean 2.72e+03 3.98e−02 1.79e−11 2.18e+03 3.49e+03 1.61e+03 4.34e+03

Std 3.25e+02 1.99e−01 6.31e−11 1.51e+02 1.11e+02 1.04e+02 5.22e+02

F5 Mean 3.33e−16 1.18e−03 2.13e−13 7.88e−04 1.64e+00 0.00e+00 8.76e-18

Std 0.00e+00 4.61e−03 2.48e−14 2.82e−03 4.69e−02 0.00e+00 0.00e+00

F6 Mean 1.46e−13 5.34e−13 5.34e−13 2.15e+01 1.64e+00 2.00e+00 3.46e−14

Std 2.95e−15 8.61e−14 7.01e−14 3.10e−01 4.49e−01 9.66e−02 5.01e−16

F7 Mean −5.94e+03 −7.23e+03 −7.34e+03 −6.37e+03 −3.51e+03 −4.20e+03 − 7.78e+03

Std 1.72e+02 4.64e+01 8.03e+00 8.59e+00 1.29e+01 1.29e+01 7.11e+00

Comparisons to other state-of-the-art algorithms

In our experimental analysis, we further compare the results
of MSL-PSO with ten state-of-the-art algorithms, which are
shown in the following, to verify the performance of our pro-
posed MSL-PSO algorithm. The best mean optimal solution
on each benchmark problem is highlightedwith an underline.
Note that except the result of CSO, SL-PSO, and CCPSO2,
all other results of the comparison algorithms are copied from
their corresponding paper.

1. DECC-G [66]: Instead of using a static grouping, the
optimization problem is randomly decomposed into k

subproblems in the decision space, and then co-evolute
to find the global optimal solution.

2. MLCC [67]: The decomposer is selected by a self-
adapted mechanism based on the historic performance
at the start of each cycle.

3. DECC-DG [29]: A differential grouping is utilized to
uncover the underlying interaction structure of the deci-
sion variables, and then, a number of subproblems are
formed.

4. CSO [5]: A new competitive learning strategy for PSO
was proposed to solve the problems with large-scale
dimensions, in which every two individuals will be com-
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Table 6 Comparisons of the mean value and standard deviation between MSL-PSO and other algorithms on CEC2008 test problems with 1000
dimensions (D = 1000)

SL-PSO CCPSO2 MLCC Sep-CMA-ES EPUS-PSO DMS-L-PSO MSL-PSO

F1 Mean 7.10e−23 5.18e−13 8.46e−13 7.81e−15 5.53e+02 0.00e+00 9.33e-25

Std 1.40e−24 9.61e−14 5.01e−14 1.52e−15 2.86e+01 0.00e+00 5.80e-23

F2 Mean 8.87e+01 7.82e+01 1.09e+02 3.65e+02 4.66e+01 9.15e+01 1.61e+01

Std 5.52e+00 4.25e+01 4.75e+00 9.02e+00 7.14e-01 7.14e-01 6.67e-01

F3 Mean 1.04e+03 1.33e+03 1.80e+03 9.10e+02 8.37e+05 8.98e+09 9.75e+02

Std 5.14e+01 4.06e−01 3.37e−10 2.48e+01 4.39e+05 4.39e+08 4.32e+01

F4 Mean 5.89e+02 1.99e−01 1.37e-10 5.31e+03 7.58e+03 3.84e+03 5.50e+02

Std 9.26e+00 4.56e−01 3.37e-10 2.48e+02 1.71e+02 1.71e+02 7.65e+01

F5 Mean 4.44e−16 1.18e−03 4.18e−13 3.94e−04 5.89e+00 0.00e+00 1.10e-16

Std 0.00e+00 3.27e−03 2.78e−14 1.97e−03 3.91e−01 0.00e+00 0.00e+00

F6 Mean 3.44e−13 1.02e−12 1.06e−12 2.15e+01 1.89e+01 7.76e+00 1.11e-14

Std 5.32e−15 1.68e−13 7.68e−14 2.19e+00 2.49e+00 8.92e−02 2.32e-15

F7 Mean −1.30e+04 −1.43e+04 −1.47e+04 −1.25e+04 −6.62e+03 −7.51e+03 −3.00e+04

Std 1.04e+02 8.27e+01 1.51e+01 9.36e+01 1.63e+01 1.64e+01 5.30e+00

Fig. 5 Comparison on CEC
2010

Fig. 6 Convergence tendency
on F7 problem
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Table 7 Comparisons of the mean value and standard deviation between MSL-PSO and other algorithms on CEC2010 test problems with 1000
dimensions (D = 1000)

SL-PSO CSO CCPSO2 DECCDG DECC-G MA-SW-Chains MSL-PSO

F1 Mean 8.73e−18 4.75e−12 1.88e+00 7.80e+03 2.93e−07 2.10e−14 8.31e-19

Std 3.30e−18 7.90e−13 2.26e+00 2.66e+04 8.62e−08 1.99e−14 1.43e-19

F2 Mean 1.93e+03 7.48e+03 5.06e+00 4.43e+03 1.31e+03 8.10e+02 7.92e+02

Std 1.12e+02 2.63e+02 1.10e+00 1.98e+02 3.26e+02 5.88e+01 1.25e+01

F3 Mean 1.85e+00 2.57e−09 5.61e−03 1.67e+01 1.39e+00 7.28e−13 1.45e-13

Std 3.30e−01 3.35e−10 1.73e−03 3.10e−01 9.73e−02 3.40e−13 8.44e-13

F4 Mean 3.04e+11 6.87e+11 2.14e+12 4.95e+12 1.70e+13 3.53e+11 5.30e+11

Std 7.16e+10 1.79e+11 1.54e+12 1.33e+12 3.37e+12 3.12e+10 2.77e+12

F5 Mean 3.17e+07 2.46e+06 4.56e+08 1.49e+08 2.63e+08 1.68e+08 5.98e+06

Std 6.21e+06 1.79e+06 1.38e+08 2.15e+07 6.84e+07 1.04e+08 3.43e+06

F6 Mean 2.15e+01 8.16e−07 1.79e+07 1.63e+01 4.96e+06 8.14e+04 9.07e-08

Std 2.63e+00 2.68e−08 5.21e+06 3.45e−01 1.03e+06 2.84e+05 7.45e-09

F7 Mean 6.49e+04 2.13e+04 2.48e+08 1.14e+04 1.63e+08 1.03e+02 9.12e-02

Std 5.60e+04 3.86e+03 4.31e+08 1.26e+04 5.44e+08 8.70+01 7.11e-01

F8 Mean 2.34e+07 3.86e+07 3.55e+07 3.30e+07 6.44e+07 1.41e+07 8.16e+06

Std 2.64e+06 6.81e+04 3.30e+07 2.63e+07 2.64e+07 3.68e+07 9.47e+05

F9 Mean 3.22e+07 6.68e+07 1.00e+08 5.90e+08 3.21e+08 1.41e+07 1.23e+07

Std 4.45e+06 5.73e+06 3.30e+07 6.45e+06 4.87e+06 1.15e+06 1.13e+06

F10 Mean 2.60e+03 9.58e+03 5.11e+03 4.55e+03 1.06e+04 2.07e+03 6.55e+03

Std 2.17e+02 7.67e+01 7.81e+02 1.29e+02 3.11e+02 1.44e+02 9.85e+01

F11 Mean 2.30e+01 3.98e−08 1.98e+02 1.04e+01 2.34e+01 3.80e+01 5.83e−12

Std 2.10e+00 5.12e−09 2.12e+00 8.71e−01 1.73e+00 7.35e+00 1.28e-13

F12 Mean 1.75e+04 4.37e+05 4.09e+04 2.56e+03 8.93e+04 3.62e-06 1.06e+04

Std 9.70e+03 6.22e+04 1.19e+04 9.55e+03 1.08e+03 5.92e-07 8.61e+03

F13 Mean 8.48e+02 5.53e+02 1.32e+03 5.64e+03 5.12e+03 1.25e+03 4.72e+02

Std 3.74e+02 2.32e+02 1.72e+02 4.16e+03 3.65e+03 5.72e+02 6.54e+01

F14 Mean 2.49e+08 2.46e+08 2.58e+08 3.40e+08 8.08e+08 3.11e+07 1.38e+07

Std 1.53e+07 1.53e+07 1.19e+08 7.52e+07 2.42e+07 1.93e+06 5.94e+06

F15 Mean 1.01e+04 1.11e+04 1.05e+04 5.86e+03 1.22e+04 2.74e+03 7.06e+02

Std 5.23e+01 8.65e+01 1.35e+03 8.24e+02 8.42e+02 1.22e+02 3.34e+01

F16 Mean 5.89e−08 5.68e−08 3.97e+02 7.57e-13 7.66e+01 9.98e+01 7.11e-12

Std 5.61e−09 5.61e−09 5.73e−01 6.43e+00 6.43e+00 1.40e+01 1.14e-13

F17 Mean 2.20e+06 2.21e+06 1.32e+05 3.05e+04 2.87e+05 1.24e+00 5.56e+04

Std 1.56e+05 1.55e+05 5.25e+04 2.24e+03 2.24e+04 1.25e-01 1.32e+04

F18 Mean 1.73e+03 1.64e+03 2.91e+03 1.46e+10 2.46e+04 1.30e+03 1.27e+03

Std 5.22e+02 5.22e+02 2.45e+02 2.03e+09 1.53e+04 4.36e+02 6.32e+02

F19 Mean 1.01e+07 9.86e+06 1.53e+06 1.74e+06 1.11e+06 2.85e+05 8.01e+06

Std 5.64e+05 5.64e+05 7.10e+04 1.10e+05 6.23e+04 1.78e+04 5.67e+05

F20 Mean 1.05e+03 1.07e+03 2.15e+03 6.28e+10 4.06e+03 1.07e+03 9.37e+03

Std 1.49e+02 1.49e+02 1.79e+02 6.97e+09 1.05e+01 7.29e+01 1.57e+03
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Fig. 7 Convergence tendency
on F8 problem

pared on the performance, and the loser will learn from
the winner and the winner be kept to next generation.

5. SL-PSO [6]: A new learning technique was proposed
to solve large-scale optimization problems, in which the
population is sorted in descending order, and each indi-
vidual learns from its demonstrators who have better
fitness values than this individual.

6. CCPSO2 [30]: It is a PSO variant based CC, in which
the decision variables are randomly grouped, the size of
which is also randomly generated.

7. sep-CMA-ES [47]: A simple covariance matrix adapta-
tion evolution strategy variant proposed for large-scale
optimization problems, in which the internal time is
reduced and the space complexity is simplified from
quadratic to linear.

8. EPUS-PSO [49]: A PSO variant is adopted to optimize
the initial parameters of the Reservoir Computing. The
results of EPUS-PSO are better than those obtained by
an exhaustive search for global parameters generation of
Reservoir Computing.

9. DMS-L-PSO [71]: The multi-swarm learning strategy
is raised in DMS-L-PSO, and the sub-swarms will be
re-grouped to exchange information among all the indi-
viduals.

10. MA-SW-Chains [35]: Each individual is assigned to local
search intensity based on its features, and then, different
local searches are chained.

Tables 4, 5, and 6 give the statistical results on CEC2008
test problems with 100, 500, and 1000 dimensions, respec-
tively, and Fig. 4 is a bar-graph to show the number of CEC
2008 test problems with 100, 500, and 1000 dimensions that
our proposed MSL-PSO obtained better, equal, and worse
mean optimal results than each comparison algorithm. In
Fig. 4, the region in red, red, and earth yellow represent the
number of problems that MSL-PSO wins, loses, and draw
with each comparison algorithm, respectively. FromTables 4,
5 and 6 and Fig. 4, we can see thatMSL-PSO outperforms the
other six excellent algorithms on most problems. To be spe-
cific,MSL-PSOobtains better results on 15/21 problems than

SL-PSO, CCPSO2, MLCC, sep-CMA-ES, and EPUS-PSO.
Specially, the mean optimal solutions found by MSL-PSO
are all better than EPUS-PSO. Note that the results of DMS-
L-PSO come from [71], in which the maximum number of
fitness evaluation on CEC2008 is 5000 ∗ D. Compared to
DMS-L-PSO, we can easily find that our MSL-PSO algo-
rithm obtained better results than DMS-L-PSO on all seven
benchmark problems except F1 and F6 with 100, 500, and
1000 dimensions, respectively, even the number of fitness
evaluations of DMS-L-PSO is much more than SML-PSO.
From Tables 4, 5, and 6, we can see that the results of
SML-PSO is not better than, but almost same to, those of
DMS-L-PSO on F1 and F6, which, we think, is because a
local search is utilized in the latter, so that the precise of the
results can be improved. SML-PSO is better than the other
compared algorithms on solving unimodal problems, i.e., F2,
in CEC2008 test suite. Also, MSL-PSO gets better results
on F7 than other algorithms. MSL-PSO algorithm failed to
obtain better results than sep-CMA-ES and MLCC on F3
and F4, respectively; however, the result of MSL-PSO is still
better than the other four compared algorithms.

Table 7 lists the results obtained by six state-of-the-art
algorithms and our proposed MSL-PSO on 20 CEC2010
problems with 1000 dimensions, and Fig. 5 gives the bar-
graph to show the number of CEC 2010 benchmark problems
with 1000 dimensions that our MSL-PSO wins, loses, and
draws with each comparison algorithm. Among the 20 test
instances, MSL-PSO obtained 11 best mean optimal results
among all of these algorithms. Compared to CCPSO2, DEC-
CDG, and DECC-G, which utilize the cooperative coevolu-
tionary strategies, we can see that the proposed MSL-PSO
got only four worse results than both CCPSO2 and DEC-
CDG, and only obtain one worse mean result than DECC-G.
The results compared to SL-PSO and CSO, both of which are
PSO variants, show that MSL-PSO can get 18/20 and 19/20
better mean optimal solutions than both of these algorithms,
which shows that our proposed learning strategy is efficient
to solve the large-scale optimization problems.

For further observations, Fig. 6 and Fig. 7 plot the conver-
gence tendency of MSL-PSO, SL-PSO, CCPSO2, CSO, and

123



14 Complex & Intelligent Systems (2021) 7:1–16

MA-SW-Chains on CEC2010 F7 and F8 problems, respec-
tively, inwhich F7 is unimodal function and F8 ismultimodel
one. From Figs. 6 and 7, we can see that the MSL-PSO can
converge much quicker than others, especially on unimodal
F7. From Table 7, we can also find that MSL-PSO obtained
worse results on the unimodal functions F2, F17, and F19,
which, we analyze, is because all of these three problems are
separable. Therefore, the cooperative coevolutionary algo-
rithms are much suitable for solving this kind of problems.

Conclusion

A multiple-strategy learning particle swarm optimization
was proposed for solving large-scale optimization problems.
Some positions are probed for each individual by learning
its demonstrators and the mean position of the population
at first. And then, each individual updates its velocity and
position by learning two demonstrators coming from differ-
ent sub-sets, which is expected to balance the diversity and
convergence. Experimental results show thatMSL-PSOhas a
better performance on solving large-scale optimization prob-
lems proposed in CEC2008 and CEC2010. However, for the
separable problems, its performance is not better than coop-
erative coevolutionary algorithms, so in the future,wewill try
to introduce the grouping approaches used in CC algorithms
into our proposedMSL-PSO to get much better performance
on solving this kind of problems.

Acknowledgements Thisworkwas supported in part byNationalNatu-
ral Science Foundation of China (Grant no. 61876123), Natural Science
Foundation of Shanxi Province (201801D121131, 201901D111264,
and 201901D111262), Shanxi Science and Technology Innovation
project for Excellent Talents (201805D211028), Shanxi Province Sci-
ence Foundation for Youths (201901D211237), the Doctoral Scientific
Research Foundation of Taiyuan University of Science and Technol-
ogy(20162029), and the China Scholarship Council (CSC).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Cagnina L, Errecalde M, Ingaramo D, Rosso P (2014) An efficient
particle swarm optimization approach to cluster short texts. Inf Sci
265(5):36–49

2. Cai Z, Peng Z (2002) Cooperative coevolutionary adaptive genetic
algorithm in path planning of cooperative multi-mobile robot sys-
tems. J Intell Robot Syst 33(1):61–71

3. Chen WN, Jia YH, Zhao F, Luo XN, Jia XD, Zhang J (2019) A
cooperative co-evolutionary approach to large-scale multisource
water distribution network optimization. IEEE Trans Evolut Com-
put 23(5):842–857

4. Cheng R, Jin Y (2014) Demonstrator selection in a social learn-
ing particle swarm optimizer. In: IEEE congress on evolutionary
computation

5. Cheng R, Jin Y (2015) A competitive swarm optimizer for large
scale optimization. IEEE Trans Cybern 45(2):191–204

6. Cheng R, Jin Y (2015) A social learning particle swarm optimiza-
tion algorithm for scalable optimization. Inf Sci 291:43–60

7. Cheng R, Sun C, Jin Y (2013) A multi-swarm evolutionary frame-
work based on a feedback mechanism. In: IEEE congress on
evolutionary computation, pp 718–724. IEEE, New York

8. Cuevas E, González A, Zaldívar D, Pérez-Cisneros M (2015) An
optimisation algorithm based on the behaviour of locust swarms.
Int J Bio-Inspired Comput 7(6):402–407

9. De Falco I, Cioppa A.D, Trunfio G.A (2017) Large scale optimiza-
tion of computationally expensive functions: an approach based on
parallel cooperative coevolution and fitnessmetamodeling. In: Pro-
ceedings of the genetic and evolutionary computation conference
companion, pp 1788–1795

10. De Falco I, Della Cioppa A, Trunfio GA (2019) Investigating
surrogate-assisted cooperative coevolution for large-scale global
optimization. Inf Sci 482:1–26

11. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and eli-
tist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut
Comput 6(2):182–197

12. Du ZG, Pan JS, Chu SC, Luo HJ, Hu P (2020) Quasi-affine trans-
formation evolutionary algorithm with communication schemes
for application of RSSI in wireless sensor networks. IEEE Access
8:8583–8594

13. Eberhart R, Kennedy J (1995) A new optimizer using particle
swarm theory. In: MHS’95. Proceedings of the sixth international
symposiumonmicromachine and human science, pp 39–43. IEEE,
New York

14. Fan Q, Yan X (2015) Self-adaptive differential evolution algorithm
with zoning evolution of control parameters and adaptive mutation
strategies. IEEE Trans Cybern 46(1):219–232

15. Gong YJ, Ge YF, Li JJ, Zhang J, Ip WH (2016) A splicing-driven
memetic algorithm for reconstructing cross-cut shredded text doc-
uments. Appl Soft Comput 45:163–172

16. Gong YJ, Zhang J, Chung SH, Chen WN, Zhan ZH, Li Y, Shi
YH (2012) An efficient resource allocation scheme using particle
swarm optimization. IEEE Trans Evolut Comput 16(6):801–816

17. Hansen N, Auger A, Ros R, Finck S, Posík P (2010) Comparing
results of 31 algorithms from the black-box optimization bench-
marking BBOB-2009. In: Genetic & evolutionary computation
conference

18. Hansen N, Ostermeier A (2001) Completely derandomized self-
adaptation in evolution strategies. Evolut Comput 9(2):159–195

19. Ho SY, Lin HS, Liauh WH, Ho SJ (2008) OPSO: orthogonal
particle swarm optimization and its application to task assign-
ment problems. IEEE Trans Syst Man Cybern Part A Syst Hum
38(2):288–298

20. HuM,WuT,Weir JD (2013) An adaptive particle swarm optimiza-
tion with multiple adaptive methods. IEEE Trans Evolut Comput
17(5):705–720

21. Ishaque K, Salam Z (2013) A deterministic particle swarm
optimization maximum power point tracker for photovoltaic sys-
tem under partial shading condition. IEEE Trans Ind Electron
60(8):3195–3206

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Complex & Intelligent Systems (2021) 7:1–16 15

22. Jia YH, Chen WN, Gu T, Zhang H, Yuan HQ, Kwong S, Zhang
J (2018) Distributed cooperative co-evolution with adaptive com-
puting resource allocation for large scale optimization. IEEE Trans
Evolut Comput 23(2):188–202

23. Jr I.F, PercM, Kamal S.M, Fister I (2015) A review of chaos-based
firefly algorithms: perspectives and research challenges.ApplMath
Comput 252(C):155–165

24. Kashan AH, Kashan MH, Karimiyan S (2013) A particle swarm
optimizer for grouping problems. Inf Sci 252(17):81–95

25. Kazimipour B, Omidvar M.N, Li X, Qin A.K (2014) A novel
hybridization of opposition-based learning and cooperative co-
evolutionary for large-scale optimization. In: 2014 IEEE congress
on evolutionary computation (CEC), pp 2833–2840. IEEE, New
York

26. Kennedy J (2000) Stereotyping: improving particle swarm perfor-
mance with cluster analysis. In: Proceedings of the 2000 congress
on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol. 2,
pp 1507–1512. IEEE, New York

27. Kennedy J, Eberhart R (1995) Particle swarm optimization (PSO).
In: IEEE international conference on neural networks, pp 1942–
1948

28. LaTorre A,Muelas S, Peña JM (2013) Large scale global optimiza-
tion: Experimental results with MOS-based hybrid algorithms. In:
IEEE congress on evolutionary computation, pp 2742–2749. IEEE,
New York

29. Li X,Mei Y, YaoX, OmidvarMN (2014) Cooperative co-evolution
with differential grouping for large scale optimization. IEEE Trans
Evolut Comput 18(3):378–393

30. Li X, Yao X (2011) Cooperatively coevolving particle swarms for
large scale optimization. IEEE Trans Evolut Comput 16(2):210–
224

31. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehen-
sive learning particle swarm optimizer for global optimization of
multimodal functions. IEEE Trans Evolut Comput 10(3):281–295

32. Liao T, Socha K, Oca MAMD, Stutzle T, Dorigo M (2014) Ant
colony optimization for mixed-variable optimization problems.
IEEE Trans Evolut Comput 18(4):503–518

33. Mei Y, Omidvar MN, Li X, Yao X (2016) A competitive divide-
and-conquer algorithm for unconstrained large-scale black-box
optimization. ACM Trans Math Softw (TOMS) 42(2):1–24

34. MolinaD, LaTorre A, Herrera F (2018) SHADEwith iterative local
search for large-scale global optimization. In: 2018 IEEE congress
on evolutionary computation (CEC), pp 1–8. IEEE, New York

35. Molina D, Lozano M, Herrera F (2010) MA-SW-chains: memetic
algorithm based on local search chains for large scale continuous
global optimization. In: IEEE congress on evolutionary computa-
tion, pp 1–8. IEEE, New York

36. Montalvo I, Izquierdo J, Pérez R, Iglesias PL (2008) A diversity-
enriched variant of discrete PSO applied to the design of water
distribution networks. Eng Optim 40(7):655–668

37. OmidvarMN, Li X,Mei Y, YaoX (2013) Cooperative co-evolution
with differential grouping for large scale optimization. IEEE Trans
Evolut Comput 18(3):378–393

38. Omidvar MN, Yang M, Mei Y, Li X, Yao X (2017) DG2: A faster
and more accurate differential grouping for large-scale black-box
optimization. IEEE Trans Evolut Comput 21(6):929–942

39. Palafox L, Noman N, Iba H (2013) Reverse engineering of gene
regulatory networks using dissipative particle swarm optimization.
IEEE Trans Evolut Comput 17(4):577–587

40. Pan JS, Hu P, Chu SC (2019) Novel parallel heterogeneous meta-
heuristic and its communication strategies for the prediction of
wind power. Processes 7(11):845

41. Pan JS, Kong L, Sung TW, Tsai PW, Snášel V (2018) A clustering
scheme for wireless sensor networks based on genetic algorithm
and dominating set. J Internet Technol 19(4):1111–1118

42. Potter MA, Jong KAD (1994) A cooperative coevolutionary
approach to function optimization. Third Parallel Probl Solving
Form Nat 866:249–257

43. Price K, Storn RM, Lampinen JA (2006) Differential evolution: a
practical approach to global optimization. Springer, New York

44. Qiang Y, Chen WN, Yu Z, Gu T, Yun L, Zhang H, Zhang J (2017)
Adaptive multimodal continuous ant colony optimization. IEEE
Trans Evolut Comput 21(2):191–205

45. Ray T, Yao X (2009) A cooperative coevolutionary algorithm with
correlation based adaptive variable partitioning. In: 2009 IEEE
congress on evolutionary computation, pp 983–989. IEEE, New
York

46. Ren Z, Zhang A, Wen C, Feng Z (2013) A scatter learning parti-
cle swarm optimization algorithm for multimodal problems. IEEE
Trans Cybern 44(7):1127–1140

47. RosR,HansenN (2008)A simplemodification inCMA-ES achiev-
ing linear time and space complexity. In: International conference
on parallel problem solving from nature, pp 296–305. Springer,
New York

48. Ruiz-Cruz R, Sanchez EN, Ornelas-Tellez F, Loukianov AG,
Harley RG (2013) Particle swarm optimization for discrete-time
inverse optimal control of a doubly fed induction generator. IEEE
Trans Cybern 43(6):1698–1709

49. Sergio AT, Ludermir TB (2012) PSO for reservoir computing opti-
mization. In: International conference on artificial neural networks,
pp 685–692. Springer, New York

50. Setayesh M, Zhang M, Johnston M (2013) A novel particle swarm
optimisation approach to detecting continuous, thin and smooth
edges in noisy images. Inf Sci 246:28–51

51. Shi Y, Teng H, Li Z (2005) Cooperative co-evolutionary differen-
tial evolution for function optimization. Lect Notes Comput Sci
3611:1080–1088

52. Stützle T (2009) Ant colony optimization. In: International con-
ference on evolutionary multi-criterion optimization, pp 2–2.
Springer, New York

53. SunC,Ding J,Zeng J, JinY (2018)Afitness approximation assisted
competitive swarm optimizer for large scale expensive optimiza-
tion problems. Memet Comput 10(2):123–134

54. Sun C, Jin Y, Cheng R, Ding J, Zeng J (2017) Surrogate-assisted
cooperative swarm optimization of high-dimensional expensive
problems. IEEE Trans Evolut Comput 21(4):644–660

55. SunY,KirleyM,Halgamuge SK (2017)A recursive decomposition
method for large scale continuous optimization. IEEETrans Evolut
Comput 22(5):647–661

56. Tian J, Sun C, Tan Y, Zeng J (2020) Granularity-based surrogate-
assisted particle swarm optimization for high-dimensional expen-
sive optimization. Knowl Based Syst 187:104815

57. Tian J, Tan Y, Zeng J, Sun C, Jin Y (2018) Multiobjective infill
criterion driven gaussian process-assisted particle swarm optimiza-
tion of high-dimensional expensive problems. IEEE Trans Evolut
Comput 23(3):459–472

58. Tizhoosh HR (2005) Opposition-based learning: a new scheme
for machine intelligence. In: International conference on compu-
tational intelligence for modelling, control and automation and
international conference on intelligent agents, web technologies
and internet commerce (CIMCA-IAWTIC’06), vol 1, pp 695–701.
IEEE, New York

59. Weise T, Chiong R (2012) Evolutionary optimization: pitfalls and
booby traps. J Comput Sci Technol 27(5):907–936

60. WuG, Shen X, Li H, Chen H, Lin A, Suganthan PN (2018) Ensem-
ble of differential evolution variants. Inf Sci 423:172–186

61. Yang Q, Chen WN, Da Deng J, Li Y, Gu T, Zhang J (2017) A
level-based learning swarm optimizer for large-scale optimization.
IEEE Trans Evolut Comput 22(4):578–594

123



16 Complex & Intelligent Systems (2021) 7:1–16

62. Yang Q, ChenWN, Gu T, Zhang H, Deng JD, Li Y, Zhang J (2016)
Segment-based predominant learning swarm optimizer for large-
scale optimization. IEEE Trans Cybern 47(9):2896–2910

63. Yang Q, Chen W.N, Gu T, Zhang H, Yuan H, Kwong S, Zhang J
(2019) A distributed swarm optimizer with adaptive communica-
tion for large-scale optimization. IEEE Trans Cybern

64. Yang Q, Chen WN, Zhang J (2018) Evolution consistency based
decomposition for cooperative coevolution. IEEEAccess 6:51084–
51097

65. Yang Z, Tang K, Yao X (2007) Differential evolution for high-
dimensional function optimization. In: 2007 IEEE congress on
evolutionary computation, pp 3523–3530. IEEE, New York

66. Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimiza-
tion using cooperative coevolution. Inf Sci 178(15):2985–2999

67. Yang Z, Tang K, Yao X (2008) Multilevel cooperative coevo-
lution for large scale optimization. In: 2008 IEEE congress on
evolutionary computation (IEEE world congress on computational
intelligence), pp 1663–1670. IEEE, New York

68. Yu H, Ying T, Zeng J, Sun C, Jin Y (2018) Surrogate-assisted
hierarchical particle swarm optimization. Inf Sci 454–455

69. Yu Y, Yu X (2007) Cooperative coevolutionary genetic algorithm
for digital IIR filter design. IEEE Trans Ind Electron 54(3):1311–
1318

70. Zhang YH, Gong YJ, Zhang HX, Gu TL, Zhang J (2016) Toward
fast niching evolutionary algorithms: a locality sensitive hashing-
based approach. IEEE Trans Evolut Comput 21(3):347–362

71. Zhao SZ, Liang JJ, Suganthan PN, TasgetirenMF (2008) Dynamic
multi-swarm particle swarm optimizer with local search for large
scale global optimization. In: 2008 IEEE congress on evolutionary
computation (IEEEworld congress on computational intelligence),
pp 3845–3852. IEEE, New York

72. Zhu Z, Zhou J, Zhen J, Shi YH (2011) DNA sequence compression
using adaptive particle swarm optimization-based memetic algo-
rithm. IEEE Trans Evolut Comput 15(5):643–658

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Multiple-strategy learning particle swarm optimization for large-scale optimization problems
	Abstract
	Introduction
	Related work
	Particle swarm optimization
	Optimization of the large-scale problems
	Cooperative coevolutionary algorithms
	New learning strategies for meta-heuristic algorithms


	The proposed algorithm
	The overall framework of MSL-PSO
	Position probing
	Position updating

	Experimental studies
	Experimental setup and benchmark functions
	Comparisons to the MSL-PSO variants
	Comparisons to other state-of-the-art algorithms

	Conclusion
	Acknowledgements
	References




