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Abstract

Many evolutionary algorithms have been proposed for multi-/many-objective optimization problems; however, the tradeoff of
convergence and diversity is still the challenge for optimization algorithms. In this paper, we propose a modified particle swarm
optimization based on decomposition framework with different ideal points on each reference vector, called MPSO/DD, for
many-objective optimization problems. In the MPSO/DD algorithm, the decomposition strategy is used to ensure the diversity
of the population, and the ideal point on each reference vector can draw the population converge faster to the optimal front.
The position of each individual will be updated by learning the demonstrators in its neighborhood that have less distance to the
ideal point along the reference vector. Eight state-of-the-art evolutionary multi-/many-objective optimization algorithms are
adopted to compare the performance with MPSO/DD for solving many-objective optimization problems. The experimental
results on seven DTLZ test problems with 3, 5, 8, 10, 15 and 20 objectives, respectively, show the efficiency of our proposed

method on solving problems with high-dimensional objective space.

Keywords Many-objective optimization - Decomposition - Different ideal points

Introduction

Multi-objective optimization problems (MOP) are widely
involved in the real-world applications, for example, indus-
trial scheduling [21], software engineering [19], and control
system design [10]. The mathematical models of the multi-
objective optimization problems are given as follows:
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min F(x) = (f1(x), 2(x), ..., fu(X))

S.f. Xmin = X = Xmax, (1

where x = (x1,x2,...,xp) € RP is a solution in the D-
dimensional decision space, F : RP — K™ consists m
objective functions f;(x),i = 1,2, ..., m, and " denotes
the m-dimensional objective space. In general, due to the
conflicting nature of the objectives, no solution can be the
optimum of all objective functions simultaneously, instead,
a set of trade-off solutions, called Pareto optimal solutions
or non-dominant solution set [7], will be found for the opti-
mization problem. The set of all Pareto-optimal solutions is
called the Pareto set (PS) and its mapping to the objective
space is the Pareto front (PF).

Different evolutionary multi-objective optimization (EMO)
methods have been proposed for solving multi-objective opti-
mization problems [1,2,9,31]. Especially, in recent years,
optimization methods for problems with more than three
objectives, which are called many-objective optimization
problems (MaOPs), have been obtained more and more
attentions because the performances of canonical algo-
rithms for multi-objective problems will be degraded much
quickly with the number of objective increases. Generally,
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the approaches proposed for solving MaOPs can be roughly
classified into three categories.

The first category is multi-/many-objective optimization
algorithms based on dominance relationship. The most rep-
resentative one for multi-objective problems is NSGA-II [9],
which was proposed by Deb in 2002. However, the perfor-
mance of NSGA-II will be deteriorated when the number
of objective increases because of the loss the selection pres-
sure. Therefore, scholars have focused on finding more and
more efficient strategies on dominance-based evolutionary
algorithms for solving many objective optimization prob-
lems, such as e-dominance [12], #-dominance [30], and
fuzzy-Pareto-dominance [23]. Yang et al. [27] proposed a
grid-based many-objective evolutionary algorithm (GrEA),
in which grid domination and grid difference were used to
improve the selection pressure. Zhang et al. [32] proposed a
many-objective evolutionary algorithm based on knee point
(KnEA), in which the distance between hyperplane and a
knee point was used to select better non-dominant solutions,
which greatly improves the selection pressure.

The second category is multi-/many-objective optimiza-
tion algorithms based on decomposition strategy, which can
further be divided into two types, one is that the multi-/many-
objective optimization problems are transformed to a set
of single-objective optimization problems [14,15,25,29,31],
and the other is that the complex multi-objective algorithms
are transformed to a set of simple multi-objective opti-
mization problems [8,18]. In [26], Xiang et al. proposed a
vector angle-based many-objective evolutionary algorithm
(VaEA) which uses maximum-vector-angle-first principle
and worse-elimination principle to maintain the diversity and
convergence of the population. Cheng et al. [4] proposed a
many-objective evolutionary algorithm guided by a set of
reference vectors (RVEA) and Jiang et al. [11] proposed a
many-objective evolutionary algorithm based on reference
direction (SPEA/R).

The indicator-based evolutionary algorithms fall into
the third category, in which the performance indicator is
used instead of fitness to select individuals. Zitzler and
kunzli proposed the indicator-based evolutionary algorithm
(IBEA) [33], in which a binary performance measure was
proposed in the selection process. Bader et al. [1] proposed a
hypervolume estimation algorithm, called HypE, for many-
objective optimization, in which the Monte Carlo simulation
was utilized to approximate the exact hypervolume values.
Tian et al. [22] proposed an indicator-based multi-objective
evolutionary algorithm with reference point adaptation (AR-
MOEA), in which the algorithm adjusted the position of
reference points based on the contribution of the indicator
to improve the performance of irregular Pareto frontier prob-
lems.

In recent years, there are also other algorithms that
combine the above three strategies. Li et al. [13] pro-
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posed a MOEA/DD algorithm, in which both decomposition
and dominance strategies were utilized. Based on the per-
formance indicator and domination relationship, Wang et
al. [24] proposed a Two-arch2 algorithm. Deb and Jain [8]
extended the well-known NSGA-II and proposed the NSGA-
IIT algorithm to deal with many-objective optimization
problem, in which a set of reference points were utilized
to maintain the diversity of the population during the search
with non-dominated sorting mechanism.

Literature reviews show that there are a small number
of algorithms with the PSO framework proposed for solv-
ing many-objective optimization problems. The reason, we
analyze, is because of the quick convergence of the PSO
algorithm, which may not be able to provide a good diversity
for finding the optimal Pareto front. In this paper, a modified
particle swarm optimization with decomposition strategy and
different ideal points, called MPSO/DD, will be proposed, in
which the decomposition strategy is adopted to ensure the
uniformity of the final outputs, and multiple ideal points are
utilized to drive the population to quickly convergence to the
optimal front. The learning strategy proposed by Cheng and
Jin [3] is adopted to update the position of each individual, in
which the demonstrators are those with less distance to the
ideal point along the reference vector.

The paper is organized as follows: Section 2 describes our
proposed method in detail. Experimental results are given
in Section 3 with some discussions. Finally, Section 4 gives
the conclusions and talks about some work we can do in the
future.

The proposed MPSO/DD
Overall framework

Algorithm 1 gives the pseudocode of our proposed MPSO/DD
algorithm. A series of reference vector A; = (A;1, Ai2, ...,

Aim),i = 1,2,..., N will be generated in the objective
space at first. Then a population, each individual in which has
its own position xX; = (xj1, Xj2,...,Xip),i = 1,2,..., N

and velocity v; = (vj1, vi2,...,Vip),i = 1,2,..., N, will
be generated in the upper and lower bounds, and evaluated
using the objective functions. All non-dominated solutions
in the population will be saved to the archive Arc. If the stop-
ping criteria is not met, the following steps will be repeated.
Determine the ideal point for each reference vector using
all non-dominated solutions. Sort the Tchebycheff values of
an individual on all reference vectors in an ascending order,
find the first reference vector after the sorting which has not
been associated with any individual, and assign this reference
vector with the current individual. Therefore, each individ-
ual will be associated with one and only one reference vector.
After that, neighbors of each individual will be used to update
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the position of this individual, and correspondingly a new
offspring population will be generated. Next, a new parent
population will be selected from the parent and offspring
populations according to the environmental selection strat-
egy proposed in [20]. Finally, all non-dominated solutions
stored in the external archive will be updated using the current
population obtained by environmental selection and output
when the terminal condition is satisfied, which can be seen
in Step 13 of Algorithm 1.

In the following, we will give a detailed description on
main parts of Algorithm 1:

Algorithm 1 MPSO/DD(P,N,T ,tyax)

Require:
P: population;
N': the size of population;
T': the number of individuals in the neighborhood;
tmax . the maximum number of iteration;

Ensure:

Archive Arc;

. /* Initialization*/ ;

2: Set Arc = ¢;

3: Initialize the reference vector set {A; = (X; 1, X2, ..
1,2,...,N};

4: Initialize the position and velocity of each individual in the
population P, and calculate the objective values for each individual
in P;

5: Save all non-dominated solutions in P to the archive Arc;

6: /* Main loop*/;

7

8

—

.y )ti,m)s i =

. while 7 < 1, do

Update the ideal point for each reference vector; (Refer to Algo-
rithm 2)

9:  Associate the reference vector to an individual;

10:  Find neighbor individuals to each individual;

11:  Generate a new offspring population; (Refer to Algorithm 3)

12:  Environmental selection; (Refer to Algorithm 4)

13:  Update the archive Arc; (Refer to Algorithm 5)

14: t=t+1;

15: end while

Ideal point generation

Different from decomposition-based methods proposed pre-
viously where only one ideal point is used in the whole
evolution, in our method, each reference vector has its own
ideal point, which was determined by the objective values
of individuals in the non-dominated archive, to speed up the
convergence along the reference vector. Figure 1 gives a sim-
ple example to show our strategy to generate the ideal point
for each reference vector. In Fig. 1, given an arbitrary refer-
ence vector A;, the circles in red represent the non-dominated
individuals in Arc, and the circle in yellow is the ideal point
which has the minimum distance among five non-dominated
individuals along the reference vector A; to the origin. Equa-
tion (2) gives the method to calculate the distance of each
individual in Arc along the reference vector to the origin.

e
Oldeal point
A

Pareto Front

Attainable Objective Set

Fig.1 An example to show the ideal point setting

F ~T)»'
= Mo G720y K )
[1A:l]

where

Je(X;) — fmin k

fmax,k - fmin,k .

3

Fnorm,k(xj) =

InEgs. (2)and (3), Frorm = Fnorm, 1> Fnorm 2+ - s Fnorm,m)
is the objective vector after normalization, A; refers to the
current reference vector. fmax.x and fmin « are the maximum
and minimum objective values on kth objective in the non-
dominated solution set Arc, respectively. K is the size of the
current non-dominated archive Arc.

Algorithm 2 gives the pseudocode of the determination of
the ideal points. In Algorithm 2, |Arc| and |A| represent the
number of non-dominated solutions in the archive Arc and
the number of reference vectors, respectively. The distance
between the point, projected by a non-dominated solution in
the archive Arc on the reference vector A;, and the origin
will be calculated. The point with minimal distance to the
origin along the reference vector will be the ideal point of
this reference vector.

The offspring generation

In the original social learning particle swarm optimization
proposed by Cheng and Jin [3], the velocity and position of
each individual are updated as follows:

Vi (t+1) = rivij () +r2(xyj (1) —xij (£)+r3(xX; (1) —x;; (1))
4)
Xij(t+1) = x5 (1) +v;; (2 +1), )

where v;; and x;; are the jth velocity and position of indi-
vidual i, respectively. x,,; is the jth position of individual w
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Algorithm 2 The determination of ideal point for each ref-
erence vector

Swarm before sorting
BN ERERENEREN

| ]

Require:
Arc: a set of non-dominated solutions;
A: a set of the reference vectors;
f10rm: the normalized objective values;
Ensure:
{IP}: an ideal point set;
1: for i =1:|A|do
2 for j =1:|Arc| do
RYSW
3 dij = \IfmmH(;,‘F Aill y
4 end for
5:  mind; = min{d;;, j =1,2,...,K};
6 IP; = mind; \;;
7: end for

whose fitness is better than individual i. X ; is the mean posi-
tion of the current population on jth dimension. ry, r» and r3
are random numbers generated uniformly between 0 and 1.
The original social learning particle swarm optimization was
proposed for single-objective problems and has been shown a
good performance to find better optimal solutions especially
on large-scale optimization because of its good diversity.
However, as we know, in the multi-/many-objective optimiza-
tion, normally the individuals do not dominate each other and
it is difficult to tell which individual is better than another
based on the objective values, especially when the number
of objectives increase. Therefore, in our method, for an indi-
vidual i, we first calculate the distances between individuals
in the neighborhood and the ideal point of the reference vec-
tor individual i associated with (shown in Eq. (6)). In Eq. (6),
F(x;),j =1,2,...,|NI]| the objective vector of individual
Jj in the neighborhood of individual i, [N I| is the number of
neighbors of individual x;, IP; is the ideal point of reference
vector A;, and d1; ; is the distance between individual j and
the origin along the reference vector A;. All distances will be
sorted in a descent order, and correspondingly, individual i
can learn from those neighbors who has better convergence
to the Pareto front. Both Egs. (7) and (8) are used for updat-
ing the velocity of an individual with probabilities to prevent
the population from falling into local optima. As we know,
the convergence speed of the social learning particle swarm
optimization algorithm is limited because of its good diver-
sity; therefore, the coefficient proposed in [5], i.e., 0.729, is
utilized in Eq. (7) to speed up the convergence. In Eq. (7), xy;
represents the jth dimension of individual w whose distance
to the original along with the current reference vector is bet-
ter than individual i. r| and r, are random number generated
uniformly between 0 and 1. Equation (8) is used to randomly
initialize the velocity so as to jump out of the local optimal
position.

dlj =|F(x;) — IP;[| (6)
Vij =0.729 % (1 *U,’j—i—rz*(ij —x,-j)) (7)

Dieliase ¢llodi ay .
bes Shenas Q) Springer

Sort according to d

Swarm after sorting Best

I I

Demonstrators

Fig.2 Demonstration selection

Vij =711 *(Uj,max_vj,min)+vj,min- (8)

Algorithm 3 gives the pseudocode of the generation of an
offspring. For each reference vector, the distance to the ideal
point of its neighbor individuals will first be calculated, and
sorted in a descending way. Figure 2 gives a simple example
to show how to select the demonstrator according to the dis-
tance to the ideal point. The best position on the right hand
is the individual that has the minimal distance to the ideal
point along the reference vector. A threshold, 0.99, is given
empirically in line 7 of Algorithm 3, for determining which
equation is to be used for velocity updating. To see the effi-
ciency of parameter settings, we conducted three cases of
empirical experiments on DTLZ3 with different number of
objectives:

Casel: Without the coefficient 0.729 in Eq. (7).

Case2: Only Eq. (7) is utilized in the proposed method.

Case3: The threshold using Eq. (8) is set to a half of 0.99,
i.e. 0.495.

Table 1 gives the results of three cases as well as our
proposed setting. From Table 1, we can see that the results
obtained in Case2 and Case3 are all worse than those obtained
by MPSO/DD, which shows that 0.99 is best to be the thresh-
old to select equation for velocity updating. Compared to
Casel, we can see that our proposed MPSO/DD obtained
better or competitive results on DTLZ3 problem with more
than 10 objectives, which shows that the coefficient 0.729 is
significant for the convergence of the algorithm to optimize
the problems with high-dimensional objectives.

The environmental selection

After the objective evaluation of each offspring, both parent
and offspring individuals will be combined together and cal-
culated the C AD proposed in [20] on each reference vector,
where

cos 0;

CADG. [) = ——
l’.]

©)

In Eq. (9), cos 6; ; represents cosine of the angle between
the ith reference vector and the jth individual in the com-
bination population of parent and offspring. The larger the
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Table 1 The statistical results (mean and standard deviation) of the IGD values obtained by three cases and MPSO/DD on DTLZ3

M Casel Case2 Case3 MPSO/DD
5.9744e+00 (3.23e+00) ~ 8.9132e+01 (4.15e+01)+ 1.6338e+02 (8.93e+00) + 4.8332e+00 (1.49¢ +00)
4.1979¢ +00 (2.70e +00) ~ 9.1218e+01 (2.79¢+01)+ 1.6889¢+02 (9.47e+00) + 3.6665e+00 (1.45e+00)
2.6646e +00 (1.67e+00)— 8.5275e+01 (3.54e+01)+ 1.7035e+02 (1.52e+01)+ 3.2763e+00 (1.24e+00)
10 4.2037e+00 (6.08e +00) ~ 7.8929¢+01 (3.30e+01)+ 1.6695e+02 (1.57e+01)+ 3.2172e+00 (1.91e+00)
15 7.8629¢+00 (2.33e+01)~ 8.9359¢+01 (2.47e+01)+ 1.6888e+02 (1.23e+01)+ 3.0568e + 00 (1.16e +00)
20 4.2476e+01 (4.99¢+01)+ 9.0674e+01 (4.03e+01)+ 1.7174e+02 (1.66e+01)+ 3.7659%¢ + 00 (2.33e +00)

The best results are highlighted

Algorithm 3 The generation of an offspring population

Algorithm 4 Environment selection

Require:
P: population;
T: the number of individuals in the neighborhood;
1: /* Position updating of each individual*/ ;
2:fori=1:Ndo
3:  Calculate the distance of each individual j in the neighborhood
of individual i to the ideal point along the reference vector using
Eq. (6);
4:  Sort the distances in an ascending order, and keep the individuals
after sorting in X;;

5: forj=1:Ddo

6: /* Velocity updating*/;

7: if rand() < 0.99 then

8: On each dimension, randomly select individual from X; that
has shorter distance to the origin than that of individual i.

9: Updating velocity using Eq. (7);

10: else

11: Updating velocity using Eq. (8);

12: end if

13: /*Position updating*/ ;

14: Updating position of each individual using Eq. (5);

15:  end for

16: end for

cos 6 is (the smaller the angle is), the closer the individual
and reference vector are, i.e. the even distribution of the indi-
viduals in the objective space. d1; ; is calculated using Eq.
(6). It can be seen obviously that the larger the C A D value is,
the better between the balance on diversity and convergence
of individuals.

Algorithm 4 gives the pseudocode of the environment
selection. Each individual in the parent and offspring pop-
ulation will be calculated the CAD value related to each
reference vector, and the individual with maximum CAD
value to each reference vector will be kept to the next gener-
ation.

The archive updating

All non-dominated solutions will be saved in the archive Arc.
When new population is generated and evaluated on objec-
tive functions, they will be used to update the archive Arc.
Algorithm 5 gives the pseudocode of the archive updating. In

Require:
P(t) : the parent population; Q(¢) : the offspring population;
{IP} : the ideal point set;
A: the reference vector set;
Ensure:
P(t 4+ 1) : anew parent population;

l: fori =1:|\ do

2 for j =1:2x%|P(t)| do

3: Calculate C AD value using Eq. (9);

4 end for

5 Associate the individual with maximum CAD(, j),] =
1,2,...,2%|P(t)] to the reference vector i;

6: end for

7: P(t + 1) = all individuals assigned to reference vector set ;

Algorithm 5, Arc(t — 1) represents the archive at the ¢t — 1th
generation and P is the offspring population. Note that the
size of the archive is fixed to the size of population N.

Algorithm 5 The archive updating

Require:

Arc(t —1);

P: the offspring population;
Ensure:

Arc(t);
1: Arc(t) = ¢;

2: A= Arc(t — 1)U P;
3:if |A| > |P| then

4. fori=1:|P|do

5: for j =1:|A|do

6: Calculate the CAD(i, j) between individual j and the ref-
erence vector i;

7: end for;

8: Sort the CAD (i) in descending order, and the first individual

will be saved in Arc(t);

9:  end for;

10: else

11:  Arc(t) = A;

12: end if

In Algorithm 5, the offspring population P will first be
combined together with the non-dominated individuals in
the archive Arc(r — 1). If the size of Arc(t) is larger than
the size of population, we will keep the individual with the
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Table2 The parameter setting

in the experiments Problem Number of objectives (M) Number of variables (D) Parameter (k)

DTLZ1 3,5,8, 10, 15,20 M-1+k k=5

DTLZ2 3,5,8, 10, 15,20 M—-1+k k=10
DTLZ3 3,5,8, 10, 15,20 M-1+k k=10
DTLZ4 3,5,8,10, 15,20 M-1+k k=10
DTLZ5 3,5,8,10, 15,20 M-1+k k=10
DTLZ6 3,5,8,10, 15,20 M-1+k k=10
DTLZ7 3,5,8,10, 15,20 M-1+k k=20

Table 3 The number of reference vectors related to the number of
objectives

Number of objectives The number Number of reference
(M) of evaluations vector ()
30,000 153
30,000 210
30,000 156
10 30,000 220
15 30,000 120
20 30,000 210

maximum C A D value on the corresponding reference vector
into Arc(t). Otherwise, all individuals in Arc(t — 1) will be
kept to Arc(z).

Experimental results and discussion
Parameter setting

To verify the effectiveness of our proposed MPSO/DD
algorithm on many-objective optimization problems, seven
DTLZ test functions are selected and tested on 3, 5, 8, 10, 15
and 20 objectives, respectively. The obtained results are com-
pared with those of NSGA-III, KnEA, RVEA, MOEA/DD,
SPEAR, GrEA and BiGE [16] that are state-of-the-art algo-
rithms for many-objective problems, and also compared with
NMPSO [17], which is proposed for many-objective opti-
mization based on PSO. The experimental results of these
seven algorithms are run on PlatEMO proposed by Tian [28].
The parameters of MPSO/DD are given in Table 2. Also, the
relationship between the number of objectives and the dimen-
sion of variables are given in Table 2.

Table 3 gives other parameters used in the experiments that
related to different number of objectives, including the num-
ber of objective evaluations and correspondingly the size of
reference vector set. The reference vectors are generated uni-
formly according to the strategy proposed in MOEA/D [31].
The number of population is consistent with the size of ref-
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erence vectors. All other parameters needed to be set in our
experiments are analyzed and given in Sect. 2.3. The param-
eters used in the comparison algorithms are set same as those
used in the corresponding method.

Performance metrics

To compare the performance of different algorithms, the
inverted generational distance (IGD) [6] is used as indi-
cator to evaluate the performance of different algorithms.
Suppose P* is a set of points uniformly distributed on the
optimal Pareto surface in the objective space and P is a set
of non-dominated solutions, then the IGD value is defined as
follows:

Y xep+ Minyep dist(X,y)

IGD(P, P*) = VE

. (10)

where dist (X, y) represents Euclidean distance between two
positions x and y. Therefore, the IGD is the average value of
the minimum distance from each position in P* to P, which
is used to measure the convergence and diversity of the non-
dominated solution set P that obtained. In our experiments,
we selected 10,000 solutions from the real Pareto front P*
for comparison. The smaller the IGD value is, the better the
P is.

Experimental result

Table 4 gives the statistical IGD results of the proposed
MPSO/DD algorithm and the other seven algorithms on
seven DTLZ test functions. The results of Wilcoxon rank
sum test are also given: ‘+’, ‘=’ and ‘~’, respectively, indi-
cate that the results of MPSO/DD algorithm are superior,
inferior and similar to those of the comparative algorithm.
The data in boldface in Table 4 represents the best results of
all algorithms. All results are obtained on 20 independent
running. From Table 4, we can clearly see that our pro-
posed MPSO/DD method obtained better results on DTLZ
2, 3, 5 and DTLZ6 problems with high-dimensional objec-
tive space. Except the DTLZ?2 with 20 objectives, MPSO/DD
obtained better results on these problems with 10, 15, and
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Table 5 Performance of IGD result on DTLZ1-DTLZ7 test problems, where MPOS/DD is better than (4), worst than (—) and approximate to (~)
each of the seven compared algorithms according to the Wilcoxon rank sum test

MPOS/DD . NSGA-III KnEA RVEA MOEA/DD SPEAR GrEA BiGE NMPSO
+ 24/42 30/42 21/42 17/42 30/42 25/42 31/42 26/42
16/42 12/42 18/42 17/42 12/42 12/42 10/42 13/42
~ 2/42 0/42 3/42 8/42 0/42 5/42 1/42 3/42
8 S 5. 8
s 25 3 35 4 45 S
Objective Number Objective Number Objective Number Objective Number
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Parallel coordinates of nondominated fronts obtained by eight algorithms on the five-objective DTLZ1 problem

416

1820

Objective Number

(a) NSGA-III

§ 10 12 14 16 18 20

Objective Number

(e) SPEAR

Objective Value

Objective Value

45
o 40
=
< 35
>
© 30
2
5 2
3
520
© 15
10
4 6 8 10 12 14 18 20 0 2 4 6 8 10 12 14 16 18 2
Objective Number Objective Number
(b) KnEA (¢) RVEA

Objective Value

E
; ‘ I/
2 /. A i
A T
- (T
: Uil
L% , A
6 8 10 12 14 16 18 20 6 8
Objective Number Objective Number
(f) GrEA (g) BiGE

Objective Value

10 12 14 16 18 20

6 8
Objective Number

(d) MOEADD

0 5

Fig.4 Parallel coordinates of nondominated fronts obtained by 8 algorithms on the 20-objective DTLZI problem

0 15 2
Objective Number

(h) MPSODD

Pielae ol aao
KACST &.0141lg oglel)

@ Springer



Complex & Intelligent Systems (2020) 6:263-274

272

PASTYSTY 21 S)[NSa1 Isaq A,

(10 — 28¢°S) 10 + 240S+°1
—(10-3%b'T) 00+3688S°T

(10-3S€°T) 10-9€€99'C
+(20 —299'7) 10 — 2€08'L

(20-210°L) 10-9TLES'T
+(0—28T°L) 10— 2T8LL'L

(€0-9TL°€) 10-9€6TT9
~ (20 — 295°1) 10 — 2008Z°9

(00+3€€°7) 00+2659L°€
+(10+297°L) TO + 21919°1

(T0-3p8°p) 10-9€HSS'L
+(20 — 266°€) 10 — 29L6¥'8

(10-18'T) 10-291€S°S
(00 +20§°L) 10+ 26L¥1°€

(10 — 266'L) 10 + 240€0'
—(10-981°€) 00+36+€L'T

(T0-3L0°T) T0-38LYH'T
+(91 —282°7) 10 — 260Tt'L

(20-98L°9) 10-9¢€TT°T
+(20 — 28L°1) 10 — 2€995°L

(€£0-956°€) 10-3STHT'9
+(20 — 2%$9) 10 — 208LL'9

(00+391°T) 00+38950°€
+(10 + 208°9) TO + 29L£9°1

(T0-3TL'H) 10-9L890°9
+(20 — 29¢°6) 10 — 265€8°L

(T0-3L8°7) 10-20L61°9
+(00 + 296°6) 10 + 2LLTS'€

(10 —201°S) 00 + 2¥LIS'Y
—(20-310'8) 10-2LI8H'6

(T0-301°T) 10-26+10°C
+(91 —282°7) 10 — 260Tt'L

(T0-29€°9) 10-26¥1T°1
+(10 = 2€T°0) 10 — 21698°9

(€0 — 208°6) 10 — 28£9S¥
—(20-3€T'T) 10-9bLEY

(00+316°T) 00+3TLIT'E
+(10 +2€6°€) 10 + 2L9€S°9

(€0-9€8°T) 10-3T€C0'Y
+(€0 —208°1) 10 — 2¥1ST¥

(10-968°T) 10-97919°F
~ (00 +21€°€) 00+ 29LET°1

(10 — 2LE%) 00 + 2S6€€°€
—(10-208°T) 10-21029°8

(T0-3€P"T) 10-3v891°T
+(10 — 24€1) 10 — 2¥S60°L

(T0-9569) 10-21H9€°T
+(10 —2€9°1) 10 — 2€091°L

(£0-9¥S°S) 10-3STYS’€
+(20 —20T°9) 10 — 26568°¢

(00+34T°T) 00+3€9LT'E
+(10 + 28°€) 10 + 20TYT'H

(€0-921'T) 10-2620T°€
+(€0 — 2Ly 1) 10 — 26LLS €

(10 —262°1) 10 — 29915
—(10-980°€) 10-39€€H"€

(10 — 2%1°1) 00 + 2¥601°1
—(£0-9609) 10-39ST°T

(20— 22€°€) 10 — 21090°T
—(£0-92T°S) T0-3079L’€E

(20 —2€6°9) 20 — 26L90°8
—(€0-3b€"S) TO-9ET0P'Y

($0-281"9) 10-2L8Y9'T
+(€0 —22L°1) 10 — 28106°1

(00+3SH°T) 00+35999°€
+(10+281°1) 10 + 2CIET Y

#0-31T°€) T0-9€TI9°'T
+(€0 — 2¥€°1) 10 — 279881

(10— 28L'1) 10 — 2S0¥1'¥
—(10-216'T) 10-9069°C

(20 —228°9) 10 — 26TL9'€E
—(€0-988°T) T0-3LYHT'S

(20 — 2$5°7) T0 — 2STLO'9
—(£0-3%T°7) T0-3469T°'T

(20 — 2LS'¥) TO — 2¥€0S'S
—(€0-31L"D) TO-3€EPPE'T

(S0-985'9) T0-979TI 't
+(10 — 2L¥'1) 10 — 29€11°1

(00+361°T) 00+3CEES'
+(10+2¢7'1) 10 + 2€¥96'C

(S0-9€1°9) T0-3TLIT'Y
+(€0 — 2$¥'0) TO — 2L1TH'9

(T0-316°T) 10-2670€°T
~ (10 — 2L1'%) 10 — 2%SL8'T

dd/oSdIN
OSdIAN
LZ11d
dd/OSdIN
OSdAN
9Z11d
dd/OSdIN
OSdIAN
SZ1Ld
dd/OSdIN
OSdIAN
YZ'11d
dd/OSdIN
OSdIAN
£2711d
dd/OoSdIN
OSdIAN
Z'11d
dd/OSdIN
OSdAN
17711d

0C

Sl

01

8

S

€

wo[qoid
n

LZ1Ld OL 1Z711d U0 AQ/OSdIA Pue OSJIAN £Q paureiqo sanjea D] ) JO (UOTIRIASD PIEPURIS PUE UBAW)SINSAI [2INSHLIs YL 9 3|qe]

S @ Springer

isllase clloll
KACST a.141lg oglel)



Complex & Intelligent Systems (2020) 6:263-274

273

20 objectives, which showed the competition of our pro-
posed method to solve problems with high dimensions on
objectives. Table 5 gives a summary on the results given in
Table 4. From Table 5, we can clearly see that generally,
MPSO/DD obtained better results than NSGA-III, KnEA,
RVEA, SPEAR, GrEA, and BiGE, and competitive results
with MOEA/DD.

To show the effectiveness of our proposed algorithm,
Figs. 3 and 4 plot the parallel coordinates of the non-
dominated solution set obtained by different algorithms on
5-objective and 20-objective DTLZ1 test problems, respec-
tively. From Figs. 3 and 4, we can see that the objective values
of MOEA/DD and MPSO/DD can decline much quicker than
other algorithms, and the solutions are better distributed than
other algorithms in a limited number of evaluations. While
compared to MOEA/DD, we can see that the performance
of MPSO/DD is comparative on 5-objective DTLZ1, but not
better than MOEA/DD on 20-objective DTLZ1. The reason,
we analyze, is that the diversity of MPSO/DD s still not better
than that of MOEA/DD on DTLZ1. Therefore, to see whether
our proposed MPSO/DD algorithm is competitive with those
many-objective optimization algorithms based on PSO, we
compare the results on DTLZ with NMPSO [17], in which
a balanceable fitness estimation method and a novel veloc-
ity update equation were presented so as to effectively solve
the many-objective optimization problems. Table 6 shows
the mean IGD results of MPSO/DD compared to NMPSO,
where the best results are highlighted. From Table 6, we can
see that the MPSO/DD obtained better results than NMPSO
on DTLZ1-DTLZ6 with high-dimensional objectives, which
further showed that our proposed MPSO/DD is competi-
tive to solve the problems with high-dimensional objectives.
However, the results on DTLZ7 obtained by MPSO/DD is
not better than NMPSO, the reason, we analyze, may result
from the BFE method proposed in NMPSO which strongly
prefers the solutions with well converged and less crowded.

Table 5 also shows the summary on the results given in
Table 6. From Table 5, we can clearly see that the proposed
MPSO/DD obtained 26/42 better results than NMPSO, which
showed the better performance of our proposed MPSO/DD
than NMPSO.

Conclusion

This paper proposed a modified particle swarm optimization
algorithm, in which the decomposition strategy and differ-
ent ideal points are utilized, for many-objective problems.
The experimental results showed that the proposed algorithm
has advantages on solving problems with high-dimensional
objective space, but many works are still remained for us to
study further. In the future, we will try to add some strate-

gies to prevent the algorithm from falling into local optima
to achieve better results on all problems.
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