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Abstract

As an intelligent search optimization technique, genetic algorithm (GA) is an important approach for non-deterministic
polynomial (NP-hard) and complex nature optimization problems. GA has some internal weakness such as premature conver-
gence and low computation efficiency, etc. Improving the performance of GA is a vital topic for complex nature optimization
problems. The selection operator is a crucial strategy in GA, because it has a vital role in exploring the new areas of the
search space and converges the algorithm, as well. The fitness proportional selection scheme has essence exploitation and
the linear rank selection is influenced by exploration. In this article, we proposed a new selection scheme which is the opti-
mal combination of exploration and exploitation. This eliminates the fitness scaling issue and adjusts the selection pressure
throughout the selection phase. The x? goodness-of-fit test is used to measure the average accuracy, i.e., mean difference
between the actual and expected number of offspring. A comparison of the performance of the proposed scheme along with
some conventional selection procedures was made using TSPLIB instances. The application of this new operator gives much
more effective results regarding the average and standard deviation values. In addition, a two-tailed ¢ test is established and
its values showed the significantly improved performance by the proposed scheme. Thus, the new operator is suitable and
comparable to established selection for the problems related to traveling salesman problem using GA.

Keywords Genetic algorithm - Selection pressure - Selection operators - Statistical analysis - Traveling salesman problem

Introduction

Several modern meta-heuristic algorithms have been devel-
oped during the last five decades for solving the non-
deterministic polynomial (NP-hard) and complex nature
optimization problems. According to some specified criteria,
these algorithms can be divided into different groups such as
stochastic, deterministic, population, and iterative-based, etc.
If an algorithm is trying to improve the solution according
to the probabilistic rules, it is called stochastic algorithm. If
an algorithm is trying to increase the solution quality with a
set of solutions, it is called population-based and to seek the
better solution to using multiple iterations called an iterative
approach. The two important classifications of population-
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based algorithms are swarm intelligence and evolutionary
approaches which depend on simulation theory with natural
phenomenon.

Genetic algorithm (GA) is one of the most popular meth-
ods of evolutionary algorithms. It was first established on
the theoretical basis by Holland [1]. GA is a universal opti-
mization approach which relies on one of the most important
criteria of Darwin’s evolution process, as shown in Fig. 1.
Usually, GA generates a better solution from all the possi-
ble solutions of a population based on the survival of the
fittest principle. The random population of individuals with
different encodes, such as binary, permutation, or real, etc., is
created first. In nature, the most suitable individuals are likely
to survive and mate. GA iteratively generates new chromo-
somes with the help of two operators, i.e., crossover and
mutation. The process is repeated until or unless the required
criteria such as convergence, a fixed time or a number of
iterations are met. The objective is the solution with high
astounding fitness values which are remarkable in the search
process towards the optimal solution. The most attractive
feature of GA is that it has the ability to explore the search
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Fig.1 Darwin’s evolution principle

space with the help of the entire population of individuals [2].
Recently, Bayesian network used as an adaptive parameter
setting tool to enhance the performance of GA for multi-
modal problems [3]. A lot of work and applications have
been highlighted about GAs by Goldberg [4].

A very common issue about GA is premature convergence
to find the optimal solution of a problem. This is strongly
linked to the loss of population diversity. If it is very low then
avery quick convergence will be observed by GA; otherwise,
time-consuming and may cause wastage of computational
resources. Hence, there is essential to find a trade-off between
exploration (i.e., exploring the new areas of search space)
and exploitation (i.e., using already detected points to search
the optimum). Therefore, the performance of the GA highly
depends on its genetic operators, in general. The first operator
is selection being used to choose the set of chromosomes for
mating process, the crossover is the second one and used to
create new individuals, and the last one is the mutation used
for random changes. The balance between exploration and
exploitation can be adjusted either by selection pressure in
a selection approach or by the recombination operators with
adjustment of their probabilities.

The selection scheme is the procedure to choose a sub-
population (set of individuals) from the current population
that will form the next population. GA is one of those algo-
rithms whose performance is highly affected by the choice
of selection operator. Without this mechanism, GA is only
simple random sampling giving different results in each gen-
eration. Hence, we can say that the selection operator is the
backbone of the GA process. Usually, the choice of the selec-
tion mechanism depends on the complexity of the problem.
A hard approach combined with a conservative replacement
mechanism and soft one manipulate an algorithm without
sufficient exploring capability which may cause to stuck off
on local optima.

There are several selection operators used and reviewed
in the literature. A study about various selection approaches
and results showed that different schemes perform well in
different problems [5]. Thus, the most suitable selection
approach has to be chosen in relation to a specific prob-
lem to enhance the optimality of desired result. Goldberg
and Deb [6] did a comprehensive study of some traditional
selection methods through the solutions of differential equa-
tions. Another popular study to adjust the probabilistic noise
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level throughout the mating pool to regulate the selection
pressure [7]. Abd-Rahman et al. [8] established a hybrid
roulette-tournament selection operator for solving a real-
valued shrimp diet formulation problem which can also be
generalized to evolutionary algorithm-related problems. A
detailed study is about the selection process in GA and exam-
ined some common issues in various selection operators in
Ref. [5].

The main objective of this study is to present the perfor-
mance of selection operators that have a major impact on
the GAs process. In this way, a new selection operator is
proposed that intended to enhance the average quality of the
population and gives a better trade-off between exploration
and exploitation.

The rest of this article is presented as follows: in “Back-
ground” we present the background of selection schemes.
The proposed selection operator is presented in “Proposed
selection operator” with the statistical properties of a sam-
pling algorithm. The traveling salesman problem (TSP) is
discussed and reviewed in ““Test problem (traveling salesman
problem)”. Performance evaluation of the proposed scheme
and conclusions are given in “Performance evaluation” and
“Conclusions”, respectively.

Background

The first selection mechanism for GA was fitness propor-
tional selection (FPS), which was introduced by Holland [1].
Now, it has become the most prevalent selection approach
which used the concept of proportionality. It works as
the fitness value of each individual in a population corre-
sponds to the area of roulette wheel proportions. Then, an
individual is marked by the roulette wheel pointer after it
has spun. This operator gives individuals, a probability p; of
being selected Eq. (1) that is directly proportionate to their
fitness:

fi .
Pi=_—x

Zj:l fi

where K is the size of the population and f; is the value of
fitness function for the individual i. Thus, individuals who
have better fitness values may have a higher chance of being
selected as parents.

The FPS has been widely used selection scheme in var-
ious fields such as spanning tree [9], scheduling [10,11],
sources allocation problem [12], menu planning [13], and
traveling salesman problem [14]. Throughout the selection
procedure, there is no change in the segment size and selec-
tion probability. It is easy to implement and gives a high
probability for the best individual; these aspects are the main
strengths [15]. Another advantage of this approach is that

iefl,2,....,K}, (D
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it provides no bias with unlimited spread [16]. However,
the difficulty is encountered when a significant difference
appears in the fitness values [14,17,18]. The scaling prob-
lem which is the major drawback of this scheme was first
pointed out by Grefenstette [19]. It has happened when pop-
ulation evolves, the ratio between the variance and the fitness
average becomes increasingly small. The selection pressure,
therefore, drops as the population converges [7]. On the other
hand, high selection pressure may lead to premature conver-
gence to a sub-optimal solution.

In the literature, there are some alternative techniques
to overcome the above drawbacks. The most popular tech-
nique is the linear rank selection (LRS) scheme proposed by
Baker [20]. It sorts the individuals in the sequence as worst
to best according to the fitness and allocates them a sur-
vival probability proportional to their rank order. After this
task, a sampling procedure (i.e., roulette wheel sampling) is
used to select the individuals for mating process. In this way,
the LRS can maintain a constant selection pressure through-
out in the sampling process, because it introduces a uniform
scaling across the population. Therefore, a unique selection
probability is always assigned to the best individual, regard-
less of its fitness value. Another advantage of the LRS is
that it behaves in a more robust manner than other tech-
niques. The selection probability of an individual through
this scheme is assigned according to the following formula:

._1 - (+ —)i 1) . {12 }
Pz—K n +0 n 1) ief{l,2,...,K}.
(2)

Here, % and % are the probabilities of worst and best
chromosomes to be selected, respectively. All the individ-
uals get a different rank even if they have the same fitness
value. The conditions n7 = 2 — n~ and = > 0 must be
fulfilled. The selective pressure can be adjusted by varying
n™, the parametric value. As remarked by Baker, if n* = 2,
then all individuals would be within 10% of the mean and
the population is driven to convergence during every gen-
eration. Baker recommended value of 7 = 1.1 to control
the selection pressure. The weakness of this scheme is that it
can lead to slower convergence, because there is no signifi-
cant difference between the best and other individuals. The
selection probability of two consecutive chromosomes by the
same amount is regardless of whether the gap between their
fitness is larger or smaller [7].

Another rank-based selection scheme is exponential rank-
ing selection (ERS). It works similar as to LRS, except for the
non-linear assignment of probabilities to the individuals. A
constant ratio r is used to assign the rank-based values to the
individuals, such that 0 < r < 1.0 (r >~ 1.0). The selection
probability for the ith ranked individual through this scheme
is assigned according to the following formula:

. K} 3

The tournament selection (TS) is also widely used as an
alternative to FPS. In TS, first, randomly select the 7 (where ¢
is the predefined tournament size) individuals from the popu-
lation and then they compete against each other based on their
fitness. An individual with higher fitness value is declared
as a winner and selected for mating process. The selection
pressure can be adjusted with change the tournament size
[7]. Usually, the most used tournament size is 2 (binary tour-
nament selection (BTS)), which is the simplest form of TS
[21]. However, the larger tournament size can be used to
enhance the competition among individuals, but it leads to
loss of population diversity [22,23]. As shown by Back [24],
an individual i is selected for t tournament using Eq. (4),
where K is the size of the population. If the tournament size
equals the population size, then the TS will be the approxi-
mate to the deterministic selection procedure [7]:

1
pi = F((i)’ —@G—-D; ie{l,2,...,K}. 4)

Another case of the TS is probabilistic two-tournament
selection (PTS) was presented by Julstrom [25]. The two
individuals without replacement are chosen at random from
the population and the winner of this tournament will be
selected for mating process with a probability g, such that
0.5 < g < 1.0. In this scheme, the loser can also be selected
for mating process with the probability (1 — g). Thus, the
selection probability of an individual through this scheme is
assigned according to the following rule:

26— 2K =)
“TkEk-1D1T"kE =)

(1—q); iefl,2,...,K}.
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Moreover, throughout the evolution process, a fixed and
a suitable adjustment of the selection pressure is a difficult
task. An ideal situation may exist, if the selection pressure is
low at the early stage of the search to gives a free hand to an
exploration of the solution space and enhance at the ending
stage to help the algorithm for convergence [26]. Hence, to
trade-off between these two competing criteria, an adjustable
selection pressure must desired [7]. The main contribution of
this article is in the development of the proposed selection
approach which reduces the weakness associated with FPS
and LRS in the GA procedure. The proposed approach is
based on the ranking scheme which splits the individuals
after ranking and then assign them probabilities for selection.
This will increase the competition among individuals to be
selected for mating process to regulate the selection pressure.
The detail is given in the next section.
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Proposed selection operator
Motivation

The LRS has a small range of selection pressures (i.e., for a
population of K individuals, the selection probability of the
fittest individual is fallen must be between % and %). The
LRS introduces slow convergence speed and sometimes con-
verges to a sub-optimal solution as less fit individuals may
be preserved from one generation to another. In GA, the FPS
has the essence of exploitation, while LRS is influenced by
exploration. The information about the relative evaluation of
individuals is ignored, all cases are treated uniformly regard-
less of the magnitude of the problem and, finally, the schema
theorem is violated. LRS prevents too quick convergence and
differs from FPS in terms of selection pressure. This discus-
sion suggests that, whenever a selection procedure is used,
some kind of adaptation of the selection pressure is highly
desirable.

Split rank selection

In this research, we propose an alternative selection scheme
[split rank selection (SRS)] that maintains a fine balance
between exploration and exploitation. This approach not only
eliminates the fitness scaling problem, but also provides an
adequate selection pressure throughout the selection phase.
In this scheme, all individuals are sorted from worst to best
according to their fitness values. All the individuals get a dif-
ferent rank even if they have the same fitness value. Consider
apopulation, a combination of K individuals, i.e., population
size (usually it is even). Now, we divide the K individuals
into two equal portions.

The top half portion is considering from individual 1 to
individual % The result (sum up) of this portion of the series
is as follows:

K (K
Z<5+1). ©6)

Now, sum up the last half portion of the series, i.e., from
L +lwKis

K?> K (K . ;
T+Z<3+>' @

Hence, the probability distribution according to the indi-
vidual’s rank as

8 . i _K
PG =7
r=1 . ®)
1 . .
M gErm)s P> 7
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where A~ + AT = 1 and A~ > 0 must be satisfied. The
selection pressure can be restrained by varying AT, the tuning
parameter, in the selection phase. To maintain balance of
exploitation and exploration, we adjust this parameter AT =
0.7, i.e., 70% portion is assigned to the last half individuals.
This gives

12i . . _K
: KK+ =7
p(i) = , 9
28i .o K
5KGK+2) L7 2

We also derive the formula to select individuals if the pop-
ulation size is odd (usually this happens rarely in literature).
First of all, we divide the K individuals in £ and £
portions. The top portion is considering from individual 1 to
individual % The result (sum up) of this portion of the

series is as follows:

K% -1
8

. (10)

Now, sum up the last portion of the series, i.e., from %

to K is

K+1 K43 K+5 K+K »
2 2 2 2 (n

K 1 5

TE+FD+ K+ (12)

(K + DK +1). 13

8

Hence, the probability distribution according to the indi-
vidual’s rank is as follows:

—, 8 . . _ K-l
. )" ((K2l_1))7 lf 2
p(i) = . . (14)
+ i . -
M (®ern) L T

We compare the proposed operator with LRS, ERS, BTS,
and PTS for 150 individuals at various parameters and
depicted in Fig. 2. We used the most optimal parametric val-
ues from the literature to achieve a maximal performance
from the said operators. For example, Baker shows that LRS
performs best at n* = 1.1. For tournament selection, binary
is much better size for selection; otherwise, it may lead to loss
of diversity. For ERS, the parametric value ‘r’ is very close
to 1 for better performance and we use r = 0.99. For PTS,
the parametric value ‘g’ is allowed to be within 0.5 — 1, but
a high value is recommended to control population diversity
so we take ¢ = 0.8. We see that the SRS works efficiently
at AT = 0.7 for bad individuals and gives slightly better
probability than BTS but not as much as given to them by
LRS.
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The sampling procedure

In a two-step selection procedures, i.e., FPS, LRS, ERS, and
SRS, etc., a sampling mechanism is required to choose the
individuals for mating process. That sampling mechanism
fills the mating pool with the individual’s copies of the given
population, while respecting the selection probabilities p;,
such that the expected and observed number of individuals
are equals. Among the broad variety of sampling mecha-
nisms, we used roulette wheel sampling scheme (or Monte
Carlo sampling) for testing the accuracy of the proposed SRS
operator.

The 2 goodness-of-fit measure

To measure the average difference between the expected and
actual numbers of offspring, the x2 measure, as a tool for

the average accuracy was first introduced by Schell et al.
[27]. At first, there are ¢ disjoint classes as {C1, Ca, ..., Cc}
where C; C {1,2,..., K} and U;‘.=1Cj ={1,2,...,N}
Let§; = Ziecj e; denotes the overall expectationand O; =
> ec; 0i 1s for the observed (actual) copies of individuals in
mating pool after the sampling procedure. Ideally, &; should
be of the order K /c for 1 < j < ¢, so that each class contains
the same individuals on average and it should be at least 10
to obtain the required stochastic accuracy. Schell et al. [27]
defined the Chi-square test as a measure to determine the
accuracy of the sampling process as follows:

c

=y G0

=

(15)

In the roulette wheel sampling situation, the aforemen-
tioned constraint (i.e., §; > 10), however, x should follow
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the Chi-square distribution with ¢ — 1 degrees of freedom,
since this is the asymptotic distribution of x under multi-
nomial distributed o; when K — o0. In this research,
we present the results for a fixed parameter setting, i.e.,
AT = 0.7, the size of population K = 150, classes ¢ = 10,
and total number of tests s = 150.

Table 1 presents the probability distribution of SRS and
the corresponding overall expectation that are very close to
150/10. We used x 5-® to measure the results of x.In x 5%, S
represents the proposed operator that assigns the probabilities
to individuals and R is a type of sampling algorithm, i.e.,
roulette wheel. The main objective of this test is to estimate
the expectation and variance. The population is randomly
generated with predefined fixed individuals, and used the
probability distribution R to assign them probabilities for
selection and after that the sampling scheme R is applied to
obtain instances of 0;, O; and x5k respectively. From the
sequence (x ,f ’ R)] <k<s» the sample mean and variance can be
calculated as follows:

s

. 1
S8R = Iy SR (16)
§ k=1
1 N
A2(S.R) _ SR 5(S.R)\2
o =7 kE_l(xk e Ry2, (17)

This scheme is compared to the theoretical Xf_l distribu-
tion at 99% confidence interval. For 10 classes, the mean and
variance of Chi-square are ¢ — 1 = 9 and 2(c — 1) = 18.
The corresponding estimates of é and 62 are 8.5739 and
19.6010, respectively. These estimates are almost the same
and a more symbolic representation of a comparison of accu-
racy between assigning the probabilities to individuals and
the number of copies corresponding to their probabilities
come in the mating pool. The empirical results confirm the
average behavior of the sampling scheme with respect to the
probability distribution of SRS. The roulette wheel sampling
provides the empirical distribution function that can not be

Table 1 Classes C; and overall

expectation &; for SRS : € i
1 1-43 14.9368
2 44-61 14.9211
3 62-75 15.1421
4 76-90 15.4248
5 91-103 15.6230
6 104-114 14.8549
7 115-124 14.8053
8 125-133 14.3841
9 134-142 15.3876
10 143-150 14.5203
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significant from the theoretical ngl distribution by é and 62
statistics.

Test problem (traveling salesman problem)

The traveling salesman problem (TSP) is one of the most
famous benchmark, significant, and historic hard combina-
torial optimization problems. The main objective of TSP is
to find the shortest Hamiltonian tour in a complete graph
with n nodes. It was documented by Euler in 1759 (his inter-
est was how to get rid of the knight’s tour problem) [28]. It
is a fundamental problem in the fields of computer science,
engineering, operations research, discrete mathematics, and
graph theory. In this problem, a salesman visits all cities
(nodes) exactly once (the constraint) and then returns to the
initial point to complete a tour. It has many applications such
as a variety of vehicle routing [29], scheduling [30], and
bioinformatics [31] which can easily be transformed into the
TSP.

If there are ‘n’ cities, a distance matrix C = [cjjluxn
is searched for a permutation A {0,....n — 1} —
{0, ..., n — 1}, where ¢;; is the distance from city i to city
J, which minimizes the traveled distance, f (X, C):

n—1

f, 0 = Zd(ck(i)» Ci+1)) Fd(crmy, cay), (18)
i=0

where A(i) represents the location of city i in each tour,
d(c;, cj) is the distance between city i to city j and (x;, x;)
is a specified position of each city in a tour in the plane, and
the Euclidean distances of the distance matrix C between the
city i and j is expressed as follows:

i = /i — )2 + (i — 2. (19)

TSP is easy to understand but very difficult to solve, i.e.,
for ‘100" cities, there are 10!5 possible ways to find the
tour. This is the reason to say that TSP is a non-deterministic
polynomial (NP-hard) problem [32,33]. These type of prob-
lems cannot be solved using the traditional optimization
approaches like gradient-based methods. To achieve the opti-
mal solution within a considerable amount of time, heuristic
approaches are efficient at handling the NP-hard problems
[34-37]. The GA has also been used to solve this problem in
several aspects [28,38—44].

Performance evaluation

In this section, we evaluate the performance of the SRS in
comparison to other selection schemes. At first, we present
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basic information about benchmarks and the parameters
setting for GA in “Computational testing methodology”.
Second, MATLAB software (version R2015a) was used to
compare the simulation study among selection operators, and
adetailed discussion on results is given in “Simulation results
and discussion”.

Computational testing methodology

In this research, computational experiments on ten differ-
ent instances taken from the library of traveling salesman
problem (TSPLIB) [45] are solved to compare the proposed
scheme along with five competing selection methods. The
test benchmarks are Euclidean, two-dimensional symmetric
and asymmetric problems within 34-561 cities and given
in Table 2. In addition, we consider the three most widely
used crossover schemes, namely order crossover (OX), par-
tially mapped crossover (PMX) and cycle crossover (CX).
The exchange mutation (EM) as a mutation operator is used
throughout our simulation study. These are the state-of-the-
art genetic operators and a detailed discussion is given in
Ref. [28]. Therefore, there are three group of experiments
conducted as six selection schemes examined with each of
three crossovers and one mutation operators. Table 3 presents
the genetic operators and parameter values which are under
consideration in our simulation study.

Since GA belongs to the class of probabilistic search
algorithms, we use the two-sampled 7 test as a statistical
hypothesis testing [46]. The experiments were performed
in 30 independent trials (each pair of n| = ny = 30) for
each instance to achieve a comparable solution. The two-
tailed ¢ test values are calculated using Eq. (20); where x;
and s; are, respectively, the average and standard deviation
(SD) of SRS and x, and s, are, respectively, the average
and SD of other competitor operators (i.e. FPS, LRS, ERS,
BTS, and PTS). In this study, we set our null hypothesis
in the following way ‘SRS convergences at least as fast as

Table 2 The benchmark problems

Problem name No. of cities Optimal tour length

ftv33 34 1286
berlin52 52 7542
£70 70 38,673
kroA100 100 21,282
ftv170 171 2755
brg180 180 1950
pr226 226 80,369
tbg323 323 1326
tbg403 403 2465
pas61 561 2763

7
Table 3 Parametric configuration for GA
Parameter Setting
Representation Permutation
Population size 150
Crossover criteria PMX, OX, and CX
Crossover rate 80%
Mutation method EM
Mutation rate 5%
Maximum generation 5000
Number of trails 30

Replacement in GA Steady-state GA

other selection operators in comparison’. Throughout this
study, all the statistical differences are shown at p = 0.05
(95% confidence) level of significance using the two-sample
(independent samples) ¢ test with 58 degrees of freedom.
The two-tailed ¢ test value indicates whether a significant
improvement by SRS (¢ < — 2.00) or significant degradation
by SRS (¢ > 2.00). But within the range (— 2.00 < ¢ < 2.00)
of two-tailed 7 test score does not reflect the reasonable statis-
tical evidence to confirm or refute our null hypothesis, which
indicates that there is no statistical significance between the
two approaches:

f= L2 l‘le : (20)
Sp,/a + E
where

o (n1 — Ds? + (ny — 1)s3
P ny4+ny—2 '

Simulation results and discussion

Table 4 summarizes the results of six competing selection
schemes with PMX and EM as crossover and mutation oper-
ators respectively. Results compare on the basis of average,
SD, and improved performance of the SRS in percentage (%)
values. The significant improvements in the results of SRS
with respect to each other approach are indicated through ¢
values. The proposed operator is indicated less average values
for all ten benchmarks with stable results (low SD), as well.
According to the critical value (+ = — 2.00), all computed ¢
scores are less than — 2.00 for all ten benchmark instances
and bold ¢ test values have shown the significantly improved
performance by the proposed operator. The other ¢ test val-
ues which are not bold (non-significant), but negative values
indicates a slightly improved performance with respect to an
average by the proposed operator. In other words, the sim-
ulation results found by the SRS are statistically significant
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Table 4 Results of different

selection strategies with PMX Instance Optimal Selection ~ Average ?mprovement SD t test
(crossover) and EM (mutation) scheme in SRS (%)
operators ftv33 1286 FPS 1480 5.95 117 — 329
LRS 1503 7.39 138 - 371
ERS 1588 12.34 223 — 4.48
BTS 1461 4.72 110 — 2.68
PTS 1551 10.25 186 — 4.23
SRS 1392 - 88 -
berlin52 7542 FPS 7703 1.17 187 — 2.28
LRS 7717 1.35 173 - 2.79
ERS 7903 3.67 235 — 6.13
BTS 7695 1.07 148 — 244
PTS 7812 2.55 199 — 4.80
SRS 7613 - 109 -
ft70 38,673 FPS 40,692 2.04 1333 - 297
LRS 40,174 0.77 1086 - 1.29
ERS 42,239 5.63 1457 — 7.95
BTS 39,954 0.22 958 — 041
PTS 40,578 1.76 1223 — 273
SRS 39,863 - 747 -
kroA100 21,282 FPS 21,883 1.43 418 — 298
LRS 21,962 1.78 535 - 3.23
ERS 22,308 5.42 876 — 17.06
BTS 21,806 1.08 506 — 2.01
PTS 21,980 1.90 435 — 3.83
SRS 21,571 - 392 -
ftv170 2755 FPS 3086 4.18 249 — 2.40
LRS 3129 5.50 281 - 293
ERS 3266 9.46 301 — 4.96
BTS 3163 6.51 266 — 3.65
PTS 3178 6.95 283 — 3.74
SRS 2957 - 157 -
brg180 1950 FPS 2199 6.18 217 — 2.74
LRS 2241 7.94 239 — 3.36
ERS 2189 5.76 226 — 247
BTS 2118 2.60 211 — 1.13
PTS 2254 8.47 261 - 3.39
SRS 2063 - 164 -
pr226 80,369 FPS 82,180 0.73 1392 — 2.02
LRS 82,321 0.93 1444 — 242
ERS 83,233 1.99 1554 — 510
BTS 82,115 0.66 1101 — 211
PTS 82,821 1.50 1327 — 4.30
SRS 81,577 - 863 -
rbg323 1326 FPS 1631 7.48 218 — 224
LRS 1694 10.92 262 — 3.06
ERS 1659 9.04 236 — 2.64
BTS 1621 6.91 209 — 211
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Table 4 continued

Instance Optimal Selection ~ Average Improvement SD t test
scheme in SRS (%)
PTS 1712 11.86 241 — 353
SRS 1509 - 203 -
rbg403 2465 FPS 2844 397 247 - 2.01
LRS 2803 2.57 275 - 1.19
ERS 2897 5.73 271 - 277
BTS 2788 2.04 234 — 1.05
PTS 2820 3.16 260 - 1.52
SRS 2731 - 185 -
pas61 2763 FPS 2979 3.52 191 — 2.66
LRS 2958 2.84 165 - 237
ERS 3024 4.96 186 — 3.87
BTS 2911 1.27 128 — 1.24
PTS 2993 3.98 179 — 3.16
SRS 2874 - 102 -
-sr:lzlcetiin l:;zl:l:i;f S:iierg;[ Instance Optimal Selection  Average .Improvement SD t test
(crossover) and EM (mutation) scheme in SRS (%)
operators ftv33 1286 FPS 1498 8.74 183 — 350
LRS 1471 7.07 141 - 3.39
ERS 1532 10.77 196 — 4.18
BTS 1424 4.00 122 — 2.05
PTS 1510 9.47 157 — 432
SRS 1367 - 91 -
berlin52 7542 FPS 7671 1.15 172 — 220
LRS 7618 0.46 155 — 093
ERS 7809 2.89 201 — 511
BTS 7607 0.32 158 — 0.63
PTS 7732 1.93 167 — 3.80
SRS 7583 - 135 -
ft70 38,673 FPS 40,468 2.60 1106 - 392
LRS 39,993 1.44 1215 — 2.03
ERS 40,897 3.62 1414 — 473
BTS 39,641 0.57 1223 - 0.79
PTS 40,376 2.38 1288 — 3.26
SRS 39,417 - 968 -
kroA100 21,282 FPS 21,598 1.26 392 — 343
LRS 21,593 1.24 409 — 3.25
ERS 21,879 2.53 513 — 5.55
BTS 21,487 0.75 388 — 2.05
PTS 22,036 3.22 469 - 771
SRS 21,326 - 186 -
ftv170 2755 FPS 3164 591 251 — 3.52
LRS 3107 4.18 196 — 290
ERS 3223 7.63 277 — 4.29
BTS 3083 3.44 156 — 270
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Table 5 continued

Instance Optimal Selection  Average Improvement SD t test
scheme in SRS (%)
PTS 3198 6.91 188 5.06
SRS 2977 - 148

brg180 1950 FPS 2140 5.79 229 2.44
LRS 2177 7.40 212 3.34
ERS 2246 10.24 258 4.16
BTS 2053 1.80 193 0.81
PTS 2217 9.07 207 4.23
SRS 2016 - 158

pr226 80,369 FPS 81,715 0.74 1012 2.62
LRS 81,967 1.05 1378 2.99
ERS 83,030 2.31 1554 6.09
BTS 81,878 0.94 1229 2.92
PTS 82,372 1.53 1331 4.52
SRS 81,110 - 756

rbg323 1326 FPS 1625 8.43 206 2.66
LRS 1666 10.68 215 3.37
ERS 1764 15.65 249 4.80
BTS 1597 6.83 223 2.02
PTS 1659 10.31 216 3.23
SRS 1488 - 193

rbg403 2465 FPS 2859 4.72 311 2.00
LRS 2776 1.87 268 0.85
ERS 2864 4.89 318 2.04
BTS 2727 0.11 254 0.05
PTS 2863 4.86 301 2.10
SRS 2724 - 201

pasS61 2763 FPS 2955 3.25 114 3.51
LRS 2981 4.09 143 3.87
ERS 3107 7.98 168 7.00
BTS 2890 1.07 138 1.01
PTS 3036 5.83 155 5.30
SRS 2859 - 97

and better than the other five selection approaches (i.e., FPS,
LRS, ERS, BTS, and PTS).

The order crossover (OX) is used instead of PMX and sim-
ulation results are summarized in Table 5 for various selection
operators. These results are also compared on the basis of
average, SD and improved performance of the SRS in per-
centage (%) values. The ¢ test is also used to measures not
only improved but significant performance by the proposed
SRS. The simulated results show less average values by SRS
for all the benchmarks with consistent results (low SD), as
well. According to the critical value (t = — 2.00), all com-
puted ¢ scores are less than — 2.00 for all ten benchmark
instances and bold 7 test values have shown the significantly
improved performance by the proposed operator. The other

Lisllase cllad .
bes Shenas Q) Springer

t test values which are not bold (non-significant), but nega-
tive values indicates a slightly improved performance with
respect to an average by the proposed operator. The table
shows that there is no positive ¢ test value which means that
no other operator is better than the proposed one in any case.
Based on the simulation results, we can say that the proposed
operator (SRS) is statistically significant and better than the
other five selection approaches (i.e., FPS, LRS, ERS, BTS,
and PTS).

We continue our simulation study to check the perfor-
mance of the proposed operator along with other selection
methods and different techniques of crossover and mutation
operators. Likewise, in Table 6, we tested the performance
of SRS with the pair of CX (crossover operator) and EM
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Table 6 Results of different

selection strategies with CX Instance Optimal Selection ~ Average .Improvement SD t test
(crossover) and EM (mutation) scheme in SRS (%)
operators ftv33 1286 FPS 1547 8.40 209 — 2.62
LRS 1562 9.28 218 — 2.85
ERS 1643 13.76 241 — 417
BTS 1509 6.10 225 - 1.78
PTS 1596 11.22 257 — 3.16
SRS 1417 - 173 -
berlin52 7542 FPS 7723 1.19 199 — 2.02
LRS 7739 1.38 164 — 2.67
ERS 7951 4.01 243 — 6.16
BTS 7694 0.81 171 — 1.51
PTS 7804 2.20 187 - 397
SRS 7632 - 146 -
ft70 38,673 FPS 40,731 2.07 1325 — 2.69
LRS 40,232 0.86 1277 - 1.12
ERS 41,146 3.06 1362 — 395
BTS 40,128 0.60 1264 - 0.79
PTS 41,089 2.93 1147 — 4.16
SRS 39,887 - 1093 -
kroA100 21,282 FPS 21,975 2.68 512 — 3.65
LRS 22,032 2.93 638 — 3.50
ERS 23,143 6.72 756 — 10.59
BTS 21,876 2.68 407 - 3.21
PTS 22,435 3.78 564 — 7.40
SRS 21,588 - 274 -
ftv170 2755 FPS 3190 5.80 276 — 3.16
LRS 3156 4.78 219 — 3.02
ERS 3256 7.71 325 — 3.78
BTS 3108 3.31 222 — 2.04
PTS 3269 8.08 297 — 4.26
SRS 3005 - 164 -
brg180 1950 FPS 2220 7.48 228 — 3.14
LRS 2215 7.27 201 — 3.28
ERS 2285 10.11 246 — 4.16
BTS 2188 6.12 225 — 2.55
PTS 2243 8.43 218 — 3.67
SRS 2054 - 179 -
pr226 80,369 FPS 82,997 1.60 1367 — 4.37
LRS 82,442 0.93 1056 — 298
ERS 83,564 2.26 1431 — 6.05
BTS 82,592 1.11 1108 — 3.46
PTS 83,670 2.39 1042 - 17.79
SRS 81,673 - 941 -
rbg323 1326 FPS 1723 10.50 226 - 3.23
LRS 1706 9.61 252 — 275
ERS 1859 17.05 320 — 4.55
BTS 1684 8.43 231 — 2.50
&‘E’i'?:ﬁﬁ',‘?ﬁ @ Springer
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Table 6 continued

Instance Optimal Selection ~ Average Improvement SD t test
scheme in SRS (%)
PTS 1744 11.58 228 3.58
SRS 1542 - 208

rbg403 2465 FPS 2911 5.50 339 2.20
LRS 2827 2.69 297 1.15
ERS 2943 6.52 364 2.51
BTS 2784 1.19 288 0.51
PTS 2832 2.86 303 1.21
SRS 2751 - 209

pas61 2763 FPS 3015 4.28 192 317
LRS 2997 3.70 178 2.88
ERS 3159 8.64 247 5.51
BTS 2955 2.33 164 1.90
PTS 3068 5.93 156 5.18
SRS 2886 - 113
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Fig. 3 Convergence of GA using PMX and EM for the instance
‘rbg403’
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Fig.4 Convergence of GA using OX and EM for the instance ‘rbg403’

(mutation operator). The simulation results indicate the lower
average and SD values for all benchmarks by the SRS. Based
on statistical perspectives, the SRS outperforms (bold # test
values) all the other selection methods for all ten benchmark
instances (¢ < — 2.00), but, in some cases, only BTS and
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8000

7000 |-

6000 |-

Tour length
o
8
o

4000

3000

2000
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Generations

Fig.5 Convergence of GA using CX and EM for the instance ‘tbg403’

LRS give non-significant results with the proposed operator.
The non-bold ¢ test values are all negative which means that
the proposed operator is not worse than any other competing
selection operators used in this study. Besides, we can clearly
see from Figs. 3, 4 and 5 and analyses performed on the
‘rbg403’ instance that SRS produces lower average results
using three different crossover and one mutation operators.
We also observe that FPS and BTS produced faster results
in early stages, but lead to premature convergence because
of high selection pressure. On the other hand, the proposed
operator work efficiently throughout the generations taking
care of selection pressure and population diversity.

Conclusions
Exploration and exploitation are the two main techniques

which employed normally to all the optimization meth-
ods. The fitness proportional selection approach has essence
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exploitation and linear rank approach is influenced by explo-
ration. This article presented a new split ranked selection
operator which is a great trade-off between exploration
and exploitation. In the proposed procedure, the individu-
als are ranked according to their fitness scores from worst
to best, thus overcoming the fitness scaling issue. After this,
split the whole population into two portions and assigning
them probabilities for selection based on their ranks. The
x? goodness-of-fit test confirms that there is insignificant
difference between the expected and the actual number of
offspring. To evaluate the performance of the proposed oper-
ator, we conducted a series of simulation study along with
some conventional operators. Computational results proved
the superior performance of the new selection scheme in com-
parison with the traditional GA approaches. The significance
of such improvement is also validated through two-tailed ¢
test. Hence, the proposed operator might be a good candi-
date to get optimum or near to optimum results. Moreover,
researchers might be more confident to apply it for any prob-
lems related to evolutionary algorithms.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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