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Abstract
Real-life decision-making problem has been demonstrated to cover the indeterminacy through single valued neutrosophic 
set. It is the extension of interval valued neutrosophic set. Most of the problems of real life involve some sort of uncertainty 
in it among which, one of the famous problem is finding a shortest path of the network. In this paper, a new score function 
is proposed for interval valued neutrosophic numbers and SPP is solved using interval valued neutrosophic numbers. Addi-
tionally, novel algorithms are proposed to find the neutrosophic shortest path by considering interval valued neutrosophic 
number, trapezoidal and triangular interval valued neutrosophic numbers for the length of the path in a network with illus-
trative example. Further, comparative analysis has been done for the proposed algorithm with the existing method with the 
shortcoming and advantage of the proposed method and it shows the effectiveness of the proposed algorithm.

Keywords  Interval valued triangular neutrosophic number · Interval valued trapezoidal neutrosophic number · Ranking 
methods · Deneutrosophication · Neutrosophic shortest path problem · Network

Introduction and literature of review

In this part, introduction to the objective of the paper is given 
by presenting basic concepts and procedure of the shortest 
path problem (SPP) and the literature of review have been 
collected to know the recent work related to the presented 
concept which shows the novelty of the presented work

Introduction

SPP is the ultimate and popular problem in the different 
areas also it is the heart of the network flows. In conventional 
problem, the distance between the nodes is considered to be 
certain and for the uncertain environment fuzzy numbers 
can be adopted to get an optimized result. Computing the 
minimum cost of the path from every vertex is called sin-
gle source SPP. Especially in the process of finding shortest 
path, finding the path which has minimum number of bends 
is very important and will give the most optimized result. 
And the cost is the mapping of length and bends. The con-
ventional SPP is to catch the minimum cost path from initial 
to end node and the cost is the addition of the costs of the 
curves on the path [1, 2, 4].
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While applying in real time situations the vertices and 
the edges will be considered as follows. In transmission 
networks, telephone exchange, communication proficiency, 
satellites, work stations terminals and computers will be con-
sidered as the vertices and cables, wires and fiber optics will 
be treated as the arcs or paths and it is expected to meet trans-
mission requirements at the minimum cost whereas in traffic 
control management the cost is due to only the paths with 
heavy traffic [8]. In the established network every path has 
a weight which will extend the flow in a recurrence fashion. 
The fusion of costs and weights proposes different ways of 
cost minimizing cycles. There may be cycles with negative 
cost which allow raise to perpetual instances and cost of min-
imum infinity and weight minimizing cycles which permits 
rise to a sink in such a way that it is inexpensive to consume 
a flow in an infinite cycle rather than transit to the station.

SPP plays an essential role in combinatorial optimization 
due to its elemental aspects and a broad range of applications. 
Investigating shortest paths is an essential thing in communi-
cation, computer networks, manufacturing systems and trans-
portation. The weight of the path will represent the transporta-
tion timing from one end to other, i.e., the traveling time from 
the source to the destination. The efficiency of the transmis-
sion can be improved by speed up some of the routes to reduce 
the traveling time between some of the pairs of sources and 
terminals by minimizing the weights of the links. One needs 
some amount to reduce the traveling time by improving the 
road conditions for the faster traveling and the total cost sup-
posed to be less to face the needs of the speedup [9].

In all the SPP, the source and terminal nodes should sat-
isfy a set of conditions defined over a set of resources which 
associates to a quantity like the time, pickup of load by the 
vehicle or the duration of the break. The constraint of the 
resource will be given in the form of intervals which regulate 
the values that can be considered by the resources at each 
node on the path. SPP using complete graph can be encrypted 
as an assignment problem and is equivalent to an exceptional 
case of the assignment problem. Providing the shortest path 
is a necessary thing to the system of transport management, 
from a particular source node to the terminal node. The arc 
lengths are stimulated to represent time or cost of the trans-
portation rather the geographical distances [10, 11].

The technique of using fuzzy numbers can be adopted 
for the environment with uncertainty. Crisp number is 
obtained from fuzzy number using defuzzification function 
and it is widely used in an optimization methods. SPP is not 
restricted to the geometric distance. Even though it is fixed, 
the traveling time within the cities may be represented by 
fuzzy variable. Since the weight of the arcs is uncertain in 
almost all the communication and transportation networks, 
it cannot be designed into crisp graphs. Dubois and Prade 
solved fuzzy shortest path problem for the first time. The 
most crucial combinatorial optimization problem is to find 

the SP to the directed graph and its primary format unable 
to represent the situations where the value of the detached 
function should be found not only by the preference of each 
single arc [15–19].

Shortest path of the network can be found using neutro-
sophic set (NS) by considering edge weight as neutrosophic 
numbers (NNs) and that may be single and interval valued, 
and bipolar as well [21, 22]. Samarandache described about 
neutrosophic for the first time in the year 1995 and proposed 
an important mathematical mechanism called neutrosophic 
set theory to handle imprecise, uncertain and indeterminate 
problems which cannot be dealt by fuzzy and its various 
type. NS is obtained by three autonomous mapping such as 
truth (T), indeterminacy (I) and falsity (F) and takes values 
from ]0−, 1+[. It is very difficult to utilize NS directly.

While getting uncertainty in the set of vertices and edge 
then fuzzy graph can be adopted for SPP, but if there is inde-
terminacy exist between the relation of nodes and vertices 
then neutrosophic will be the appropriate concept to deal the 
real life problems [23]. Since indeterminacy is also treated 
seriously, NSs can be able to handle uncertainty in a better 
way [35]. The model of the NS is an important mechanism to 
deal with real scientific and engineering as it is able to deal 
uncertain, inconsistent and also indeterminate information 
[36]. Route maintenance or supply with uncertainty is play-
ing a primary role in intelligent transport systems.

Due to inadequate data, as the stochastic shortest path 
needs accurate probability distributions, it is unable give the 
optimized result. Due to accuracy, adoptability and rapport 
to a system, single valued neutrosophic graph (SVNG) gets 
more attention and produce optimized solution than other 
types of fuzzy sets. Application of probabilities in machine 
learning is done by the score function. These functions play 
an essential role to find the minimum cost path in SPP and 
minimum spanning tree (MST) to UIVNGs (undirected 
interval valued neutrosophic graphs). When the data are in 
the form of intervals then that can dealt effectively by con-
sidering interval valued neutrosophic setting [40, 41]. Many 
group decision making methods including hybrid methods 
have been proposed to solve decision making problems such 
as supplier selection, project selection under triangular and 
trapezoidal neutrosophic environment [55–64].

The rest of the paper is arranged as follows. In Sect. 1.2, 
literature of review has been collected. In Sect. 2, over view 
of interval valued neutrosophic set is given. In Sect. 3, novel 
algorithms are proposed to find the neutrosophic shortest 
path under interval valued neutrosophic environment and 
interval valued triangular and trapezoidal neutrosophic 
environments with the help of proposed score function. In 
Sect. 4, shortcoming of the existing methods, advantages 
of the proposed method and comparative analysis are pre-
sented for the proposed method with the existing method. In 
Sect. 5, conclusion of the presented work is given.
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Literature of review

The authors of, Ahuja et al. [1] proposed a different model 
redistributive heap as a rapid algorithm to find SP of the 
network. Yang et al. [2] presented a graph-theoretic strat-
egy of rectilinear paths on bends and lengths. Ibarra and 
Zheng [3] proved that the single-origin shortest path prob-
lem for permutation graphs can be determined by order of 
the logarithmic of n. Arsham [4] examined the robustness 
of the shortest path problem. Tzoreff [5] examined the dis-
connected SPP with group path lengths. Batagelj et al. [6] 
proposed generalized SPP.

Zhang and Lin [7] introduced the calculation of the 
reverse SPP. Vasantha and Samaranadache [8] proposed pri-
mary neutrosophic algebraic framework. Also their utiliza-
tion to fuzzy and NEUTROSOPHIC models as well. Roditty 
and Zwick [9] acquired some results associated with effec-
tive forms of the SPP. Irnich and Desaulniers [10] proposed 
SPP with support force. Buckley and Jowers [11] intro-
duced SPP using the concept of fuzzy logic. Wastlund [12] 
analyzed the relationship between random assignment and 
SPP problem on the complete graph. Turner [13] attained 
strongly polynomial algorithms for a collection of SPP on 
acyclic and normal digraphs. Deng et al. [14] proposed fuzzy 
Dijkstra algorithm for SPP for imprecise environment.

Biswas et al. [15] introduced an algorithm for deriving 
shortest path in intuitionistic fuzzy environment. Arnautovic 
et al. [16] obtained the complement of the ant colony devel-
opment for the SPP using open MP and CUDA. Gabrel and 
Murat [17] presented different models, methods and princi-
ple for the stability of the SPP. Grigoryan and Harutyunyan 
[18] proposed SPP in the Knodel graph. Rostami et al. [19] 
proposed quadratic SPP. Randour et al. [20] presented algo-
rithms to incorporate the approaches with various securities 
on the length allocation of the paths instead of decreasing its 
normal value. Broumi et al. [21] solved SPP under neutro-
sophic setting using Dijkstra algorithm. Broumi et al. [22] 
introduced SPP based on triangular fuzzy neutrosophic 
environment.

Broumi et al. [23] proposed assertive types of SVNGs 
and examination of properties with validation and examples. 
Nancy and Harish [24] proposed an improved score func-
tion and applied in decision making process. Sahin and Liu 
[25] maximized method of deviation for neutrosophic deci-
sion making problem with a support of incomplete weight. 
Broumi et al. [26] proposed the measurements for SPP using 
SV-triangular neutrosophic numbers. Broumi et al. [27] cal-
culated MST in interval valued bipolar neutrosophic (IVBN) 
setting. Hu and Sotirov [28] proposed amenity of semi defi-
nite programming for the quadratic SPP and performed some 
arithmetic operations to solve the QSPP using branch and 
bound algorithm. Dragan and Leitert [29] solved SPP on 

minimal peculiarity. Zhang et al. [30] proposed stable SPP 
with circulated uncertainty.

Broumi et al. [31] solved SPP using SVNG. Broumi et al. 
[32] solved SSP under bipolar neutrosophic environment. 
Peng and Dai [33] proposed interval-based algorithms based 
on neutrosophic environment for decision making process. 
Liu and You [34] proposed muirhead mean operators and 
employed them in decision making problem. Smarandache 
[35] solved SPP using trapezoidal neutrosophic knowledge. 
Wang et al. [36] applied SV-trapezoidal neutrosophic prefer-
ence in decision making problem. Deli and Subas [37] pro-
posed a ranking method of SVNNs and applied in decision 
making problem. Broumi et al. [38] proposed matrix algo-
rithm for MST in undirected IVNG. Enayattabar et al. [39] 
applied Dijkstra algorithm to find the shortest path under 
IV Pythagorean fuzzy setting. Broumi et al. [40] proposed 
IVN soft graphs. Broumi et al. [41] proposed some notion 
with respect to neutrosophic set with triangular and trap-
ezoidal concept and primary operations as well. Also done a 
contingent analysis with the existing concepts and proposed 
neutrosophic numbers.

Broumi et al. [42] proposed an innovative system and 
technique for the planning of telephone network using NG. 
Broumi et al. [43] proposed SPP under interval valued neu-
trosophic setting. Bolturk and Kahraman [44] presented a 
novel IVN AHP with cosine similarity measure. Wang et al. 
[45] proposed interval neutrosophic set and logic in detail. 
Biswas et al. [46] proposed distance measure using interval 
trapezoidal neutrosophic numbers. Deli [47] given detailed 
work on expansion and contraction on conventional neutro-
sophic soft set. Deli [48] solved a decision making problem 
using interval valued neutrosophic soft numbers.

Deli [49] proposed theory of npn-soft set and its appli-
cation. Deli [50] proposed single valued trapezoidal neu-
trosophic operators and applied them in a decision making 
problem. Deli and Subas [51] proposed weighted geometric 
operators under single valued triangular neutrosophic num-
bers and applied in a decision making problem. Deli et al. 
[52] solved a decision making problem using neutrosophic 
soft sets. Basset et al. [53] proposed framework of hybrid 
neutrosophic group AND-TOPSIS for supplier selection. 
Chang et al. [54] experimented in detail about framework 
for the pattern of reuse necessary decision from theoretical 
perspective to practices.

Basset et al. [55] proposed a hybrid method of neutro-
sophic sets and method of DEMATEL to develop criteria 
for supplier selection. Basset et al. [56] proposed a struc-
ture based on VIKOR technique for e-government web-
site evaluation. Basset et al. [57] Introduced a framework 
to evaluate cloud computing services. Basset et al. [58] 
proposed a hybrid method for project selection under neu-
trosophic environment. Basset et al. [59] proposed a new 
method for a neutrosophic linear programming problem. 
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Basset et al. [60] proposed an economic tool for risk quan-
tification for supply chain. Basset et al. [61] proposed a 
framework for AHP-QFD to solve a supplier selection. 
Basset et  al. [62] proposed neutrosophic AHP-Delphi 
group decision model under trapezoidal neutrosophic 
numbers. Basset et al. [63] solved a group decision mak-
ing problem using neutrosophic analytic hierarchy process. 
Basset et al. [64] proposed a group decision making prob-
lem using triangular neutrosophic numbers. Kumar et al. 
[65] proposed an algorithm to solve neutrosophic short-
est path problem under triangular and trapezoidal neutro-
sophic environment.

From this literature review, to the best of our knowledge, 
there is no contribution of research for SPP using interval 
neutrosophic numbers under triangular and trapezoidal envi-
ronments. Additionally, this is the first study that SPP is 
solved by considering interval valued triangular and trap-
ezoidal neutrosophic numbers for the length of the arc for 
a given network.

Overview on interval valued neutrosophic 
set

Here, a brief description of some basic concepts on NSs, 
SVNSs, IVNSs and some existing ranking functions for 
IVNNs are given.

Definition 2.1 [35]  NS is constructed by N =
{

< x;T
N
(x), I

N

(x),F
N
(x) >, x ∈ X

}

, where X be an universal set of elements 
x and TN(x), IN(x),FN(x) ∶ X →]

−0, 1+[ are the truth, indeter-
minacy and also falsity membership functions and satisfies 
the criterion,

Definition 2.2 [36]  SVNS is defined by 
∙

N =

{

< x;T ∙

N
(x), I ∙

N

(x),F ∙

N
(x) >, x ∈ X

}

 and for every 

and the sum of these three is less than or equal to 3.

Definition 2.3 [45]  An interval valued NS is defined by 
∙

N =

{

< x ∶

[

T
L
∙

N

(x), TU
∙

N

(x)

]

,

[

I
L
∙

N

(x), IU
∙

N

(x)

]

,

[

F
L
∙

N

(x),FU
∙

N

(x)

]

>, x ∈ X

}

 , where T ∙

N
(x) =

[

TL
∙

N

(x), TU
∙

N

(x)

]

⊆ [0, 1],

(1)−0 ≤ TN(x) + IN(x) + FN(x) ≤ 3+.

(2)x ∈ X, T ∙

N
(x), I ∙

N
(x),F ∙

N
(x) ∈ [0, 1],

(3)
I ∙

N
(x) =

[

I
L
∙

N

(x), I
U
∙

N

(x)

]

⊆ [0, 1],

F ∙

N
(x) =

[

F
L
∙

N

(x),F
U
∙

N

(x)

]

⊆ [0, 1] and

Now we assume some mathematical operations on IVNNs 
(interval valued neutrosophic numbers).

Definition 2.4 [45]  Let 
∙

N1 =

{

< x ∶

[

T
L
∙

N1

, TU
∙

N1

]

,

[

I
L
∙

N1

, IU
∙

N1

]

,

[

F
L
∙

N1

,FU
∙

N1

]

>, x ∈ X

}

 and 
∙

N2 =

{

< x ∶

[

T
L
∙

N2

, TU
∙

N2

]

,

[

I
L
∙

N2

, IU
∙

N2

]

,

[

F
L
∙

N2

,FU
∙

N2

]

>, x ∈ X

}

 be two IVNNs and 𝛿 > 0 then we have 

the following operational laws.

Deneutrosophication formulas for IVNNs: To compare two 
IVNNs 

∙

N1 and 
∙

N2 . We use the score function (SF) which rep-
resents a map from [N (R)] into the real line. In the literature 
there are some deneutrosophication formulas, here paper, we 
focus on some of types [24, 25, 33, 34, 44] defined as follows:

(4)0 ≤ sup T ∙

N
(x) + sup I ∙

N
(x) + supF ∙

N
(x) ≤ 3.

(5)

∙

N1 ⊕

∙

N2 =

⟨[

T
L
∙

N1

+ T
L
∙

N2

− T
L
∙

N1

T
L
∙

N2

, T
U
∙

N1

+ T
U
∙

N2

− T
U
∙

N1

T
U
∙

N2

]

,

[

I
L
∙

N1

I
L
∙

N2

, I
U
∙

N1

I
U
∙

N2

]

,

[

F
L
∙

N1

F
L
∙

N2

,F
U
∙

N1

F
U
∙

N2

]⟩

(6)

∙

N1 ⊗

∙

N2=

⟨[

T
L
∙

N1

T
L
∙

N2

, T
U
∙

N1

T
U
∙

N2

]

,

[

I
L
∙

N1

+ I
L
∙

N2

− I
L
∙

N1

I
L
∙

N2

, I
U
∙

N1

+ I
U
∙

N2

− I
U
∙

N1

I
U
∙

N2

]

,

[

F
L
∙

N1

+ F
L
∙

N2

− F
L
∙

N1

F
L
∙

N2

,F
U
∙

N1

+ F
U
∙

N2

− F
U
∙

N1

F
U
∙

N2

]⟩

(7)

�

∙

N =

⟨[

1 −
(

1 − T
L

N

)�

, 1 −
(

1 − T
U

N

)�
]

,

[

(

T
L

N

)�

,
(

T
U

N

)�
]

,

[

(

F
L

N

)�

,
(

F
U

N

)�
]⟩

(8)

Ṅ
𝛿
=

⟨[

(

T
L

N

)𝛿

,
(

T
U

N

)𝛿
]

,

[

1 −
(

1 − I
L

N

)𝛿

, 1 −
(

1 − I
U

N

)𝛿
]

,

[

1 −
(

1 − F
L

N

)𝛿

, 1 −
(

1 − F
U

N

)𝛿
]⟩

.

(9)

S
Bolturk

(

∙

N
1

)

=

(
(

T
L

x
+ T

U

x

)

2
+

(

1 −

(

I
L

x
+ I

U

x

)

2

)

∗

(

I
U

x

)

−

(
(

F
L

x
+ F

U

x

)

2

)

∗

(

1 − F
U

x

)

)

(10)

SRidvan

(

∙

N1

)

=

(

1

4

)

×

(

2 + TL
x
+ TU

x
− 2IL

x
− 2IU

x
− FL

x
− FU

x

)
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The ranking of 
∙

N1 and 
∙

N2 by SF is defined as follows:

	 (i)	
∙

N1 ≺

∙

N2 if �
(

∙

N1

)

≺ �

(

∙

N2

)

	 (ii)	
∙

N1 ≻

∙

N2 if �
(

∙

N1

)

≻ �

(

∙

N2

)

	 (iii)	
∙

N1 =

∙

N2 if �
(

∙

N1

)

= �

(

∙

N2

)

Definition 2.5 [36]  Let RN =

⟨[

RT ,RI ,RM ,RE

]

,
(

TR, IR,FR

)⟩

 
and SN =

⟨[

ST , SI , SM , SE
]

,
(

TS, IS,FS

)⟩

 be two trapezoidal 
neutrosophic numbers (TpNNs) and � ≥ 0 , then

Definit ion 2.6 [36]   Le t  R =

[

RT ,RI ,RM ,RE

]

 and 
RT ≤ RI ≤ RM ≤ RE then the centre of gravity (COG) in R is

Definition 2.7 [36]  Let SN =

⟨[

ST , SI , SM , SE
]

,
(

TS, IS,FS

)⟩

 
be a TpNN then the score, accuracy and certainty functions 
are as follows

(11)

SPeng

(

∙

N1

)

=

[

2

3
+

(

TL
x
+ TU

x

)

6
−

(

IL
x
+ IU

x

)

6
−

(

FL
x
+ FU

x

)

6

]

(12)

SLiu

(

∙

N1

)

=

[

2 +

(

TL
x
+ TU

x

)

2
−

(

IL
x
+ IU

x

)

2
−

(

FL
x
+ FU

x

)

2

]

(13)

S
Harish

(

∙

N
1

)

=

(

1

8

)

×

[

4 +
(

T
L

x
+ T

U

x
− F

L

x
− F

U

x

−2I
L

x
− 2I

U

x

)(

4 − T
L

x
− T

U

x
− F

L

x
− F

U

x

)]

.

(14)
R
N
⊕ S

N
=

⟨[

R
T
+ S

T
,R

I
+ S

I
,R

M
+ S

M
,R

E
+ S

E

]

,
(

T
R
+ T

S
− T

R
T
S
, I

R
I
S
,F

R
F
S

)⟩

(15)

R
N
⊗ S

N
=

⟨[

R
T
⋅ S

T
,R

I
⋅ S

I
,R

M
⋅ S

M
,R

E
⋅ S

E

]

,
(

T
R
⋅ T

S
, I

R
+ I

S
− I

R
⋅ I

S
,F

R
+ F

S
− F

R
⋅ F

S

)⟩

(16)
�RN =

⟨

[

�RT , �RI , �RM , �RE

]

,
(

1 −
(

1 − TR
)�

,
(

IR
)�

,
(

FR

)�
)⟩

.

(17)

COG (R)

=

⎧

⎪

⎨

⎪

⎩

R if R
T
= R

I
= R

M
= R

E

1

3

�

R
T
+ R

I
+ R

M
+ R

E
−

R
E
R
M
−R

I
R
T

R
E
+R

M
−R

I
−R

T

�

otherwise

.

(18)�
(

SN
)

= COG(R) ×

(

2 + TS − IS − FS

)

3

Definition 2.8 [36]  Let RN =

⟨[

RT ,RI ,RP

]

,
(

TR, IR,FR

)⟩

 be a 
triangular neutrosophic number then the score and accuracy 
function are,

Definition 2.9 [46]  Let N be a trapezoidal neutrosophic num-
ber in the set of real numbers with the truth, indeterminacy 
and falsity membership functions are defined by

w h e r e  tN = [tL, tU] ⊂ [0, 1], iN = [iL, iU] ⊂ [0, 1] a n d 
fN = [f L, f U] ⊂ [0, 1] are interval numbers. Then the number 
N can be denoted by 

(

[a, b, c, d];[tL, tU], [iL, iU], [f L, f U]
)

 and 
is called interval valued trapezoidal neutrosophic number.

•	 If b = c in interval valued trapezoidal neutrosophic num-
ber then it becomes interval valued triangular neutrosophic 
number.

(19)a
(

SN
)

= COG(R) ×
(

TS − FS

)

(20)C
(

SN
)

= COG(R) ×
(

TS
)

.

(21)�
(

RN

)

=

1

12

[

RT + 2 ⋅ RT + RP

]

×

[

2 + TR − IR − FR

]

(22)a
(

RN

)

=

1

12

[

RT + 2 ⋅ RT + RP

]

×

[

2 + TR − IR + FR

]

.

(23)TN(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(x−a)tN

b−a
, a ≤ x < b

tN , b ≤ x ≤ c
(d−x)tN

d−c
, c < x ≤ d

0 , otherwise

(24)IN(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

b−x+(x−a)tN

b−a
, a ≤ x < b

iN , b ≤ x ≤ c
x−c+(d−x)iN

d−c
, c < x ≤ d

0 , otherwise

(25)FN(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

b−x+(x−a)fN

b−a
, a ≤ x < b

fN , b ≤ x ≤ c
x−c+(d−x)fN

d−c
, c < x ≤ d

0 , otherwise

,
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Proposed improved algorithm and score 
function

To find the length of the arc, the following algorithm and 
score function are proposed as follows.

Improved algorithm to solve SPP under interval 
valued neutrosophic number

Step 1:	� Determine the source node (SN) arc length 
l1 = ⟨[1, 1], [0, 0], [0, 0]⟩ and classify SN, node 1 
by

	�

Step 2:	� Find the  minimum of  the  length of 
n1 wi th  i t s  acquaintance  node us ing 
li = min

{

li ⊕ lij
}

, j = 2, 3,… , r.

Step 3:	� If there is a minimum in the node and equating to 
the singular measure of i (i.e., i = k ), then classify 
that node j as [lj, k].

Step 4:	� If the minimum value exists in the node matching 
to more values from i then it can be concluded that 
there are more IVN paths between SN ( i ) and DN 
( j ) and select any value of i.

Step 5:	� Classify the destination node (DN) (node r ) by 
[lr, 1] . Then the interval valued neutrosophic dis-
tance (IVND) among SN lr.

Step 6:	� Find the IVNSP between initial and terminal node 
according to [lr, 1] and check the label of n1 and is 
denoted by [la, d] . Classify node a and so on. Rerun 
the process until get n1.

Step 7:	� By connecting all the nodes acquired by repeating 
the process in step 4, IVNSP can be found.

�

l1 = ⟨[1, 1], [0, 0], [0, 0]⟩,−
�

	� Note: If �
(

Ni

)

< �
(

Np

)

 then the interval valued 
neutrosophic number (IVNN) is the minimum of 
Np , where Ni, i = 1, 2,… , r is the set of IVNN and 
� is the score function.

Proposed score function

The novel SF for finding the minimum cost path under inter-
val valued neutrosophic shortest path (IVNSP) problem is 
provided as follows

Numerical example:
�For the edge 1–2: S

Nagarajan
(A⃛

1
) =

1

2
[(0.1 + 0.2) − (0.2)

(0.3) + (0.3 − 1)
2
+ (0.5)

]

= 0.125

�For the edge 1–3: S
Nagarajan

(A⃛
1
) =

1

2
[(0.2 + 0.4) − (0.3)

(0.5) + (0.5 − 1)
2
+ (0.2)

]

= 0.2.

Similarly for other edges.
Note: Formulas used in the proposed algorithms.
Score function used in the proposed algorithm under IVN 

environment and COG for TFN are

Computation of shortest path using IVNNs

Illustrate to the basic process of the improved algorithm, one 
simple example is shown.

(26)

�Nagarajan

(

∙

N1

)

=

1

2

[

(

TL
x
+ TU

x

)

−

(

IL
x
.IU
x

)

+

(

IU
x
− 1

)2
+

(

FU
x

)

]

.

(27)
�(�) = COG(R) ×

1

2

[

TL
+ TU

−

(

IL ⋅ IU
)

+

(

IU − 1
)2

+ FU
]

(28)

COG for TFN is
1

3

[

RT + 2RM + RE −

RM

(

RE − RI

)

(

RE − RI

)

]

.

Fig. 1   Interval-valued neutro-
sophic network
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Illustrative example
This section is based on a numerical problem adapted from 

Broumi et al. [40] to show the potential application of the pro-
posed algorithm and score function.

Consider a network Fig. 1 with six nodes and eight edges 
with SN, node 1 and DN, node 6. The interval valued neutro-
sophic distance is given in Table 1.

In this situation, we need to evaluate the shortest distance 
from SN, i.e., node 1 to DN, i.e., node 6.

Calculating the shortest path using proposed algorithm of 
interval valued neutrosophic path problem is given as follows.

Here r = 6 , since there are totally 6 nodes.
Let, l1 = ⟨[1, 1], [0, 0], [0, 0]⟩ and classify the SN 

n1 =
�

⟨[1, 1], [0, 0], [0, 0]⟩,−
�

.
To find the value of lj, j = 2, 3, 4, 5, 6.

Iteration no. 1:
Since n2 has only n1 as the predecessor, let i = 1, j = 2 

in step 2.
To find l2:

Since, minimum occurs for i = 1 , classify the node 
n2 =

�

⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩, 1
�

.
Iteration no. 2:
Since n3 has two predecessors n1 and n2 , let  i = 1, 2& j = 3 

in step 2.
To find l3:

l2 = min
{

l1 ⊕ l12
}

=min{⟨[1, 1], [0, 0], [0, 0]⟩⊕ ⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩}

= ⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩.

l3 = min
{

l1 ⊕ l13, l2 ⊕ l23
}

= min{⟨[1, 1], [0, 0], [0, 0]⟩⊕ ⟨[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]⟩ ,

⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩⊕ ⟨[0.3, 0.4], [0.1, 0.2], [0.3, 0.5]⟩}

= min{⟨[1 + 0.2 − 1(0.2), 1 + 0.4 − 1(0.4)],

[0(0.3), 0(0.5)], [0(0.1), 0(0.2)]⟩,

⟨[0.1 + 0.3 − (0.1)(0.3), 0.2 + 0.4 − (0.2)(0.4)],

[(0.2)(0.1), (0.3)(0.2)], [(0.4)(0.5), (0.5)(0.5)]⟩}

= min{⟨[1, 1], [0, 0], [0, 0]⟩ , ⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩}

= ⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩.

Since the score function values are,

and the minimum occurs for i = 2 , then classify the node 
n3 =

�

⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩, 2
�

.

Iteration no. 3:
Since n4 has one predecessors n3 , let i = 3& j = 4 in step 2.
To find the value of l4:

Since, minimum occurs for i = 3 , hence classify the node 
n4 =

�

⟨[0.6, 0.67], [0.004, 0.018], [0.048, 0.125]⟩, 3
�

.
Iteration no. 4:

Since n5 has two predecessors n2 and n3 , let i = 2, 3&j = 5 
in step 2.

To find the value of l5:

Since the score function values are,

�(⟨[1, 1], [0, 0], [0, 0]⟩

=

1

2

�

(1 + 1) − (0 × 0) + (0 − 1)
2
+ 0

�

= 1.5

�(⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩)

=

1

2

�

(0.37 + 0.52) − (0.02 × 0.06) + (0.06 − 1)
2
+ 0.25

�

= 0.9

l4 = min
{

l3 ⊕ l34
}

= min{⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩

⊕⟨[0.2, 0.3], [0.2, 0.5], [0.4, 0.5]⟩}

= ⟨[0.6, 0.67], [0.004, 0.018], [0.048, 0.125]⟩.

l5 = min
{

l2 ⊕ l25, l3 ⊕ l35
}

= min{⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩

⊕ ⟨[0.1, 0.3], [0.3, 0.4], [0.2, 0.3]⟩,

⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩

⊕⟨[0.3, 0.6], [0.1, 0.2], [0.1, 0.4]⟩}

= min{⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩ ,

⟨[0.56, 0.81], [0.002, 0.012], [0.012, 0.1]⟩}

= ⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩.

�(⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩) = 0.75

Table 1   The details of edges 
information in term of IVNNs

Edges Interval valued neutrosophic distance Edges Interval valued neutrosophic distance

1–2 
(

e1

)

([0.1, 0.2], [0.2, 0.3], [0.4, 0.5]) 3–4 
(

e5

)

([0.2, 0.3], [0.2, 0.5], [0.4, 0.5])

1–3 
(

e2

)

([0.2, 0.4], [0.3, 0.5], [0.1, 0.2]) 3–5 
(

e6

)

([0.3, 0.6], [0.1, 0.2], [0.1, 0.4])

2–3 
(

e3

)

([0.3, 0.4], [0.1, 0.2], [0.3, 0.5]) 4–6 
(

e7

)

([0.4, 0.6], [0.2, 0.4], [0.1, 0.3])

2–5 
(

e4

)

([0.1, 0.3], [0.3, 0.4], [0.2, 0.3]) 5–6 
(

e8

)

([0.2, 0.3], [0.3, 0.4], [0.1, 0.5])
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and the minimum occurs for i = 2 , hence classify the node 
n5 =

�

⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩, 2
�

Iteration no. 5:
Since n6 has two predecessors n4 and n5 , let 

i = 4, 5 & j = 6 in step 2.
To find the value of l6:

Since the score function values are,

and the minimum occurs for i = 5 hence classify 
n6 =

�

⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩, 5
�

.

�(⟨[0.56, 0.81], [0.002, 0.012], [0.012, 0.1]⟩) = 1

l6 = min
{

l4 ⊕ l46, l5 ⊕ l56
}

= min{⟨[0.6, 0.67], [0.004, 0.018], [0.048, 0.125]⟩

⊕ ⟨[0.4, 0.6], [0.2, 0.4], [0.1, 0.3]⟩,

⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩

⊕⟨[0.2, 0.3], [0.3, 0.4], [0.1, 0.5]⟩}

= min{⟨[0.76, 0.87], [0.008, 0.0018], [0.0048, 0.0375]⟩ ,

⟨[0.352, 0.63], [0.018, 0.048], [0.008, 0.075]⟩}

= ⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩.

�(⟨[0.76, 0.87], [0.008, 0.0018], [0.0048, 0.0375]⟩) = 1

�(⟨⟨[0.352, 0.63], [0.018, 0.048], [0.008, 0.075]⟩⟩) = 0.82

Since n6 is the DN of the given network, IVNSP between 
n1 and n6 is ⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩.

Now, IVNSP from n1 and n6 is obtained as follows.
Since, n6 =

�

⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩,

5] ⇒ a person is coming from 5 → 6n5 =
�

⟨[0.19, 0.47], [0.06,

0.12], [0.08, 0.15]⟩, 2
�

⇒ a person is coming from 2 → 5

n2 =
�

⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩, 1
�

⇒ a person is com-
ing from 1 → 2.

By joining all the acquired nodes, interval valued neu-
trosophic shortest path from n1 and n6 is obtained.

Hence IVNSP of the given network is 1 → 2 → 5 → 6.

The IVNS distance and IVNSP of all the nodes from 
SN node 1 in the below Table 2 and the classification of 
all the nodes are shown in Fig. 2.

The following table is formed using different deneutro-
sophic functions called score functions for all the possible 
edges and using proposed improved score function in the 
last column (Table 3).

According to the improved score function proposed in 
Sect. 3, the shortest path from node one to node six can be 
computed as follows (Table 4).

Therefore, the path P ∶ 1 → 2 → 5 → 6. is identified as 
the neutrosophic shortest path.

Algorithm: a new approach to find SPP using 
TpIVNN and TIVNN

Consider a directed and noncyclic graph, where the length of 
the arcs is represented by IVNN. The introduced algorithm 

Table 2   Interval valued 
neutrosophic shortest path

Node number (j) li IVNSP between 
jth and node 1

2 ⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩ 1 → 2

3 ⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩ 1 → 2 → 3

4 ⟨[0.6, 0.67], [0.004, 0.018], [0.048, 0.125]⟩ 1 → 2 → 3 → 4

5 ⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩ 1 → 2 → 5

6 ⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩ 1 → 2 → 5 → 6

Fig. 2   Interval-valued neutro-
sophic shortest path
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399Complex & Intelligent Systems (2019) 5:391–402	

1 3

determines the shortest path from the initial node to the ter-
minal node. The algorithm is described as follows.

Step 1:	� Let n be the total number of paths from the ini-
tial node to terminal one. Find the score function 
of every arc length for the given network using 
Eqs. (18), (19) and (24), (25).

Step 2:	� Find all the available paths Pi, i = 1, 2,… , n and 
the corresponding path length. Also every n paths 
can be dealt as an arc which are represented by 
IVNN.

Step 3:	� Find the sum of all score functions �
(

�i

)

 of each 
available path.

Step 4:	� The path which have minimum score value will 
represent an optimized interval valued shortest 
path by ranking in ascending order.

End
Note: TpIVNN-Trapezoidal interval valued neutro-

sophic number.
TIVNN-Triangular interval valued neutrosophic 

number.

Illustrative example to find the shortest path using TpIVNN

For the validation of the proposed algorithm, a network 
is adopted from Broumi et al. [43] and Kumar et al. [65].

Consider a network with six nodes and eight edges. The 
TpIVN cost is given below (Tables 5, 6).

Applying steps 1–4 of the proposed algorithm, it if 
found that 1 → 2 → 5 → 6 is IVNP with lowest cost 4.18 
and the IVNP is ⟨(4, 11, 15, 20); [0.35, 0.608], [0.018, 0.048],
[0.008, 0.075]⟩.

Illustrative example to find the shortest path using TIVNN

For the validation of the proposed algorithm, an example 
network is adopted from Broumi et al. [26, 35].

Consider a network with six nodes and eight edges. The 
TIVN cost is given below (Tables 7, 8).

Applying steps 1–4 of the proposed algorithm, it if found 
that 1 → 2 → 5 → 6 is IVNP with lowest cost 4.18 and the 
IVNP is ⟨(4, 11, 15); [0.35, 0.61], [0.02, 0.05], [0.01, 0.08]⟩.

Comparative study of the proposed 
algorithm

In this section, a comparative study is carried out with the 
shortcomings and advantage of the proposed algorithm 
and it shows the effectiveness of the proposed algorithm

Shortcoming of the existing method

The compared existing method is unable to handle the 
interval-based information about the length of the arc and 

Table 3   Different 
deneutrosophication value of 
edge (i, j)

Edges SRidvan [43] �Nagarajan

1–2 0.1 0.125
1–3 0.175 0.2
2–3 0.325 0.17
2–5 0.125 0.11
3–4 0.05 0.325
3–5 0.45 0.32
4–6 0.35 0.43
5–6 0.125 0.26

Table 4   Crisp path length for proposed algorithm

The proposed algorithm 
based �Nagarajan

Crisp path length Ranking

1 → 2 → 5 → 6 0.485 1
1 → 3 → 5 → 6 0.78 2
1 → 2 → 3 → 5 → 6 0.875 3
1 → 3 → 4 → 6 0.955 4
1 → 2 → 3 → 4 → 6 1.05 5

Table 5   Trapezoidal interval valued neutrosophic distance

Edges Trapezoidal interval valued neutrosophic distance Edges Trapezoidal interval valued neutrosophic distance

1–2 
(

e1

)

⟨(1, 2, 3, 4); [0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩ 3–4 
(

e5

)

⟨(2, 4, 8, 9); [0.2, 0.3], [0.2, 0.5], [0.4, 0.5]⟩

1–3 
(

e2

)

⟨(2, 5, 7, 8); [0.2, 0.4], [0.3, 0.5], [0.1, 0.2]⟩ 3–5 
(

e6

)

⟨(3, 4, 5, 10); [0.3, 0.6], [0.1, 0.2], [0.1, 0.4]⟩

2–3 
(

e3

)

⟨(3, 7, 8, 9); [0.3, 0.4], [0.1, 0.2], [0.3, 0.5]⟩ 4–6 
(

e7

)

⟨(7, 8, 9, 10); [0.4, 0.6], [0.2, 0.4], [0.1, 0.3]⟩

2–5 
(

e4

)

⟨(1, 5, 7, 9); [0.1, 0.3], [0.3, 0.4], [0.2, 0.3]⟩ 5–6 
(

e8

)

⟨(2, 4, 5, 7); [0.2, 0.3], [0.3, 0.4], [0.1, 0.5]⟩

Table 6   Available paths and its score value

Available path �
(

�i

)

Ranking

P1 ∶ 1 → 2 → 5 → 6 4.18 1
P2 ∶ 1 → 3 → 5 → 6 8.25 2
P4 ∶ 1 → 3 → 4 → 6 12.43 3
P3 ∶ 1 → 2 → 3 → 5 → 6 13.31 4
P5 ∶ 1 → 2 → 3 → 4 → 6 17.5 5
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shortest path cannot be obtained for interval-based neu-
trosophic network.

Advantage of the proposed algorithm

If the length of the path is interval-based one then the 
shortest path of the given network can be obtained by 
interval valued neutrosophic numbers for an optimized 
path. Since triangular and trapezoidal numbers are widely 
used in many of the real world applications for their sim-
plicity of computation, interval valued triangular and trap-
ezoidal neutrosophic numbers have been used to find the 
neutrosophic shortest path. This is the advantage of the 
proposed algorithm.

Comparative study of algorithm

This section provides a comparative study of the proposed 
algorithm with the existing method of for neutrosophic 
shortest path problems.

A comparison of the results between existing and new 
techniques is shown in Table 9.

The result shows that the proposed algorithm provides 
sequence of visited nodes which shown to be similar with 
neutrosophic shortest path.

The neutrosophic shor test  path (abbr.NSP) 
remains the same namely 1 → 2 → 5 → 6 , but the 
crisp shortest path length (CSPL) differs namely 
⟨[0.35, 0.60], [0.01, 0.04], [0.008, 0.075]⟩ , respectively. From 
here we come to the conclusion that there exists no unique 
method for comparing neutrosophic numbers and different 
methods may satisfy different desirable criteria (Table 10).

Conclusion and future implication

The heart of the network community is nothing but the 
SPP. The objective of this problem is finding the minimum 
cost path among all other paths. This issue has been solved 
using many methods starts from conventional SPP with 
crisp weights. As many of the real world applications have 
uncertain vertices and edges fuzzy environment was use-
ful to handle this problem. But still fuzzy setting cannot 
handle indeterminacy of the information, neutrosophic sets 
are found to be the best choice to handle this issue and has 
applied successfully. In this paper, neutrosophic SPP has 
been solved under interval valued neutrosophic, trapezoidal 
and triangular interval valued neutrosophic environments 
as it handles interval values. Also an improved score func-
tion and center of gravity has been proposed and applied 
to find the minimum cost of the path. Our proposed score 
function is without having the lower membership of fal-
sity and which saves the time naturally. Further compara-
tive analysis is done for Broumi’s algorithm with different 

Table 7   Triangular interval valued neutrosophic distance

Edges Triangular interval valued neutrosophic distance Edges Triangular interval valued neutrosophic distance

1–2 
(

e1

)

⟨(1, 2, 3); [0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩ 3–4 
(

e5

)

⟨(2, 4, 8); [0.2, 0.3], [0.2, 0.5], [0.4, 0.5]⟩

1–3 
(

e2

)

⟨(2, 5, 7); [0.2, 0.4], [0.3, 0.5], [0.1, 0.2]⟩ 3–5 
(

e6

)

⟨(3, 4, 5); [0.3, 0.6], [0.1, 0.2], [0.1, 0.4]⟩

2–3 
(

e3

)

⟨(3, 7, 8); [0.3, 0.4], [0.1, 0.2], [0.3, 0.5]⟩ 4–6 
(

e7

)

⟨(7, 8, 9); [0.4, 0.6], [0.2, 0.4], [0.1, 0.3]⟩

2–5 
(

e4

)

⟨(1, 5, 7); [0.1, 0.3], [0.3, 0.4], [0.2, 0.3]⟩ 5–6 
(

e8

)

⟨(2, 4, 5); [0.2, 0.3], [0.3, 0.4], [0.1, 0.5]⟩

Table 8   Available paths and its score value

Available path �
(

�i

)

Ranking

P1 ∶ 1 → 2 → 5 → 6 4.9 1
P2 ∶ 1 → 3 → 5 → 6 8.27 2
P4 ∶ 1 → 3 → 4 → 6 11.1 3
P3 ∶ 1 → 2 → 3 → 5 → 6 12.86 4
P5 ∶ 1 → 2 → 3 → 4 → 6 15.69 5

Table 9   Comparison of sequence of nodes using neutrosophic short-
est path and our proposed algorithm

Algorithm of Broumi Path Crisp path length

SRidvan [43] 1 → 2 → 5 → 6 0.35
SNagarajan 1 → 2 → 5 → 6 0.485

Table 10   Sequence of nodes 
with shortest path length

Possible path Sequence of nodes Neutrosophic shortest path length

Neutrosophic shortest path with interval 
valued neutrosophic numbers [43]

1 → 2 → 5 → 6 ⟨[0.35, 0.60], [0.01, 0.04], [0.008, 0.075]⟩

Proposed algorithm on SNagarajan 1 → 2 → 5 → 6 ⟨[0.35, 0.60], [0.01, 0.04], [0.008, 0.075]⟩
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deneutrosophication function and proposed one. It is found 
that minimum cost is less compare than other existing 
method using proposed algorithms and score function. Also 
the proposed algorithm and improved score function have 
less computational complexity and saves the time. In future, 
the SPP would be extended to neutrosophic soft and rough 
set environments for interval-based path lengths. Also the 
proposed concept will be extended to complex neutrosophic 
environment.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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