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Abstract
Generation of all possible spanning trees of a graph is a major area of research in graph theory as the number of spanning
trees of a graph increases exponentially with graph size. Several algorithms of varying efficiency have been developed since
early 1960s by researchers around the globe. This article is an exhaustive literature survey on these algorithms, assuming
the input to be a simple undirected connected graph of finite order, and contains detailed analysis and comparisons in both
theoretical and experimental behavior of these algorithms.
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Introduction

Many real life problems can be solved using graph theory.
There is a well-known concept in graph theory, known as
spanning tree. A spanning tree is a subset of a given graph,
encompassing all its vertices, with minimum possible num-
ber of edges. Spanning trees find a huge range of applications
in the fields of computer science, chemistry (for determina-
tion of the geometry and dynamics of compact polymers),
medicine (identifying history of transmission of HCV infec-
tion), biology (in quantitative description of cell structures in
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light microscopic images), astronomy (to compare the aggre-
gation of bright galaxies with faint ones), archaeology (for
identifying close proximity analysis), and many others. Dif-
ferent areas of computer science like image processing (in
extraction of networks of narrow curvilinear features such
as road and river networks from remotely sensed images),
networking (in electrical networks, transportation networks,
mobile ad-hoc networks, broadcast and peer-to-peer net-
works, VLANs, etc.), social media (for improving AI based
search performance), and many others use either minimum
spanning tree or all possible spanning trees of a graph. In a
weighted graph, minimum spanning tree (MST) has the least
possibleweight compared to theweights of all other spanning
trees, where weight of a tree is the sum of the weights of its
associated edges. Like computation of a minimum spanning
tree, computation of all possible spanning trees of a graph
have also gone through evolution in approaches adopted for
its solutions.

When a given problem is formulated in terms of a graph,
generation of spanning trees of the graphoften becomes a nat-
ural way of solving the problem or optimizing the solution.
Some of these problems include routing in wired or wireless
networks, calculating current in electrical networks, design-
ing layout of integrated circuits, solving a maze, finding set
of genes responsible for a specific genetic disorder, maintain-
ing communications between various hardware resources in
distributed computing environment, just to mention a few.

Various efficient algorithms for generating all spanning
trees of a graph have been proposed by several researchers
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[1, 3, 5, 6, 10–25]. The algorithms [3, 6, 10, 11, 13, 15–17,
19–21, 25] have been reviewed, explained, and compared in
Sect. 3. The implementation results of some of the algorithms
are shown in Sect. 4. Our contribution in this article has been
discussed in Sect. 5, and the paper is concluded in Sect. 6
with necessary remarks/comments.

Preliminaries

This section has been included for briefly defining the
relevant terminologies [4] associated to the problem of gen-
erating all spanning trees of a graph.

In this article, we consider simple graphs, i.e. graphs
without self loops and parallel edges. The problem under
consideration requires the graphs to be connected; other-
wise, instead of spanning trees we will get spanning forests.
An undirected graph G is said to be connected if there is
at least one path between every pair of vertices in G; other-
wise, G is disconnected. A disconnected graph consists of
two or more disjoint connected graphs. Each of these con-
nected subgraphs is called a component. A bridge is an edge
whose removal disconnects the graph. For our work, we have
considered undirected graphs only.

A tree is a connected graph without cycles. A tree T is
said to be a spanning tree of a connected graph G if T is a
subgraph of G which spans over all vertices of G. An edge
in a spanning tree T is called a branch. An edge of G which
is not present in the given spanning tree T of G is called a
chord. A cycle formed by adding a chord to a spanning tree,
is called a fundamental cycle.

Reviews on all possible spanning tree
generation algorithms

The execution time of algorithms for generating all possible
spanning trees of a given simple undirected connected graph,
G, is generally dependent upon the number of spanning trees
of the graph as well as the number of vertices and edges of
the graph.

Let n and m represent the number of vertices and edges
of G, respectively. A spanning tree T of G can be repre-
sented as a sequence of n−1 distinct edges of G, such that
all n vertices ofG are connected. Generating all the spanning
trees of a graph has the challenge of discarding the non-
tree sequences and selecting only the distinct tree sequences.
The time required to generate all spanning trees of G can
be expressed as O(f (n, m)+g(n, m)τ (G)), where τ (G) is the
number of spanning trees of G, f (n, m) and g(n, m) are func-
tions that are specific to the algorithm under consideration.
The total running time is usually dominated by the term g(n,
m)τ (G) because τ (G) increases exponentially with increase

Fig. 1 A simple undirected
connected graph (G) where n �
4 and m �5

in graph size. τ (G) can be calculated in polynomial time for
any arbitrary graph using Kirchhoff’s matrix tree theorem.

These algorithms can be classified into following three
methods:

• Test and select method.
• Elementary tree transformation method.
• Successive reduction of graph method.

The graph G � (V, E) shown in Fig. 1 is considered for
explaining all algorithms discussed in this article, where V
�{v1, v2, v3, v4}, E �{e1, e2, e3, e4, e5}, n �4, m �5, and
τ (G)�8. All the spanning trees of G are shown in Fig. 2.

Test and select method

The underlying idea for test and select method is that a span-
ning tree T of a graph G=(V, E) has n−1 edges. Thus,
mn−1 edge combinations of length n−1 are possible out of
which mCn−1 edge combinations are distinct. Among these
mCn−1 edge combinations, some are spanning trees. In gen-
eral, every algorithm under this classification has two phases.
During the first phase, each algorithm tries to generate less
thanmn−1 combinations using some logic, such that no span-
ning tree combination is rejected. In the second phase, the
algorithm tests each combination generated during the first
phase and selects only the unique spanning tree combinations
using some tree testing algorithm. The tree testing algorithm
is based on the fact that an n−1 length edge combination
is a spanning tree if and only if it has no cycle. Since the
approach is combinatorial, each algorithm uses some logic
to either avoid or reject duplicate spanning tree combinations.

The algorithms [3, 16, 19, 20] under this classification
have been explained in the following sections.

Char’s algorithm

The algorithm proposed by Char [3] in 1968, generates all
possible combinations of edges of input graph G and after
tree checking, gives unique spanning trees as output.

The algorithm starts with an initial spanning tree per-
formed by a Breadth-First Search on the given graph. While
searching, the vertices of G are renumbered as n, n−1, …,
2, 1 according to the order in which they are visited and an
initial sequence λ0 is generated depending upon the con-
nectivity of the vertices, shown in Fig. 3. Beginning with
λ0, the algorithm finds out all other spanning trees of G
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Fig. 2 Eight Spanning Trees of
G

Fig. 3 After Breadth First Traversal ofG from vertex v1 in Fig. 1, tree T
is generated. Vertices are renumbered reversely as they are visited. After
renumbering the graph G, sequence λ0 is generated which is shown in
right

Table 1 From λ0, other sequences are generated and checked to be tree
or not

Seq. no. Edge combination Tree

1 (1, 4), (2, 4), (3, 4) Yes

2 (1, 4), (2, 4), (3, 2) Yes

3 (1, 4), (2, 3), (3, 4) Yes

4 (1, 4), (2, 3), (3, 2) No

5 (1, 4), (2, 1), (3, 4) Yes

6 (1, 4), (2, 1), (3, 2) Yes

7 (1, 2), (2, 4), (3, 4) Yes

8 (1, 2), (2, 4), (3, 2) Yes

9 (1, 2), (2, 3), (3, 4) Yes

10 (1, 2), (2, 3), (3, 2) No

11 (1, 2), (2, 1), (3, 4) No

12 (1, 2), (2, 1), (3, 2) No

Table shows edge combinations generated by Char’s algorithm for the
graph G in Fig. 1

by generating the sequences for the respective trees, shown
in Table 1. During this process, some non-tree sequences
are also generated along with the spanning tree sequences.
Char provided one algorithm to distinguish between these
two kinds of sequences.

Char did not provide any complexity analysis of his algo-
rithm. The complexity of his algorithm was later analyzed
by Jayakumar et al. [7] in the year 1980. They obtained a
characterization of the non-tree subgraphs which correspond
to the non-tree sequences generated by the algorithm.

If τ ′(G) and τ (G) denote the numbers of non-tree and tree
sequences, respectively, then the time complexity of the algo-

Fig. 4 Incidence Matrix for the graph G in Fig. 1

rithm is O(m+n+n(τ (G)+τ′(G))). Space required by Char’s
algorithm is O(nm).

They also reported the behavior of Char’s algorithm in
the case of certain special classes of graphs; for exam-
ple, the class of all n-vertex connected graphs in which
there exists a vertex with degree n−1 has a complexity of
O(m+n+nτ (G)).

In a later work [8], Jayakumar et al. described a tech-
nique called path compression to reduce the actual number
of comparisons in Char’s algorithm. They also proposed a
modified version of Char’s algorithm, MOD-Char [9] with
time complexity O(m+n+nτ (G)) in the year 1989.

Sen Sarma’s algorithm

The algorithm [20] developed in 1981 by Sen Sarma et al.,
uses a privileged reduced incidence edge structure (PRIES).
The incidence matrix of the graph G in Fig. 1 is shown in
Fig. 4. A reduced incidence edge structure (RIES) of graph
G is a table having n−1 vertices as row headers and column
entries are the edges incident on the respective vertices. The
nth vertex, which is not considered, is called the reference
vertex.

A privileged reduced incidence edge structure (PRIES) of
G is a table derived from RIES, such that the first column of
the table contains edges incident on the reference vertex only,
shown in Table 2. The reference vertex is a highest degree
vertex ofG. The columns are made compact so that each row
represents the incident edges at the corresponding vertex in
any order except the first column constraint.

FromPRIES all possible n−1 edge combinations are gen-
erated by taking exactly one edge from each row and one
edge from the first column while discarding combinations
which are not distinct. These combinations have been shown
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Table 2 PRIES matrix generated by Sen Sarma’s algorithm for the
graph G in Fig. 1

v2 e1 e4

v3 e2 e4 e5

v4 e3 e5

Table 3 Table showing edge combinations generated by Sen Sarma’s
algorithm for the graph G in Fig. 1

Combination Valid Tree

e1e2e3 Yes Yes

e1e2e5 Yes Yes

e1e4e3 Yes Yes

e1e4e5 Yes Yes

e1e5e3 Yes Yes

e1e5e5 No N/A

e4e2e3 Yes Yes

e4e2e5 Yes Yes

e4e4e3 No N/A

e4e4e5 No N/A

e4e5e3 Yes Yes

e4e5e5 No N/A

in Table 3. These combinations are tested by the tree test-
ing algorithm for distinguishing the tree sequences from the
other non-tree sequences.

The tree testing algorithm used by Sen Sarma exploits the
property that every tree has at least two pendant vertices and
any n−1 edge combination cannot contain a cycle unless it
has at least three nodes of degree more than one.

Authors did not provide any complexity analysis of Sen
Sarma’s algorithm.So,we calculated the time and space com-
plexity. There are three steps in the algorithm:

1. The first step is to generate PRIES matrix. In PRIES
matrix, the maximum number of privileged column can
be one and the maximum number of non-privileged
columns canbe (n−1), as the highest degree of a vertex in
G can be (n−1). So, PRIES has amaximum 1+(n−1)�
n number of columns and (n−1) number of rows.

2. The second step is to generate edge combinations from
PRIES. In each step, a new sequence of (n−1) length
is formed taking exactly one edge from each row while
discarding sequences which are not distinct. Now, it is
mandatory to take one element from the privileged col-
umn (i.e. the first column). So, combining these two, total
nn−1 − (n−1)n− 1 sequences can be generated.

3. The third step is to check whether each generated com-
bination is a tree or not. We assume each combination
checking takes Tc time.

Table 4 SPRIES matrix generated by Naskar’s Test and Select algo-
rithm from PRIES matrix in Table 2

v2 e1 e4

v3 e2 e4 e5

v4 e3 e5

The number of super privileged columns is: �2 × m/n� ��2 × 5/4� �
2

Thus, the overall time required by this algorithm is approx-
imately nn ×Tc. The term Tc is much less compared to nn.
Therefore, the overall time complexity is O(nn). The space
complexity of the algorithm is O(nm).

Naskar’s test and select algorithm

This algorithm [16] is an extension and improved version of
Sen Sarma’s algorithm and was developed by Naskar et al.
in 2007. The algorithm uses a super privileged reduced inci-
dence edge structure (SPRIES).

Unlike Sen Sarma’s algorithm which uses only one
privileged column, this algorithm has �2m/n� number of
privileged columns. The privileged columns are arranged
in such a way that starting from the first column the high-
est degree vertices are chosen and the edges of the vertices
are placed in the column only. Other elements of the row in
PRIES are shifted right leaving the privileged columns free.
Thus, SPRIES is generated by modifying PRIES.

From SPRIES, all possible n−1 edge combinations are
generated by taking exactly one edge from each row and one
edge from the first column while discarding combinations
which are not distinct. The combinations formed from only
super privileged columns are spanning trees. The rest of the
combinations are tested by the tree testing algorithm.

According to the authors, the time complexity of the algo-
rithm is O(mn+n2 +nτ (G)) and space required is O(mn).

Table 4 shows the SPRIESmatrix generated from Table 2.
The edge combinations generated byNaskar’sTest andSelect
algorithm have been shown in Table 5.

Onete’s algorithm

One of the most recent algorithms [19] for all spanning tree
generation was proposed by Onete et al. in 2010. The algo-
rithm uses a modified version of the incidence matrix of a
graph to enumerate all the spanning trees.

The Incidence Matrix Inc of graphG is an (n×m) matrix,
such that Inci,j �1, if vertex vi and edge ej are incident,
and 0, otherwise. Reduced IncidenceMatrixRInc is obtained
after removing the row of reference vertex from Inc, shown
in Fig. 5. Any vertex from v1 to vn can be chosen as the
reference vertex.
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Table 5 The table showing edge combinations generated by Naskar’s
Test and Select algorithm for the graph G in Fig. 1

Combination Valid Tree

e1e2e3 N/A Yes

e1e2e5 N/A Yes

e4e2e3 N/A Yes

e4e2e5 N/A Yes

e1e4e3 Yes Yes

e1e4e5 Yes Yes

e1e5e3 Yes Yes

e1e5e5 No N/A

e4e4e3 No N/A

e4e4e5 No N/A

e4e5e3 Yes Yes

e4e5e5 No N/A

Fig. 5 Reduced Incidence Matrix for the graph G of Fig. 1, where Ref-
erence Vertex is v4. So, the row corresponding to v4 has been deleted

The Diagonal Matrix Diag is an (m×m) matrix with
Diagij �ei, where i � j, and Diagij �0, where i �� j.

All spanning trees generation of graph G mainly depends
upon the formation of matrix U (U �Diag× (RInc)T ),
shown in Fig. 6. There is a one-to-one correspondence
between ((n−1)× (n−1)) non-singular submatrices (deter-
minant ��0) of U and spanning trees. After formation of U,
the algorithm follows a strictly top-down fashion considering
an ((n−1)× (n−1)) non-singular submatrix in each itera-
tion. If the matrix is permissible, i.e. contains at least a row
of only one entry and the elements of the submatrix can be
rearranged in such a manner that all diagonal elements are
nonzero, then the entries on the diagonal indicates the span-
ning tree related to that particular nonsingular submatrix.

Thematrices generated byOnete’s algorithm for the graph
G in Fig. 1 are shown in Fig. 7.

As the authors proposed, the time complexity of the algo-
rithm is O(n+m+nτ (G)) and the space required is O(n+m).

Discussion on test and select algorithms

The test and select method generates (n−1)-length edge
combinations in the first phase and verifies each combina-
tion to be spanning tree or not in the second phase. So, tree
testing is a mandatory part of this method.

The number of computationsmajorly depends on the num-
ber of sequences generated by an algorithm. Except Onete’s
algorithm, the other three algorithms (Table 10) generate
sequences containing duplicate edges. That means, no track-
ing of already visited edges has been used in these algorithms.

Generation of edge sequences can be made drastically
faster if parallel execution approach is followed. Onete’s
algorithm has the capacity to be implemented in this fashion.

In terms of number of sequences generated, the algorithms
can be ranked as Char>Sen Sarma>Naskar>Onete. Thus,
in Onete’s algorithm, least number of sequences is tested to
be spanning trees. Some of the features of these algorithms
have been described in Table 6.

A close study of the above algorithms reveal that this test
and select method should not be used for tree generation of
a dense graph, which calls for more and more edge com-
binations to be formed. With an increase in the number of
edge combinations, the number of non-trees generated is also
supposed to increase proportionally. Consequently, the time
taken to complete the whole process will be affected. Hence,
we can conclude that the test and select method will be most
suited for sparse graphs of moderate size and therefore this
method is not recommended to be applied on social network-
ing structures because even though the social network graphs
are inherently sparse in nature but still the structure ismassive
and tree testing operation on such a huge structure will incur
amassive computational cost. The other practical example of
sparse graphs includes telecommunication networks where
spanning tree generation finds several applications since the
size of most of the telecommunication networks are much
smaller compared to social network graphs; thus, the algo-
rithms categorized under the test and select method can be
utilized.

Trees by elementary tree transformationmethod

The algorithms classified under elementary tree transforma-
tion method create an initial spanning tree from the input
graphG, generally by Breadth-First Traversal or Depth-First
Traversal. So, the set of edges E is divided into two mutually

Fig. 6 U is the matrix product of
Diagonal Matrix and Transpose
of Reduced Incidence Matrix
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Fig. 7 Matrices related to edge
combinations generated by
Onete’s algorithm for the graph
G in Fig. 1 are shown here

Table 6 Comparison table of test and select algorithms

Algorithm Time complexity Space
complexity

Grey
code

Tree
checking

Specific data
structure

Parallelism Relabeling

Char O(m+n+n(τ (G)+ τ ′(G))) O(nm) No Yes No No Yes

Sen Sarma O(nn) O(nm) No Yes Yes No No

Naskar [SPRIES] O(mn+n2 +n(τ (G)) O(nm) No Yes Yes No No

Onete O(n+m+n(τ (G)) O(n+m) Yes Yes Yes Yes No

exclusive subsets, Branch Set containing edges of the initial
spanning tree and Chord Set containing edges which are not
part of the initial spanning tree. Then at each step, a branch
is replaced by a chord in such a way that no cycle is formed
and all vertices remain connected. It is also known as cyclic
interchange method. This is an optimized method in terms
of generating only tree sequences. However, some logic has
to be applied to avoid duplicate tree generation.

Thismethod of generating spanning trees has been studied
by several researchers [6, 10, 11, 13, 17, 21]. These algo-
rithms have been discussed in the following sections.

Hakimi’s algorithm

The algorithm proposed by Hakimi [6] in 1961, generates all
possible spanning trees of a graph in two phases. An initial
tree t0 �b1, b2,…, bn−1 is formed, where b1, b2,…, bn−1 are
the branches of the graphG, shown in Fig. 8. The chord-set of
t0 be C �{c1, c2, …, cN}, where N �m–n+1. With respect
to the above tree t0, a fundamental circuit matrix is generated
from where all trees of distance one from t0 (represented by
T01) are derived by replacing each branch by each chord
of each circuit. The fundamental circuit matrix is shown in
Fig. 9 and T01 is shown in Fig. 10. In the next phase, trees
of distance two are found by considering all combinations of
sets of trees of distance one. If T (c1,c2c3 … cN ) be the set of
trees with chord c1 but without c2, c3, …, cN and T (c2,c1c3
… cN ) be the set of trees with chord c2 but without c1, c3,…,

Fig. 8 Initial Tree (t0 �e1e2e3)
obtained from Breadth First
Traversal of the graph G of
Fig. 1

Fig. 9 The fundamental circuit
matrix (Bc) with respect to t0,
where Branch Set�{e1, e2, e3}
and Chord Set�{e4, e5}

Fig. 10 T01 is the set of trees
where either c1 or c2 is present

cN , the trees with both c1 and c2, represented by T (c1c2,c3c4
…cN ), can be derived from these two. This is continued until
all trees of distance two, represented by T02, are found out.
Similarly, other trees at higher distances can also be found out
using the above technique. The maximum distanced tree-set
can be T0N .

We have taken the input graph G in Fig. 1 and after BFS
we have got t0. All the trees of distance one from t0 has
to be generated first. From the circuit matrix in Fig. 9, we
can write all trees of distance one from t0 in matrix form by
replacing each branch by each chord of each circuit. From
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Fig. 11 T′(c1, c2) and T′(c2, c1)

Fig. 12 T′
c1c2 is the set of trees

having both the chords c1 and c2

T01, we can find those trees T′(c1, c2) having only c1 but not
the other chord and T′(c2, c1) having only c2 but not other
chord, shown in Fig. 11.

From T′(c1, c2) and T′(c2, c1), we can again find out those
trees having both c1 and c2. Examination reveals that both
have a common row. So, we form an intersection of the first
row of T′(c1, c2) with two rows of T′(c2, c1) and of the sec-
ond row of T′(c2, c1) with two rows of T′(c1, c2), shown in
Fig. 12.

The author did not derive any expression for time or space
complexity of the algorithm. Hence, we derived them based
on the given algorithm. The algorithm first finds out the fun-
damental circuit matrix of G. The number of fundamental
circuits in a graph depends on the number of chords. Num-
ber of branches in G is (n−1) and hence number of chords
comes out to be (m− (n−1)). Thus, computation of funda-
mental circuits requires at most O(m−n) time. Now from
the circuit matrix, the trees at distance one from the initial
tree are computed. This number is again dependent on the
number of branches in each circuit, which is (n−1). Thus
the time involved in this computation is O(nm) for a dense
graph. All the sequences generated may not be trees. The
non-tree or duplicate sequences are discarded immediately.
If we assume the number of trees generated is τ (G), then
further computations, namely finding out the trees at higher
distances from the initial tree, are dependent on τ (G). As a
result, the overall worst case time complexity comes out to
be O(nmτ (G)).

The fundamental circuit requires at most O(nm) space.
The matrices storing the trees require O(mτ (G)) space.
So, the overall space complexity is O(nm+mτ (G)), where
τ (G)�n, and hence, O(mτ (G)).

Fig. 13 After Breadth First
Traversal of G of Fig. 1, tree t0
is generated

Mayeda’s algorithm

The algorithm developed byMayeda et al. [13] in 1965, gen-
erates spanning trees by replacement of onebranchbyagroup
of selected chords one by one. The procedure starts with an
initial tree and then computes the fundamental cut-sets of
it. The initial spanning tree has been shown in Fig. 13. In a
connected graph G=(V, E), a cut-set is a set of edges whose
removal from G makes G disconnected, such that removal
of no proper subset of these edges disconnects G. A cut-set
containing exactly one branch of a given tree is called a fun-
damental cut-set with respect to the tree. The fundamental
cut-set matrix for a given tree is obtained from the incidence
matrix. Let Se(t) be the fundamental cut-set with respect to
branch e of tree t. Thus, Se(t) contains e∈ t but no other
branch of t. All trees which are obtainable from a starting
tree t0 (also called the reference tree) by replacing branch e,
can be obtained by replacing e with the chords in Se(t0) and
these trees will be distinct. This set of trees has been denoted
by Te. That is,

T e � {t |t � t0 ⊕ {e, ei }, ei ∈ Se(t0), ei �� e}

After that, an iterative procedure is applied which will
replace another branch of t0 in each of these sets. For a ref-
erence tree t0 the class of trees Tei1ei2 … eik , where (i1, i2, …,
ik) is a subset of (1, 2, …, e), which can be denoted by

T ei1...eik �
{
t |t � t ′ ⊕

{
eik, e

′
j

}
, t ′ ∈ T ei1...eik−1,

e′
i ∈ Seik

(
t ′
) ∩ Seik(t0), eik �� e′

i

}

To avoid generation of duplicate trees, this algorithm
orders the edges of initial tree as anM sequence. M sequence
is a binary sequence generated by a deterministic algorithm.
It is difficult to predict and exhibits statistical behavior sim-
ilar to a truly random sequence.

The algorithm is hereby explained with the input graph
G in Fig. 1. t0 is the initial tree generated by Breadth-First
Traversal of G.

123



272 Complex & Intelligent Systems (2019) 5:265–281

Se1(t0) = {e1e4}, Se2(t0) = {e2e4e5}, Se3(t0) = {e3e5}

Te1 = {e2e3e4} [In t0, e1 is replaced by e4]

Te2 = {e1e3e4, e1e3e5} [In t0, e2 is replaced by e4 once and then e5 once]

Te3 = {e1e2e5} [In t0, e3 is replaced by e5]

Te1e2 = {e3e4e5} [In t0, e1e2 is replaced by e4e5]

Te1e3 = {e2e4e5} [In t0, e1e3 is replaced by e4e5]

Te2e3 = {e1e4e5} [In t0, e2e3 is replaced by e4e5]

Te1e2e3 = {Ф} [In t0, e1e2e3 cannot be replaced]

According to the author, the time complexity of the
algorithm is O(n+m+nmτ (G)) and the space required is
O(n+m).

Kapoor’s algorithm

The algorithm was proposed by Kapoor et al. [10] in 1992.
The algorithmgenerates an initial spanning treeT ofG. Addi-
tion of one chord, ek , where n ≤k≤m, to T will result in
formation of a fundamental cycle. Thus, a number of span-
ning trees can be generated from T by exchanging each

branch of the fundamental cycle with the corresponding
chord, ek .

The computation can be represented by a computation tree
with initial spanning treeT as root and the spanning trees gen-
erated by these exchanges as its children. Each child node is
expanded recursively in the same manner as the root. Each
recursive call generates a unique spanning tree of G. The
algorithm maintains an inclusion set of edges, IN, and exclu-
sion set of edges, OUT, at every node of the computation
tree, in order to avoid generation of duplicate spanning trees.
IN and OUT sets are empty for root node. For a node i in
the computation tree, the set INi contains edges which are
always a part of all the spanning trees at node i and its descen-
dants. The setOUTi contains edges which are not part of any
spanning tree at node i or at its descendants.

The computation tree for Kapoor’s algorithm has been
shown in Fig. 14.

Kapoor et al. mentioned that the time complexity of the
algorithm is O(n+m+τ (G)) and the space required is O(mn).

Matsui’s algorithm

The algorithm was developed in 1993 by Matsui [11]. The
algorithm starts with creating an initial spanning tree T by
doing Breadth First Traversal or Depth First Traversal of the
given input graph G. After that, edges are renumbered to

Fig. 14 Computation Tree of
Kapoor’s algorithm, for the
graph G in Fig. 1. Each node is
related to a state where a new
edge combination has been
generated, and sets IN and OUT
get modified
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Fig. 15 After Depth First
Traversal of G in Fig. 1, tree T is
generated. Branches are shown
in thick lines and Chords are
shown in dotted lines

create a linear ordering of edge-set such that branches are
numbered as e1, e2, e3, …, en −1 and chords are numbered
as en, en+1, en+2, …, em. Now, for each chord, it is checked
whether the inclusion of that edge in the current spanning
tree and the removal of a branch from the current spanning
tree generates any cycle (or not). If not, then this replacement
happens, and the newly generated spanning tree is called the
child of the previous one. Algorithm terminates when no
child of the previously generated spanning trees is possible.

Adetailed description is givenwith an example to describe
the approach of the algorithm. The input graph is G, shown
in Fig. 1, and the set of edges is defined as E �{e1, e2, …,
em}. We have performed Depth First Traversal to generate
the initial spanning tree, shown in Fig. 15. In E, index of an
edge e is described as Index(e). For any spanning tree T and
for any edge f /∈T, cycle (T, f )⊆E is a unique cycle in (V,
T ∪ {f }). For any edge g∈T, the graph (V, T \{g}) contains
two components. The set of edges in E connecting these two
components becomes a cut-set denoted by cut (T, g). In an
edge-subset E′ ⊆E, the edge in E′ with the smallest index is
top-edge of E′, i.e. top(E′). Edge in E′ with the largest index
is the bottom-edge of E′, i.e. btm(E′).

The edge-subset T* �{e1, e2, …, en−1} is the lexico-
graphically minimum spanning tree of G. For any spanning
treeT′ ��T*,F(T′) indicates the spanning tree (T′\{f })∪ {g},
where f is the bottom-edge of T′ and g is the top-edge of the
cut-set cut(T′, f ). Let T be a spanning tree of G and T′ �
(T \{g}) ∪ f is a child of T. g is the top-edge of cut (T′, f ).
Since, cut(T′, f )�cut(T, g), g is the top-edge of cut(T, g).
Let, H(T )�{e′∈ T | e′ � top(cut(T, e′))}. Then, g ∈ H(T )
and the edge f joins two different components of the graph
(V, T \H(T )). Label ((V, T ), H) returns the labels of two ver-
tices in the graph. It says, two vertices will have the same
level if and only if they are connected in the graph (V, T \H).

In Fig. 15, T �{e1e2e3}, H �{e1e2e3}, Chord Set�
{e4e5}.

From Label ((V, T ), H), we realize, all vertices have dif-
ferent labels. Index (btm(T ))�3, so e4 will be the first chord
(f ) to replace branches one by one.

D � cyc(T , f ) ∩ H � {e1e2e3}.
When g � e1, then T1 � T \{g} ∪ { f } � T \{e1} ∪ {e4}

� {e2e3e4}.
H1 � H\{e′|I ndex(e′) > I ndex(g)} � H\{e2e3} � {e1}.
Similarly, when g�{e2}, then T2�{e1e3e4}, H2 � {e1e2}.

When g � e3, then T3 � {e1e2e4}, H3 � {e1e2e3}.
Now f � e5, D � {e1e2}.
When g � e1, then T4 � {e5e2e3}, H4 � {e1e3}.
When g � e2, then T5 � {e1e5e3}, H5 � {e1e2}.

T1, T2, T3, T4, and T5 are children of T. Now children of
already generated trees will be computed. T1, T2, T4, and T5

cannot have any children as they do not have any replaceable
edge; Only T3 can have children.

T3 � {e1e2e4}, H3 � {e1e2e3}.
f � e5, D � {e1e2}.
g � e1, T6 � {e5e2e4}, H6 � {e1e3}.
g � e2, T7 � {e1e5e4}, H7 � {e1e2e3}.

Now, T6 and T7 cannot have any child, so algorithm ter-
minates here.

The time complexity of the algorithm is O(n+m+nτ (G))
and the space required is O(n+m), as mentioned by the
author.

Shioura and Tamura’s algorithm

The algorithm was proposed by Shioura and Tamura [21] in
1993. The algorithm begins with the generation of a depth
first spanning tree T0 of the input graph G. The smallest
vertex v1 is assumed to be the root of G. Each edge ek ∈ G,
where k �1, 2, …, m has two incidence vertices, written as
∂+ek and ∂−ek , assuming that ∂+ek ≤∂−ek .

G is then relabeled such that the vertex-set V={v1, v2, …,
vn} and edge-set E={e1, e2, …, em} satisfy the following
conditions:

1. T0 �{e1, e2, …, en−1}, any edge which belongs to T0 is
smaller than any of its descendants.

2. Each vertex v which belongs to T0 is smaller than any of
its descendants.

For any two edges e, f /∈ T0, e< f only if ∂+e ≤∂+f.
Let S be any non-empty subset of E. Let, Min(S) denotes

the smallest edge in S, considering Min(�)�en. For any
spanning tree T and any edge f ∈ T, the subgraph induced
by the edge-set T \f has exactly two components. The set of
edges connecting these components is called a fundamental
cut associatedwithT and f, and represented asC*(T \f ). Thus,
for any edge f ∈ T and for an arbitrary edge g ∈ C*(T \f ),
T \f ∪ g is also a spanning tree. For any edge g /∈ T, the edge-
induced subgraph of G by T ∪ g has a unique cycle, called a
fundamental cycle associated with T and g. The set of edges
of the cycle is represented as C(T ∪ g). For any g/∈ T and for
any f ∈ C(T ∪ g), T ∪ g\f is a spanning tree.
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Fig. 16 After Depth First
Traversal of G in Fig. 1, tree T0
is generated. Edges are
renumbered in increasing order
as they are visited

Fig. 17 The graph G after edge
relabeling is performed, to
match T0 in Fig. 16

It is evident that, if f �Min(T0\Tc), then |C(Tc

∪ f ) ∩ C*(T0\f )\f |�1 holds.
For any spanning tree Tp of G and for any two arbitrary

edges f and g, let Tc=T p f ∪ g. Tc be a child of Tp if and
only if the following conditions hold:

1. e1 ≤ f≤Min(T0\Tp), and

g ∈ C* (Tp\f ) ∩ C* (T0\f )\f.
The algorithm outputs all children Tc of Tp not containing

ek and recursively calls itself for the following:

1. Generating all children of Tc (i.e. all grandchildren of Tp

which do not contain ek), and
2. Generating all children of Tp which contain ek .

A detailed description is givenwith an example to describe
the approach of the algorithm.We consider the same graphG
� (V, E) as input, as shown in Fig. 1. A depth-first tree, T0 is
obtained and the edges of the tree are relabeled in increasing
order as they are visited. T0 is shown in Fig. 16. The rela-
beling is also done on G to match T0 and shown in Fig. 17.
Thus, T0 �{1, 2, 3}.

Min(T0\T0)��. So, edges 1, 2, 3 will be replaced one by
one from T0.

Replacement of edge 1 is done as follows:
C*(T0\1)\1�{4, 5}. So, edges 4, 5 will replace edge 1

in T0, one at a time, to generate two spanning trees T01 and
T02, respectively. Thus, T01 �{4, 2, 3} and T02 �{5, 2, 3}.

Similarly, replacing edge 2 from T0 will result in forma-
tion ofT03 �{1, 4, 3} andT04 �{1, 5, 3}, and replacing edge
3 from T0 will result in formation of T05 �{1, 2, 5}. This
method is recursively followed for each of the new spanning
trees, T01, T02, T03, T04, and T05. The recursive calls will
generate two more spanning trees from T05, T51 �{4, 2, 5}
and T52 �{1, 4, 5}. The computation is shown by the help
of a computation tree in Fig. 18.

According to Shioura and Tamura, the time complexity of
the algorithm is O(n+m+τ (G)) and space required is O(nm).

Fig. 18 Computation Tree of Shioura and Tamura’s algorithm where
each node represents one spanning tree of graph G in Fig. 1

Fig. 19 After Breadth First
Traversal of G in Fig. 1, tree T is
generated. Branch Set�{e1, e2,
e3} [{ei, where ei ∈ T}]; Chord
Set�{e4, e5} [{ei, where ei
/∈ T}]

Naskar’s gray code algorithm

In 2009, Naskar et al. developed another all spanning tree
generation algorithm [17] using Gray Codes. The algorithm
creates an initial treeT of the input graphG by usingBreadth-
First Traversal, shown in Fig. 19. T contains n−1 edges.
So, there are n−1 branches and m− (n−1) chords. Then,
binary representation of each number from0 to 2m− (n−1) are
generated, each of length m− (n−1). These sequences are
calledGray Codes. For each gray code, combination of n−1
branches and m− (n−1) chords will be computed in such
manner that the output will contain n−1 edges. Let a gray
code sequence, gi, contains k number of 1 s. So, k branches
will be replaced by k chords in T. Each such combination,
after cycle checking, is confirmed to be spanning tree or not.
The combinations generated by the algorithm for the input
graph G in Fig. 1 has been shown in Table 7.

According to author, the time complexity of the algorithm
is O(mlog(n)+n+τ (G)) and space required is O(n2).

Discussion on elementary tree transformation algorithms

The elementary tree transformation method initially creates
one spanning tree and divides the edge set into two subset-
s—Branches and Chords. Then at each step, a new tree is
generated by replacing one branch with a chord such that no
cycle is introduced due to the replacement. So, cycle check-
ing is here an essential part.

The main challenge of this method is to avoid generation
of duplicate trees. Every algorithm under this category uses
different approaches to generate distinct tree in each step.
Kapoor’s algorithm [10] and Shioura’s algorithm [21] assure
generation of a new spanning tree in each recursive call. As
no non-tree sequence is generated, these two are the fastest
algorithms in terms of time required to get executed. Table 8
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Table 7 Table showing edge
combinations generated by
Naskar’s Gray Code algorithm
for the graph G in Fig. 1

B1 (e1) B2 (e2) B3 (e3) C1 (e4) C2 (e5) Gray code Combination Tree

1 1 1 0 0 00 e1e2e3 Yes

0 1 1 0 1 01 e2e3e5 No

1 0 1 0 1 01 e1e3e5 Yes

1 1 0 0 1 01 e1e2e5 Yes

0 1 1 1 0 10 e2e3e4 Yes

1 0 1 1 0 10 e1e3e4 Yes

1 1 0 1 0 10 e1e2e4 No

0 0 1 1 1 11 e3e4e5 Yes

0 1 0 1 1 11 e2e4e5 Yes

1 0 0 1 1 11 e1e4e5 Yes

Here first three columns represent three branches and the next two columns represent two chords, respectively

Table 8 Comparison table of elementary tree transformation algorithms

Algorithm Time complexity Space
complexity

Relabeling
required

Gray
code

Explicit fundamental
cycle computation

Explicit fundamental
cutset computation

Parallelism

Hakimi O(nmτ (G)) O(mτ (G)) No No Yes No No

Mayeda O(n+m+nmτ (G)) O(n+m) No No No Yes No

Matsui O(n+m+nτ (G)) O(n+m) No No Yes No No

Shioura O(n+m+τ (G)) O(nm) Yes No Yes Yes No

Kapoor O(n+m+τ (G)) O(nm) No No Yes No No

Naskar O(mlog(n)+
n+τ (G))

O(n2) No Yes Yes No Yes

shows the comparison of Elementary Tree Transformation
Algorithms.

From Table 8 it is found that most of the tree trans-
formation algorithms go for explicit cycle and/or cutset
computation. This property can be utilized in many other
problem areas where fundamental circuit and/or cutset com-
putation is also required. Let us mention, in this regard, about
one of the very well-known protocols used in networking,
namely Spanning Tree Protocol (STP) that builds a loop-
free logical topology for Ethernet networks by formation of
spanning trees. It is used to provide fault tolerance in a net-
work, by preventing bridge loops and the broadcast radiation
that result from them. As a result, STP may significantly
utilize the circuit computation feature of this class of algo-
rithms. Similarly, cutset computation also plays a vital role in
establishing network topologies. Besides, they also find huge
applications in circuit theory and transportation networks.

Trees by successive reductionmethod

The concept of the successive reduction method is to divide
a large graph into smaller subgraphs. The problem of span-
ning tree generation of the original graph is thus reduced to
smaller problems of tree generation of the subgraphs. The
division is continued till the reduced subgraphs are trivial
like an edge. Spanning trees of the original graph are then

obtained from the trees of the trivial subgraphs. This seems to
be a little more complex method compared to the previously
mentioned techniques. However, here it is always guaran-
teed that only distinct trees will be generated, also there is
no need of performing any kind of tree testing. Some of the
well-known algorithms [15, 25] falling under this classifica-
tion are discussed in the next sections.

Minty’s algorithm

The algorithm was proposed by Minty [15] in 1965. The
algorithm initiates by creating a partial spanning tree T con-
taining all bridges of the input graph G=(V, E). An edge ek
is selected from G and the idea is to generate two classes of
graphsG1 andG2, one containing ek and another which does
not contain ek .G1 is generated by shrinking ek to a point and
G2 is generated by deletion of ek , provided ek is neither a
self-loop nor a bridge. While generating G1, the edge which
is shrunk is added to T. G1 and G2 are reduced by deleting
all self-loops and bridges. These bridges are added to T. This
process is repeated until the graph is reduced to a single ver-
tex. T generated at the end of each process is a spanning tree
of G.

The algorithm has been described with the help of a com-
putation tree in Fig. 20. The graph in Fig. 1 is the input. In
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Fig. 20 Computation tree of Minty’s algorithm

the computation tree, +ek denotes contraction of the edge ek
and −ek denotes deletion of edge ek .

Minty did not provide any time or space complexity for
the algorithm. Later, Smith [23] calculated the time and
space complexity of the algorithm as O(n+m+mτ (G)) and
O(n+m), respectively.

Winter’s algorithm

The algorithm developed by Winter [25] in 1986, performs
consecutive contractions of the input graph, G. At first, the
algorithm selects an edge ek1 and constructs all the spanning
trees containing ek1, then it constructs all the spanning trees
which include another edge ek2 but not ek1, and so on. The
vertices and edges of G are relabeled as V={1, 2, …, n}
and E={1, 2, …, m}. During each contraction, a vertex ni is

contracted into nj, where ni is the highest labeled vertex in
the current graph and nj is the highest labeled vertex adjacent
to ni.

The computation can be represented as a computation tree
with the input graph G as the root. Each node in the compu-
tation tree has at most two children. The children of a node is
obtained by either contracting an edge set S(ni, nj) or deleting
the edge set S(ni, nj) followed by contraction of next S(ni,
nj), where ni and nj are adjacent vertices in the parent graph.
S(ni, nj)�{ek | k=1, 2, …, l}, where 1≤ l ≤m, denote the
edges between the vertexni andvertexnj .DeletionofS(ni,nj)
occurs only when ni has adjacent vertices other than nj. S(ni,
nj) is contracted at each node until the graph gets reduced to
a single vertex, labeled 1. The edges contracted at each step
are stored in a sequence.
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Fig. 21 Computation tree of Winter’s algorithm

The algorithm is capable of examining more than one
sequence simultaneously. This is possible because when a
graph contracts, some edges may become parallel. There is
no need to check for bridges. Moreover, the algorithm gener-
ates the sequence in such way that each sequence generates
at least one of the spanning trees of G.

The algorithm has been described with the help of a com-
putation tree, shown in Fig. 21, with the graph, G in Fig. 1,
as input. The edges of the input graph, which have been
contracted at each step, are written over the edges in the com-
putation tree. Each node in the computation tree is denoted
by GX , where X is the set of vertices towards which the con-
traction took place in the previous step. The spanning trees
are listed below the leaf nodes.

Winter mentioned that the time complexity of the algo-
rithm is O(n+m+min{nt, n!(n−1)/2}) and the space
required is O(n2).

Discussion on successive reduction algorithms

The method of successive reduction of a graph is based on
systematic contraction and deletion of edges from the input
graph to generate all spanning trees. Thus, the input graph
reduces in size at each step either by contraction or by dele-
tion of edge. The algorithm stops when the graph is reduced
to a single vertex.

Contraction of edges may result in formation of parallel
edges. Minty’s algorithm [15] contracts parallel edges one
at a time and generates subtree sequences, whereas Winter’s
algorithm contracts all the parallel edges in a single step
and generates forest sequences. After the graph is reduced
to a single vertex, Minty’s algorithm generates exactly one
spanning tree and Winter’s algorithm [25] generates at least
one spanning tree.

Deletion of an edge may result in formation of bridges.
Minty’s algorithm checks for bridges after deletion of each
edge. The bridges are then deleted and added to the subtree
sequence.However,Winter’s algorithmdoes not perform any
bridge checking. The algorithm contracts each bridge rather
than deleting it. As deletion is already a part of the algorithm,
the overhead of bridge checking can be avoided.

Thus, Winter’s algorithm follows a better approach than
Minty’s algorithm. Some of the features of these two algo-
rithms have been described in Table 9.

An interesting observation about the successive reduction
method is that there is no requirement of tree checking unlike
other methods.

It is worthmentioning that the contraction and the removal
operations, which play a vital role in this category of algo-
rithms, can be carried out simultaneously, independent of
eachother.As a result, these algorithms canbe efficiently exe-
cuted in parallel, if multiple processors are available. Then
the time taken will be optimized significantly. In social net-
work analysis, spanning tree plays an important role in the
identification of relationships among individuals or groups.
Inherently, the social networks are sparse in nature, which
means the actual number of links is relatively small com-
pared to the maximum possible links. Therefore, in case of
social network graphs, it is recommended to pick and choose
an algorithm which has been categorized under the succes-
sive reduction of graph method to make use of the inherent
parallel nature of the proposed algorithms.Moreover, if from
a given graph we want to construct the spanning trees with
or without a specific edge, then the contraction and removal
procedure of successive reduction algorithms aremost appro-
priate.

Experimental results

We have implemented the above-mentioned twelve algo-
rithms in C language on an Intel Core i3 quad-core processor
with clock speed 2.4 GHz, 6 GB RAM. For testing pur-
pose, we have used twenty different non-isomorphic graph
instances ranging fromn�10 ton�40.These instances have
been generated by an algorithm proposed by Chakraborty
et al. [2].

Tables 10, 11, and 12 show the CPU time for various algo-
rithms. In the tables, the ith instance of a graphwith x vertices
and y edges is denoted by I i (x, y). Time taken by each of
the algorithms is shown in dd–hh–mm–ss format, where dd,
hh, mm, and ss stand for days, hours, minutes, and seconds
required to execute the algorithms on the specific instances,
respectively.

The observations for some specific instances are shown in
the form of a stacked bar chart in Fig. 22, where CPU time is
plotted along Y-axis and the algorithms along X-axis. Every
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Table 9 Comparison table of
successive reduction algorithms

Algorithm Time complexity Space complexity Bridge checking Tree checking

Minty O(n+m+mτ (G)) O(n+m) Yes No

Winter O(n+m+min{nt,
n!(n−1)/2})

O(n2) No No

Table 10 Comparison table of
test and select algorithms

Instances with
vertex no. and
edge no.

No. of trees
generated

Char [3] Naskar et al.
[16]

Onete and
Onete [19]

Sen Sarma et al.
[20]

I1 (10, 15) 636 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00

I2 (10, 18) 6210 00-00-00-01 00-00-00-00 00-00-00-00 00-00-00-00

I3 (15, 21) 1320 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00

I4 (15, 21) 2858 00-00-00-00 00-00-00-01 00-00-00-00 00-00-00-01

I5 (15, 23) 6054 00-00-00-01 00-00-00-00 00-00-00-00 00-00-00-00

I6 (19, 37) 104,757,368 00-00-36-52 00-02-48-24 00-00-54-32 00-03-10-31

I7 (20, 28) 32,854 00-00-00-05 00-00-00-05 00-00-00-01 00-00-00-04

I8 (20, 31) 248,120 00-00-05-43 00-00-03-47 00-00-00-11 00-00-02-52

I9 (20, 35) 13,100,220 00-00-09-41 00-00-37-11 00-00-08-56 00-00-41-34

I10 (22, 32) 61,6642 00-00-12-04 00-00-10-42 00-00-01-16 00-00-06-05

I11 (25, 37) 6073,612 00-01-58-51 00-01-28-50 00-00-14-16 00-00-40-18

I12 (25, 38) 2373,413 00-00-46-27 00-00-43-12 00-00-04-55 00-00-29-07

I13 (25, 38) 11,289,965 00-03-04-28 00-02-47-40 00-00-21-35 00-01-53-58

I14 (28, 41) 5490,987 00-02-20-47 00-01-35-31 00-00-16-07 00-00-51-01

I15 (30, 43) 18,992,781 00-06-11-39 00-05-39-29 00-00-53-47 00-03-47-11

I16 (30, 45) 21,110,724 00-06-53-06 00-04-53-48 00-01-22-34 00-03-28-34

I17 (30, 46) 196,120,504 02-15-57-42 02-09-18-35 00-11-19-19 01-16-22-03

I18 (35, 48) 11,412,698 00-03-43-20 00-03-39-14 00-00-39-57 00-02-58-31

I19 (35, 49) 183,870,707 02-11-58-03 02-05-39-56 00-14-19-33 01-18-31-22

I20 (40, 56) 336,855,096 04-13-51-42 03-19-07-29 01-03-21-44 02-23-50-12

Computation time has been given in dd–hh–mm–ss format

color corresponds to an instance. There are five instances
and in every bar, there are five colors signifying the CPU
time taken to execute those five instances.

Our contribution

In this article we have discussed about the three categories
of spanning tree generation algorithms and implemented
twelve of them for various non isomorphic graph instances. In
most of the cases, we used the specific data structure given
by authors, such as PRIES in Sen Sarma’s algorithm [20],
SPRIES in Naskar’s algorithm [16], etc. In all the imple-
mentations, we have utilized adjacency matrix and edge list
structure for representing the input graph and the spanning
trees generated. In some cases, we have used the incidence
matrix structure as well. The CPU times taken by the pro-
cedures align with the time complexities proposed by the
authors. We have calculated the time and space complexities

of the algorithms proposed by Hakimi [6] and Sen Sarma
[20]. It is evident from Table 12 that Winter’s algorithm
[25] is the fastest from implementation perspective, though
we welcome future scholars to counter us. From theoreti-
cal aspect, algorithms by Kapoor [10] and Shioura [21] have
optimum time complexity which is proportional to the total
number of spanning trees generated.

The approach which we have followed to inspect differ-
ent algorithms can be extended or modified in future. From
comparison perspective, some experiments could have been
done to scrutinize the algorithms in a better way. Such as, for
a particular order and size, all non-isomorphic graphs could
have been used as instances for executing all the algorithms.
We have used an instance of maximum order forty (where
the number of spanning trees generated is around 337 mil-
lion). If this maximum order could be increased, we might
have seen a new picture. So, there are many different viable
approaches, unconquered, to analyze the existing algorithms
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Table 11 Comparison table of elementary tree transformation algorithms

Instances
with vertex
no. and edge
no.

No. of trees
generated

Hakimi [6] Kapoor and
Ramesh [10]

Matsui [11] Mayeda and
Seshu [13]

Naskar et al.
[17]

Shioura and
Tamura [21]

I1 (10, 15) 636 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00

I2 (10, 18) 6210 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00

I3 (15, 21) 1320 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00

I4 (15, 21) 2858 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00

I5 (15, 23) 6054 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00 00-00-00-00

I6 (19, 37) 104,757,368 00-00-53-23 00-00-18-10 00-00-11-51 00-02-04-16 00-00-58-41 00-00-56-02

I7 (20, 28) 32,854 00-00-00-01 00-00-00-01 00-00-00-01 00-00-00-05 00-00-00-03 00-00-00-03

I8 (20, 31) 248,120 00-00-00-10 00-00-00-04 00-00-00-03 00-00-00-33 00-00-00-22 00-00-00-17

I9 (20, 35) 13,100,220 00-00-08-24 00-00-02-56 00-00-02-20 00-00-25-30 00-00-14-56 00-00-09-35

I10 (22, 32) 616,642 00-00-01-14 00-00-00-19 00-00-00-13 00-00-02-28 00-00-01-44 00-00-01-17

I11 (25, 37) 6073,612 00-00-13-54 00-00-04-11 00-00-03-41 00-00-27-47 00-00-21-51 00-00-16-12

I12 (25, 38) 2373,413 00-00-03-57 00-00-01-47 00-00-01-26 00-00-15-22 00-00-08-37 00-00-05-11

I13 (25, 38) 11,289,965 00-00-19-46 00-00-08-56 00-00-06-53 00-01-02-30 00-00-37-36 00-00-25-39

I14 (28, 41) 5490,987 00-00-15-44 00-00-04-40 00-00-03-50 00-00-38-50 00-00-23-55 00-00-16-53

I15 (30, 43) 18,992,781 00-00-46-56 00-00-22-11 00-00-17-09 00-02-32-51 00-01-49-10 00-01-21-59

I16 (30, 45) 21,110,724 00-01-01-21 00-00-29-50 00-00-23-41 00-02-43-58 00-02-12-33 00-01-53-56

I17 (30, 46) 196,120,504 00-09-04-37 00-04-52-31 00-03-40-11 00-21-37-21 00-17-09-33 00-14-16-26

I18 (35, 48) 11,412,698 00-00-32-21 00-00-12-01 00-00-10-05 00-02-52-51 00-01-47-02 00-00-47-29

I19 (35, 49) 183,870,707 00-11-58-19 00-00-31-37 00-00-24-37 00-19-04-48 00-17-00-05 01-20-26-22

I20 (40, 56) 336,855,096 00-22-12-09 00-15-36-59 00-12-56-11 02-18-17-08 01-22-37-14 01-18-39-49

Computation time has been given in dd-hh-mm-ss format

Table 12 Comparison table of
successive reduction algorithms

Instances with vertex no.
and edge no.

No. of trees generated Minty [15] Winter [25]

I1 (10, 15) 636 00-00-00-00 00-00-00-00

I2 (10, 18) 6210 00-00-00-00 00-00-00-00

I3 (15, 21) 1320 00-00-00-00 00-00-00-00

I4 (15, 21) 2858 00-00-00-00 00-00-00-00

I5 (15, 23) 6054 00-00-00-00 00-00-00-00

I6 (19, 37) 104,757,368 00-01-01-42 00-00-03-39

I7 (20, 28) 32,854 00-00-00-04 00-00-00-00

I8 (20, 31) 248,120 00-00-00-28 00-00-00-02

I9 (20, 35) 13,100,220 00-00-22-50 00-00-00-38

I10 (22, 32) 616,642 00-00-02-07 00-00-00-07

I11 (25, 37) 6073,612 00-00-26-15 00-00-00-45

I12 (25, 38) 2373,413 00-00-11-43 00-00-00-15

I13 (25, 38) 11,289,965 00-00-52-56 00-00-01-11

I14 (28, 41) 5490,987 00-00-31-41 00-00-00-47

I15 (30, 43) 18,992,781 00-02-10-09 00-00-01-50

I16 (30, 45) 21,110,724 00-02-39-18 00-00-01-22

I17 (30, 46) 196,120,504 00-20-01-57 00-00-11-40

I18 (35, 48) 11,412,698 00-02-30-00 00-00-01-17

I19 (35, 49) 183,870,707 00-21-27-12 00-00-02-45

I20 (40, 56) 336,855,096 02-04-22-39 00-00-33-55

Computation time has been given in dd–hh–mm–ss format
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Fig. 22 Graphical representation of CPU time taken by various algorithms for some specific instances

from a different point of view, which we hope to be explored
in near future.

Finally, we would like to highlight the fact that, even
though we tried to provide guidance on selection of an algo-
rithm from a specific class, the actual selection will depend
largely on the following important aspects:

• The asymptotic running time of the selected algorithm.
• The size of the input.
• The configuration of the underlying platform where the
algorithm will be implemented.

• The feasibility of quickly understanding and implementing
an algorithm within a given time frame.

• The inherent nature of the problem which needs to be
addressed by the generation of all possible spanning trees.

Conclusion

In this paper, we have attempted to refer and analyze most of
the important/prime algorithms given by different academi-
cians in the domain of all possible spanning tree generation
of a simple, undirected, and connected graph. After analyz-
ing the above-mentioned three classifications of algorithms,
we have drawn some inferences regarding the suitability of
an algorithmic technique in a particular scenario or circum-
stance. For example, test and select method is supposed
to give better performance for sparse graphs rather than
dense ones. Successive reduction of graphs is the most suited
method if multiple processors are available, as they are inher-
ently parallel in nature. There are some algorithms of other
categories toowhich can also be executed in parallel. Another
very important observation is that some algorithms serve
dual purposes. For example, if we want effective enumer-
ation of fundamental cycles or cutsets of a graph along with

all spanning tree generation, we find that the elementary tree
transformation algorithms are most suited. Again, if from a
given graph we want to construct the spanning trees with or
without a specific edge, then the successive reduction algo-
rithms are to be selected.

It can be still said that scope of improvement is there in
each category. A new algorithm may also be generated by
combining the concepts of three categories. The approach
of examining the input graph has not been tried much by
researchers till date. Every algorithm so far, uses a general-
ized approach no matter what kind of input graph is given.
However, depending upon the connectivity of vertices of
the input graph, different approaches can be taken for better
results. Thus, a lot of paths are yet to be visited, a lot of stones
are yet to be turned. In future, researchers will certainly try
to explore more and more in this area.
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