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Abstract

The objective of the present work is divided into two folds. Firstly, interval-valued Pythagorean fuzzy Einstein hybrid weighted
averaging aggregation operator has been introduced along with their several properties, namely idempotency, boundedness
and monotonicity. Secondly, we apply the proposed operator to deal with multi-attribute group decision-making problem
under Pythagorean fuzzy information. For this, we construct an algorithm for multi-attribute group decision making. At the
last, we construct a numerical example for multi-attribute group decision making. The main advantage of using the proposed
operator is that this operator provides more accurate and precise results is compared to the existing methods.

Keywords IVPES - IVPFEHWA averaging operator - MAGDM problems

Introduction

Multi-criteria group decision making is one of the success-
ful processes for finding the optimal alternative from all the
feasible alternatives according to some criteria or attributes.
Traditionally, it has been generally assumed that all the infor-
mation that access the alternative in terms of criteria and their
corresponding weights are expressed in the form of crisp
numbers. But most of the decisions in the real-life situations
are taken in the environment where the goals and constraints
are generally imprecise or vague in nature. In order to han-
dle the uncertainties and fuzziness intuitionistic fuzzy set [1]
theory is one of the successful extensions of the fuzzy set the-
ory [2], which is characterized by the degree of membership
and degree of non-membership has been presented. After the
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successful and positive applications of intuitionistic fuzzy
set, aggregation operators become more interesting topic for
research. Thus, many scholars in [3—16] developed several
aggregation operators for group decision making using intu-
itionistic fuzzy information.

However, there are many cases where the decision maker
may provide the degree of membership and nonmembership
of a particular attribute in such a way that their sum is greater
than one. To solve these types of problems, Yager [17,18]
introduced the concept of another set called Pythagorean
fuzzy set. Pythagorean fuzzy set is more powerful tool to
solve uncertain problems. Like intuitionistic fuzzy aggrega-
tion operators, Pythagorean fuzzy aggregation operators are
also become an interesting and important area for research,
after the advent of Pythagorean fuzzy set theory. Several
researchers in [19-28] introduced many aggregation oper-
ators for decision using Pythagorean fuzzy information.

But, in some real decision-making problems, due to insuf-
ficiency in available information, it may be difficult for
decision makers to exactly quantify their opinions with a
crisp number, but they can be represented by an interval num-
ber within [0, 1]. Therefore, it is so important to present the
idea of interval-valued Pythagorean fuzzy sets, which permit
the membership degrees and non- membership degrees to a
given set to have an interval value. Thus in [29] Peng and
Yang introduced the concept of interval-valued Pythagorean
fuzzy set. Rahman et al. [30-33] introduced many aggre-
gation operators using interval-valued Pythagorean fuzzy
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numbers and applied them to multi-attribute group decision
making.

Thus, keeping the advantages of these operators, in this
paper, we introduce the notion of interval-valued Pythagorean
fuzzy Einstein hybrid weighted averaging operator. More-
over, we introduce some of their basic properties such as
idempotency, boundedness and monotonicity. This motiva-
tion comes from [32], in which the authors introduced the
notion of IVPFEWA operator and [IVPFEOWA operator and
applied them to group decision making. But in this paper we
introduce the notion of IVPFEHWA operator, which is the
generalization of the above mention operators.

The remainder of this paper is structured as follows.
In Sect. “Preliminaries”, we give some basic definitions
and results which will be used in our later sections. In
Sect. “Interval-valued Pythagorean fuzzy Einstein hybrid
weighted averaging aggregation operator”, we introduce the
notion of interval-valued Pythagorean fuzzy Einstein hybrid
weighted averaging operator. In Sect. “An approach to mul-
tiple attribute group decision-making problems based on
intervalvalued Pythagorean fuzzy information”, we apply
the proposed operator to multi-attribute group decision-
making problem with Pythagorean fuzzy information. In
Sect. “Illustrative example”, we develop a numerical exam-
ple. In Sect. “Conclusion”, we have conclusion.

Preliminaries

Definition 1 [17,18] Let K be a fixed set, then a Pythagorean
fuzzy set can be defined as:

= {(k,up(k), vp(k))|k € K}, ey

where up(k) : P — [0, 1], vp(k) : K — [0, 1] are called
membership function and non-membership function, respec-
tively, with condition 0 < (up (k))> + (vp(k))? < 1, for all
keK.

Let

7p (k) = 1 — 13 (k) — v k). )

Then, it is called the Pythagorean fuzzy index of k € K,
with condition 0 < wp (k) < 1, forevery k € K.

Definition 2 [29] Let K be a fixed set, then an interval-valued
Pythagorean fuzzy set can be defined as:

= {(k, us(k), v (k) k € K}, 3)
where
[ué (k), ub (k)] C [0, 11, “)

uy(k) =
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and
vy (k) = [vf (k), v (k)] C [0, 1. )
Also
u (k) = inf (us (k)), (6)
' (k) = sup(u; (k)), @)
vj (k) = inf (v (). ®)
vy (k) = sup(v; (K)), ©)
and
2 2
0= (uh) + (vf0) = 1. (10)
If
7100 = [2f (), 7 ()] forallk € K. (11)

Then, it is called the interval-valued Pythagorean fuzzy
index of k to I, where

78 =1 — (Wb 0)* = (b 0)?, (12)
and
7 = /1= (Wd0) — (v ). (13)

Definition 3 [29] Let A = ([uy, va], [x2, ¥a]) be an IVPEN,
then the score function and accuracy function of A can be
defined as follows, respectively:

1
s = 3 [+ @0? = ) = 007 (14)
and

1
h) =5 [0 + @) + @) +O0w?). (1)

If A1 and A, are two IVPENSs, then

1. If s(A1) < s(Xp), then A1 < Ajp.
2. If s(A1) = s(X2), then we have the following three con-
ditions.

1) If h(A1) = h(A2), then A1 = A».
2) If h(A1) < h(Xp), then A1 < Asp.
3) If h(A1) = h(ry), then Ay > Asp.

Definition4 [32] Let A = ([u, v], [x, yD, A1 = ([ug, v1],
[x1, y1D, A2 = ([u2, va], [x2, y2]) are three IVPFNs, and
8 > 0, then some Einstein operations for A, A1, Ao can be
defined as follows:
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2 2 2 2
\/”1+”2 \/v1+v2
\/1+u%u% \/l—i—vlzv%

X1X2

NS

Al De A =

y1y2

JIH( =) (1-93)

uiun
A Qg Ay = ,

Yt (=) (1 =)

v1v2

JU+(1=2}) (1-43)

Jord i+
\/1 + xix3 \/1 + yiy3

)

55— ([\/<1+u2>fS — (1 =2y

VA +u) + (1 —u?)

VI +2)8 — (1 —v2)?
VA + 0+ (1 =02 |

V2(:2) V2(32)° D

[ﬂz — 25+ (28 2=y + ()P

)JS _ <|: /2(142)5 /2(v2)5

VC—u) + 2 20D+ 2

VA + x5+ (1 =)

VY2 — (- WD

VA2 4 (1= Y2

[J(l + 320 — (1= x?)}

Definition 5 [32] Let Ajo= ([uj, vjl, [x;, y]])(] =1,2,3,
., n) be the collection of IVPFVs, then IVPFEWA operator
can be defined as:

IVPFEWAy, (A1, A2, 23, ..., An)

()" A0)” [0 ()
-\/ﬁ]<l+u;j )“Yj+li[](l—uij )"vl ’ \/ i 2 v

J= J

(16)

where w = (wy, wo, ws, ..., wn)T is the weighted vector of
Aj(j=1,2,3,....n),suchthatw; € [0, I]and 3 }_, w; =
1.

Definition 6 [32]LetA;(j = 1,2,3, ..., n) beacollection of
IVPFVs, then IVPFEOWA operator can be defined as:

IVPFEOWA,, (A1, A2, A3, ...y Ap)

r n w n w
1+u? ) T (14 ) J
\/El( ) ,l;[l )

n w 7 w:
2 i 2 J
\/jl;ll(“”om) +jl;[1(l ”?»au‘)) \/

7)

where (o (1), 0(2),0(3), ..., 0(n)) is a permutation of (1, 2,
.,n) such that o(j) < o(j—1) for all jand w =

(w1, w2, w3, ..., wy)T is the weighted vector of Ay (j)(j =

1,2,3,...,n) such that w; € [0, 1] and Z'}zl wj=1.

Interval-valued Pythagorean fuzzy Einstein
hybrid weighted averaging aggregation
operator

In this section, we introduce the notion of interval-valued
Pythagorean fuzzy Einstein hybrid weighted averaging aggre-
gation operator. We also discuss some desirable properties
such as idempotency, boundedness and monotonicity.

Definition 7 An interval-valued Pythagorean fuzzy Einstein
hybrid weighted averaging operator of dimension n is a
mapping IVPFEHWA : ®" — ©,which has associated
vectorw = (wy, wa, W3, ..., w,) 7, such that w; € [0, 1] and
> j—1 wj = 1. Furthermore
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IVPFEHWA,, (A1, A2, A3, ...s Ay)

f(z,)"
2h(2,)
j=1\"*a ()
n w wj n wj n wj
]_[(2—.!(-2 ) +1‘1<x? ) l_[(ny_-z ) +1‘1(y.2 )
j=1 ha(j) j=1\ P () j=1 *o(j) j=1\ *o ()

(18)

where ., ;) is the jth largest of the weighted interval-valued
Pythagorean fuzzy values, )'»g(j)()'»g(j) =nwjkrj). 0 =
(w1, wp, w3, ..., a)n)T is the weighted vector of A;(j =1, 2,
3,...,n) such that w; € [0, 1], Z;’-Zl wj =1, and n
is the balancing coefficient, which plays a role of bal-

ance. If the vector w = (wy, wy, ws, ..., w,,)T approaches

111 1

T
to (5, 1,4 .., 1)", then the vector (nwii, nwyha, ...,

nwpiy)! approaches to (A1, A2, A3, ..., Ap) L.

Theorem1 Let A, Aj, Ay be the three interval-valued
Pythagorean fuzzy numbers and §, 81, 62 > 0, then the fol-
lowing conditions always hold:

Al ®e A2 = A2 De AL,

Al Qe A2 = A2 Qe AL,

(A1 De A2) = S| D SA2,
(M1 ® 12)° = (1)’ ®e (A2)°,
31(A) ®e 82(A) = (81 Be 62)A,
()»)8' ®e ()\)52 — ) (61®:82)

kW~

Proof The proof is trivial, so it is omitted here.

Theorem2 Let A; = ([uj,vjl, [x;,y;D(ji=1,2,3,...,n)
be a collection of IVPFVs, then their aggregated value using
the IVPFEHWA operator is also an IVPFV, and

IVPFEHWA v (A1, A2, A3, ooy Ap)
\/ﬁ(]ﬂﬁ )w,fll[(]—u‘Z )w, \/ﬁ( )
j=1 *a(j) j=1 *a(j) j=1
n L u? Wi (17% )u'/’ n (1 2 )w/ n (17; )w/
_\/,E;( +u’vr(j) +,>l;[| ) _,1;11 H’wm +,:1 k)

(19)

where io( ) is the jth largest of the weighted interval-valued
Pythagorean fuzzy values, hq(j)(ho(j) = nwjr;), w =
(wi, wa, wa, ..., wy)! is the weighted vector of IVPFE-
HWA, such that w; € [0,1], Z}}:l wi = 1. o =
(w1, wa, wa, ..., a)n)T is the weighted vector of A j(j = 1,2,
3,...,n) such that wj € [0,1], Z'}Zla}j =1, and n

P4
y
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is the balancing coefficient, which plays a role of bal-
ance. If the vector w = (w1, wy, wo, ..., w,,)T approaches

T
(%, %, %, ey %) , then  the  vector  (nwwAlp,
RWIAD, « .o, NOph) T approaches(h1, Ay, A3, ..., )T

Proof We can prove this theorem by mathematical induction
on n.
Forn =2

2 \*2 2\ "2
\/<1+”x2) ~(1-13,)

2 \*2 2\ "2 ’
\/<1+”x2) +(1-17)
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Then

IVPFEHWAw w(A1, A2)

FI 1+ u-] [21 . )u.J ﬁ(l+ ; )wj 1z[<1 ) )u,,.
ll — —ur vy — —VU¥
i) = 1 o (j) j=1 o (j) =1 Yo ()
2 w ’

“’1' 2 1 wj
l+u + l—ur )
l'[ /> ,n1 (i) j o
wj
2 x? ) )
,l;[l< haj) j= | o (/)

_\/,lill(z_"iau»)‘u/+Jlill<xizvnm>wj ’ \/jl;ll(z_yi ,;) +,n|() m) N

Thus, the result is true for n = 2, now we assume that Eq.

(19) holds for n = k. Thus

IVPFEHWA,, 1, (A1, A2, A3, ..oy Ak)

(% k Wi k
l—I(H»u% . —n 1 u H ) l_[
j=1 a(j) Jj=1 j:| au) j=1
k

1+4u? 1 —u} V3
_\/ ,1;11( ’wm ]l;ll nm e
K wyj 3 wj
2 x2 ) 2 (;” )
Jl;ll( Ao (j) ,n| a(j)
* 5 vk wj % 5 vk wj
TN T T T
L Vi=t a(j) j=1\ "ol j=1 ta () j=1\ ")

If Eq. (19) holds for n = k, then we show that Eq. (19)

holds for n = k + 1. Thus

IVPFEHWA,, 1 (1, A2, A3, .oy Akt1)

1

P1

P2

am

=N
—
¥
>‘&N
<_/
| T
- |
:]»
e Egen
|
\_/
=
[=h
e Egen
v
=

e

T
3

W
lfu )
J
k wj
2 (,x? )
]l;ll Ao (j) —l

:7(,/)

\,

3 ~— |~
: £ S

~ +
S T3~ H:I>
|

S
\_/ \_/
I—I

_\/./li[1(2_xin(/>>%+ﬁ <VZ (/))wj ’ ‘/jl;[l(z_) fJV)wj+l£l( (/)) h

(7 . - i
2(A2k+1) ket | 2<}Y%k+])wk+l ]
_\/<27X'\A+1> M+(X"2A+1> a ‘/(27%2%“) kHJr(y%*“) -
(20)
Let
k
\ ]1:[1 (1 + ukau‘)) ]1:[1 : Yot
k n
— 2 ! —u? "
= E (1 + ”Aom) . i (1 u;\a(j)>
TR (R
\j=I hou) j=1 o
k k
- ,1:11 (1 + viou)) + ,l:[1 (1 vioo))

45
_ 2 Wik+1 _ ( _ 2 )wk+1
= \/(1 + uik+1> ! e
mzz\/(l—l-u2 )wkﬂ +(1—u2 )WHI
Ak+1 Akt
_ 5 Wbl ( ) )wk+1
ar = \/ (1+4,.,) 1= Vi
wy wk—+1
N O R (T
A1 Ak+1
k w
_ 42 2 J
2= 1_[ (2 xka(j)) + l_[ (xia(j))
j=1 =1
k w; k w,
= 21GE,) o= 21102,
n l_[ xka(;) 51 2 l—[ yl\n(j)
\ j=l1 j=1
k k
2= 1_[ <2 a(/)) l_[ ( 0(1))
\ j=1 j=I1

bz _ \/(2 —x.2 )wk+1 n (x2 )wk-H
Ak+1 Ak+1

by

B 5 Wit1 B ( 5 >Wk+1
- \/2 (xikﬂ) = \/2 yik+1

. 2 Wi+1 2 Wk+1
2= \/(2 N y)-nk+1> + (yik+1)

IVPFEHWA,, (A1, A2, A3, ..,

Now putting these values in Eq. (20), we have
A1)
I NERIS)
= ) ) ) De ) , ,
n p2 r s ) by ¢
S+ ()
P2 a
REOICH)
P2 az

Jre (- () (- (2))
_ (|:\/(t1m2)2 + (tam1)? \/(plaz)2 + (a1p2)2:|

Vtam)? + (mp)? \/(pzaz)z + (p1a1)?

g
y
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riby

[ergbg + 1262 — 126} — 23

siel D o
22,22 22 221
\/2s202 + 877 — $5¢] — 8765

Again putting the values of (t1m2)2 + (t2m1)2, (tzmz)2 +
(tim1)?, (praz)*+(a1 p2)?, (p2az)*+(prai)?, rib1,2r3b3+
rlzb% — rzzb% — r%b%, s1cl,2s§c% + slzc% — s%c]2 — s%c%, in
Eq. (21), then

IVPFEHWA,, (A1, A2, A3, ooy Aky1)
[ et Wi kil wj
1+u? — 1—u?
jl;ll< +u}“”(}‘) /1;[1< M"U(i))
k+1 Wikt wj
14u? 1—u?
L Jl;[l( +u}‘v(./'> Jr,1;[1< L“ﬂ(/))

e
U=t

3 I w;
<]+U.2 ) -I1 (]—v.2 )
j *o(j) j=1 *o(j)
Wi k+l wi |
<1+v? ) +11 <]—v? )
*a(j) j=1 *a(j)

k+1

w
j
1T+
ro(j)

j=1

2

S

krl w;

ﬂ(\: )

j=1\"Pa ()
k41 Wi k4] wj el Wikl wj
He-,) () He,) )
j=1 J) j=1\ o) j=1 a(j) j=1 a(j)

Hence, Eq. (19) holds for n = k + 1. Thus, Eq. (19) holds
for all n.

Remark 1 In the following, let us look 81 and A® some special
cases of § and A.

1. If » = ([u, v], [x,¥]) = ([1,1],[0,0D i.e, u =v =1
and u = v = 1, then

Aﬁ:({J@VEWQB e }’

e @) -+ @)

_ 21)° V201

- ([J(z— DY+ Ve -1 +(1)5} ’
VA0 —(1-00 V1+0 - (1-0) )
[\/(1+0)5+(1—0)8’\/(1+0)5+(1—0)8}

= ([1, 11,10, 01).

Thus A% = ([1, 17, [0, 0]) and 8% = ([0, 0], [1, 1]).
2. If A = ([u, v], [x,¥]) = ([0,0],[1,1Di.e,u=v=0
and x = y = 1, then

Lisllase cllad .
bes Shenas Q) Springer

ﬁz([ e e ]
Ve-w) +) - + )

3 2(0)8 V2009
- ([J(z—ms +00 V2-0y +<0>5}
A+ =1 =18 JA+1)5—(1—1)
[\/(1 T (=1 A+ 1D+ (1 - 1)6})
= ([0, 01, 1, 1]).

Thus A% = ([0, 0], [1, 1]) and 82 = ([1, 1], [0, 0]).
3. If A = ([u, v, [x, y]) = ([0,0],[0,0])i.e,.u =v =0

and x = y =0, then
o ([ V2 (2)’ V2 (02)° }
Je |

-+ @) =)+ ()

8

3 2(0)8 V2009
- ([J(z—c))u(ow’ J(2—0>6+<0)5} ’
JA+0P —(1-00 /1400 —(1—0)°
[\/(1 10 +(1-00 V1407 +(1 —O)BD
= ([0, 0], [0, OD).

Thus A% = ([0, 0], [0, 0]) and 81 = ([0, 01, [0, 0]).
4. If6 - 0and 0 < u,v,x,y <1, then

Je—wP @)y Je-w)+ )]
[+ — (1 - 22)
(122 + (1= x2)

Jo+ﬁf—1—yW})
_ y2)5
VA }7

(
Ja+») +(1
) ([J(z —@0+ @ 2= )0+ (2

’

/2(142)0
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Ja a0 — -

VA +x2)0 4+ (1 =220

V)0 — (1 —y2)°

V420 + (1 = y2)0
= ([1. 13,10, 0D).

Thus A% = ([1, 11, [0, 0]) and 8% = ([0, 0], [1, 1]).
5. If6 - 4o0oand 0 < u, v, x,y <1, then

Aﬁ:([J@VE@QS = }’

e+ @) -+ @)

_ V2?)®

- ({J(z — D)X+ WH® 2= D)X+ W)
V(I +x2)% — (1 —x2)

[J(l + 2% 4+ (1= x>

VA A=\ oo
Jaeyyepa—yy= )T

Thus, 2° = ([0, 0], [1, 1]) and 81 = ([1, 1], [0, 0]).
6. fé6=1and0 <u,v,x,y <1, then

ﬁzq 26 202 :
Je—w) + @) Je—w) + )]
{\/(1 +x2)" — (1= x2)°

) )

Thus, 2% = A and 61 = A.

/2(v2)oo :|

Lemma1l [6] Ler ; > O,w; > 0(j =1,2,3,...,n) and
Yi_ywj=1, then

J
n n
[T <> wir;, (22)
j=I j=I
where the equality holds if and only if \| = Ay = -+ = A,.

Theorem 3 Let Ajo=(uj,v;l, [xj,y;D(G=1,2,3,..,n)
be a collection of IVPFVs, where the w = (wy, wa, w3, ...,
wy) T is the weighted vector of IVPFEHWA and IVPFHWA,
suchthatwj € [0, l]andZ'}-zl wi=1. o= (01, 0,0, ..,
a)n)Tis the weighted vector of L;j(j =1,2,3,...,n) such
thatw; € [0, 1], Z};:l wj =1, then

IVPFEHWA 5 (A1, A2, A3, ooy An)
< IVPFHWAq (k1. A2, A3, ooy Ap). (23)

Proof Straight forward.

Theorem 4 Idempotency: If)'»(,(j) = Aforall j(j = 1,2,
3,...,n), where A = ([u, v], [x, y]), then

IVPFEHWA , (A1, A2, A3, ooy Ay) = A. (24)

Proof Since j.q( H= A for all j, then we have

IVPFEHWA,, 1 (A1, A2, A3, ..oy Ap)

n
\/ﬁ (z—x? )uj+ i (,x? )w/ ’ ‘/ﬁ (2—v? )W’Jrﬁ (y.ﬁ >w’
LVi=t o (j) j=1 o (j) j=1 “ra()) j=1 Fa(j)

The proof is completed.
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Theorem 5 Boundedness: Let 1j = ([uy;, vy, 1, [xa;, ya;1)
(j =1,2,3,...,n) be a collection of IVPFNs, then

Amin < IVPFEHWA 4, (M1, A2, A3, ey An) < Amaxs  (25)
)'"max = max()"‘(r(j))’ (26)
J

Amin = min(Ag(j))- (27)
J

Proof Proof is easy so it is omitted here.

Theorem 6 Monotonicity: If L; < Aj Sfor all j(j =
1,2,3, ..,

n), then
IVPFEHWA ¢, w(A1, A2, A3, ..., Ap)
< IVPFEHWA (AT, A5, A5, ooy AR). (28)
Proof As we know that.
IVPFEHWA,, (A1, A2, A3, ..cs Ay)

= wlia(l) D¢ w2ia(2) @D w35»a(3) D - De wnj»a(n),
(29)

and

IVPFEHWAw,w(A*, )»;, )»i{, ey )\;)
= wl}‘i(l) D WZ}L:(Z) @D w3)‘\:§(3) S PR wn}\z(ny
(30)

Since A < )»; for all j, thus Eq. (28) always holds.

Theorem 7 Interval-valued Pythagorean fuzzy Einstein
weighted averaging operator is a special case of the interval-
valued Pythagorean fuzzy Einstein hybrid weighted averag-
ing operator.

Proof Letw = (%, %, %, . %,)T , then we have
IVPFEHWA,, o (A1, A2, A3, ooy Ap)
= wl).\o(l) D wz)'»a(z) @De - D wn}\a(n)
1 . . .
= ;(Ka(l) @e Ao 2) Be -+ - De Ao(n))
1
= ;(nwl)hl B nwoA B -+ - e Ny Ap)
= w1A B 222 B¢ -+ D Wphp
= IVPFEWA (A1, A2, A3, ..., Ay).
The proof is completed.

Theorem 8 Interval-valued Pythagorean fuzzy Einstein
ordered weighted averaging operator is a special case of the
interval-valued Pythagorean fuzzy Einstein hybrid weighted
averaging operator.

Dieliase ¢llodi ay .
bes Shenas Q) Springer

T .
Proof Let w = (%, Y ey %,) , and )»g(j) = )\U(j), then

we have

S =
S =

b

IVPFEHWA .0 (A1, A2, A3, + . ., An)
= wl)\a(1) De W2ia(2) @e - Be wn)‘ho(n)
= WiAg(1) Be W2As(2) B¢ - - - Be Wnhon)
— IVPFEOWA ,, (A1, A2, A3, + - -5 An).

The proof completed.

An approach to multiple attribute group
decision-making problems based on
interval-valued Pythagorean fuzzy
information

Algorithm Let X = {X1, X3, X3, ..., X;»} be a finite set of m
alternatives and C = {Cy, C», C3, ..., C,} be a finite set of
n attributes. Suppose the grade of the alternativesX;(i =
1,2,3,...,m)on attributeC;(j = 1,2,3,...,n) given by
decision makers is interval-valued Pythagorean fuzzy num-
bers. Let D = {Di, Dy, D3, ..., D} be the set of k
decision makers, and let w = (wy, wy, ws, ..., wn)T be
the weighted vector of the attributes C;(j =1,2,3, ..., n),
such that w; € [0, 1],2;;1 w;j = 1, and let o =
(w1, 02, w3, ..., 0)T be the weighted vector of the deci-
sion makers DS(s = 1,2, 3, ..., k), such that wg € [0, 1] and
S oy =1L Let D = (aj;) = ([uji, vjil, [xji, yji)(i =
1,2,3,....,m,j = 1,2,3,...,n) where [uj;, vj;] indicates
the interval degree that the alternative X;(i = 1, 2, 3, ..., m)
satisfies the attribute C;(j =1,2,3,...,n) and [x;, yji]
indicates the interval degree that the alternative X;(i =
1,2,3,...,m) does not satisfy the attribute C;(j = 1, 2, 3,
...,n), And also [Ltj,', Ujl‘] e [0, 1], [)Cji, yj,-] € [0, 1] with
condition 0 < (vj;)? + (y;i)*> < 1, =1,2,3,...,m, j =
1,2, 3, ..., n). This method has the following steps.

Step 1 Utilize the given information in the form of matrices,

DS = [a@] (s =1,2.3, ... k).
‘].l n.xm

Step 2 If the criteria have two types, such as benefit
criteria and cost criteria, then the interval-valued

a®

JU nxm

(s =1,2,3,...,k) can be converted into the nor-

malized interval-valued Pythagorean fuzzy decision

r](:)] (s=1,2,3,...,n), where

Pythagorean fuzzy decision matrices, D® = [

matrices, R® = [

o) _ aﬁz), for benefit criteria C; [ j=1,2,3,...,n
Jt Ezﬁ»), for cost criteria Cj, i=1,2,3,..m)’°
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and El;;) is the complement of oz;'.l.. If all the criteria
have the same type, then there is no need of normal-
ization.

Step 3 Utilize the IVPFEWA operator to aggregate all the
individual normalized interval-valued Pythagorean

W] =12

Ji nxm
3,...,k) into a single interval-valued Pythagorean
fuzzy decision-matrix, R = [rj;lyxm, Where rj; =
([ujisvjil [xjis yjil).

Step 4 In this step, we calculate 7j; = nw;rj;.

Step 5 Calculate the scores function of 7j; (i = 1,2,3, ...,
m,j = 1,2,3,...,n). If there is no difference
between two or more than two scores, then we must
find out the accuracy degrees of the collective overall
preference values.

Step 6 Utilize the IVPFEHWA operator to aggregate all
preference values.

Step 7 Arrange the scores of the all alternatives in the form
of descending order and select that alternative which
has the highest score function.

fuzzy decision matrices, R® = [

lllustrative example

Suppose in Hazara University, the IT department wants to
select a new information system for the purpose of the best
productivity. After the first selection, there are only three
X;(i = 1,2, 3) alternatives have been short listed. There are
three experts D*(s = 1, 2, 3) from a group to act as decision

makers, whose weight vector is w = (0.2, 0.3, 0.5)T. There
are many factors that must be considered while selecting
the most suitable system, but here, we have consider only
the following four criteria, whose weighted vector is w =
0.1,0.2,0.3,0.4)T

1. Cy : Costs of hardware.

2. C3 : Support of the organization.

3. Cjz : Effort to transform from current systems.
4. C4 : Outsourcing software developer reliability,

where C1, C3, are cost type criteria and C», Cy4 are benefit
type criteria, i.e., the attributes have two types of criteria;
thus, we must change the cost type criteria into benefit type
criteria.

Step 1 Construct the decision-making matrices (Tables 1, 2
and 3).

Step 2 Construct the normalized decision making matrices
(Tables 4, 5 and 6).

Step 3 Utilize the IVPFEWA operator to aggregate all the
individual normalized interval-valued Pythagorean
fuzzy decision matrices, R® = [r<§)] into a
J! nxm

single interval-valued Pythagorean fuzzy decision
matrix, R = [r};]uxm (Table 7).

Table 1 Interval-valued

X
Pythagorean fuzzy decision !

X2 X3

matrix of D!

([0.6,0.7], [0.3, 0.6])
([0.3,0.7], [0.2, 0.6])
([0.5,0.6], [0.3,0.7])
([0.6,0.5], [0.2, 0.7])

(10.3,0.7],10.3,0.5])
([0.3,0.6],[0.4,0.7])
(10.2,0.6],[0.3,0.7])
([0.3,0.4],[0.5,0.6])

X>

X3

(10.5, 0.71, [0.3, 0.6])
(10.3, 0.81, [0.2, 0.6])
(10.5, 0.71, [0.3, 0.6])
(10.3,0.4], [0.2, 0.8])

(10.2, 0.81, [0.3, 0.4])
(10.3,0.61, [0.3, 0.7])
(10.2, 0.6], [0.3, 0.8])
(10.3,0.51, [0.5, 0.7])

X>

X3

Ci ([0.5,0.8],[0.3,0.4])
Cr ([0.3,0.5],[0.6,0.7])
C3 ([0.5,0.71,[0.3, 0.7])
Cy ([0.3,0.6], [0.6, 0.7])

Table 2 Interval—value.d' X

Pythagorean fuzzy decision

matrix of D* Ci (0.5, 0.6], 0.3, 0.5])
Cr ([0.3,0.4], [0.6, 0.8])
Cs (10.4, 0.51, (0.3, 0.8])
Cy ([0.3,0.6], [0.5, 0.7])

Table 3 Interval—value.d. X,

Pythagorean fuzzy decision

matrix of D’ c (10.3, 0.8], [0.5, 0.6])
Cr ([0.5,0.71, 0.3, 0.4])
C3 ([0.3,0.6], [0.4, 0.6])
Cy ([0.5,0.71, 0.3, 0.4])

([0.3,0.51,[0.5,0.7])
([0.4,0.6],[0.5,0.8])
([0.3,0.5],[0.5,0.6])
([0.5,0.71,[0.2,0.4])

([0.2,0.4],[0.5,0.7])
([0.5,0.71,10.2,0.5])
([0.2,0.8],[0.4,0.6])
([0.5,0.6],10.3,0.5])

Lisllase cllal .
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Table 4 Normalized

Pythagorean fuzzy decision X X2 X3

matrix R' C ([0.3, 0.4, [0.5, 0.8]) ([0.3, 0.6], [0.6, 0.7]) ([0.3, 0.5, [0.3, 0.7])
C ([0.3, 0.5, [0.6, 0.7]) ([0.3,0.71, [0.2, 0.6]) ([0.3,0.6], [0.4, 0.7])
C; ([0.3,0.71, [0.5,0.7]) ([0.3,0.71, [0.5, 0.6]) ([0.3,0.71, [0.2, 0.6])
Cy ([0.3, 0.6], [0.6, 0.7]) ([0.6,0.5],[0.2,0.7]) ([0.3, 0.4, [0.5, 0.6])

;;lt)llleagori(r)lnf?lilgegeci sion X X2 X3

matrix R? C (0.3, 0.5], [0.5, 0.6]) ([0.3,0.61, [0.5, 0.7]) ([0.3,0.41, [0.2, 0.8])
C ([0.3,0.41, [0.6, 0.8]) ([0.3, 0.8, [0.2, 0.6]) ([0.3,0.61, [0.3, 0.7])
Cs ([0.3,0.81, [0.4, 0.5]) ([0.3, 0.6], [0.5, 0.7]) ([0.3,0.8], [0.2, 0.6])
Cy ([0.3,0.61, [0.5, 0.7]) ([0.3,0.41, [0.2, 0.8]) ([0.3,0.51, [0.5,0.7])

;;'t)lll:gsor]e\;(l)lrrfr:igegecision X X2 X3

matrix R? Ci ([0.5, 0.6], [0.3, 0.8]) ([0.5,0.71,[0.3, 0.5]) ([0.5,0.71, [0.2, 0.4])
C ([0.5,0.71, [0.3, 0.4]) ([0.4, 0.6], [0.5, 0.8]) ([0.5,0.71,[0.2, 0.5])
Cs ([0.4, 0.6], [0.3, 0.6]) ([0.5,0.6], [0.3, 0.5]) ([0.4, 0.6], [0.2, 0.8])
Cy ([0.5,0.71, [0.3, 0.4]) ([0.5,0.71, [0.2, 0.4]) ([0.5,0.6], [0.3, 0.5])

Table7 Collective interval-valued Pythagorean fuzzy decision matrix R

X1

X2

X3

Cy
(6))
(6]
Cq

([0.413, 0.537], [0.389, 0.738])
([0.413, 0.593], [0.429, 0.563])
([0.352,0.692], [0.363, 0.587])
([0.413, 0.653], [0.405, 0.536])

([0.413, 0.653], [0.405, 0.595])
([0.352, 0.692], [0.320, 0.697])
([0.413, 0.622], [0.389, 0.576])
([0.475, 0.593], [0.200, 0.563])

([0.413, 0.593], [0.216, 0.562])
([0.413, 0.653], [0.260, 0.595])
([0.352, 0.692], [0.200, 0.697])
([0.413, 0.537], [0.389, 0.576])

Step 4 Calculate 4 ;; = nwh j;.

,
Pielase cllolayao
KACST a.141lg oglel)

A1 = ([0.262, 0.343], [0.733, 0.897]),
o1 = ([0.370, 0.534], [0.523, 0.645])
31 = ([0.385, 0.745], [0.281, 0.513]),
a1 = ([0.518,0.788], [0.201, 0.329])
in = ([0.262,0.424], [0.742, 0.837]),
s = ([0.315, 0.628], [0.420, 0.757])
i3 = ([0.452,0.6651, [0.307, 0.5017),
4 = ([0.593,0.726], [0.061, 0.359])
A3 = ([0.262, 0.382], [0.605, 0.8231),
23 = ([0.370, 0.5901, [0.357, 0.672])
33 = ([0.385, 0.745], [0.136, 0.638]),
43 = ([0.518, 0.664], [0.188, 0.374]).

@ Springer

Step 5 Calculate the score functions (Table 8).

s(hi1) = —0.57, s(ha1) = —0.13, s(A31)
=0.18, s(As1) = 0.37

s(h12) =

—0.50, s(A2n) = —0.12, s(A32)

=0.15, s(hg2) = 0.37
s(h13) = —0.41, s(A23) = —0.04, s(A33)
= 0.13, s(hs3) = 0.26.

Step 6 Utilize the IVPFEHWA aggregation operator to
aggregate all preference values.

r1 = ([0.354, 0.567], [0.550, 0.674])
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Table 8 Pythagorean fuzzy hybrid decision matrix R

X3

([0.593, 0.726], [0.061, 0.359])
([0.525, 0.665], [0.307, 0.501])
([0.315, 0.628], [0.420, 0.757])

X1 X2
Cy ([0.518, 0.788], [0.201, 0.329])
Cy ([0.385, 0.745], [0.281, 0.513])
C3 ([0.370, 0.534], [0.523, 0.645])
Cy ([0.262, 0.343], [0.733, 0.897])

([0.262, 0.424], [0.742, 0.837])

([0.518,0.664], [0.188, 0.374]),
([0.585, 0.745], [0.136, 0.638]),
([0.370, 0.590], [0.357, 0.672]),
([0.262, 0.382], [0.605, 0.823]).

ra = ([0.367, 0.581], [0.422, 0.686])
r3 = ([0.354, 0.571], [0.347, 0.695]).

Step 7 Calculate the score functions.
s(r1) = —0.154, s(r;) = —0.088, s(r;) = —0.076.

Step 8 Arrange the scores of the all alternatives in the form
of descending order and select that alternative which
has the highest score function.

s(r3) > s(r2) > s(r1)

Thus, the best alternative is X3.

Conclusion

In this paper, we have developed the notion of interval-
valued Pythagorean fuzzy Einstein hybrid weighted aver-
aging aggregation operator along with their some desir-
able properties such as idempotency, boundedness, and
monotonicity. Actually interval-valued Pythagorean fuzzy
Einstein weighted averaging aggregation operator weights
only the Pythagorean fuzzy arguments and interval-valued
Pythagorean fuzzy Einstein ordered weighted averaging
aggregation operator weights only the ordered positions
of the Pythagorean fuzzy arguments instead of weighting
the Pythagorean fuzzy arguments themselves. To over-
come these limitations, we have introduced an interval-
valued Pythagorean fuzzy Einstein hybrid weighted aver-
aging aggregation operator, which weights both the given
Pythagorean fuzzy value and its ordered position. Finally,
the proposed operator has been applied to decision-making
problems to show the validity, practicality and effectiveness
of the new approach.
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