
Complex & Intelligent Systems (2018) 4:195–212
https://doi.org/10.1007/s40747-018-0066-z

ORIG INAL ART ICLE

A hybrid SA-MFO algorithm for function optimization and engineering
design problems

Gehad Ismail Sayed1,2 · Aboul Ella Hassanien1,2

Received: 10 August 2017 / Accepted: 5 January 2018 / Published online: 25 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract
This paper presents a hybrid algorithm based on using moth-flame optimization (MFO) algorithm with simulated annealing
(SA), namely (SA-MFO). The proposed SA-MFO algorithm takes the advantages of both algorithms. It takes the ability
to escape from local optima mechanism of SA and fast searching and learning mechanism for guiding the generation of
candidate solutions of MFO. The proposed SA-MFO algorithm is applied on 23 unconstrained benchmark functions and
four well-known constrained engineering problems. The experimental results show the superiority of the proposed algorithm.
Moreover, the performance of SA-MFO is compared with well-known and recent meta-heuristic algorithms. The results show
competitive results of SA-MFO concerning MFO and other meta-heuristic algorithms.

Keywords Simulated annealing algorithm · Moth flame optimization algorithm · Function optimization · Constrained
optimization problems

Introduction

Optimization is defined as the process of finding global or
near global optimum solutions for a given problem. Many
problems in the real world can be observed as optimization
problems.Over the past several decades, several optimization
algorithms are proposed to solve many optimization prob-
lems. Simulated annealing (SA) algorithm is one of the most
popular iterative meta-heuristic optimization algorithm. It
used to solve continuous and discrete problems [16]. The
key privilege of SA is that its ability to escape from local
optima called metropolis process. However, the major short-
age of SA is that its efficiency for finding the global optimum
is unsatisfactory. This is due to, when SA generates a new
candidate solution, it does not learn intelligently from its
searching history [37]. Several studies have been introduced
for enhancing SA performance. Some of these are based on
changing the acceptance or generation mechanisms. How-

B Gehad Ismail Sayed
GehadIsmail_FCI@yahoo.com

Aboul Ella Hassanien
aboitcairo@gmail.com

1 Faculty of Computers and Information, Cairo University,
Cairo, Egypt

2 Scientific Research Group in Egypt (SRGE), Cairo, Egypt

ever, this kind ofmodifications inSAschemadoes not usually
inherit the ability of SA for escaping from local optima [11].
On the other hand, population-based meta-heuristics algo-
rithms equipped with the ability to guide their search through
using intelligent learning mechanism. Thus, the population-
based meta-heuristics algorithms showed better efficiency.
Some of these algorithms are particle swarm optimisation
(PSO) [15], ant colony optimization (ACO) [4], ant lion opti-
mizer (ALO) [22], differential evolution (DE) [35], Social
group optimization (SGO) [30], and moth-flame optimiza-
tion (MFO) [24].

In this paper, MFO is selected to be studied and analyzed.
MFO algorithm is one of recent meta-heuristic optimization
algorithms proposed in 2015. The main inspiration of MFO
came from the navigation method of moths in nature called
transverse orientation. The inventor of this algorithm, Mir-
jalili, showed that MFO obtained very competitive results
comparedwith othermeta-heuristic optimization algorithms.
Also, MFO shows competitive results for automatic mitosis
detection in breast cancer histology images [32]. How-
ever, MFO like other meta-heuristic algorithms suffers from
entrapping at local optima and low convergence rate. Thus,
many studies are proposed to solve this problem. Several
studies have been proposed to enhance the performance of
MFO. Li et al. [17] proposed Lévy-flight moth-flame opti-
mization (LMFO) algorithm to improve the performance

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-018-0066-z&domain=pdf
http://orcid.org/0000-0001-9007-916X

196 Complex & Intelligent Systems (2018) 4:195–212

of MFO. The proposed LMFO used Lévy-flight strategy in
the searching mechanism of MFO. The experimental results
on 19 unconstrained benchmark functions and two other
constrained problems showed the superior performance of
LMFO. Emery et al. [5] employed chaos parameter in the spi-
ral equation of updating the position of moths. They applied
their approach in feature selection application. Recently,
many studies hybridize twoormore algorithms to obtain opti-
mal solutions for optimization problems [31]. Some of these
studies hybridize differential evolution with biogeography-
based optimization to solve global optimization problem [8].
Some hybridize particle swarmoptimizationwith differential
evolution for solving constrained numerical and engineer-
ing optimization problems [19]. Moreover, some of them
hybridize chaotic with meta-heuristic algorithms for solving
feature selection problem [33]. Also, some hybridize genetic
algorithm and particle swarm optimization for multimodal
problems [13]. Furthermore, some researchers considering
introducing new methods to improve meta-heuristic algo-
rithms. Author in [25] introduces new mutation rule to be
combined with the basic mutation strategy of differential
evolution algorithm. He named his algorithm as enhanced
adaptive differential evolution (EADE). The experimental
results show that EADE is very competitive algorithm for
solving large-scale global optimization problems. Authors
in [28] combined two binary bat algorithm (BBA) and with
local search scheme (LSS)to improve the diversity of BBA
and enhance the convergence rate. The results show that the
proposed hybrid algorithm obtained promising results for
solving large-scale 01 knapsack problems. Authors in [36]
introduced a mutation operator guided by preferred regions
to enhance the performance of an existing set-based evolu-
tionary many-objective optimization algorithm. The results
obtained from 21 instances of seven benchmark show that
their proposed algorithm is superior. Themain drivers for this
kind of hybridization are to avoid local optima and improve
search results from global optimization. This becomes an
essential task in multidimensional and multiobjective prob-
lems.

Therefore, in this paper,we tried another kindof hybridiza-
tion to solve the main problems of MFO. To best of our
knowledge, this kind of hybridization of MFO with SA is
not used before. The salient features of SA and MFO are
hybrid to create a new approach, namely simulated annealing
moth-flame algorithm (SA-MFO). In this paper, simulated
annealing method is applied during the updating positions of
flames of the standard version ofMFO to further enhance the
performance of MFO. The proposed SA-MFO is applied to
solve both constrained and unconstrained benchmark prob-
lems. The proposed mimetic algorithm is mainly based on
MFO algorithm, whereas, metropolis mechanism of SA is
used to slowdown the convergence rate ofMFOand increases
the probability of moths to reach the global optima. Also,

metropolis mechanism is used to increase the diversity of
the population. The proposed SA-MFO has the advantages
of both SA and MFO algorithms: the ability to escape from
local optima mechanism of SA and fast searching ability and
learning mechanism for guiding the generation of candidate
solutions of MFO.

The proposed mimetic algorithm applied on 23 bench-
mark functions and four well-known engineering problems.
These problems are applied previously on the original MFO.
Thus, we almost make a fair comparison between the pro-
posed SA-MFO and MFO in terms of evaluation criteria,
number of iterations, number of independent runs, population
size, and number of dimensionality. The simulation results
demonstrate that the proposed SA-MFO can significantly
improve the performance of MFO. Also, the experimental
results show that SA-MFO is superior to the other algorithms.

The rest of this paper is organized as follows: Section 2
provides a brief overview of the standard moth flame opti-
mization algorithm, followed by a brief introduction to
simulated annealing. Section 3 describes in detail the pro-
posed hybrid algorithm, and then Sect. 4 discusses the main
results and evaluate the performance of the proposed algo-
rithm. Finally, Sect. 5 concludes the paper.

Basics and background

Moth flame optimization (MFO)

Inspiration

In this section, one of the recent stochastic population-based
algorithms is employed namely moth flame optimization
(MFO) [24]. The main inspiration of MFO came from the
navigation method of moths in nature. Moths are fancy
insects that are very similar to the butterfly family. In nature,
there are greater than 160,000 various species of this insect.
Larvae and adult are the two main milestones in their life-
time. The larva is converted to moth by cocoons. Special
navigation methods in the night are the most interesting fact
about moths. They used a mechanism called transverse ori-
entation for their navigation. Moths fly using a fixed angle
with respect to themoon,which is a very efficientmechanism
for long traveling distances in a straight line.

Mathematical model of MFO

Let the candidate’s solutions are moths, and the problem’s
variables are the position of moths in the space. P is the
spiral function where moths move around the search space.
Each moth updates his position with respect to flame using
the following equations:

Mi = P(Mi , Fj) (1)

123

Complex & Intelligent Systems (2018) 4:195–212 197

where Mi indicates the i th moth and Fj is jt h flame.
There are other types of spiral functions can be utilized
respect to the following rules:

1. The initial point of spiral should start from the moth.
2. The final point of spiral should be the position of the

flame.
3. The Fluctuation range of spiral shouldn’t exceed the

search space.

P(Mi , Fj) = Di · ebt · cos(2π t) + Fj , (2)

where Di is the distance of the i thmoth for the j th flame, t is a
random number in [−1, 1] and b is a constant for defining the
shape of the P . D is calculated using the following equation.

Di = |Fj − Mi |, (3)

where Mi is the i th moth, Fj indicates the j th flame, and Di

indicates the distance of the i th moth to the j th flame.
Another concern, themoths update their positionwith respect
to n different locations in the search space which can degrade
the best promising solutions exploitation. Therefore, the
number of flames adaptively decreases over the course of
iterations using the following formula:

flameno = round

(
FN − I ∗ N − 1

IN

)
, (4)

where I is the current number of iterations, I N is the max-
imum number of iterations and FN is the maximum number
of flames.
MFO utilizes Quicksort method and the computational com-
plexity of this sort method is O(nlogn) and O(n2) in the best
and worst case, where n denotes the number of moths.

Simulated annealing (SA)

Simulated annealing (SA) was proposed by Metropolis et
al. [21] in 1953. The main inspiration of SA came from
the simulation modeling of a molecular movement in the
materials during annealing (physical annealing principles).
The process of cooling and heating a material to recrystal-
lized is called annealing. At high temperature, the particles
move in disorder and when the temperature decreases grad-
ually, the particles converge to the lowest state of energy.
SA uses probability acceptance mechanisms for considering
the current optimal solution. SA was successfully applied to
solve the optimization problems by Kirkpatrick et al. [15]
in 1983. Through using the probability of acceptance of
metropolis process, it can be simulated the annealing mecha-
nism in finding the lowest energy state which is the optimum

solution. The main parameters of SA are metropolis accep-
tance mechanism, initial condition, and cooling scheduling
method. They are described as the following:

Initial condition at the beginning of the searching pro-
cess of SA algorithm starts with initializing the initial
temperature T0, which have a significant impact on the
performance. The higher value of T0 will increase the
computational time of the optimization process. On the
contrary, if the T0 is too low, it will cause that SAwill not
effectively explore the search space. Thus it is needed to
be selected carefully to obtain the optimal solution.

Metropolis acceptance mechanism It is one of key affect-
ing on obtaining a near optimal solution quickly. The
metropolis rules used to indicatewhether the nearby solu-
tionwith lowfitness value is accepted or not as the current
solution. This mechanism affects the capability of SA to
escape from the local optimum. Let FC represents the
fitness value of the current solution, and FN denotes the
fitness value of the neighboring solution. When F(Y0) is
better than F(Y), then SA will use the acceptance prob-
ability mechanism to indicating either to consider the
neighbor solution as the current solution or not. The prob-
ability of acceptance mechanism is defined as follows:

Pr = e

(−(F(Y)−F(Y0))

Tk

)
, (5)

where Pr is defined as the probability of acceptance and
Tk is temperature value at time k.

Cooling schedule method During the physical annealing
process, as the temperature decreases, the cooling rate
decreases too to reach the stable ground state. This it’s
needed that the systemat the beginning to be cooled faster
and slower as gradually decreasedof the temperature.The
cooling schedule parameter is defined as follows:

Tk+1 = α × Tk, (6)

where α denotes the temperature coefficient, Tk is the
initial temperature value and Tk+1 is temperature at time k

The proposed SA-MFO algorithm

According to the MFO algorithm, moths’ positions are ran-
domly initialized. Then moth swarm updates their position
movement usingEq. (2). Through this, the nextmoth position
is determined. The standard version of MFO automatically
accepts the current moth position as the new moth position.
However, SA-MFO uses the metropolis acceptance mech-
anism of SA. This mechanism indicates whether to accept

123

198 Complex & Intelligent Systems (2018) 4:195–212

Table 1 Parameters settings for SA-MFO Algorithm

Parameter Value(s)

Number of search agents 50

Cooling schedule 10

Initial temperature 90

a − 1

b 1

the new moth position or not. In case of the new moth, the
position is not accepted, another candidate position is recal-
culated. The selection is based on its fitness value. Using this
mechanism, a moth solution able to escape from the local
optima. Also, the quality of the solution is enhanced with
fastest convergence rate [34]. Based on temperature, cooling
schedule parameters and the fitness value difference of the
metropolismechanism, the optimization processwill explore
the search space effectively to find an optimal solution. This
processwill be repeated until a newposition is accepted using
metropolis acceptance rule, or the termination criterion is
reached.

Parameters initialization

In the beginning, SA-MFO starts with setting MFO param-
eters and randomly initialized moths’ positions within the
search space. Each position represents a solution in the search
space. The initial parameter settings are presented in Table 1.

Fitness function

At each iteration, each moth position is evaluated using a
predefined fitness function f (z). Then based on this value,
the metropolis rule is applied to determine whether to accept
or not.

Updating positions

If the current moth accepted as the new moth, then the new
moths change its position using Eq. (2).

Termination criteria

Theoptimizationprocess terminateswhen it reaches themax-
imum number of iterations or when the best solution is found
[7]. In our case, we used the maximum number of iterations
is 1000 iterations (see Table 1).

The overall SA-MFO algorithm is proposed in Algorithm
(1). Moreover, the summarize flowchart of the proposed sim-
ulated annealing moth-flame algorithm is given in Fig. 1.

Algorithm 1 Simulated Annealing Moth Flame Optimiza-
tion Algorithm
1: Set the initial value of the number of moth positions n, T0, α and the

maximum number of iterations Maxiter .
2: for (i = 1 : n) do
3: Assign randomly moths positionsMi(t).
4: Evaluate the fitness function of each moth position f (Mi).
5: end for
6: Set T = T0
7: repeat
8: Calculate ΔFitness = f (Mi+1) − f (Mi)

9: r = [0, 1] .
10: if f (Mi+1) ≤ f (Mi) then
11: Calculate D using Equ. (3).
12: Update M(i, j) using Equ. (1) and (2) with respect to moth.
13: else
14: Set Pr = e(

−(F(Y)−F(Y0))

T)

15: if r < Pr then
16: Calculate D using Equ. (3).
17: Update M(i, j) using Equ. (1) and (2) with respect to

moth.
18: end if
19: end if
20: Check if the new positions go out of the search space boundaries

and bring it back.
21: Set T = α × T
22: Set i = i + 1. {Iteration counter increasing}.
23: until (i < Maxiter). {Termination criteria satisfied}.
24: Produce the best flame position and its fitness value.

Results and discussion

In this paper, 23 optimization benchmark problems with dif-
ferent characteristics and four other engineering problems
are employed to evaluate the performance of the proposed
SA-MFO algorithm. The employed 23 benchmark prob-
lems divided into two families: unimodal and multimodal.
Tables 11 and 12 in Appendix 1 and 2 describes the math-
ematical formulation and the properties of the benchmark
functions used in this paper. In the table, lb and ub represent
the lower and upper bound of the search space respectively,
dim indicates the number of dimensions, and opt indicates the
optimum solution of the function. More information about
the adopted benchmark functions can be found in [18]. The
main characteristics of the first family, namely unimodal
test functions have only one global optimum and no local
optima. These functions are used to evaluate the exploitation
and convergence rate of the adopted algorithms. However,
the second family, namely multimodal test functions have
multiple global optimum and multiple local optima. The
characteristic of this family is used to evaluate the capability
of the algorithm in avoiding the local optima and the explo-
rative ability of an algorithm.

In this section, three main experiments were conducted to
evaluate the performance of the SA-MFOalgorithm. The first
experiment aims to determine the optimal parameter value
for both T0 and α. The second experiment aims to evalu-

123

Complex & Intelligent Systems (2018) 4:195–212 199

Fig. 1 SA-MFO algorithm flowchart

123

200 Complex & Intelligent Systems (2018) 4:195–212

Table 2 Parameter settings for PSO, ABC, ALO, MFO, MVO, and
GWO optimization algorithms

Algorithm Parameter Value

PSO An inertial weight 1

A inertia weight damping ratio 0.9

Personal learning coefficient 1.5

Global learning coefficient 2.0

ABC A number of colony size 10

A number of food source 5

A number of limit trials 5

ALO I 1

MFO a −1

b 1

MVO WEPmin 0.2

WEPmin 1

TDRmin 0

TDRmax 0.6

p 6

ate and compare the performance of SA-MFO with MFO
andfivewell-known optimization algorithms: particle swarm
optimization (PSO) [15], ant bee colony (ABC) [14], moth
flame optimization (MFO) [24], multi verse optimization
(MVO) [23], and ant lion optimizer (ALO) [22] in solving 23
numerical optimization problems using different statistical
measurements. The parameters settings for all meta-heuristic
optimization algorithms are shown in Table 2. The rest of
parameters including, the maximum number of iterations for
all functions is set to 1000, the number of search agents is set
to 50 individuals for all comparisons and the initialization of
the search agents is same for all adopted algorithms. The rea-
son behind this thatwewant tomake almost a fair comparison
for these algorithms. The third and last experiment aims to
evaluate the performance of SA-MFO on solving engineer-
ing problems, also to compare the best-obtained results with
other meta-heuristic algorithms. All the obtained results for
both benchmark and engineering problems are calculated on
average for 30 independent runs. Moreover, all these experi-
ments are performed on the same PC with Core i3 and RAM
2 GB on OS windows 7.

Parameters optimization experiment

Due to the stochastic behavior of the optimization algorithms,
there is a need to set certain parameters carefully. These
parameters can have a significant influence on the perfor-
mance of the algorithm. The main parameters of SA are T0
and α which affecting the searching efficiency to find the
optimal solution. These two parameters need to be optimized
effectively. In this paper, the optimal parameters values for T0
and α are identified based on the highest success rate for 50

Table 3 Parameter setting for initial acceptance rate T0

Success rate (%)

T0 (%) F1 F10 F18 AVG success rate (%)

10 100 90 79 89.67

30 100 91 76 89

50 100 91 80 90.33

70 100 92 75 89

90 100 92 80 90.67

The significance bold means indicates the optimal values for T0, which
are determined based on highest success rate for 50 runs of F1; F10 and
F18

Table 4 Parameter setting for schedule rate α

Success rate (%)

α (%) F1 F10 F18 AVG success rate (%)

10 100 92 99 97

30 100 92 75 89

50 100 91 89 93.33

70 100 91 75 88.67

90 100 92 50 80.67

The significance bold means indicates the optimal values for α, which
are determined based on highest success rate for 50 runs of F1; F10 and
F18

runs of F1, F10 and F18. This paper uses the samemechanism
proposed in [34] which depends on optimizing one parame-
ter per simulation.When an optimal value of the parameter is
determined, the optimization process is repeated till to find an
optimal value of the next parameter. All the obtained results
reach 1 × E−3 are observed as a success.

Table 3 shows the simulation results obtained for selecting
the optimal value of T0. Changing the value of T0 can highly
affect on the initial acceptance rate of SA and SA-MFO. As,
if the T0 is too high that will lead the algorithm to spendmuch
time in exploiting solution space and if the α is too low that
will cause increasing the search time. In this paper, T0 set
with 10% and increases by 10% each time till to reach 90%
as shown in Table 3. As it can be seen, T0 with value 90%
improves the success rate (Table 3).

α can highly affect by the acceptance of the poor solution
whichmay lead to exploring the search space without finding
an optimal solution. If α is too low, it may lead to stuck in
the local optima. In this paper, α set with 10% and increases
by 10% each time till to reach 90% as shown in (Table 4). As
it can be seen, α with value 10% improves the success rate.

Comparison using numerical benchmark functions
experiment

In this subsection, the performance of SA-MFO is analyzed
and compared with other meta-heuristic algorithms in terms
of mean, standard deviation (std.) for 30 independent runs.

123

Complex & Intelligent Systems (2018) 4:195–212 201

Ta
bl
e
5

St
at
is
tic
al
re
su
lts

of
23

be
nc
hm

ar
k
fu
nc
tio

ns
ob
ta
in
ed

by
SA

-M
FO

,P
SO

,A
L
O
,A

B
C
,M

FO
,a
nd

M
V
O

SA
-M

FO
PS

O
A
L
O

A
B
C

M
FO

M
V
O

M
ea
n

St
d.

M
ea
n

St
d.

M
ea
n

St
d.

M
ea
n

St
d.

M
ea
n

St
d.

M
ea
n

St
d.

F1
1.
9E

−3
1

4.
6E

−3
1

2.
5E

−2
0

1.
5E

−2
5

3.
4E

−1
4

1.
8E

−1
4

6.
3E

−1
3

1.
0E

−1
2

2.
6E

−3
1

5.
5E

−3
1

2.
4E

−0
3

1.
3E

−0
3

F2
3.
0E

−2
2

1.
5E

−2
1

4.
0E

−1
9

6.
5E

−1
9

2.
0E

−0
5

1.
6E

−0
5

5.
5E

−1
1

1.
0E

−1
0

2.
4E

−1
9

3.
3E

−1
9

1.
4E

−0
2

5.
0E

−0
3

F3
6.
7E

−0
4

8.
8E

−0
5

2.
2E

−0
4

4.
8E

−0
5

1.
0E

−0
4

2.
3E

−0
4

1.
3E

+
01

8.
0

7.
5E

−0
3

1.
7E

−0
3

5.
9E

−0
2

2.
9E

−0
2

F4
1.
8E

−0
3

6.
0E

−0
3

4.
2E

−0
1

1.
2E

−0
1

3.
8E

−0
3

3.
7E

−0
3

6.
1E

−0
1

2.
6E

−0
1

4.
6E

−0
2

1.
5E

−0
1

6.
6E

−0
2

1.
9E

−0
2

F5
1.
5E

+
01

2.
2E

+
01

2.
1

1.
7

5.
1

3.
1

1.
7E

+
01

1.
2E

+
01

1.
2E

+
02

5.
5E

+
02

8.
8E

+
01

2.
9E

+
02

F6
2.
8E

−1
4

3.
4E

−1
4

3.
0E

−1
2

3.
0E

−1
2

2.
3E

−0
9

1.
1E

−0
9

9.
0E

−1
3

1.
1E

−1
2

2.
8E

−1
3

3.
4E

−1
3

7.
0E

−0
3

3.
0E

−0
3

F7
4.
2E

−0
3

2.
2E

−0
3

9.
3E

−0
4

4.
4E

−0
4

6.
8E

−0
3

2.
9E

−0
3

5.
4E

−0
3

2.
3E

−0
3

4.
6E

−0
3

2.
5E

−0
3

1.
6E

−0
3

9.
1E

−0
2

F8
−3

.8
E
+
3

3.
0E

+
02

−2
.6
E
+
03

3.
0E

+
02

−2
.5
E
+
03

3.
4E

+
02

−3
.2
E
+
03

5.
0E

+
02

−3
.4
E
+
03

3.
5E

+
02

−3
.2
E
+
03

2.
8E

+
02

F9
9.
8

3.
9

1.
3E

+
01

4.
3

1.
6E

+
01

8.
8

2.
1E

+
01

3.
5

1.
4E

+
01

9.
1

1.
2E

+
01

4.
9

F1
0

7.
6E

−0
8

1.
8E

−0
7

5.
3E

−0
5

1.
5E

−0
5

5.
7E

−0
2

2.
5E

−0
1

6.
1E

−0
6

3.
1E

−0
6

6.
2E

−0
8

6.
4E

−0
8

2.
8E

−0
1

6.
4E

−0
1

F1
1

8.
0E

−0
2

5.
2E

−0
2

1.
9E

−0
1

8.
5E

−0
2

1.
9E

−0
1

1.
1E

−0
1

2.
9E

−0
1

7.
7E

−0
2

1.
6E

−0
1

1.
0E

−0
1

2.
7E

−0
1

7.
8E

−0
2

F1
2

1.
9E

−1
5

4.
0E

−1
5

4.
7E

−3
2

4.
6E

−3
4

1.
4

1.
4

1.
1E

−1
1

1.
6E

−1
1

9.
3E

−0
2

2.
1E

−0
1

3.
1E

−0
2

9.
9E

−0
2

F1
3

1.
1E

−0
6

3.
4E

−0
6

1.
3E

−0
3

2.
8E

−0
4

1.
1E

−0
3

3.
4E

−0
3

1.
1E

−1
0

1.
8E

−1
0

3.
3E

−1
5

4.
4E

−1
5

4.
7E

−0
3

7.
9E

−0
3

F1
4

9.
9E

−0
1

0
1.
4

7.
0E

−0
1

1.
3

4.
8E

−0
1

9.
9E

−0
1

6.
0E

−0
7

1.
2

6.
2E

−0
1

9.
9E

−0
1

1.
8E

−1
1

F1
5

8.
8E

−0
4

2.
5E

−0
4

3.
0E

−0
4

6.
2E

−1
0

8.
3E

−0
4

1.
5E

−0
4

1.
0E

−0
3

6.
9E

−0
5

8.
5E

−0
4

2.
8E

−0
4

6.
1E

−0
4

1.
6E

−0
4

F1
6

−1
.0

0
−1

.0
0

−1
.0

1.
2E

−1
5

−1
.0

1.
0E

−1
1

−1
.0

0
−1

.0
2.
2E

−0
7

F1
7

3.
9E

−0
1

0
3.
98
E
−0

1
0

3.
98
E
−0

1
1.
99
E
−1

4
3.
98
E
−0

1
9.
60
E
−1

2
3.
98
E
−0

1
0

3.
98
E
−0

1
3.
4E

−0
7

F1
8

3.
0E

2.
1E

−1
6

3.
0

2.
9E

−1
6

3.
0

1.
0E

−1
3

3.
0

7.
8E

−1
4

3.
0

1.
4E

−1
4

3.
0

1.
0E

−0
6

F1
9

3.
0

1.
2E

−1
5

3.
00

0
3.
0

1.
9E

−1
3

3.
0

5.
3E

−1
4

3.
0

1.
1E

−1
5

3.
0

1.
8E

−0
6

F2
0

−3
.8

6.
3E

−1
6

−3
.8

8.
6E

−1
6

−3
.8

1.
3E

−1
4

−3
.8

7.
4E

−1
6

−3
.8

9.
3E

−1
6

−3
.8

3.
3E

−0
7

F2
1

−3
.2

6.
1E

−0
2

−3
.2

6.
2E

−0
2

−3
.3

1.
8E

−1
3

−3
.3

1.
9E

−0
6

−3
.2

5.
7E

−0
2

−3
.3

5.
0E

−0
2

F2
2

−1
E
+
01

0
−5

.9
3.
7

−8
.4

2.
9

−1
E
+
01

1.
0E

−0
3

−8
.1

1.
0E

−1
5

−7
.8

3.
0

F2
3

−9
.6

3.
6

−8
.3

3.
3

−5
.8

3.
2

−1
E
+
01

5.
5E

−0
2

−8
.5

3.
0

−9
.3

2.
2

123

202 Complex & Intelligent Systems (2018) 4:195–212

Moreover, the p value from Wilcoxon rank sum test is used
as well. Table 5 shows the statistical results obtained for
23 benchmark functions using SA-MFO, PSO, ALO, ABC,
MFO, and MVO. As it can be observed from Table 5, SA-
MFOoutperforms theother algorithms for bothunimodal and
multimodal test function inmost of the functions. The second
best results belong the MFO and PSO algorithms. Consid-
ering the characteristic of both multi-modal and uni-modal
test functions and the obtained results, it may be concluded
that SA-MFO algorithm has a high exploration capability
for exploring the promising area in the search space and the
capability for avoiding the local optima.

For further analyzing the performance of the proposed
SA-MFO algorithm, convergence curves for all the used
benchmark functions are shown in Fig. 2. In this figure, the
performance of the proposed mimetic algorithm is compared
withMFO,ABC,MVO,PSO, andALO.As it can be seen, the
proposed SA-MFO algorithm overtakes the other algorithms
in most of the cases in terms of both stability and high perfor-
mance. Moreover, it can be observed that ABC in the most
case provides the lowest score. PSO and MVO are in sec-
ond place. Figure 3 shows the mathematical representation
of some benchmark functions, average fitness values calcu-
lated for whole moths in each iteration, trajectory changes
for the first moth in the first dimension during optimization.
As it can be observed, the fluctuations of the first moth are
gradually decreased over the course of the iteration. Through
this behavior, it can be guaranteed the transition between
exploration and exploitation of the search space. Also, Fig. 3
compares the convergence curves of the proposed algorithm
with original MFO. From all these figures, it can be observed
that using metropolis mechanism can significantly enhance
the performance of the original MFO.

From all the obtained results, it can be observed that the
proposed SA-MFO in some cases obtained similar results as
the original MFO. The explanation for these results is that
Metropolis mechanism is only applied in case of the current
solution is worse than the best solution obtained so far. Thus,
in some cases, based on the probability of acceptance, the
current solution is not accepted. Therefore, SA-MFO obtains
similar results as original MFO.

A non-parametric statistical test namely Wilcoxon rank
sum test is conducted in this paper. This test is used to ver-
ify if a pair of two solutions is statistically different or not
[40]. In this paper, Wilcoxon rank sum test is used to com-
pare and analyze the difference of the solution (population)
of the proposed algorithm with other algorithms. The best
values of p when p value < 0.05 which can be considered
sufficient evidence against the null hypothesis. The obtained
p values produced byWilcoxon’s test of 23 benchmark func-
tions for the pair-wise comparison of the best score obtained
for all 1000 iterations with a 5% significance level from
the employed statistical test are reported in Table 6. Such

pair-wise comparison is constituted by SA-MFO vs. MFO,
SA-MFO vs. ALO, SA-MFO vs. PSO, SA-MFO vs. ABC,
and SA-MFOvs.MVO. In this table, N/A denotes "not appli-
cable," which mean that the proposed algorithm could not be
compared with the other algorithm in the rank-sum test. As
it can be observed from this table, SA-MFO outperforms the
other algorithms for both unimodal andmultimodal test func-
tion. As the SA-MFOprovides p value less than 0.05 formost
of the functions. Also, it can be seen that SA-MFO reject the
null hypothesis for F16 and F17 for most of the competitive
algorithms. From all the obtained results, it can be concluded
that the SA-MFO algorithm has high exploitation and explo-
ration compared with the original version MFO and other
meta-heuristic algorithms. Regarding the p value, it can be
concluded that SA-MFO is statistically significant.

Comparison using engineering design problems
experiment

In this section, the performance of the proposed SA-MFO
is evaluated using four well-known engineering problems,
namely three-bar truss, welded beam, pressure vessel and
tension/compression spring design problems. The detailed
description of the adopted engineering problem is pre-
sented in Appendix 2. Table 7 presents the optimal solution
for three-bar truss design problem obtained by particle
swarm optimization with differential evolution (PSODE)
[20], dynamic stochastic selection (DEDS) [42], mine blast
algorithm (MBA) [29], water cycle algorithm (WCA) [6],
MFO and SA-MFO. As it can be seen from this table, SA-
MFO obtained better results compared with the standard
MFO. Table 8 compares the optimal solution obtained for
pressure vessel problem by SA-MFO with hybrid particle
swarm optimization (HPSO) [10], co-evolutionary particle
swarm optimization using Gaussian distribution (CPSOGD)
[27], GA based on using of dominance-based tour tourna-
ment selection (GA-TTS) [3], co-evolutionary differential
evolution (CDE) [12], PSO [15], hybrid Nelder-mead sim-
plex search and particle swarm optimization (NMPSO)
[41], Gaussian quantum-behaved particle swarm optimiza-
tion (GQPSO) [1], andMFO. As it can be observed, SA-PSO
and ACO obtained the optimal solutions compared with the
other algorithms.

Table 9 compares the best obtained results for ten-
sion/compression spring design problem of SA-MFO and
CPSO, DEDS, NM-PSO, GA-TTS, hybrid evolutionary
algorithmandadaptive constraint handling technique (HEAA)
[39], mine blast algorithm (MBA) [30], WCA, differential
evolution with level comparison (DELC) [38], and MFO. In
this table, NA indicates "not available" value. As it can be
seen,NM-PSOobtained the optimal solution.However, it can
be observed that SA-MFO obtained better results compared
with originalMFO.The best solutions forwelded beamprob-

123

Complex & Intelligent Systems (2018) 4:195–212 203

Fig. 2 Convergence curves of
F1 to F23

123

204 Complex & Intelligent Systems (2018) 4:195–212

Fig. 2 continued

123

Complex & Intelligent Systems (2018) 4:195–212 205

Fig. 2 continued

123

206 Complex & Intelligent Systems (2018) 4:195–212

Fig. 3 a Graphical representations of benchmark functions, b the trajectory in first dimension, c the average fitness of all group, and d the
convergence curve

123

Complex & Intelligent Systems (2018) 4:195–212 207

Table 6 Statistical and p values of the Wilcoxon ranksum test results for 23 benchmark functions

SA-MFO vs. PSO SA-MFO vs. ALO SA-MFO vs. ABC SA-MFO vs. MFO SA-MFO vs. MVO

F1 3.02E−11 2.86E−09 2.45E−11 0.207275 1.06E−11

F2 1.94E−07 3.94E−11 3.02E−11 5.49E−06 1.02E−13

F3 2.58E−07 1.86E−09 5.57E−10 0.000491 0.491783

F4 3.02E−05 5.46E−03 4.31E−08 5.21E−01 1.11E−06

F5 3.16E−05 0.042896 0.053685 4.38E−06 1.123E−06

F6 8.01E−05 6.80E−08 7.95E−07 7.15E−05 6.80E−08

F7 1.66E−07 0.008355 0.101729 0.675014 8.29E−05

F8 5.96E−07 4.49E−07 6.72E−08 0.000273 0.001619

F9 0.000148 1.64E−06 2.69E−06 8.50E−05 0.007764

F10 2.86E−08 6.80E−08 6.80E−08 0.092457 6.80E−08

F11 0.001315 0.009097 0.017257 0.003447 0.005390

F12 0.000111 0.000183 0.000183 5.71E−03 0.000183

F13 6.39E−05 6.39E−05 0.002202 0.062318 0.001706

F14 0.034843 5.72E−05 6.39E−05 0.000368 6.39E−05

F15 0.000183 0.733730 0.025748 0.820530 0.001706

F16 N/A 6.29E−05 6.39E−05 N/A 6.39E−05

F17 N/A 6.34E−05 6.39E−05 N/A 6.39E−05

F18 0.025395 0.000149 0.000149 0.005788 0.000149

F19 0.005745 0.000165 0.000165 0.937947 0.000165

F20 0.016749 6.39E−05 0.013652 0.012345 6.39E−05

F21 0.550533 0.467611 0.467611 0.930111 9.44E−01

F22 0.000729 6.39E−05 6.39E−05 0.000767 6.39E−05

F23 0.006848 0.001707 0.135064 0.015354 0.013506

Table 7 Comparison of best
obtained results using various
optimization algorithms for
three-bar truss design problem

DEDS PSO-DE WCA MBA MFO SA-MFO

z1 0.788675 0.788675 0.788651 0.788565 0.78834477 0.78839302

z2 0.408248 0.408248 0.408316 0.4085597 0.40946691 0.40904779

h1(z) 1.77E−08 −5.29E−11 0 −5.29E−11 −1.00E−09 −1.7E−11

h2(z) −1.464101 −1.463747 −1.464024 −1.4637475 −1.46440134 −1.46319344

h3(z) −0.535898 −0.536252 −0.535975 −0.5362524 −0.53559870 −0.53680729

f (z) 263.895843 263.895843 263.895843 263.8958522 263.89597968 263.89595986

lem obtained by WCA, GA-TTS, cultural algorithms with
evolutionary programming (CAEP) [2], MFO, HGA, MBA,
CPSO, NM-PSO, gravitational search algorithm (GSA) [26],
HPSO, and SA-MFO are shown in Table 10. From this table,
SA-MFO overtakes the other algorithms.

Computational complexity of the proposed SA-MFO
algorithm

In this section, the computational complexity of the proposed
hybrid algorithm is computed. The computational complex-
ity of a meta-heuristic algorithm is mainly depended on the
number of variables, the number of moths, the flames’ sort-
ing mechanism in each iteration and the maximum number
of iterations [24]. Since the original MFO uses Quicksort

mechanism, the computational complexity is O(n2) in the
worst case. In addition, the temperature in simulated anneal-
ing goes through O(log(m)) [9]. The overall computational
complexity is O(T × log(m)(m2 + m × v)), where T is
the maximum number of iterations and v is the number of
variables.

Conclusions

This paper introduced a new hybrid algorithm based on
using MFO and SA. The metropolis acceptance mecha-
nism of SA is employed into the standard MFO to enhance
the performance of MFO. The simulation results using 23
benchmark functions show that the proposed SA-MFO is
superior compared with the original version MFO and other

123

208 Complex & Intelligent Systems (2018) 4:195–212

Ta
bl
e
8

C
om

pa
ri
so
n
of

be
st
ob
ta
in
ed

re
su
lts

us
in
g
va
ri
ou
s
op
tim

iz
at
io
n
al
go
ri
th
m
s
fo
r
pr
es
su
re

ve
ss
el
pr
ob
le
m

z 1
z 2

z 3
z 4

h
1
(z

)
h
2
(z

)
h
3
(z

)
h
4
(z

)
f(
z)

G
A
-T
T
S

0.
81
25

0.
43
75

42
.0
97
4

17
6.
65
4

−2
.0
1E

−0
3

−3
.5
8E

−0
2

−2
4.
75
93

−6
3.
34
6

60
59

.9
46
3

C
D
E

0.
81
25

0.
43
75

42
.0
98
4

17
6.
63
76

−6
.6
7E

−0
7

−3
.5
8E

−0
2

−3
.7
05
12
3

−6
3.
36
23

60
59

.7
34

C
PS

O
0.
81
25

0.
43
75

42
.0
91
3

17
6.
76
5

−1
.3
7E

−0
6

−3
.5
9E

−0
4

−1
18
.7
68
7

−6
3.
25
35

60
61

.0
77
7

H
PS

O
0.
81
25

0.
43
75

42
.0
98
4

17
6.
63
66

−8
.8
0E

−0
7

−3
.5
8E

−0
2

3.
12
26

−6
3.
36
34

60
59

.7
14
3

N
M
-P
SO

0.
80
36

0.
39
72

41
.6
39
2

18
2.
41
2

3.
65
E
−0

5
3.
79
E
−0

5
−1

.5
91
4

−5
7.
58
79

59
30

.3
13
7

G
-Q

PS
O

0.
81
25

0.
43
75

42
.0
98
4

17
6.
63
72

−8
.7
9E

−0
7

−3
.5
8E

−0
2

−0
.2
17
9

−6
3.
36
28

60
59

.7
20
8

A
C
O

0.
81
25

0.
43
75

42
.1
03
6

17
6.
57
26

N
A

N
A

N
A

N
A

60
59

.0
88
8

G
SA

1.
12
5

0.
62
5

55
.9
88
6

84
.4
54
2

N
A

N
A

N
A

N
A

85
38

.8
35
9

M
FO

0.
81
25

0.
43
75

43
.7
29
73
97

16
7.
65
70
31
0

−0
.0
01
66
59

−0
.0
04
89
97

−8
28
.5
75
51
07

−8
2.
44
29
69
0

60
59

.8
41
30
00

SA
-M

FO
0.
81
25

0.
43
75

42
.1
03
5

16
7.
56
23
0

−0
.0
00
03
98

−0
.0
00
11
84

−1
51
7.
63
93
66
7

−6
9.
07
52

60
59

.0
88
8

Ta
bl
e
9

C
om

pa
ri
so
n
of

be
st
ob
ta
in
ed

re
su
lts

us
in
g
va
ri
ou
s
op
tim

iz
at
io
n
al
go
ri
th
m
s
fo
r
te
ns
io
n/
co
m
pr
es
si
on

sp
ri
ng

de
si
gn

pr
ob
le
m

D
E
D
S

G
A
-T
T
S

C
PS

O
H
E
A
A

N
M
-P
SO

D
E
L
C

M
B
A

W
C
A

M
FO

SA
-M

FO

z 1
0.
05
16
89

0.
05
19
89

0.
05
17
28

0.
05
16
89

0.
05
16
2

0.
05
16
89

0.
05
16
56

0.
05
16
8

0.
05
24
44

0.
05
00
00

z 2
0.
35
67
17

0.
36
39
65

0.
35
76
44

0.
35
67
29

0.
35
54
98

0.
35
67
17

0.
35
59
4

0.
35
65
22

0.
37
51
64

0.
31
74
02

z 3
11
.2
88
96
5

10
.8
90
52
2

11
.2
44
54
3

11
.2
88
29
3

11
.3
33
27
2

11
.2
88
96
5

11
.3
44
66
5

11
.3
00
41

10
.2
84
37
4

14
.0
30
93
3

h
1
(z

)
1.
45
E
−0

9
−1

.2
6E

−0
3

−8
.2
5E

−0
4

3.
96
E
−1

0
1.
01
E
−0

3
−3

.4
0E

−0
9

0.
00

1.
65
E
−1

3
−1

.9
7E

−0
5

−2
.9
1E

−0
6

h
2
(z

)
−1

.1
9E

−0
9

−2
.5
4E

−0
5

−2
.5
2E

−0
5

3.
59
E
−1

0
9.
94
E
−0

4
2.
44
E
−0

9
0.
00

−7
.9
0E

−1
4

−3
.7
1E

−0
9

−5
.8
4E

−0
5

h
3
(z

)
−4

.0
53
78
5

−4
.0
61
33
7

−4
.0
51
30
6

−4
.0
53
80
8

−4
.0
61
85
9

−4
.0
53
78
5

−
4.
05
22
48

−4
.0
53
39
9

−4
.0
88
64
2

−3
.9
68
05
3

h
4
(z

)
−0

.7
27
72
8

−0
.7
22
69
7

−0
.7
27
08
5

−0
.7
27
72

−0
.7
28
58
8

−0
.7
27
72
8

−
0.
72
82
68

−0
.7
27
86
4

−0
.7
14
92
8

−0
.7
55
06
5

f(
z)

0.
01
26
65

0.
01
26
81

0.
01
26
74

0.
01
26
65

0.
01
26
3

0.
01
26
65

0.
01
26
65

0.
01
26
65

0.
01
26
76

0.
01
26
72
1

123

Complex & Intelligent Systems (2018) 4:195–212 209
Ta
bl
e
10

C
om

pa
ri
so
n
of

be
st
ob
ta
in
ed

re
su
lts

us
in
g
va
ri
ou
s
op
tim

iz
at
io
n
al
go
ri
th
m
s
fo
r
w
el
de
d
be
am

pr
ob
le
m

G
A
-T
T
S

C
PS

O
C
A
E
P

H
G
A

N
M
-P
SO

W
C
A

G
SA

M
B
A

H
PS

O
M
FO

SA
-M

FO

z 1
(h

)
0.
20
59
9

0.
20
23
69

0.
20
57

0.
20
57

0.
20
58
3

0.
20
57
28

0.
18
21

0.
20
57
3

0.
20
57
3

0.
20
51

0.
20
57

z 2
(I

)
3.
47
12
4

3.
54
42
14

3.
47
05

3.
47
05

3.
46
83
38

3.
47
05
22

0.
85
70

3.
47
04
9

3.
47
04
89

3.
48
47

3.
47
24

z 3
(t

)
9.
02
02
2

9.
04
82
1

9.
03
66

9.
03
66

9.
03
66
24

9.
03
66
2

10
9.
03
66
3

9.
03
66
24

9.
03
65

9.
03
67

z 4
(b

)
0.
20
65

0.
20
57
23

0.
20
57

0.
20
57

0.
20
57
3

0.
20
57
29

0.
20
24

0.
20
57
3

0.
20
57
3

0.
20
57

0.
20
57

h
1
(z

)
−0

.1
03
05

−1
3.
65
55
5

1.
98
86
76

1.
98
86
76

−
0.
02
52
5

−0
.0
34
12
8

N
A

−0
.0
01
61

−0
.0
25
39
9

−
5.
43
87

−
1.
20
51

h
2
(z

)
−0

.2
31
75

−7
8.
81
40
8

4.
48
15
48

4.
48
15
48

−
0.
05
31
22

−3
.4
9E

−0
5

N
A

−0
.0
16
91

−0
.0
53
12
2

−
13

.0
66
9

−
0.
55
20

h
3
(z

)
−5

.0
E
−0

4
−3

.3
5E

−0
3

0
0

0.
00
01

−1
.1
9E

−0
6

N
A

−2
.4
E
−0

7
0

−
0.
00
06

−
0.
00
01

h
4
(z

)
−3

.4
30
44

−3
.4
24
57
2

−3
.4
33
21
3

−3
.4
33
21
3

−
3.
43
31
69

−3
.4
32
98

N
A

−3
.4
32
98

−3
.4
32
98
1

−
3.
43
14

−
3.
43
28

h
5
(z

)
−0

.0
80
99

−0
.0
77
36
9

−0
.0
50
7

−0
.0
80
7

−
0.
08
08
3

−0
.0
80
72
8

N
A

−0
.0
80
73

−0
.0
80
73

−
0.
08
01

−
0.
08
07

h
6
(z

)
−0

.2
35
51

−0
.2
35
59
5

−0
.2
35
53
8

−0
.2
35
53
8

−
0.
23
55
4

−0
.2
35
54

N
A

−0
.2
35
54

−0
.2
35
54

−
0.
23
55

−
0.
23
55

h
7
(z

)
−5

8.
64
69

−4
.4
72
85
8

2.
60
33
47

2.
60
33
47

−
0.
03
15
55

−0
.0
13
50
3

N
A

−0
.0
01
46

−0
.0
31
55
5

−
1.
34
54

−
0.
06
26

f(
z)

1.
72
82
3

1.
72
80
24

1.
72
48
52

1.
72
48
52

1.
72
47
17

1.
72
48
56

1.
88
0

1.
72
48
3

1.
72
48
52

1.
72
49

1.
72
45 recently meta-heuristic algorithms, namely GWO, ALO,

PSO, andMVO.Moreover, the paper considered solving four
well-known engineering design problems using SA-MFO.
The experimental results show that the proposed SA-MFO
obtained competitive results compared with the other algo-
rithms proposed in the literature for solving engineering
problems. Future work could concentrate on applying the
proposed SA-MFOonmore complex optimization problems.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix 1: List of 23 benchmark optimiza-
tion functions

See Tables 11 and 12.

Table 11 Benchmark functions

No. Definition

F1 f1(x) =
∑n

i=1 x
i2

F2 f2(x) =
∑n

i=1 |xi | + ∏n
i=1 |xi |

F3 f3(x) =
∑n

i=1(
∑i

j−1 x j)
2

F4 f4(x) = maxi {|xi |, 1 ≤ i ≤ n}
F5 f5(x) =

∑n
i=1[100(xi+1 − x2i)

2 + (xi − 1)2]
F6 f6(x) =

∑n
i=1([xi + 0.5])2

F7 f7(x) =
∑n

i=1 i x
4
i +U (0, 1)

F8 f8(x) =
∑n

i=1 −xi sin(
√|xi |)

F9 f9(x) =
∑n

i=1[x2i − 10cos(2πxi) + 10n]
F10 f10(x) = −20exp(−0.2

√
1
n

∑n
i=1 x

2
i)

− exp(1n
∑n

i=1 cos(2πxi)) + 20 + ε

F11 f11(x) = 1
4000

∑n
i=1 x

2
i − ∏n

i=1 cos(
xi√
i
) + 1

F12 f12(x) = π
n {10sin(π y1) + ∑n−1

i=1 (yi − 1)2[1
+ 10sin2(π yi + 1)] + (yn − 1)2}
+ ∑n

i=1 u(xi , 10, 100, 4) yi
= 1 + xi+1

4 u(xi , 10, 100, 4)

=

⎧⎪⎨
⎪⎩
k(xi − a)m , xi > a

0, −a < xi < a

k(−xi − a)m , xi < −a

F13 f13(x) = 0.1{sin2(3πx1) + ∑n
i=1(xi− 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1

+ sin2(2πxn)]} + ∑n
i=1 u(xi , 5, 100, 4)

F14 f14(x) = (1
500 + ∑25

j=1
1

j+∑2
i=1(xi−ai j)6

)−1

F15 f15(x) = ∑11
i=1[ai − x1(b2i +bi x2)

b2i +bi x3+x4
]2

F16 f16(x) = 4x21 − 2.1x41 + 1
3 x

6
1 + x1x2 − 4x22 + 4x42

F17 f17(x)= (x2 − 5.1
4π2 x

2
1 + 5

π
x1 − 6)2 + 10(1 − 1

8π)

cosx1 + 10

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

210 Complex & Intelligent Systems (2018) 4:195–212

Table 11 continued

No. Definition

F18 f18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1
+3x21 −14x2+6x1x2+3x22)]∗[30+(2x1
− 3x2)2 ∗ (18 − 32x1 + 12x21 + 48x2
− 36x1x2 + 27x22)]

F19 f19(x) = − ∑4
i=1 ciexp(−

∑3
j=1 ai j (x j − pi j)2)

F20 f20(x) = − ∑4
i=1 ciexp(−

∑6
j=1 ai j (x j − pi j)2)

F21 f21(x) = − ∑5
i=1[(x − ai)(x − ai)T + ci]−1

F22 f22(x) = − ∑7
i=1[(x − ai)(x − ai)T + ci]−1

F23 f23(x) = − ∑10
i=1[(x − ai)(x − ai)T + ci]−1

Table 12 Properties of benchmark functions, lb denotes lower bound,
ub denotes upper bound, dim denotes dimensions, opt denotes optimum
point

No. lb ub opt dim Modality

F1 −100 100 0 50 Unimodal

F2 −10 10 0 50 Unimodal

F3 −100 100 0 50 Unimodal

F4 −100 100 0 50 Unimodal

F5 −30 30 0 50 Unimodal

F6 −100 100 0 50 Unimodal

F7 −1.28 1.28 0 50 Unimodal

F8 −500 500 −418.9829 × 50 50 Multimodal

F9 −5.12 5.12 0 50 Multimodal

F10 −32 32 0 50 Multimodal

F11 −600 600 0 50 Multimodal

F12 −50 50 0 50 Multimodal

F13 −50 50 0 50 Multimodal

F14 −65 65 1 2 Multimodal

F15 −5 5 0 4 Multimodal

F16 −5 5 −1.0316 2 Multimodal

F17 −5 5 0.398 2 Multimodal

F18 −2 2 3 2 Multimodal

F19 1 3 −3.86 3 Multimodal

F20 0 1 −3.32 6 Multimodal

F21 0 10 −10.1532 4 Multimodal

F22 0 10 −10.4028 4 Multimodal

F23 0 10 −10.5363 4 Multimodal

Appendix 2. Details of the 4 constrained
design benchmark optimization problems

Compression spring design problem

This is a minimization problem which contain three main
variables are coil diameter (CD),wire diameter (WD), and the

number of active coils (NAC) under some restrictions such as
minimum deflection, surge frequency, and shear stress. This
problem can be mathematically formulated as follows:

Minimize the function
f (z) = (z3 + 2)z2z21, z = [z1z2z3] = (CD)(WD)
(NAC),

Subject to,

h1(z) = 1 − z32z3
717854z41

≤ 0,

h2(z) = 4z22−z1z2
12566(z2z31−z41)

+ 1
5108z21

− 1 ≤ 0,

h3(z) = 1 − 140.45z1
z22z3

≤ 0,

h4(z) = z1+z2
1.5 − 1 ≤ 0

where,
0.05 ≤ z1 ≤ 2,
0.25 ≤ z2 ≤ 1.30,
2 ≤ z3 ≤ 15

(7)

The design of welded beam problem

Welded beam design is a minimization problem of the cost
under some constraints where there are four variables in this
problem which are the length of bar attached to the weld
(l), weld thickness (h), the height of the bar (t), and the
thickness of the bar (b). Moreover, there are some constraints
in this problem which are bending stress in the beam (α), the
beam deflection (β), buckling load on the bar (BL), the end
deflection of the beam (δ), and side constraints. This design
problem can then formulated as follows:

Minimize the function
f (z) = 1.10471z21z2 + 0.04811z3z4(14.0 + z2),
z = [z1z2z3] = [hltb],

Subject to,
h1(z) = δ(z) − δmax ≤ 0,
h2(z) = α(z) − αmax ≤ 0,
h3(z) = z1 − z4
≤ 0,
h4(z) = 0.10471z21 + 0.04811z3z4(14.0 + z2) − 5.0
≤ 0,
h5(z) = 0.125 − z1 ≤ 0,
h6(z) = δ(z) − δmax ≤ 0,
h7(z) = B − BL(z) ≤ 0

where,
0.1 ≤ z1 ≤ 2,
0.1 ≤ z2 ≤ 10,
0.1 ≤ z3 ≤ 10,

(8)

123

Complex & Intelligent Systems (2018) 4:195–212 211

0.1 ≤ z4 ≤ 20
and
δ(z) =

√
δ′2 + 2δ′δn z2

2R + δn2

δ′ = B√
2z1z2

δn = MR
J

M = B(L + z2
2)

R =
√

z22
4 + (z1+z3

2)2

J = 2(
√
2z1z2[z

2
2
12 (

z1+z3
2)2])

α(z) = 6PL
z4z23

, β(z) = 4PL3

Ez23z+z4

BL(z) = 4.013E

√
z23z

6
4

36

L2 (1 − z3
2L

√
E
4G)

P = 6000lb, L = 14in., βmax = 0, 25in.,

E = 30 × 106 psi,G = 12 × 106 psi, δmax =
136,00 psi, αmax = 30, 000 psi

Design of pressure vessel problem

The main objective of the problem of pressure vessel design
is to minimize the total cost of the welding and forming of
pressure vessel problem. In this problem there are four vari-
ables which are thickness of the head (Th), thickness of the
shell (Ts), inner radius (R), and length of the cylindrical sec-
tion of the vessel (L).

Minimize the function
f (z) = 0.6224z1z2z3z4 + 1.7781z2z23 + 3.1661z21z4
+ 19.84z21z3, (z) = [z1z2z3] = [TsTh RL],

Subject to,
h1(z) = −z1 + 0.0193z3 ≤ 0,
h2(z) = −z3 + 0.00954z3 ≤ 0,
h3(z) = −z23z4 − 4/3z33 ≤ 0,
h4(z) = z4 − 240 ≤ 0,

where,
1.1 ≤ z1 ≤ 12.5,
0.6 ≤ z2 ≤ 12.5,
0 ≤ z3 ≤ 240,
0 ≤ z4 ≤ 240

(9)

The three-bar trust design problem

This is a minimization problem. This problem can be
described mathematically as follows:

Minimize the function
f (z) = (2

√
2z1 + z2) × l,

Subject to,

h1(z) =
√
2z1+z2√

2z21+2z1z2
p − α ≤ 0,

h2(z) = z2√
2z21+2z1z2

p − α ≤ 0,

h3(z) = 1√
2z2+z1

p − α ≤ 0,

where,
0 ≤ zi ≤ 1, i = 1, 2,
l = 100 cm, p = 2 kN/cm2 α = 2 kN/cm2.

(10)

References

1. Coelho L (2010) Gaussian quantum-behaved particle swarm opti-
mization approaches for constrained engineering design problems.
Expert Syst Appl 37:1676–1683

2. Coello C, Becerra R (2004) Efficient evolutionary optimization
through the use of a cultural algorithm. Eng Optim 36:219–236

3. Coello C, Mezura E (2002) Constraint-handling in genetic algo-
rithms through the use of dominance-based tournament selection.
Adv Eng Inform 16:193–203

4. Colorni A, DorigoM,ManiezzoV (1992) Distributed optimization
by ant colonies. In: Proceedings of the first European conference
on artificial life. Paris, France, p 134–142

5. Emary E, Zawbaa H (2016) Impact of chaos functions on modern
swarm optimizers. PLoS One 11(7):1–26

6. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water
cycle algorithm a novel metaheuristic optimization method for
solving constrained engineering optimization problems. Comput
Struct 110:151–166

7. Gaber T, Sayed G, Anter A, Soliman M, Ali M, Semary N et al
(2015) Thermogram breast cancer prediction approach based on
neutrosophic sets and fuzzy c-means algorithm. In: The 37th annual
international conference of the IEEE engineering in medicine and
biology society (EMBC). Milan, Italy, pp 4254–4257

8. Gong W, Cai Z, Ling C (2010) De/bbo: a hybrid differential evo-
lution with biogeography-based optimization for global numerical
optimization. Soft Comput 15(4):645–665

9. Hansen PB (1992) Simulated annealing. Electr Eng Comput Sci
Tech Rep 170:1–14

10. He Q, Wang L (2007) A hybrid particle swarm optimization with
a feasibility-based rule for constrained optimization. Appl Math
Comput 186:1407–1422

11. Henderson D, Jacobson S, Johnson A (2003) The theory and prac-
tice of simulated annealing. Handb Metaheuristics 57:287–319

12. Huang F,Wang L, HeQ (2007) An effective co-evolutionary differ-
ential evolution for constrained optimization. Appl Math Comput
186(1):340–356

13. Kao T, Zahara E (2008) A hybrid genetic algorithm and particle
swarm optimization for multimodal functions. Appl Soft Comput
8(2):849–857

14. KarabogaD,BasturkB (2007)Artificial bee colony (abc) optimiza-
tion algorithm for solving constrained optimization problems. In:
12th international fuzzy systems association world congress, vol
4529. Mexico, pp 789–798

123

212 Complex & Intelligent Systems (2018) 4:195–212

15. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
IEEE international conference on neural networks. Perth, WA, pp
1942–1948

16. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by sim-
ulated annealing. Science 220(4598):671–680

17. Li Z, ZhouY, Zhang S, Song J (2016) Lévy-flight moth-flame algo-
rithm for function optimization and engineering design problems.
Math Probl Eng 2016:1–22

18. Liang J, Suganthan P, Deb K (2005) Novel composition test func-
tions for numerical global optimization. In: Proceedings 2005 IEEE
swarm intelligence symposium. p 68–75

19. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm opti-
mization with differential evolution for constrained numerical and
engineering optimization. Appl Soft Comput 10(2):629–640

20. Liu H, Cai Z,WY (2010) Hybridizing particle swarm optimization
with differential evolution for constrained numerical and engineer-
ing optimization. Appl Soft Comput 10:629–640

21. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH (1953)
Equation of state calculations by fast computer machines. J Chem
Phys 21(6):10871092

22. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98
23. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse opti-

mizer: a nature-inspired algorithm for global optimization. Neural
Comput Appl 27(2):495–513

24. Mirjalili SM (2015) Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm. Knowl Based Syst (Elsevier)
89:228–249

25. Mohamed A (2017) Solving large-scale global optimization prob-
lems using enhanced adaptive differential evolution algorithm.
Complex Intell Syst 3(4):205–231

26. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravi-
tational search algorithm. Inf Sci 179:2232–2248

27. Renato A, Leandro D, Santos C (2006) Coevolutionary particle
swarm optimization using Gaussian distribution for solving con-
strained optimization problems. IEEE Trans Syst Man Cybern Part
C (Applications and Reviews) 36:1407–1416

28. Rizk-Allah R, Hassanien A (2017) New binary bat algorithm for
solving 0–1 knapsack problem. Complex Intell Syst. https://doi.
org/10.1007/s40747-017-0050-z

29. Sadollaha A, Bahreininejada A, Eskandarb H, Hamdi M (2013)
Mine blast algorithm: a new population based algorithm for solving
constrained engineering optimization problems. Appl Soft Comput
13(5):2592–2612

30. Satapathy S, Naik A (2016) Social group optimization (sgo): a new
population evolutionary optimization technique. Complex Intell
Syst 2(3):173–203

31. Sayed G, Darwish A, Hassanien A (2017) Quantum multiverse
optimization algorithm for optimization problems. Neural Comput
Appl. https://doi.org/10.1007/s00521-017-3228-9

32. SayedG,HassanienA (2017)Moth-flame swarmoptimizationwith
neutrosophic sets for automatic mitosis detection in breast cancer
histology images. Appl Intell 47(2):397408

33. Sayed G, Hassanien A, Azar A (2017) Feature selection via a novel
chaotic crow search algorithm. Neural Comput Appl. https://doi.
org/10.1007/s00521-017-2988-6

34. Shieh H, Kuo C, Chiang C (2011) Modified particle swarm opti-
mization algorithm with simulated annealing behavior and its
numerical verification. Appl Math Comput 218(8):4365–4383

35. Storn R, Price K (1997) Differential evolution–a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Glob Optim 11(4):341–359

36. Sun J, SunF,GongD,ZengX (2017)Amutationoperator guidedby
preferred regions for set-based many-objective evolutionary opti-
mization. Complex Intell Syst 3(4):265–278

37. Wang CY, Lin M, Zhong YW, Zhang H (2016) Swarm simulated
annealing algorithmwith knowledge-based sampling for travelling
salesman problem. Int J Intell Syst Technol Appl 15(1):74–94

38. Wang L, Li L (2010) An effective differential evolution with level
comparison for constrained engineering design. Struct Multidiscip
Optim 41:947–963

39. Wang Z, Cai Y, Zhou Y, Fan Z (2009) Constrained optimization
based on hybrid evolutionary algorithm and adaptive constraint
handling technique. Struct Multidiscip Optim 37:395–413

40. Wilcoxon F (1945) Individual comparisons by ranking methods.
Biom Bull 1:80–83

41. Zahara E, Kao Y (2009) Hybrid Nelder-Mead simplex search and
particle swarm optimization for constrained engineering design
problems. Expert Syst Appl 36:3880–3886

42. Zhang M, Luo W, Wang X (2008) Differential evolution with
dynamic stochastic selection for constrained optimization. Inf Sci
178:3043–3074

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s40747-017-0050-z
https://doi.org/10.1007/s40747-017-0050-z
https://doi.org/10.1007/s00521-017-3228-9
https://doi.org/10.1007/s00521-017-2988-6
https://doi.org/10.1007/s00521-017-2988-6

	A hybrid SA-MFO algorithm for function optimization and engineering design problems
	Abstract
	Introduction
	Basics and background
	Moth flame optimization (MFO)
	Inspiration
	Mathematical model of MFO

	Simulated annealing (SA)

	The proposed SA-MFO algorithm
	Parameters initialization
	Fitness function
	Updating positions
	Termination criteria

	Results and discussion
	Parameters optimization experiment
	Comparison using numerical benchmark functions experiment
	Comparison using engineering design problems experiment
	Computational complexity of the proposed SA-MFO algorithm

	Conclusions
	Appendix 1: List of 23 benchmark optimization functions
	Appendix 2. Details of the 4 constrained design benchmark optimization problems
	Compression spring design problem
	The design of welded beam problem
	Design of pressure vessel problem
	The three-bar trust design problem

	References

