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Abstract In the real world, it is not uncommon to face
an optimization problem with more than three objectives.
Such problems, called many-objective optimization prob-
lems (MaOPs), pose great challenges to the area of evo-
lutionary computation. The failure of conventional Pareto-
based multi-objective evolutionary algorithms in dealing
with MaOPs motivates various new approaches. However, in
contrast to the rapid development of algorithm design, per-
formance investigation and comparison of algorithms have
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received little attention. Several test problem suites which
were designed for multi-objective optimization have still
been dominantly used inmany-objective optimization. In this
paper, we carefully select (or modify) 15 test problems with
diverse properties to construct a benchmark test suite, aim-
ing to promote the research of evolutionary many-objective
optimization (EMaO) via suggesting a set of test problems
with a good representation of various real-world scenarios.
Also, an open-source software platform with a user-friendly
GUI is provided to facilitate the experimental execution and
data observation.

Keywords Many-objective optimization · Benchmark test
suite · Test functions · Software platform

Introduction

The field of evolutionary multi-objective optimization has
developed rapidly over the last two decades, but the design
of effective algorithms for addressing problems with more
than three objectives (called many-objective optimization
problems, MaOPs) remains a great challenge. First, the inef-
fectiveness of the Pareto dominance relation, which is the
most important criterion in multi-objective optimization,
results in the underperformance of traditional Pareto-based
algorithms. Also, the aggravation of the conflict between
convergence and diversity, along with increasing time or
space requirement as well as parameter sensitivity, has
become key barriers to the design of effectivemany-objective
optimization algorithms. Furthermore, the infeasibility of
solutions’ direct observation can lead to serious difficulties
in algorithms’ performance investigation and comparison.
All of these suggest the pressing need of new methodologies
designed for dealing with MaOPs, new performance metrics
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and benchmark functions tailored for experimental and com-
parative studies of evolutionarymany-objective optimization
(EMaO) algorithms.

In recent years, a number of newalgorithmshave been pro-
posed for dealingwithMaOPs [1], including the convergence
enhancement based algorithms such as the grid-dominance-
based evolutionary algorithm (GrEA) [2], the knee point-
driven evolutionary algorithm (KnEA) [3], the two-archive
algorithm (Two_Arch2) [4]; the decomposition-based algo-
rithms such as the NSGA-III [5], and the evolutionary
algorithms based on both dominance and decomposition
(MOEA/DD) [6], and the reference vector-guided evolution-
ary algorithm (RVEA) [7]; the performance indicator-based
algorithms such as the fast hypervolume-based evolution-
ary algorithm (HypE) [8]. In spite of the various algorithms
proposed for dealing with MaOPs, the literature still lacks a
benchmark test suite for evolutionary many-objective opti-
mization.

Benchmark functions play an important role in under-
standing the strengths and weaknesses of evolutionary algo-
rithms. In many-objective optimization, several scalable
continuous benchmark function suites, such as DTLZ [9] and
WFG [10], have been commonly used. Recently, researchers
have also designed/presented some problem suites specially
for many-objective optimization [11–16]. However, all of
these problem suites only represent one or several aspects
of real-world scenarios. A set of benchmark functions with
diverse properties for a systematic study of EMaOalgorithms
are not available in the area. On the other hand, existing

benchmark functions typically have a “regular” Pareto front,
overemphasize one specific property in a problem suite, or
have some properties that appear rarely in real-world prob-
lems [17]. For example, the Pareto front of most of the DTLZ
and WFG functions is similar to a simplex. This may be
preferred by decomposition-based algorithms which often
use a set of uniformly distributed weight vectors in a sim-
plex to guide the search [7,18]. This simplex-like shape
of Pareto front also causes an unusual property that any
subset of all objectives of the problem can reach optimal-
ity [17,19]. This property can be very problematic in the
context of objective reduction, since the Pareto front degen-
erates into only one point when omitting one objective [19].
Also for the DTLZ and WFG functions, there is no func-
tion having a convex Pareto front; however, a convex Pareto
front may bring more difficulty (than a concave Pareto front)
for decomposition-based algorithms in terms of solutions’
uniformity maintenance [20]. In addition, the DTLZ and
WFG functions which are used as MaOPs with a degen-
erate Pareto front (i.e., DTLZ5, DTLZ6 and WFG3) have
a nondegenerate part of the Pareto front when the number
of objectives is larger than four [10,21,22]. This naturally
affects the performance investigation of evolutionary algo-
rithms on degenerate MaOPs.

This paper carefully selects/designs 15 test problems to
construct a benchmark test suite for evolutionary many-
objective optimization. The 15 benchmark problems are
with diverse properties which cover a good representation
of various real-world scenarios, such as being multimodal,

Table 1 Main properties of the
15 test functions

Problem Properties Note

MaF1 Linear No single optimal solution in any subset of objectives

MaF2 Concave No single optimal solution in any subset of objectives

MaF3 Convex, multimodal

MaF4 Concave, multimodal Badly scaled and no single optimal solution in any
subset of objectives

MaF5 Convex, biased Badly scaled

MaF6 Concave, degenerate

MaF7 Mixed, disconnected, Multimodal

MaF8 Linear, degenerate

MaF9 Linear, degenerate Pareto optimal solutions are similar to their image in
the objective space

MaF10 Mixed, biased

MaF11 Convex, disconnected, nonseparable

MaF12 Concave, nonseparable, biased deceptive

MaF13 Concave, unimodal, nonseparable,
degenerate

Complex Pareto set

MaF14 Linear, partially separable, large scale Non-uniform correlations between decision variables
and objective functions

MaF15 Convex, partially separable, large scale Non-uniform correlations between decision variables
and objective functions
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Fig. 1 The Pareto front of MaF1 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively
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Fig. 2 The Pareto front of MaF2 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

disconnected, degenerate, and/or nonseparable, and having
an irregular Pareto front shape, a complex Pareto set or
a large number of decision variables (as summarized in
Table 1). Our aim is to promote the research of evolu-
tionary many-objective optimization via suggesting a set of
benchmark functions with a good representation of various
real-world scenarios. Also, an open-source software plat-
form with a user-friendly GUI is provided to facilitate the
experimental execution and data observation. In the fol-
lowing, Sect. “Function definitions” details the definitions
of the 15 benchmark functions, and Sect. “Experimental
setup” presents the experimental setup for benchmark stud-
ies, including general settings, performance indicators, and
software platform.

Function definitions

• D: number of decision variables
• M : number of objectives

• x = (x1, x2, . . . , xD): decision vector
• fi : i th objective function

MaF1 (modified inverted DTLZ1 [23])

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x) = (1 − x1 . . . xM−1)(1 + g(xM ))

f2(x) = (1 − x1 . . . (1 − xM−1))(1 + g(xM ))

. . .

fM−1(x) = (1 − x1(1 − x2))(1 + g(xM ))

fM (x) = x1(1 + g(xM ))

(1)

with

g(xM ) =
|x|∑

i=M

(xi − 0.5)2 (2)

where the number of decision variable is D = M + K −
1, and K denotes the size of xM , namely K = |xM |, with
xM = (xM , . . . , xD). As shown in Fig. 1, this test problem
has an inverted PF, while the PS is relatively simple. This
test problem is used to assess whether EMaO algorithms are
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Fig. 3 The Pareto front of MaF3 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

capable of dealing with inverted PFs. Parameter settings of
this test problem are: x ∈ [0, 1]D and K = 10 (Fig. 2).

MaF2 (DTLZ2BZ [19])

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x) = cos(θ1) . . . cos(θ2) cos(θM−1)(1 + g1(xM ))

f2(x) = cos(θ1) . . . cos(θM−2) sin(θM−1)(1+g2(xM ))

. . .

fM−1(x) = cos(θ1) sin(θ2)(1 + gM−1(xM ))

fM (x) = sin(θ1)(1 + gM (xM ))

(3)

with

gi (xM ) =
M+i ·� D−M+1

M �−1
∑

j=M+(i−1)·� D−M+1
M �

((
x j
2

+1

4

)

− 0.5

)2

for i =1, . . . , M−1

gM (xM ) =
n∑

j=M+(i−1)·� D−M+1
M �

((
x j
2

+ 1

4

)

− 0.5

)2

θi = π

2
·
(
xi
2

+ 1

4

)

for i = 1, . . . , M − 1 (4)

where the number of decision variable is D = M + K − 1,
and K denotes the size of xM , namely K = |xM |, with xM =
(xM , . . . , xD). This test problem is modified from DTLZ2
to increase the difficulty of convergence. In original DTLZ2,
it is very likely that the convergence can be achieved once
the g(xM ) = 0 is satisfied; by contrast, for this modified
version, all the objective have to be optimized simultaneously
to reach the true PF. Therefore, this test problem is used to
assess the whether and MOEA is able to perform concurrent
convergence on different objectives. Parameter settings are:
x ∈ [0, 1]D and K = 10.

MaF3 (convex DTLZ3 [5])

min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x)=
[
cos( π

2 x1) . . . cos( π
2 xM−2) cos( π

2 xM−1)(1+g(xM ))
]4

f2(x)=
[
cos( π

2 x1) . . . cos( π
2 xM−2) sin( π

2 xM−1)(1+g(xM ))
]4

. . .

fM−1(x)=
[
cos( π

2 x1) sin(
π
2 x2)(1+g(xM ))

]4

fM (x)= [
sin( π

2 x1)(1+g(xM ))
]2

(5)

with

g(xM )=100

⎡

⎣|xM |+
|x|∑

i=M

(xi −0.5)2−cos(20π(xi −0.5))

⎤

⎦

(6)

where the number of decision variable is D = M + K − 1,
and K denotes the size of xM , namely K = |xM |, with xM =
(xM , . . . , xD). As shown in Fig. 3, this test problem has a
convex PF, and there a large number of local fronts. This test
problem is mainly used to assess whether EMaO algorithms
are capable of dealing with convex PFs. Parameter settings
of this test problem are: x ∈ [0, 1]D , K = 10 (Fig. 4).

MaF4 (inverted badly scaled DTLZ3)

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x) = a × (
1− cos

(
π
2 x1

)
. . . cos

(
π
2 xM−2

)
cos

(
π
2 xM−1

))
(1+g(xM ))

f2(x) = a2 × (
1− cos

(
π
2 x1

)
. . . cos

(
π
2 xM−2

)
sin

(
π
2 xM−1

))
(1+g(xM ))

. . .

fM−1(x) = aM−1 × (
1 − cos

(
π
2 x1

)
sin

(
π
2 x2

))
(1 + g(xM ))

fM (x) = aM × (
1 − sin

(
π
2 x1

)) × (1 + g(xM ))

(7)

with

g(xM )=100

⎡

⎣|xM |+
|x|∑

i=M

(xi−0.5)2 − cos(20π(xi−0.5))

⎤

⎦

(8)
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Fig. 4 The Pareto front of MaF4 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively
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Fig. 5 The Pareto front of MaF5 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

where the number of decision variable is D = M + K − 1,
and K denotes the size of xM , namely K = |xM |, with xM =
(xM , . . . , xD). Parameter settings are a = 2. Besides, the
fitness landscape of this test problem is highly multimodal,
containing a number of (3k − 1) local Pareto-optimal fronts.
This test problem is used to assess whether EMaO algorithms
are capable of dealingwith badly scaled PFs, especiallywhen
thefitness landscape is highlymultimodal. Parameter settings
of this test problem are: x ∈ [0, 1]n , K = 10 and a = 2.

MaF5 (convex badly scaled DTLZ4)

min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = aM× [
cos

(
π
2 x1

α
)
. . . cos

(
π
2 x

α
M−2

)
cos

(
π
2 x

α
M−1

)
(1+g(xM ))

]4

f2(x) = aM−1× [
cos

(
π
2 x1

α
)
. . . cos

(
π
2 x

α
M−2

)
sin

(
π
2 x

α
M−1

)
(1+g(xM ))

]4

. . .

fM−1(x) = a2 × [
cos( π

2 x
α
1 ) sin( π

2 x
α
2 )(1 + g(xM ))

]4

fM (x) = a × [
sin( π

2 x1
α)(1 + g(xM ))

]4

(9)

with

g(xM ) =
|x|∑

i=M

(xi − 0.5)2 (10)

where the number of decision variable is D = M + K − 1,
and K denotes the size of xM , namely K = |xM |, with
xM = (xM , . . . , xD). As shown in Fig. 5, this test problem
has a badly scaled PF, where each objective function is scaled
to a substantially different range. Besides, the PS of this test
problem has a highly biased distribution, where the majority
of Pareto optimal solutions are crowded in a small subregion.
This test problem is used to assess whether EMaO algorithms
are capable of dealing with badly scaled PFs/PSs. Parameter
settings of this test problem are: x ∈ [0, 1]D , α = 100 and
a = 2.

MaF6 (DTLZ5(I,M) [24])

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x) = cos(θ1) . . . cos(θM−2) cos(θM−1)(1 + 100g(xM ))

f2(x) = cos(θ1) . . . cos(θM−2) sin(θM−1)(1 + 100g(xM ))

. . .

fM−1(x) = cos(θ1) sin(θ2)(1 + 100g(xM ))

fM (x) = sin(θ1)(1 + 100g(xM ))

(11)
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Fig. 6 The Pareto front of MaF6 with three and tenobjectives shown by Cartesian coordinates and parallel coordinates, respectively
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Fig. 7 The Pareto front of MaF7 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

with

θi =
{

π
2 xi for i = 1, 2, . . . , I − 1

1
4(1+g(xM ))

(1 + 2g(xM )xi ) for i= I, . . . , M−1

(12)

g(xM ) =
|x|∑

i=M

(xi − 0.5)2 (13)

where the number of decision variable is D = M + K −
1, and K denotes the size of xM , namely K = |xM |, with
xM = (xM , . . . , xD). As shown in Fig. 6, this test problem
has a degenerate PF whose dimensionality is defined using
parameter I . In other words, the PF of this test problem is
always an I -dimensional manifold regardless of the specific
number of decision variables. This test problem is used to
assess whether EMaO algorithms are capable of dealing with
degenerate PFs. Parameter settings are: x ∈ [0, 1]D , I = 2
and K = 10.

MaF7 (DTLZ7 [9])

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x) = x1
f2(x) = x2

. . .

fM−1(x) = xM−1

fM (x) = h( f1, f2, . . . , fM−1, g) × (1 + g(xM ))

(14)

with

{
g(xM ) = 1 + 9

|xM |
∑|x|

i=M xi

h( f1, f2, . . . , fM−1, g)=M−∑M−1
i=1

[
fi

1+g (1+ sin(3π fi ))
]

(15)

where the number of decision variable is D = M + K −
1, and K denotes the size of xM , namely K = |xM |, with
xM = (xM , . . . , xD). As shown in Fig. 7, this test problem
has a disconnected PF where the number of disconnected
segments is 2M−1. This test problem is used to assesswhether
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Fig. 8 The Pareto front of MaF8 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

EMaO algorithms are capable of dealing with disconnected
PFs, especiallywhen the number of disconnected segments is
large in high-dimensional objective space. Parameter settings
are: x ∈ [0, 1]n and K = 20.

MaF8 (multi-point distance minimization problem
[11,12])

This function considers a two-dimensional decision space.
As its name suggests, for any point x = (x1, x2) MaF8 cal-
culates the Euclidean distance from x to a set of M target
points (A1, A2, . . . , AM ) of a given polygon. The goal of
the problem is to optimize these M distance values simulta-
neously. It can be formulated as

min

⎧
⎪⎪⎨

⎪⎪⎩

f1(x) = d(x, A1)

f2(x) = d(x, A2)

. . .

fM (x) = d(x, AM )

(16)

where d(x, Ai ) denotes the Euclidean distance from point x
to point Ai .

One important characteristic of MaF8 is its Pareto opti-
mal region in the decision space is typically a 2D manifold
(regardless of the dimensionality of its objective vectors).
This naturally allows a direct observation of the search
behavior of EMaO algorithms, e.g., the convergence of their
population to the Pareto optimal solutions and the coverage
of the population over the optimal region.

In this test suite, the regular polygon is used (to unify
with MaF9). The center coordinates of the regular polygon
(i.e., Pareto optimal region) are (0, 0) and the radius of the
polygon (i.e., the distance of the vertexes to the center) is 1.0.
Parameter settings are: x ∈ [−10,000, 10,000]2. Figure 8
shows the Pareto optimal regions of the three-objective and
ten-objective MaF8.

MaF9 (multi-line distance minimization problem [25])

This function considers a two-dimensional decision space.
For any point x = (x1, x2), MaF9 calculates the Euclidean
distance from x to a set of M target straight lines, each of
which passes through an edge of the given regular polygon
with M vertexes (A1, A2, . . . , AM ), where M ≥ 3. The goal
of MaF9 is to optimize these M distance values simultane-
ously. It can be formulated as

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(x) = d(x,
←−→
A1A2)

f2(x) = d(x,
←−→
A2A3)

. . .

fM (x) = d(x,
←−−→
AM A1)

(17)

where
←−→
Ai A j is the target line passing through vertexes Ai

and A j of the regular polygon, and d(x,
←−→
Ai A j ) denotes the

Euclidean distance from point x to line
←−→
Ai A j .

One key characteristic ofMaF9 is that the points in the reg-
ular polygon (including the boundaries) and their objective
images are similar in the sense of Euclidean geometry [25]. In
other words, the ratio of the distance between any two points
in the polygon to the distance between their corresponding
objective vectors is a constant. This allows a straightforward
understanding of the distribution of the objective vector set
(e.g., its uniformity and coverage over the Pareto front) via
observing the solution set in the two-dimensional decision
space. In addition, for MaF9 with an even number of objec-
tives (M = 2k where k ≥ 2), there exist k pairs of parallel
target lines. Any point (outside the regular polygon) resid-
ing between a pair of parallel target lines is dominated by
only a line segment parallel to these two lines. This property
can pose a great challenge for EMaO algorithms which use
Pareto dominance as the sole selection criterion in terms of
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Fig. 9 The Pareto front of MaF9 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

convergence, typically leading to their populations trapped
between these parallel lines [14].

For MaF9, all points inside the polygon are the Pareto
optimal solutions. However, these points may not be the
sole Pareto optimal solutions of the problem. If two tar-
get lines intersect outside the regular polygon, there exist
some areas whose points are nondominated with the inte-
rior points of the polygon. Apparently, such areas exist in
the problem with five or more objectives in view of the con-
vexity of the considered polygon. However, the geometric
similarity holds only for the points inside the regular poly-
gon. The Pareto optimal solutions that are located outside
the polygon will affect this similarity property. So, we set
some regions infeasible in the search space of the problem.
Formally, consider anM-objectiveMaF9with a regular poly-
gon of vertexes (A1, A2, . . . , AM ). For any two target lines←−−→
Ai−1Ai and

←−−−→
An An+1 (without loss of generality, assuming

i < n) that intersect one point (O) outside the considered
regular polygon, we can construct a polygon (denoted as
�Ai−1Ai An An+1 ) boundedbya set of 2(n−i)+2 line segments:

Ai A′
n, A

′
n A

′
n−1, . . . , A

′
i+1A

′
i , A

′
i An, An An−1, . . . , Ai+1Ai ,

where points A′
i , A

′
i+1, . . . , A

′
n−1, A

′
n are symmetric points

of Ai , Ai+1, . . . An−1, An with respect to central point O .
We constrain the search space of the problem outside such
polygons (but not including the boundary). Now the points
inside the regular polygon are the sole Pareto optimal solu-
tions of the problem. In the implementation of the test
problem, for newly produced individuals which are located
in the constrained areas of the problem, we simply repro-
duce them within the given search space until they are
feasible.

In this test suite, the center coordinates of the regular poly-
gon (i.e., Pareto optimal region) are (0, 0) and the radius of
the polygon (i.e., the distance of the vertexes to the center)
is 1.0. Parameter settings are: x ∈ [−10,000, 10,000]2. Fig-

ure 9 shows the Pareto optimal regions of the three-objective
and ten-objective MaF9.

MaF10 (WFG1 [10])

min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = yM+2
(
1− cos

(
π
2 y1

))
. . .

(
1− cos

(
π
2 yM−2

)) (
1− cos

(
π
2 yM−1

))

f2(x) = yM+4
(
1− cos

(
π
2 y1

))
. . .

(
1− cos

(
π
2 yM−2

)) (
1− sin

(
π
2 yM−1

))

. . .

fM−1(x) = yM + 2(M − 1)
(
1 − cos

(
π
2 y1

)) (
1 − sin

(
π
2 y2

))

fM (x) = yM + 2M
(
1 − y1 − cos(10πy1+π/2)

10π

)

(18)

with

zi = xi
2i

for i = 1, . . . , D (19)

t1i =
⎧
⎨

⎩

zi , if i = 1, . . . , K
|zi − 0.35|

|�0.35 − zi�| + 0.35
, if i = K + 1, . . . , D

(20)

t2i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t1i , if i = 1, . . . , K

0.8 + 0.8(0.75−t1i )min(0,�t1i −0.75�)
0.75

− (1−0.8)(t1i −0.85)min(0,�0.85−t1i �)
1−0.85 , if i = K + 1, . . . , D

(21)

t3i = t2i
0.02

for i = 1, . . . , D (22)

t4i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑i K/(M−1)
j=(i−1)K/(M−1)+1 2 j t

3
j

∑i K/(M−1)
j=(i−1)K/(M−1)+1 2 j

, if i = 1, . . . , M − 1

∑D
j=K+1 2 j t

3
j

∑D
j=K+1 2 j

, if i = M

(23)
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Fig. 10 The Pareto front of MaF10 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

yi =
⎧
⎨

⎩

(t4i − 0.5)max(1, t4M ) + 0.5, if i = 1, . . . , M−1

t4M , if i = M

(24)

where the number of decision variable is D = K + L , with
K denoting the number of position variables and L denoting
the number of distance variables. As shown in Fig. 10, this
test problem has a scaled PF containing both convex and
concave segments. Besides, there are a lot of transformation
functions correlating the decision variables and the objective
functions. This test problem is used to assess whether EMaO
algorithms are capable of dealing with PFs of complicated
mixed geometries. Parameter settings are: x ∈ ∏D

i=1[0, 2i],
K = M − 1, and L = 10.

MaF11 (WFG2 [10])

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x)=yM+2
(
1− cos

(
π
2 y1

))
. . .

(
1− cos

(
π
2 yM−2

)) (
1− cos

(
π
2 yM−1

))

f2(x) = yM+4
(
1− cos

(
π
2 y1

))
. . .

(
1− cos

(
π
2 yM−2

)) (
1− sin

(
π
2 yM−1

))

. . .

fM−1(x) = yM + 2(M − 1)
(
1 − cos

(
π
2 y1

)) (
1 − sin

(
π
2 y2

))

fM (x) = yM + 2M(1 − y1 cos2(5πy1))

(25)

with

zi = xi
2i

for i = 1, . . . , D (26)

t1i =
⎧
⎨

⎩

zi , if i = 1, . . . , K

|zi−0.35|
|�0.35−zi �|+0.35 , if i = K + 1, . . . , D

(27)

t2i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t1i , if i = 1, . . . , K

t1K+2(i−K )−1 + t1K+2(i−K )

+2|t1K+2(i−K )−1 − t1K+2(i−K )
|, if i = K+1, . . . , (D+K )/2

(28)

t3i =

⎧
⎪⎪⎨

⎪⎪⎩

∑i K/(M−1)
j=(i−1)K/(M−1)+1 t

2
j

K/(M−1) , if i = 1, . . . , M − 1
∑(D+K )/2

j=K+1 t2j
(D−K )/2 , if i = M

(29)

yi =
⎧
⎨

⎩

(t3i − 0.5)max(1, t3M ) + 0.5, if i=1, . . . , M−1

t3M , if i = M

(30)

where the number of decision variable is n = K + L , with
K denoting the number of position variables and L denoting
the number of distance variables. As shown in Fig. 11, this
test problem has a scaled disconnected PF. This test problem
is used to assess whether EMaO algorithms are capable of
dealingwith scaled disconnected PFs. Parameter settings are:
x ∈ ∏D

i=1[0, 2i], K = M − 1, and L = 10.

MaF12 (WFG9 [10])

min

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = yM + 2 sin
(
π
2 y1

)
. . . sin

(
π
2 yM−2

)
sin

(
π
2 yM−1

)

f2(x) = yM + 4 sin
(
π
2 y1

)
. . . sin

(
π
2 yM−2

)
cos

(
π
2 yM−1

)

. . .

fM−1(x) = yM + 2(M − 1) sin
(
π
2 y1

)
cos

(
π
2 y2

)

fM (x) = yM + 2M cos
(
π
2 y1

)

(31)

with

zi = xi
2i

for i = 1, . . . , D (32)
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Fig. 11 The Pareto front of MaF11 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

t1i =

⎧
⎪⎨

⎪⎩
z
0.02+(50−0.02)

(

0.98/49.98−
(

1−2

∑n
j=i+1 z j
D−i

)

|�0.5−
∑D

j=i+1 z j
D−i �+0.98/49.98|

)

i , if i = 1, . . . , D − 1
zi , if i = D

(33)

t2i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + (|t1i − 0.35| − 0.001
)
(

349.95�t1i −0.349�
0.349 + 649.95�0.351−t1i �

0.649 + 1000

)

, if i = 1, . . . , K

1
97

(

1 + cos[122π(0.5 − |t1i −0.35|
2(�0.35−t1i �+0.35)

)] + 380

(
|t1i −0.35|

2(�0.35−t1i �+0.35)

)2
)

, if i = K + 1, . . . , D
(34)

t3i =

⎧
⎪⎪⎨

⎪⎪⎩

∑i K/(M−1)
j=(i−1)K/(M−1)+1

(
t2j +

∑K/(M−1)−2
k=0 |t2j −t2p |

)

	K/(M−1)/2
(1+2K/(M−1)−2	K/(M−1)/2
) , if i = 1, . . . , M − 1
∑D

j=K+1

(
t2j +

∑D−K−2
k=0 |t2j −t2q |

)

	(D−K )/2
(1+2(D−K )−2	(D−K )/2
) , if i = M

(35)

yi =
{

(t3i − 0.5)max(1, t3M )+0.5, if i = 1, . . . , M − 1

t3M , if i = M

(36)

⎧
⎪⎨

⎪⎩

p = (i − 1)K/(M − 1) + 1 + ( j − (i − 1)K/

(M − 1) + k)mod(K/(M − 1))

q = K + 1 + ( j − K + k)mod(n − K )

(37)

where the number of decision variable is D = K + L , with
K denoting the number of position variable and L denoting
the number of distance variable. As shown in Fig. 12, this test
problem has a scaled concave PF. Although the PF of this test
problem is simple, its decision variables are nonseparably
reduced, and its fitness landscape is highly multimodal. This

test problem is used to assess whether EMaO algorithms are
capable of dealing with scaled concave PFs together with
complicated fitness landscapes. Parameter settings are: x ∈
∏D

i=1[0, 2i], K = M − 1, and L = 10.

MaF13 (PF7 [13])

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = sin
(

π
2 x1

) + 2
|J1|

∑

j∈J1

y2j

f2(x) = cos(π
2 x1) sin

(
π
2 x2

) + 2
|J2|

∑

j∈J2

y2j

f3(x) = cos
(

π
2 x1

)
cos

(
π
2 x2

) + 2
|J3|

∑

j∈J3

y2j

f4,...,M (x)= f1(x)2 + f2(x)10+ f3(x)10+ 2
|J4|

∑

j∈J4

y2j

(38)
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Fig. 12 The Pareto front of MaF12 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively
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Fig. 13 The Pareto front of MaF13 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

with

yi = xi − 2x2 sin

(

2πx1 + iπ

n

)

for i = 1, . . . , D (39)

⎧
⎪⎪⎨

⎪⎪⎩

J1 = { j |3 ≤ j ≤ D, and j mod 3 = 1}
J2 = { j |3 ≤ j ≤ D, and j mod 3 = 2}
J3 = { j |3 ≤ j ≤ D, and j mod 3 = 0}
J4 = { j |4 ≤ j ≤ D}

(40)

where the number of decision variable is D = 5. As shown
in Fig. 13, this test problem has a concave PF; in fact, the
PF of this problem is always a unit sphere regardless of the
number of objectives.Although this test problemhas a simple
PF, its decision variables are nonlinearly linked with the first
and second decision variables, thus leading to difficulty in
convergence. This test problem is used to assess whether
EMaO algorithms are capable of dealing with degenerate
PFs and complicated variable linkages. Parameter setting is:
x ∈ [0, 1]2 × [−2, 2]D−2.

MaF14 (LSMOP3 [16])

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = x f
1 . . . x f

M−1

(
1 + ∑M

j=1 c1, j × ḡ1(xsj )
)

f2(x) = x f
1 . . . (1 − x f

M−1)
(
1+∑M

j=1 c2, j × ḡ2(xsj )
)

. . .

fM−1(x)= x f
1 (1−x f

2 )
(
1+∑M

j=1 cM−1, j × ḡM−1(xsj )
)

fM (x) = (1−x f
1 )

(
1+ ∑M

j=1 cM, j×ḡM (xsj )
)

x ∈ [0, 10]|x|
(41)

with

ci, j =
{
1, if i = j

0, otherwise
(42)
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Fig. 14 The Pareto front of MaF14 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively
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Fig. 15 The Pareto front of MaF15 with three and ten objectives shown by Cartesian coordinates and parallel coordinates, respectively

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ḡ2k−1(xsi ) = 1
Nk

∑Nk
j=1

η1(xsi, j )
|xsi, j |

ḡ2k(xsi ) = 1
Nk

∑Nk
j=1

η2(xsi, j )
|xsi, j |

k = 1, . . . ,
⌈M

2

⌉

(43)

{
η1(x) = ∑|x|

i=1(x
2
i − 10 cos(2πxi ) + 10)

η2(x) = ∑|x|−1
i=1

[
100(x2i − xi+1)

2 + (xi − 1)2
] (44)

⎧
⎨

⎩

xs ←
(
1 + i

|xs |
)

× (xsi − li ) − x f
1 × (ui − li )

i = 1, . . . , |xs |
(45)

where Nk denotes the number of variable subcomponent
in each variable group xsi with i = 1, . . . , M , and ui and
li are the upper and lower boundaries of the i th decision
variable in xs . Although this test problem has a simple
linear PF, its fitness landscape is complicated. First, the deci-
sion variables are non-uniformly correlated with different
objectives; second, the decision variables have mixed sep-
arability, i.e., some of them are separable while others are
not. This test problem is mainly used to assess whether
EMaO algorithms are capable of dealing with complicated
fitness landscape with mixed variable separability, especially
in large-scale cases. Parameter settings are: Nk = 2 and
D = 20 × M .

123



Complex Intell. Syst. (2017) 3:67–81 79

MaF15 (inverted LSMOP8 [16])

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) =
(
1 − cos

(
π
2 x

f
1

)
. . . cos

(
π
2 x

f
M−2

)
cos

(
π
2 x

f
M−1

))
×

(
1 + ∑M

j=1 c1, j × ḡ1(xsj )
)

f2(x) =
(
1 − cos

(
π
2 x

f
1

)
. . . cos

(
π
2 x

f
M−2

)
sin

(
π
2 x

f
M−1

))
×

(
1 + ∑M

j=1 c2, j × ḡ2(xsj )
)

. . .

fM−1(x) =
(
1 − cos

(
π
2 x

f
1

)
sin

(
π
2 x

f
2

))
×

(
1 + ∑M

j=1 cM−1, j × ḡM−1(xsj )
)

fM (x) =
(
1 − sin

(
π
2 x

f
1

))
×

(
1 + ∑M

j=1 cM, j ḡM (xsj )
)

x ∈ [0, 1]|x|

(46)

with

ci, j =
{
1, if j = i or j = i + 1

0, otherwise
(47)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ḡ2k−1(xsi ) = 1
Nk

∑Nk
j=1

η1(xsi, j )
|xsi, j |

ḡ2k(xsi ) = 1
Nk

∑Nk
j=1

η2(xsi, j )
|xsi, j |

k = 1, . . . ,
⌈M

2

⌉

(48)

⎧
⎪⎨

⎪⎩

η1(x) = ∑|x|
i=1

x2i
4000 −

|x|∏

i=1
cos

(
xi√
i

)
+ 1

η2(x) = ∑|x|
i=1(xi )

2.

(49)

{
xs ←

(
1+ cos

(
0.5π i

|xs |
))

× (xsi − li )−x f
1 × (ui−li )

i = 1, . . . , |xs |
(50)

where Nk denotes the number of variable subcomponent in
each variable group xsi with i = 1, . . . , M , and ui and li are
the upper and lower boundaries of the i th decision variable
in xs . Although this test problem has a simple convex PF,
its fitness landscape is complicated. First, the decision vari-
ables are non-uniformly correlated with different objectives;
second, the decision variables have mixed separability, i.e.,
some of them are separable while others are not. Different
fromMaF14, this test problem has non-linear (instead of lin-
ear) variable linkages on the PS, which further increases the
difficulty. This test problem is mainly used to assess whether
EMaO algorithms are capable of dealing with complicated
fitness landscape with mixed variable separability, especially
in large-scale cases. Parameter settings are: Nk = 2 and
D = 20 × M in Figs. 14 and 15.

Experimental setup

To conduct benchmark experiments using the proposed test
suite, users may follow the experimental setup as given
below.

General settings

• Number of objectives (M) 5, 10, 15
• Maximum population size1 25 × M
• Maximum number of fitness evaluations (FEs)2

max{100000, 10000 × D}
• Number of independent runs 31

Performance metrics

• Inverted generational distance (IGD) Let P∗ be a set
of uniformly distributed points on the Pareto front. Let
P be an approximation to the Pareto front. The inverted
generational distance between P∗ and P can be defined
as:

IGD(P∗, P) =
∑

v∈P∗ d(v, P)

|P∗| , (51)

where d(v, P) is the minimum Euclidean distance from
point v to set P . The IGD metric is able to measure both
diversity and convergence of P if |P∗| is large enough,
and a smaller IGD value indicates a better performance.
In this test suite, we suggest a number of 10,000 uni-
formly distributed reference points sampled on the true
Pareto front3 for each test instance.

• Hypervolume (HV) Let y∗ = (y∗
1 , . . . , y

∗
m) be a refer-

ence point in the objective space that is dominated by
all Pareto optimal solutions. Let P be the approximation
to the Pareto front. The HV value of P (with regard to
y∗) is the volume of the region which is dominated by P

1 The size of final population/archive must be smaller the given max-
imum population size, otherwise, a compulsory truncation will be
operated in final statistics for fair comparisons.
2 Regardless of the number of objectives, every evaluation of the whole
objective set is counted as one FE.
3 The specific number of reference points for IGD calculations can vary
a bit due to the different geometries of the Pareto fronts. All reference
point sets can be automatically generated using the software platform
introduced in Sect. “Software platform”.
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Fig. 16 The GUI in PlatEMO for this test suite

and dominates y∗. In this test suite, the objective vectors
in P are normalized using f j

i = f ji
1.1×ynadiri

, where f j
i is

the i th dimension of j th objective vector, and ynadiri is
the i th dimension of nadir point of the true Pareto front.4

Then we use y* = (1,…,1) as the reference point for the
normalized objective vectors in the HV calculation.

Software platform

All the benchmark functions have been implemented in
MATLAB code and embedded in a recently developed soft-
ware platform—PlatEMO.5 PlatEMO is an open source
MATLAB-based platform for evolutionary multi- and many-
objective optimization, which currently includes more than
50 representative algorithms and more than 100 benchmark
functions, along with a variety of widely used performance
indicators. Moreover, PlatEMO provides a user-friendly
graphical user interface (GUI), which enables users to easily
perform experimental settings and algorithmic configura-
tions, and obtain statistical experimental results by one-click
operation.

4 The nadir points can be automatically generated using the software
platform introduced in Sect. “Software platform”.
5 PlatEMO can be downloaded at http://bimk.ahu.edu.cn/index.php?
s=/Index/Software/index.html.

In particular, as shown in Fig. 16, we have tailored a new
GUI in PlatEMO for this test suite, such that participants
are able to directly obtain tables and figures comprising the
statistical experimental results for the test suite. To conduct
the experiments, the only thing to be done by participants is
to write the candidate algorithms in MATLAB and embed
them into PlatEMO. The detailed introduction to PlatEMO
regarding how to embed new algorithms can be referred to
the users manual attached in the source code of PlatEMO
[26]. Once a new algorithm is embedded in PlatEMO, the
user will be able to select the new algorithm and execute it
on the GUI shown in Fig. 16. Then the statistical results will
be displayed in the figures and tables on the GUI, and the
corresponding experimental result (i.e., final population and
its performance indicator values) of each run will be saved
to a .mat file.
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