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Abstract In this paper, self-tuned, rule-optimized multi-
input andmulti-output (MIMO) fuzzy logic controller (FLC)
is implemented on field programmable gate arrays (FPGA).
The design of membership functions, rule base are made
with aid of genetic algorithm (GA). Flexibility in FPGA
design is implemented through tuning of FLC parameters.
The system is modularized as rule base development, rule
base transfer and computations on FPGA. Based on the
system, an experimental dataset is obtained, which is uti-
lized in a capable computing platform so as to develop
a fine-tuned fuzzy rule base. The synthesized rule base
is transferred to FPGA along with user provided inputs
through a GUI. The GUI also displays the output result
sent by FPGA. The communication between the GUI and
the FPGA is done via universal asynchronous receiver and
transmitter. Rule-optimized FLC is implemented on Xilinx
Virtex-5 LX110T board. This dedicated single chip architec-
ture performs high-speed fuzzy inferences with processing
speed up to 760 KFLIPS at a clock frequency of 247
MHz using 8 rules, 2 input variables at 16-bit resolu-
tion. Experiments of software implementation and hard-
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ware software co-design implementation are presented and
compared.

Keywords Fuzzy logic controller · Genetic algorithm ·
FPGA · UART

Introduction

Fuzzy logic controllers (FLC) have immensely contributed
to the industrial sector [1–4]. They have been of greater
use to solve complex and non-linear control problems. Fuzzy
logic, being themathematical emulation of human reasoning,
FLCs are developed on the basis of human intelligencewhich
helps in designing intelligent control systems with advanced
features in handling environmental changes and system level
faults.

Fuzzy systems are designed to take certain inputs from
the operator and do some operations on the taken inputs
to provide desired output. It constitutes of detailed meth-
ods, procedures, routines that carry out a specific activity
that are represented by the combination of different vari-
ables related through several mathematical relations and
operations. The entire representation may constitute of sim-
ple or critical or both types of mathematical computations,
which are difficult to synthesize practically and may give
numerous errors even with best design implementations.
Classical theory fails to design the systems completely
and efficiently because of the increased number of vari-
ables and conditions and has become less powerful with
the requirement of multiple-input–multiple-output system.
To avoid such kind of problems and to design the system
with easy user interfaces when input–output data are given,
different mechanisms can be followed like neural networks,
regression, evolutionary algorithms, fuzzy logic, etc. [5,6].
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Systems are first trained with some known input–output
results using any of the above methods or a combination
of them and then tested on new input values. In this paper,
the approach of fuzzy logic-based system design is dis-
cussed.

A number of FLCs have been designed with numer-
ous algorithms and intelligence techniques [1–4]. But the
designing of these controllers require thorough knowledge
about the controlled process. FLCs are designed based on
human intelligence, i.e., by the experts. This includes a
chance for human error. Most of these processes are non-
linear and depend on a large number of parameters which
results in the rigorous mathematical representation of the
process. It is very difficult to incorporate each of the para-
meters while designing the FLC. Fuzzy logic can be used
to solve problems such as input–output problems, classifi-
cation problem and mapping problems. This paper includes
methods to solve the input–output problem, i.e., the fuzzy
system will be modeled approximating a system which
takes some input from the user, does complex mathemat-
ical computations with it and provides output, e.g., PID
controllers [7]. The actual system may have a number
of problems and high level of complexity during com-
putation. The designed fuzzy system reduces the level of
complexity with a number of advantages over the original
system.

Fuzzy logic controllers (FLC) are better compared to PID
controllers in terms of convenient user interface, less com-
plex mathematical modeling and fast response with virtually
zero overshoot. This paper states designing of an optimized
FLC using genetic algorithm (GA). It extracts tuned rule base
automatically by analyzing the training data sheet only, so it
is better than regular FLCs where,

1. Humans are relied to make the decision making process.
2. Enough prior knowledge is required to do the decision

making.
3. Many conditions are to be checked to design the system

which is not possible in the part of a person to remember
and utilize properly.

4. Solution to the system must be made understandable to
non-experts.

The FLC designing is an offline process, so it is tuned
before it is used. Among the purported methods are the
following: Nomura [8] reported a self-tuning method for
fuzzy inference rules employing a descent method for TS
fuzzy rules with constant outputs and isosceles triangu-
lar MFs. Glorennec [9] presented an adaptive controller
using fuzzy logic and connectionist methods. Siarry and
Guely [10] used the gradient descendant method for opti-
mizing TS rules with symmetric and asymmetric trian-
gular MFs and output functions, proposing the ‘centered

TS rules’ for avoiding a specific class of local minima.
Cordon and Herrera [11] used real-coded GA with some
genetic operators for tuning the membership points. On
the other hand, some approaches using GAs for design-
ing an adaptive FLC have been presented in the literature.
The facility of FLCs to capture the automatic learning
from data and render it into a rich control strategy is
applied in these FLC’s, without the need of mathematical
model of the system or expert knowledge. The mathematical
model of the system under control has led to a significant
increase in the number of control applications in the last
fifteen years [5,12]. This has propelled the development
of different approaches to implement fuzzy inference sys-
tems. These approaches range from completely software
or hardware solutions. This paper goes to hybrid real-
ization which allows adequate tradeoff between flexibility
and inference speed [13,14]. Hybrid strategies require soft-
ware task execution and fixed hardware to execute complex
time-consuming tasks usually the Fuzzy inference process
(FIP) [15].

Field programmable gate arrays have a consistent track
record of capability growth, and they track Moore’s law bet-
ter than any other semiconductor device. As an Example,
XC2064 FPGA, introduced by Xilinx in 1985, had 1024
logic gates. The largest, Xilinx Virtex-7 XC7V2000T, has
15,636,480 gates, an increase of 10,000 times over the past
26 years. If the current trend of capacity and speed increase
continues, FPGAs will essentially become highly integrated
SoC platforms which include multi-core processors, wide
range of peripherals, and high-capacity logic fabric, all in
one chip.

Software level designing has the upper hand to hardware
level designing in terms of validating several conditions,
handling add-in functionality for the system and easier con-
figurability, where as hardware is faster and functionally
superior to software in terms of processing high volume of
data for computation. Software can be embedded in mem-
ory circuits, so as to come up with a hardware–software
co-design. Through this type of design principle, the over-
all system will be having the high-performance capability of
hardware as well as the smooth designing and reprogram-
mable capability of software. This co-design has been made
possible with the development of high-performance proces-
sor core, embedded memory circuits, faster communication
technologies between hardware & software.

This paper used the hardware/software co-design for the
fuzzy system designing and direct interaction between user
interface (PC) and the FPGA has been done over serial com-
munication through UART.

The brief description of the paper is as follows. The
next section briefly describes the basics of the entire sys-
tem architecture followed by which the method for rule base
extraction is proposed. The subsequent section describes the
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Fig. 1 System architecture of
GA-FLC on FPGA

method for rule base and input values transmission to the
FPGA board. Then the hardware architecture of FLC and
its design constraints are presented. Before the concluding
section, experimental results of the suggested architecture
to the existing methods for input–output problems such as
Hang function, chaotic time series and their hardware imple-
mentation results are explained. Finallymain conclusions are
summarized.

System architecture

The proposed system architecture for GA-based FLC on
FPGA using software–hardware co-simulation is presented
in Fig. 1. The training data sheet prepared on the experimen-
tal observations of the system is provided to the computer.
The training data sheet is used to extract the initial rule base
and then optimize it using GA. Accuracy of the rule base
depends on the distribution of data points in the data sheet
over the range of application.

Once the rule base has designed the parameters of the
rules, input variables and control information are sent through
serial communication protocol like RS-232 of the computer
to the UART module of the Xilinx board and saved in the
dual-port block RAM on the FPGA through its Port A. This
completes the updating of the rule base at the hardware level.
Then for testing purpose input parameters of a data point are

taken through a GUI on the computer and sent serially to
the Xilinx board. All the rules, input values, control infor-
mation are read from port B of the dual-port RAM, which
initiates the fuzzy inference processing to get the desired
crisp output. This value is again transferred serially back to
the computer for display on the GUI. The memory address
map and control information of dual-port RAM are shown in
Table 1. All the parameters are notated in fixed point nota-
tion Q8.8 for simplicity in hardware implementation. Since
UART sends data in bytes, each data consume two 8 bit
addresses in RAM.

Here the chore is divided into two sections, i.e., software
section and hardware section. The software part is done in
the personnel computer (PC) for the designing and tuning
of the rule base and the hardware section includes real-time
implementation of the FLC on the XUPV5LX110T board.
The specification of the FLC proposed to be constructed in
this paper is as follows:

1. No of inputs: 4.
2. No of outputs: 2.
3. Shape of membership function: triangle.
4. Number of fuzzy sets per input and output variables: 7.
5. Resolution of membership values: 16 bit.
6. Implication model: Mamdani.
7. Aggregation model: Mamdani.
8. No of rules are field programmable.
9. Configurables on field by GUI application.

Table 1 Memory space
Address Access Name Description

00H-01H Read/write CTRLREG Control register for software and
hardware updation

01H-221H Read RULEBASE Based on the number of rules the address
range is varied within this address with
16 bit resolution

222H-225H Read/write INPUTVAL Address to store input variables in 16 bits

226H-22AH Write CRISPOUT To store final crisp output
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The entire system design can be subdivided into stages as:

– Rule base extraction using GA.
– Rule transmission through UART to FPGA.
– Hardware architecture of FLC.

All the above stages are discussed in the following sections.

Rule base extraction

The most important step in designing of an FLC involves
the rule base extraction. The designing can be done either
using expert’s knowledge or using the available experimen-
tal data sheet. The benefits of the use of the data sheet and
the constraints of relying on expert’s knowledge have been
explained before. Rule extraction using data sheet is used for
the training of the system.

Different algorithms can be used for initial rule extraction.
Fuzzy C-Means (FCM), Hard C-Means (HCM), K-Means
algorithms [16], etc., are most widely used algorithms for
this purpose. In this paper, we have used K-Means clustering
algorithm for rule base designing. The number of clusters
equals the number of rules in the rule base. After fixing the
number of rules as per requirement, clustering is done to
generate rules randomly out of the datasheet at each run.

Genetic algorithm is used to optimize the rule base. The
parameters of GA are set as per the required accuracy level
of the output. It also depends mostly on the capabilities and
constraints of the hardware, doing the computations. Time
efficiency, memory efficiency and hardware required for the
computation purpose play the most vital role in defining the
parameters.

The rule base extraction can be explained under two head-
ings,

1. Initial rule base design.
2. Optimization using genetic algorithm.

Initial rule base design

Initially we need to design initial rule bases equal to the
population size of the GA as part of GA parameters. The
rule base size is the same for all the designed rule bases.
For the designing of each of the initial rule base, K-Means
clustering algorithm is being used. To design ‘c’ number of
rules in each of the rule bases, ‘c’ number of clusters have to
be designed. To design one initial rule base in this algorithm,
initially ‘c’ number of data points are chosen randomly, to
accommodate flexibility in the designing. They are chosen
as the initial cluster centers for each of the clusters. Then the
Euclidian distance of each of the data point in the data sheet
is calculated from each of the rules, i.e., the cluster centers.

The data point is included to that cluster whose center has
the minimum distance from the data point. Thus, all the data
points are distributed amongst all the clusters.

After clustering, the initial rule base is modified to
converge the cluster centers. In each of the clusters, the
feature-wisemean is taken for all the data points belonging to
that cluster, and these mean values are set as the new cluster
centers for the particular cluster. Again clustering is done in
the same way as above, taking the modified cluster centers as
the new rule base. This process continues till the value wise
difference between all the points in the current rule base and
the previous rule base comes below a pre-defined threshold,
Which states the final convergence of the rule base values.
Thus, a final clustered rule base is designed.

Triangular membership function is chosen as the MF for
the designed algorithm. Each of the points in the rule base
form the center of the corresponding triangular MF. In each
of the final clusters, the feature-wise minimum and maxi-
mum are selected, which are set as the two end points for the
corresponding triangular MF for that particular rule. Let,

C = Number of rules to be designed in a rule base, and
1 ≤ i ≤ c,
n = Number of data points in the data set, and 1≤ k ≤ n,
m = Number of features in each data point, and 1≤ j ≤ m,
Dk = kth data point in the data set = �Dk, j� = �Dk,1, Dk,2

. . . Dk,m�
Ri = i th data point in the data set = �Ri, j� = �Ri,1, Di,2

. . . Di,m�
Ci = i th cluster,
dk,i = distance of Dk from Ri , i.e the cluster center Ci

Then,

Dk ∈ Ci ⇔ c
min
i=1

⎧
⎨

⎩

√
√
√
√

m∑

j=1

(Dk, j − Ri, j )2

⎫
⎬

⎭
= dk,i (1)

After clustering, number of data points in Ci , and 1≤ l ≤ p
then the cluster has the structure like Fig. 2.

A genetic algorithm for tuning of the rule base

Based on the initial designed rule base, the output values are
calculated for all the data points in the training data sheet
and the sum of all squared errors are calculated. The total
error is taken as the objective function for tuning of the rule
base. Real-coded GA has been used for the optimization.
The GA has been designed to deal with this situation where,
the antecedents and the consequent all are membership func-
tions. The proposed algorithm has been used for triangular
MFs but it can also be extended to any other type of MF. The
parameters of GA are set as per the design requirements.

123



Complex Intell. Syst. (2016) 2:83–98 87

Fig. 2 Rule base design

Fig. 3 Flow diagram showing the GA-based optimization of the fuzzy rule base

Figure 3 shows the structure of GA used in this paper. The
steps of GA are explained below.

Step 1: selection

As per the algorithm used in this paper, the population size
has to be even. The clustering algorithm and initial rule
base designing method explained above have to be used to
generate initial rule bases for each population. Thus, each
population corresponds to one rule base for which total
squared error can be calculated for all the data points in the
training data sheet. Here, the objective is to reduce the total
squared error.

Step 2: crossover

Total squared errors are sorted in ascending order, so the first
one corresponds to the best rule base, i.e., rule base with a
minimum squared error. The roulette wheel technique is used
to select the populations for crossover purpose. The purpose
of a crossover is to generate new children from their parents.
In this case, both the parents are rule bases and the crossed-
over children are also rule bases. A crossover probability is
chosen as a design parameter. A number was chosen ran-
domly between 0 and 1, if its value is less than the crossover

probability then crossover will be done, else no crossover
will take place. The concept of crossover is the better par-
ent gives best children. Total number of crossovers will be
population size/2. During each crossover one parent is from
the first half of the population. The corresponding parent
with whom crossover will happen is chosen randomly from
Roulette wheel.

After each crossover two new children are generated. If
no crossover is done between the two parents, then parents
are transferred to their children. Thus, the total number of
children generated after crossover equals the population size.
The technique used for crossover is given below.

Crossover is done between the two populations, i.e.,
between two rule bases. For triangular MFs, only the peaks
of the triangles which construct the rule base take part
in the crossover process. Suppose the two triangles which
take part in crossover have the base points given by [a1,
m1, b1] and [a2, m2, b2], then d1, d1 are calculated as
below.

d1 = m1 − a1
b1 − a1

, d2 = m2 − a2
b2 − a2

(2)

These d1 and d2 values were then interchanged between the
2 triangles, i.e., the new value of m1, m2 are
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Fig. 4 Shape of membership functions before and after crossover

m1 = a1 + d2 ∗ (b1 − a1), m2 = a2 + d1 ∗ (b2 − a2) (3)

The end points of the triangle remain unchanged. The shape
of membership functions before and after the crossover is
shown in Fig. 4.

Step 3: mutation

The newly generated triangles are again modified slightly
expecting for a better rule base. A mutation probability and a
mutation fraction are set by the designer as a design parame-
ter. Maximum number of points that can be mutated is equal
to mutation probability times the total number of points. In
our case, the triangle centers and the boundary points may
get mutated to give a better rule base. The above algorithm
includes that if the center point of a triangle gets mutated
then the boundary points of the triangle will also get mutated
to give a new triangle.

A number is chosen randomly between 0 and 1. If that
number is below the mutation probability then mutation will
take place, otherwise no mutation will occur. The muta-
tion of a triangle described by the points [a,m, b] is done
as given below. The minimum distance is calculated, i.e.,
d = min(m−a, b−m). Then a new value of ‘m’ is assumed
in the neighborhood of ‘m’ within a given region,

([m − d] ∗ mutationfactor, [m + d] ∗ mutationfactor) (4)

Similarly the boundary points of the triangle also getmutated.
‘a’ was assumed within a region given by,

(a − [m − a] ∗ mutation f actor,

b + [m − b] ∗ mutation f actor) (5)

and ‘b’ is assumed within a region given by the value of
‘m’ used in the above boundary conditions which is actually
the old value of ‘m’ before getting mutated.

Step 4: elitism

The total squared errors for all the populations, i.e., for all
the rule bases generated before crossover, after crossover
and after mutation are calculated. The rule bases for next
generation of GA are chosen from the mating pool, based
upon the minimum total squared error, i.e., all the rule
bases are sorted in ascending manner of their total squared
error, and the number of rule bases carried forward to
the next generation equals the population size of the GA.
These new populations are again modified through the above
procedure in subsequent generations to give an optimum
rule base with a minimum total squared error. The plot
of optimized rule base is drawn in Fig. 5 for input X1,
input X2 and output Y. This generation process terminates
if,

– The number of generations set by the designer are over.
– The total squared error comes down below the required
error level.

– The total squared error does not get modified over a num-
ber of generations, i.e., no improvement is seen in the rule
base over a number of generations.

Rule base transmission

After the rule base optimization, the system parameters are
sent through serial communication over the UART to the
FPGA and vice versa using theMatlabGUI as given in Fig. 6.
The transfer of all optimized rules, input values and control
information follows fixed point representation, the following
points explain the data representation and total number of
bytes to finish the communication process.

1. Data to be sent are multiplied by 256, i.e., 8-bit shift in
binary value.

2. The obtained result is rounded to nearest integer value.
3. This value is represented in 16 bits Q8.8 format and

sent over the UART in chunks of bytes with higher byte
followed by lower byte.

4. Initially control registers are transmitted, which indi-
cates the availability of the crisp input values and the
number of rules and also initiates the hardware FLC
process.

5. The transmission of data points of reduced rules begins
from the reverse direction, i.e., the first upper value of
the triangle of the rule was sent. Then the center value
of the rule followed by the lower value.
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Fig. 5 Reduced rule base with GA optimization

Fig. 6 Designed GUI using MATLAB for rule transmission to FPGA
and computed value reception from FPGA

6. Once the first rule is sent over the UART, the second
rule was sent followed by the third rule. This sequence
was followed till the final rule was sent.

7. After the rule base was sent successfully, high byte of
nth crisp input was sent, then its low byte. All the crisp
input values were sent as per the number of input para-
meters.

8. Total number of points = No. of rules * No. of points
required to represent each membership function * (No.
of inputs + No. of outputs).

9. Total number of bytes to be transferred a =Total number
of points 2.

10. For examples, let us design a system for 2 inputs and
1 output. Triangular membership functions are used to

design 8 rules in the rule base both for input and output
side. 3 points are required to represent each triangle.

11. Total number of data points to be transferred = 8 * 3 *
(2 + 1) = 72.

12. Total number of bytes(In Q8.8 format) to be transferred
= 72 * 2 = 144.

13. After 144 bytes have been captured, the FLC treats the
next pair of bytes as inputs. That finishes the building
process.

Hardware architecture of the FLC

The design goal was to enable extraction of synthesized rule
base fromamore capable hardware platformonto a dedicated
implementation platform for the fuzzy system. The interface
was chosen as UART due to low speed and simplicity which
shall reduce debugging time. The choice of components for
the architecture was dictated by the terms imposed by the
HDL as well as the synthesis software. A word size of 16
bits was considered as the numbers were represented in Q8.8
format. Rule base representation was addressed following
the triangular nature of membership functions. As triangular
functions are used, a set of three points is required to represent
each function. The software transmits these points as a set of
two bytes overUART. Themembership function points of the
rules are stored in RAM locations after the UART on FPGA
has captured the bytes. Following the rule base extraction, the
crisp input values are sent to hardware and are also stored in
RAM locations. Once new crisp inputs are transferred, the
software writes value 0xA3H to RAM location 0x0H, which
is the control word as mentioned in Table 1. The FLC keeps
polling this value, upon reading 0xA3 the FSM initiates the
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Fig. 7 Block diagram of fuzzy inference module

FLC process. The process ends after computing crisp out-
put value software acknowledges this completion by reading
0xA1 data on RAM location 0x0H, and initiates the fresh
FLC process.

A dual-port RAM is used by its ports A and B interfaced
to the UART and the FLC modules, respectively. The Xil-
inx core generator tool was used to generate the core of the
block RAM module. The functionality of dual ports purges
bus sharing issues. The address on port A is set to 0x00 and
increments twice for each membership point or crisp input
(2 bytes). Arrival of data over UART triggers address incre-
ment and memory write operation. Figure 7 shows the block
diagram of the fuzzy inference module.

The rule base is ready for inference processing. The
address is set to 0x00H and incremented till it reaches NoOf-
Bytes. Evidently control registers are to be read first. Then
the membership function points are read rule-wise. The soft-
ware transmits the data in a sequence such that the last rule
comes in last transaction. The location NoOfBytes + 1 to
NoOfBytes + 4 are used to store crisp output if outputs are 1
and NoOfBytes + 1 to NoOfBytes + 8 are used to store crisp
outputs if outputs are 2.

No of bytes = 2 + 2 ∗ No of inputs + 2 ∗ 3 ∗ No of rules

∗ (No of inputs + No of outputs) (6)

The weighted average method is chosen for defuzzification
for its simple hardware structure. Here FLC is designed to
evaluate the outputs rule-wise and accumulate them. It reads

Fig. 8 FLC finite state machine

the points for the one rule only at a time and computes the out-
put before reading the next set of points, finally all defuzzified
values are accumulated using an accumulator, and this pro-
posed architecture reduces the logic utilization of final FLC.
Finite state machine used to control each process in FLC is
shown in Fig. 8 and its state transition is shown in Table 2.

Mamdani inference method is used here to implement
inference processing. The FIP module consists of three sub-
modules and control logic. There is a 2-byte register file
consisting of 8 registers for storing each rule’s output. A
5-byte accumulator is present for multiplication and accu-
mulation. The sub-modules are,
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Table 2 State transition

Present state Next state Transition signal Description

Fuz_IDLE Fuz_ACCUMULATE FuzzyEn Initialize accumulation process

Fuz_ACCUMULATE Fuz_COMPUTE NextRule & !Busy The system waits for a new set of rules and input
points to trigger FIP

Fuz_ACCUMULATE Fuz_IDLE !FuzEn | FuzDone Once FIP is finished it goes back IDLE state for
new FIP

Fuz_COMPUTE Fuz_ACCUMULATE RuleOver Generates enable signals to start FIP and updates
the accumulator register with new rule output

Fuz_COMPUTE Fuz_IDLE !FuzEn In-between process if software interrupts to stop
process state goes back to IDLE

Fig. 9 Calculation of membership values

1. Fuzzification unit for making crisp quantity fuzzy.
2. An inference engine unit to compute overall control out-

put based on individual contribution of each rule in the
reduced rule base.

3. The defuzzification unit which converts fuzzification
quantity to the precise quantity.

Figure 9 shows the calculation of fuzzified values in hard-
ware by evaluating the crisp input membership degree using
membership functions by:
if I nput ≥ Point1 and I nput ≤ Point2

μ = I nput − Point2
Point2 − Point1

(7)

If I nput ≥ Point2 and I nput ≤ Point3

μ = I nput − Point2
Point2 − Point1

(8)

The max–min composition of inference model proposed
by Mamdani [17] illustrated in Fig. 10 and Table 3 is applied
for hardware realization of inference module. The inference
module outputs are defined by:

μOr1
m1(y) = min[μA1 j1(X1), μA2k1(X2)] (9)

μOr3
m1(y) = min[μA1 j3(X1), μA2k3(X2)] (10)

μOr1&r3
m1 (y) = max{min[μA1 j1(X1), μA2k1(X2)],

min[μA1 j3(X1), μA2k3(X2)]} (11)

μOr2
m2(y) = min[μA2 j2(X1), μA2k2(X2)] (12)

Fig. 10 Process of fuzzy controller

Table 3 Rule base of simple
FLC

X1 X2 Rule Y

A1 j1 A2k1 r1 Om1

A1 j2 A2k2 r2 Om2

A1 j3 A2k3 r3 Om1

Instead of composite outputmembership functionwe used
weighted average defuzzification (Fig. 11) for its simplicity
in hardware implementation as it needs only clipped or scaled
outputmembership functions. Thismethod simply takes peak
value of each clipped/scaled output fuzzy sets and builds
weighted sum of these peak values given by:

Y∗ = μOm1 ∗ P1 + μOm2

P1 + P2
(13)

The implemented block diagrams of fuzzifier, inference
and defuzzifier and their top modules in an FPGA are shown
in Fig. 12.

123



92 Complex Intell. Syst. (2016) 2:83–98

Experiment and implementation results

Hang data function [2 input 1 output system]

Hang data function is a test case mathematical function with
two inputs and one output. The mathematical representation
of the function is given by

Fig. 11 Defuzzification

y = {1 + x−1.5
1 + x−2.5

2 }2 (14)

where

1 ≤ x1 ≤ 5,

and

1 ≤ x2 ≤ 5

We obtained 800 input–output data by sampling the input
range x1, x2 ∈ {1, 5}. Rule base had been generated for this
test case and it was optimized using GA. In this paper, fuzzy
rule base has been designed for hang function by generating
a training datasheet using the basic equation. The designed
dataset is used for training and tuning of the rule base while
using GA as the tuning algorithm. A list of GA and fuzzy
parameters are provided as shown in Table 4, which are to
be taken into consideration in the designing of the fuzzy
optimized system for Hang data function. Results before and
after optimizations of the rule base are as follows:

Fig. 12 Block diagrams of fuzzy inference processing top module and fuzzifier, inference and defuzzifier
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Table 4 GA-FLC system manual to generate optimized rules for hang
data function

S. No. GA-FLC system parameters Value

1 Number of points in the data sheet 800

2 Number of features 3

3 Number of designed rules 12

4 Number of populations used for GA optimization 6

5 GA crossover percentage 0.8

6 GA mutation percentage 0.3

7 Number of GA generations 1000

8 GA error threshold value 0.001

9 Samples for integration in defuzzification 1000

1. Total mean square error for initial rule base = 283
2. Total mean square error for final optimized rule base =

23

Actual surface plot for hang data function is in Fig. 13.
Figure 14 show the surface plot of hang data function after the

rule base optimized from the GA where the centroid method
is used for defuzzification. The FPGA implemented GA-
FLC surface plot is shown in Fig. 15 where the weighted
average method is used to reduce the hardware resource
consumption for defuzzification. The comparison of GA-
FLC with 8 rules and artificial Neuro fuzzy inference
system (ANFIS) with 49 rules and 10 epochs is shown
in Fig. 16, where we can observe that error generated
using the GA-FLC gives better results with its optimization
advantages.

Chaotic time series [4 input 1 output system]

Chaotic processes are the type of processes which have got a
disordered mechanism of functioning. These processes have
acquired this behavior because of the presence of some kind
of positive feedback. The analysis of this sort of processes
against time results in a form of a random time series which
we call chaotic time series. These systems are never com-

Fig. 13 Actual surface plot

Fig. 14 Using rule base
obtained from GA
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Fig. 15 Using GA-FLC on
FPGA

Fig. 16 GA-FLC versus ANFIS error plot

pletely predictable because of feedback the simulation and
the real series will always rapidly diverge.

Let x(t) be a chaotic time series. If t0 = start time, �t =
time interval, then at time point tk = t0+�t∗k , (0 ≤ k ≤ n).
The chaotic time series data can be represented as,

X = (x0, x1, . . . xn) = (x(t0), x(t1), . . . x(tn) (15)

Because of the unpredictability of the chaotic time series, it
is not possible to mathematically model the series in terms of
equations. Hence, the objective is to design a data predictive
model T, to predict the value x ′

m of the series at time instance
tm based on the available data set, {xk | k ≤ m} such that
| xm − x ′

m | is as minimum as possible.
GA-optimized fuzzy rule base algorithm was used to

design the model for chaotic time series prediction. The
chaotic series taken into consideration had �t = 6 and the
prediction was done with four previous available data set.
The mathematical model is:

Table 5 GA-FLC system manual to generate optimized rules for hang
data function

S. No. GA-FLC system parameters Value

1 Number of points in the data sheet 1000

2 Number of attributes chosen for prediction 4

3 Number of designed rules 10

4 Number of populations used for GA optimization 10

5 GA crossover percentage 0.8

6 GA mutation percentage 0.3

7 Number of GA generations 1000

8 GA error threshold value 0.001

9 Samples for integration in defuzzification 1000

x(t + �t) = F[x(t), x(t − �t), x(t − 2�t), x(t − 3�t)]
⇒ x(t + 6) = F[x(t), x(t − 6), x(t − 12), x(t − 18)]

(16)

Parameters chosen for designing of the 4 input–1 output
GA-optimized rule base are given in Table 5. After the
rule base was designed it was tested with real-time data
points and the mean square error obtained for 1000 data
points is 5.244 ∗ 10−4. The optimized fuzzy rule base
was sent to the designed FPGA model to predict the data
for the same 1000 data points. Comparison of plots are
given in Figs. 17 and 18 and the error plot is shown in
Fig. 19.

Simulation and hardware implementation

The implementation of the FLC is aboveboard by cod-
ing each module in Verilog hardware description language
integrated with Xilinx foundation ISE 14.2 tool, which
supports ISim (Integrated within ISE) used here for func-
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Fig. 17 Comparative plot
between desired time series data
and GA rule base predicted data

Fig. 18 Comparative plots
between GA rule base predicted
data and GA-FLC on FPGA

Fig. 19 Prediction errors
between desired time series data
and GA-predicted data

tional verification. The architecture of the FLC is highly
pliable as the parameters of the fuzzy logic controller
can be changed by changing registry values and Verilog
parameters.

Simulation parameters

1. The UART interface includes receiving and transmits
modules that share a single baud generator module. The
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baud rate is set by two constants at FLC top modules
which are calculated as follows:

X_BAUD_FREQ

= (16 ∗ BaudRate)

(GCD(GlobalClkFreq, 16 ∗ BaudRate))
(17)

X_BAUD_LIMIT

= GlobalClkFreq

(GCD(GlobalClkFreq, 16 ∗ BaudRate))

− X_BAUD_FREQ (18)

2. For 100MHz of board clock in XUPV5 FPGA board, the
calculated parameters to set in Verilog is as follows:

’define X_BAUD_FREQ 12’H90
’define X_BAUD_LIMIT 12’H0ba5

3. The test bench parameterized for total no. of inputs and
no. of membership functions and data bus width for each
input and membership value is as below:

’define NO_OF_INPUTS 3’h2
’define NO_OF_MFS 3’h7
’define DATA_BUS_WIDTH 6’h10
’define DEFUZZY_METHOD 2’h0

Hardware implementation

The functional simulations obtained by ISIM 14.2 are pre-
sented in Fig. 20, where the READY signal enables UART
transmitter to transmit crisp out data back to MATLAB GUI
for display. Figure 21 captured the crisp data transfer from
FPGA to MATLAB GUI using Chipscope-Pro debugging
tool. The implemented platform chosen in this paper was
the Virtex V (LX110T) Xilinx FPGA family included in
XUPV5 development board. This FPGA is sufficient enough
for implementing all themodules of the FLCaddressed in this
paper. This was possible as the FPGA contains 17,280 slices
and 68 DSP48E slices as well as 296 18kb block RAMs.
Table 6 ushered the FPGA utilization to develop the FLC
addressed here. The total clocks needed to complete on fuzzy
logic inference process (FLIP) with GA reduced 8 rules are

Fig. 20 The functional
simulation waveform obtained
by ISim 14.2

Fig. 21 Crisp data output from
FPGA using UART captured on
Chipscope-Pro tool
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Table 6 Device utilization
summary Experiment 4 input–1 output system 2 input–1 output system

Selected device xc5vlx110t-2-ff1136 xc5vlx110t-2-ff1136

Maximum frequency 213.413 MHz 246.819 MHz

Number of slices 1456 out of 69,120 2 % 1149 out of 69,120 1 %

Number of 4 input LUTs 1919 out of 69,120 2% 1294 out of 69,120 1 %

Number of bonded IOBs 22 of 640 3 % 22 of 640 3 %

Number of MULT18X18s 1 out of 640 1 % 1 out of 640 1 %

Number of GCLKs 1 out of 32 6 % 1 out of 32 6 %

325 clocks with 247 MHz clock frequency, this means that
the total time required to complete one FLIP to generate out-
put is 1.315 µs, it is equal to 760,000 (760KFLIPS) fuzzy
logic inference outputs which can be made using the current
design.

The GA-FLC using FPGA is proved to be a good frame-
work, which can be easily used to develop fuzzy logic
applications within a short period and the main functional
units can be reused without modification and user can only
concentrate to provide input–output data sheet, membership
values and the number of rules, which increases the design
efficiency.

Conclusion

A novel approach towards the rule base synthesis for fuzzy
systems was taken using an evolutionary algorithm like
genetic algorithm, for convergence of the rule base to provide
better results. Comparison with an ANFIS model in MAT-
LABwhichused49 rules and ran for 100 iterations shows that
this novel method provides better results with lesser rules.
Further, there is no need for an expert to design the system.
An accurate data set of the system/plant under discussion is
required only for generating the rule base. The following are
the benefits of the algorithm proposed in this paper:

(i) The user can design required number of rules as per the
system memory and time constraints for better response
of the system.

(ii) The proposed GA rule base optimization system is easily
configured.

(iii) Actual process changes can be easily incorporated by
redesigning the rule base in very less time.

(iv) Rule bases can be designed as per the system tolerance
limit.

(v) As we have mentioned the problems with existing fuzzy
systems, our process handles the above issues with auto-
matic rule base designing and auto-optimization process.

(vi) The fuzzy rule base is scalable, i.e., any change in the
actual process behavior can be taken into consideration

easily without the intervention of any person and extra
brainstorming. Number of rules and iterations can be
increased to incorporate system tolerance bandwidth.

The hardware extracts the rule base once it is syn-
thesized by the software. This is done over UART. Re-
programmability of the rule base makes the system more
flexible. The hardware design supports tuning of member-
ship functions and rule base tables for different applications.
The future efforts will be directed to accommodate the use of
othermembership functions (Gaussian, sigmoid, etc.), impli-
cation methods, and defuzzification methods.
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