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Abstract
Metric learning consists of designing adaptive distance functions that are well-suited
to a specific dataset. Such tailored distance functions aim to deliver superior results
compared to standard distance measures while performing machine learning tasks. In
particular, the widely adopted Euclidean distance may be severely influenced due to
noisy data and outliers, leading to suboptimal performance. In the present work, it is
introduced a nonparametric isometric feature mapping (ISOMAP) method. The new
algorithm is based on the kernel density estimation, exploring the relative entropy
between probability density functions calculated in patches of the neighbourhood
graph. The entropic neighbourhood network is built, where edges are weighted by a
function of the relative entropies of the neighbouring patches instead of the Euclidean
distance. A variety of datasets is considered in the analysis. The results indicate a
superior performance compared to cutting edge manifold learning algorithms, such
as the ISOMAP, unified manifold approximation and projection, and t-distributed
stochastic neighbour embedding (t-SNE).
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1 Introduction

In the big data era, high-dimensional data are increasingly more common in many
fields. Real-world examples include genomics, healthcare, audio signal, digital pho-
tograph, and financial datasets, among others. Dimensionality reduction refers to the
transformation of high-dimensional data into a meaningful representation of reduced
dimensionality. Such a reduced representation aims to preserve the intrinsic dimen-
sionality of the data. Dimensionality reduction methods include linear and nonlinear
approaches. Linear-based methods are mostly incapable to appropriately capture intri-
cate nonlinear data patterns. Recently, many related nonlinear methods have been
introduced, including methodological frameworks inspired in metric learning [1–6].

Dimensionality reduction-based metric learning replaces widely adopted distance
measures (e.g. Euclidean distance) through an adaptive manner. The resulting intrinsic
distance function aims to be a more suitable, condensed, and insightful representation
of the dataset. Among other machine learning tasks, this is particularly convenient to
address classification problems [7–9]. The isometric feature mapping (ISOMAP) is
one of the pioneering algorithms for dimensionality reduction metric learning [10].
It consists of a global method that adopts the multidimensional scaling (MDS) [11]
technique to find an embedding of a pairwise distance matrix onto an Euclidean space.

In the last decade, many extensions to the ISOMAP have been proposed to over-
come limitations of the original algorithm. The robust kernel ISOMAPmethod intends
to address two relevant caveats, namely the generalization property and topological
stability [12]. Another methodological extension refers to the landmark-ISOMAP
(L-ISOMAP), which improves the scalability of the ISOMAP. This is achieved by
performing most of its computations on a subset of points, called landmarks [13].
It searches to a minimum set cover of the neighbourhoods along the k-nearest
neighbours (KNN) graph, removing observations that belong to neighbour sets of
other points. The self-organizing incremental neural network L-ISOMAP extension
addresses the problem of automatically selecting an appropriate number and posi-
tion of landmarks, reducing short-circuit errors [14]. In addition, in the path-based
ISOMAP, a low-dimensional embedding is computed through a path-mapping algo-
rithm instead of preserving pairwise geodesic distances, which decreases time and
memory complexity [15].

A recent work [16] introduces a method for nonlinear dimensionality reduction, in
which a manifold is built considering smooth geodesics. It aims to address problems
where manifold measurements are either sparse or noise corrupted. This methodologi-
cal innovation indicates an improved performance with embedding of face images and
handwritten digits compared to the ISOMAP algorithm. In addition, the parallel trans-
port unfolding (PTU) refers to a geometrical approach to evaluate geodesic distances
of discrete paths, whichmay be adopted to devise faster variants of the ISOMAP—e.g.
the L-ISOMAP [17]. As theMDS algorithm is a crucial stepwithin the ISOMAP,more
efficient variations have been proposed to decrease its computational complexity, from
quadratic to quasi-linear [18]. Further recent studies report that the ISOMAP may be
applied to embed subsets of data within one dimension. It details the conditions under
which high density clusters in the original space are guaranteed to be separable onto
the 1-D embedding [19].
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The approximate representation of the manifold by an KNN graph is one of the
limitations of the ISOMAP. The edges of the KNN network are commonly weighted,
adopting the pointwise Euclidean distance. This is particularly sensitive to noisy data
and outliers. While manifold learning methods provide reasonable results for a variety
of datasets, their computational complexity increase concurrently with their adapt-
ability to nonlinearity or noise in the data [20]. Thus, replacing the Euclidean distance
with a more suitable measure should provide a more robust data classification, without
significantly increasing computational costs.

In the present paper, it is introduced a new patch-based method that explores
symmetrized Kullback–Leibler divergences between one-dimensional local densities,
namely the kernel density estimation-based ISOMAP or KDE–ISOMAPmethod. It is
computed in a nonparametric fashion for each local patch of the ε-neighbourhood
graph, replacing the pointwise Euclidean distance. A pivotal contribution of this
method refers to an increase in the robustness to noise within the ISOMAP. This
is achieved as a consequence of replacing a pointwise similarity measure with a
patch-based one. Computational experiments indicate that the KDE–ISOMAP yields
superior clustering results in terms of the silhouette coefficient (SC) compared to
state-of-the-art manifold learning algorithms, such as the ISOMAP, unified manifold
approximation and projection (UMAP) [21], and t-distributed stochastic neighbour
embedding (t-SNE) [22].Moreover, the proposedmethodoutperforms several compet-
ing established algorithms in terms of classification accuracy, suggesting its effective
applicability on real-world data.

This paper is organized as follows. The ISOMAP method is detailed in Sect. 2.
The kernel density estimation (KDE) approach is presented in Sect. 3. The new KDE–
ISOMAP is described in Sect. 4. Tests and results are reported in Sect. 5. Lastly, Sect. 6
summarizes the main findings of the present work and future research possibilities.

2 Isometric Feature Mapping

The fundamental principle of the ISOMAP is to build a graph to approximate the
underlyingmanifold by connecting theKNNwithin the input space. The ISOMAPmay
be broken down into three primary phases. Firstly, it is created an undirected proximity
graph from the input data �x1, . . . , �xn ∈ Rm with the KNN or ε-neighbourhood rule,
where the cost of the edge (vi , v j ) is the Euclidean distance between the vectors �xi and
�x j . Subsequently, it is calculated the pairwise distance matrix D through n executions
of either the Dijkstra algorithm or a single execution of the Floyd–Warshall algorithm.
Lastly, the newcoordinates of the points in anEuclidean subspace of Rd are determined
by adopting the MDS technique, while preserving their distances.

Thus, the ISOMAP computes the shortest paths between each pair of vertices to find
a mapping onto an Euclidean subspace of Rd , while preserving the geodesic distances
between data points. The shortest paths in the KNN graph should consist of reliable
estimates of the actual geodesic distances in the manifold.
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2.1 Multidimensional Scaling

The coordinates of the n points �xr ∈ Rd for r = 1, . . . , n in an Euclidean subspace
are recovered through the MDS from a square matrix n × n of pairwise distances,
where the dimensionality output d consists of a user defined parameter [11, 23]. It is
worth noticing that the elements of the pairwise distance matrix D = {d2rs} are:

d2rs = ‖�xr − �xs‖2 = (�xr − �xs)T (�xr − �xs) (1)

The Gram matrix of inner products is represented by the term B, where B = {brs}
and brs = �xr T �xs . In order to determine the embedding, the MDS must obtain the
matrix B from D. Considering that a translation of the samples retain their pairwise
distances, it is crucial to assume that the data has zero mean. Otherwise, there would
exist an infinite number of possible solutions. Manipulating the previous equation
leads to the following:

d2rs = �xTr �xr + �xTs �xs − 2�xTr �xs (2)

The average of an arbitrary column s of the matrix D is:

1

n

n∑

r=1

d2rs = 1

n

n∑

r=1

�xTr �xr + �xTs �xs (3)

While the average of an arbitrary row r is:

1

n

n∑

s=1

d2rs = �xTr �xr + 1

n

n∑

s=1

�xTs �xs (4)

It is worth noticing that the average of all the elements in D is:

1

n2

n∑

r=1

n∑

s=1

d2rs = 2

n

n∑

r=1

�xTr �xr (5)

From (2), the term brs may be expressed as:

brs = �xTr �xs = −1

2
(d2rs − �xTr �xr − �xTs �xs) (6)

Combining Eqs. (3)–(5) yields the following:

brs = −1

2

(
d2rs − 1

n

n∑

r=1

d2rs − 1

n

n∑

s=1

d2rs + 1

n2

n∑

r=1

n∑

s=1

d2rs

)
(7)

Defining ars = − 1
2drs , one may formulate the following equation:

ar . = 1

n

n∑

s=1

ars a.s = 1

n

n∑

r=1

ars a.. = 1

n

n∑

r=1

n∑

s=1

ars (8)
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Which leads to:

brs = ars − ar . − a.s + a.. (9)

In matrix notation, it is expressed as B = HAH , where:

H = I − 1

n
�1�1T (10)

The term H is the centring matrix. An eigendecomposition of the matrix B must
be performed to find the coordinates of the points in Rd , which is:

B = V�V T (11)

where V is the matrix which columns are the eigenvectors of B, and � =
diag(λ1, . . . , λn) is the diagonal matrix with the eigenvalues of B. Considering that
XT X = V�V T , the intrinsic coordinates are expressed as follows:

B = �1/2V T (12)

The computational complexity of ISOMAP is O(n3).

3 Kernel Density Estimation

The KDE is a nonparametric statistical technique to estimate the probability density
function of a random variable [24, 25]. Let {x1, . . . , xn} be an i.i.d. sample from an
1-D random variable x , with unknown density function f (x). The KDE of f (x) is
given by:

f̂h(x) = 1

n

n∑

i=1

Kh(x − xi ) = 1

nh

n∑

i=1

K

(
x − xi

h

)
(13)

where K (x) is the kernel function and h is the bandwidth—i.e., a parameter that con-
trols the degree of smoothing of the density estimate. Several kernel functions have
been proposed and successfully applied in many problems. The Gaussian, Epanech-
nikov, uniform, and triangular are among the most relevant cases. In the present work,
Gaussian kernels are adopted. This is due to the fact that they are capable of provid-
ing a reasonable approximation for many distributions in the datasets included in the
analysis. Moreover, Gaussian kernels should preserve properties that allow for some
simplification of otherwise costly calculations [26].

3.1 Bandwidth EstimationMethods

The choice of the bandwidth h is pivotal for an appropriate estimation of the unknown
density function. Large values of h result in over-smoothing, where f̂h(x) becomes
unimodal and with a large variance. Conversely, small values of h commonly lead to
noisy data, yielding large variations in f̂h(x) for points in the neighbourhood of x . The
optimal bandwidth value is a trade-off between a smooth constraint and data fidelity.
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In the case that both the kernel function and the unknown density are Gaussian,
then the optimal bandwidth in terms of a minimum (IMSE) may be computed through
the Silverman’s rule of thumb [27]:

hSI L = 0.9 min

(
σ̂ ,

IQR

1.34

)
n−1/5 (14)

where σ̂ is the standard deviation of the samples, IQR = Q3 − Q1 is the interquartile
range, and n is the sample size. In addition, still under the Gaussian assumption, the
Scott’s rule for bandwidth estimation rule is also optimal in terms of the IMSE [28],
as follows:

hSC = 3.49σ̂n−1/3 (15)

where σ̂ is the standard deviation of the samples, and n is the sample size.

4 KDE-Based Entropic Isometric Feature Mapping

The parametric principal component analysis (PCA) metric learning algorithm is the
main inspiration to devise the KDE–ISOMAP. The former computes the entropic
covariance matrix of the data, adopting information-theoretic divergences between
densities estimated in local patches along the neighbourhood graph [29]. The primary
distinction between the existing ISOMAP and the proposed KDE–ISOMAP lies in
the first phase of the algorithm.

The data matrix is denoted by X = {�x1, . . . , �xn}, where each column �xi ∈ Rm rep-
resents an observation. The G = (V , E) refers to the ε-neighbourhood graph induced
from X by creating an edge between each pair of samples �xi and �x j if dE (�xi , �x j ) < ε,
where dE (., .) is the regular Euclidean distance. Consequently, a patch Pi may be
defined as the set formed by a sample �xi and its neighbourhood. For a sufficiently high
sample density, it belongs to a single Euclidean subspace [30].

Let ki be the number of �xi neighbours in G, then the patch Pi is the following
(k + 1) × m matrix:

Pi =

⎡

⎢⎢⎢⎢⎢⎣

�xi
�xi1
�xi2
...

�xiki

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

�xi (1) �xi (2) · · · �xi (m)

�xi1(1) �xi1(2) · · · �xi1(m)

�xi2(1) �xi2(2) · · · �xi2(m)
...

...
. . .

...

�xiki (1) �xiki (2) · · · �xiki (m)

⎤

⎥⎥⎥⎥⎥⎦

The ki neighbours of �xi in the ε-neighbourhood network are denoted by
{�xi1, . . . , �xiki }. Consider each column of the matrix Pi being a sample of an 1-D
random variable xk , with a probability density function f (xk). These probability
density functions f (xk) are estimated for k = 1, . . . ,m for each patch of the ε-
neighbourhood graph using the KDE—which is a nonparametric approach. Because
each patch includesm 1-D densities and the graph contains n patches, the total number
of nonparametric densities is nm, resulting in a computational cost of O(n3m) to run
the KDE–ISOMAP.
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The relative entropies (KL-divergences) between the densities predicted for each
pair of nearby patches Pi and Pj are used to replace the pointwise Euclidean distances
in the edges (�xi , �x j ) ∈ E . This is known as the entropic ε-neighbourhood graph. Hav-
ing precisely m pairings of 1-D densities, there are m KL-divergences to compute for
each pair of patches Pi and Pj . The KL-divergence of distributions �p = [p1, . . . , pL ]
and �q = [q1, . . . , qL ], where L is the number of points (bins) employed in the KDE,
may be calculated as follows:

DKL ( �p, �q) = 1

L

L∑

i=1

pi log

(
pi
qi

)
(16)

Moreover, the symmetrized KL-divergence may be found as detailed below:

Ds ( �p, �q) = 1

2
(DKL ( �p, �q) + DKL (�q, �p))

= 1

2
(H ( �p, �q) − H ( �p) + H (�q, �p) − H (�q))

= 1

2
(H ( �p, �q) + H (�q, �p)) − 1

2
(H ( �p) + H (�q)) (17)

This reflects the average of the cross-entropies minus the average of the indi-
vidual entropies. A vector of relative entropies ��i j is built after computing the
KL-divergences between the m pairings of 1-D densities in Pi and Pj :

��i j = [
Ds ( �p1, �q1) , . . . , Ds ( �pm, �qm)

]
(18)

Lastly, the weight of the edge (�xi , �x j ) ∈ E is replaced by:

wi j = ��T
i j

��i j = ‖ ��i j‖2 (19)

This leads to the entropic neighbourhood graph. The second and third phases of the
KDE–ISOMAP are the same ones adopted in the regular ISOMAP algorithm.

5 Results

Two sets of computational experiments are conducted to evaluate the performance
of the proposed KDE–ISOMAP for dimensionality reduction-based metric learning.
Firstly, a comparison of the clusters obtained after mapping the data onto a two-
dimensional subspace, adopting the SC tomeasure the difference in terms of clustering
fit. Secondly, after the same feature extraction process, a comparison is performed
between the average classification accuracy of the following widely adopted super-
vised classifiers: KNN, support vector machines (SVM), and Bayesian classifier under
the Gaussian hypothesis.
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In the case that the underlying metrics are successfully learnt, this should be
reflected through a substantial increase in the SC and clustering fit measures while
examining many multivariate datasets. The proposed KDE–ISOMAP is directly eval-
uated with the following seven competing methods: PCA, kernel PCA (KPCA),
ISOMAP, locally linear embedding (LLE), Laplacian eigenmaps (LAP), t-SNE, and
UMAP. In addition, the KDE–ISOMAP is modelled considering three different vari-
ations: the KDE–ISOMAP with fixed bandwidth h=0.1 for all probability density
functions (K-ISO-F), the KDE–ISOMAPwith Silverman’s rule for bandwidth estima-
tion (K-ISO-SIL), and the KDE–ISOMAP with Scott’s rule for bandwidth estimation
(K-ISO-SC). In the experiments, the number of density points (bins) used in the KDE
is set to L = 256.

All datasets included in the analysis are publicly available at openML.org/url, along
with details on their respective number of instances, features, and classes. The results
of the first set of experiments are reported in Table 1. It is worth noticing that in
28 out of 30 datasets, one of the KDE–ISOMAP versions yields the best SC value,
corresponding to almost 93% of the cases. The averages and medians resulted from
the proposed method outperform the existing methodological alternatives.

A nonparametric Friedman test is performed to checkwhether the superior results of
the KDE–ISOMAP are statistically significant. The null hypothesis that all groups are
identical is rejected (p = 1.11×10−16), considering a significance level of α = 0.05.
Moreover, a post-hoc Nemenyi test is applied to determine if groups are statistically
different between themselves. At a significance level of α = 0.05, this test indicates
a considerably higher SC of the K-ISO-F, K-ISO-SIL, and K-ISO-SC compared to
the PCA, KPCA, ISOMAP, LLE, LAP, t-SNE, and UMAP. The p values of these
tests are reported in Table 2. There is no evidence that the K-ISO-F and K-ISO-SC
vary in terms of the SC (p = 0.965). Similar results are reported for the K-ISO-F and
K-ISO-SIL (p = 0.982) as well as the K-ISO-SIL and K-ISO-SC (p = 0.949).

Subsequently to the dimensionality reduction-based metric learning, in the second
set of experiments 50% of the samples of each of the datasets are used to train three
different classifiers. Those refer to the Bayesian classifier under the Gaussian hypoth-
esis with different covariance matrices for each class (i.e., parametric and quadratic
classifier), the SVM with no kernel (i.e., nonparametric and linear classifier), and the
KNN with K = 7 (i.e., nonparametric and nonlinear classifier). The 50% remaining
samples from the test set are classified using those three classifiers, being selected
the classifier with the highest accuracy to assess how each metric learning method
affects supervised classification. The findings of this analysis are reported in Table 3.
Remarkably, one of the three variations of the proposed KDE–ISOMAP yields the
largest classification accuracy in 26 out of 30 datasets, corresponding to 86% of the
cases.

A nonparametric Friedman test is performed to determine whether the prevailing
results in terms of classification accuracy achieved by the KDE–ISOMAP are statis-
tically significant. There is strong evidence against the null hypothesis that all groups
are identical, considering a significance level of α = 0.05. A post-hoc Nemenyi test
is also applied to determine whether the groups are equivalent. The test finds that
the K-ISO-F, K-ISO-SIL, and K-ISO-SC provide a significantly higher classification
accuracy compared to the PCA, KPCA, ISOMAP, LLE, LAP, t-SNE, and UMAP.
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Table 2 Results of the post-hoc
Nemenyi tests for the silhouette
coefficient (SC)

Method K-ISO-F K-ISO-SIL K-ISO-SC

PCA 1.79 × 10−6 1.99 × 10−6 1.44 × 10−6

KPCA 1.75 × 10−7 1.97 × 10−7 1.39 × 10−7

ISOMAP 4.81 × 10−8 5.43 × 10−8 3.78 × 10−8

LLE 1.20 × 10−11 1.39 × 10−11 8.95 × 10−12

LAP 2.42 × 10−10 2.77 × 10−10 1.83 × 10−10

t-SNE 5.43 × 10−7 6.07 × 10−7 4.35 × 10−7

UMAP 1.56 × 10−7 1.75 × 10−7 1.24 × 10−8

The p values for the tests performed are reported in Table 4. There is no evidence
that the K-ISO-F and K-ISO-SC vary in terms of classification accuracy (p = 0.550).
Similar results hold true regarding the K-ISO-F and K-ISO-SIL (p = 0.508) as well
as the K-ISO-SIL and K-ISO-SC (p = 0.949).

A convenient attribute of the proposed KDE–ISOMAP refers to its strategy to
address the out-of-sample problem in manifold learning. Most unsupervised metric
learning algorithms are not capable of appropriately handling new samples that are not
part of the training set. A natural choice is to include such new samples to the dataset
and perform another full training round, which may be time consuming. It is worth
noticing that the ISOMAP is directly related to the KPCA. In fact, the KPCA becomes
the ISOMAP when the kernel matrix K (�xi , �x j ) is defined as minus one-half of the
geodesic distance matrix [31]. Thus, it is possible to tackle out-of-sample instances
thorugh the KDE–ISOMAPwhile adopting the same projection strategy of the KPCA.

A caveat of the KDE–ISOMAP method refers the specification of the parameter ε

(radius), which determines the patch size—i.e., number of neighbours of a particular
sample in the ε-neighbourhood graph. Tests report that the classification accuracy and
SC are substantially affected by changes in this parameter. In the present work, the
following strategy is employed: For each dataset, the complete graph is built by linking
a sample to every other sample. Then, for each sample �xi , the approximate distribution
of the distances from �xi to anyother sample �x j is computed. In addition, for eachdataset
the whole network is constructed by connecting each sample to every other sample.
Subsequently, for each sample �xi the estimated distribution of the distances between
any other sample �x j and itself is computed.

Previousworks report that the percentiles p of distributions that fall within the range
P = [1, 20] provide the most suitable values of ε (radius). Thus, in the best model
selection process, several percentiles of this distribution are tested as the radius that
maximizes the classification accuracy among all values of p ∈ P . Differently from an
KNN graph, this graph is not regular due to the fact that the degree of the vertices may
be considerably different. It is worth mentioning that, besides using the class labels
to perform a model selection, the feature extraction stage is fully unsupervised—i.e.,
the KDE–ISOMAP performs unsupervised metric learning.

To illustrate how the KDE-ISOMAP may improve clustering and classification
accuracy by learning a suitable metric, Fig. 1 depicts scatterplots exploring the AIDS
dataset—after reducing the number of features into two. In comparison with the
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Table 4 Results of the post-hoc
Nemenyi tests for classification
accuracy

Method K-ISO-F K-ISO-SIL K-ISO-SC

PCA 6.84 × 10−6 2.47 × 10−7 3.47 × 10−7

KPCA 5.56 × 10−6 1.56 × 10−7 2.21 × 10−7

ISOMAP 4.57 × 10−6 1.57 × 10−7 2.20 × 10−7

LLE 1.25 × 10−8 2.10 × 10−10 3.18 × 10−10

LAP 8.24 × 10−10 1.03 × 10−11 1.61 × 10−11

t-SNE 2.80 × 10−2 4.00 × 10−3 5.00 × 10−3

UMAP 2.01 × 10−5 8.43 × 10−7 1.16 × 10−6

Fig. 1 Scatterplots for the AIDS dataset after dimensionality reduction. From left to right and top to bottom,
these refer to the ISOMAP, t-SNE, UMAP, and KDE–ISOMAP. In cases where the number of samples is
limited, the t-SNE and UMAP tend to perform below the expectations due to numerical optimization

original ISOMAP, t-SNE, and UMAP, the proposed KDE–ISOMAP provides less
overlapping samples in terms of data discrimination. The two classes (male and
female—represented as circles and crosses, respectively) are more clearly identified
in the KDE-ISOMAP compared to popular competing methods.
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6 Conclusion

It is highly desirable to overcome limitations of the Euclidean distancewhile extracting
nonlinear characteristics from data. Manifold learning and unsupervised metric learn-
ing are commonly used interchangeably due to the fact that both aim to find intrinsic
geometric structures of data. In the present work, the relative entropy between distri-
butions estimated from patches along the ε-neighbourhood graph is introduced. This
consists of an alternative to the Euclidean distance through an entropic ISOMAP based
on the KDE method.

Computational analyses confirm two key points to consider the proposed KDE–
ISOMAP as a competing alternative regarding widely adopted learning algorithms.
Firstly, the nonlinear features of the KDE–ISOMAP may be more discriminative in
supervised classification than features produced using state-of-the-art manifold learn-
ing algorithms. Secondly, the KDE–ISOMAP provides superior quality clustering
compared to the same competing algorithms. In particular, the superiority of the pro-
posed KDE–ISOMAP compared to the t-SNE and UMAP becomes clearer while
exploring datasets with limited number of samples. This is due to the fact that these two
existing algorithms require numerical optimization methods that are overly dependent
upon the sample size.

The main contribution of the proposed KDE–ISOMAP framework refers to its
robustness to the presence of noisy date and outliers. This is contrast to the pointwise
Euclidean distance because of the fact that the KDE–ISOMAP adopts a patch-based
distance function to measure similarity between samples. Furthermore, considering
that a projection matrix may be created, tackling out-of-sample data becomes simpler
due to the relationship between the KPCA and ISOMAP. In addition, it is worth
mentioning the fact that the KDE–ISOMAP is suitable for small sample sizes, thus
not requiring a large amount of data for convergence purposes. This is an advantage
compared to autoencoders and other deep-learning-based algorithms.

Suggestions of future work include the adoption of further information-theoretic
divergences and families of entropies, such as the Hellinger, Bhattacharyya, Cauchy–
Schwarz, total variation divergences, Renyi, and Sharma–Mittal entropies. Moreover,
a supervised version of the KDE–ISOMAP may be devised by combining the relative
entropy and Euclidean distance. Such a framework would adopt a single similarity
measure to weight the edge for neighbouring samples of a same class, whereas the
sum of the distances may discourage the shortest paths from crossing that edge for
neighbouring samples belonging to different classes.
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