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Abstract
In this study, we use a novel approach to explore possible connections between foreign
exchange and stock returns usingTurkishfinancial data from2005 to 2022.Ourmethod
involves a two-stage technique. The first stage begins by decomposing individual time
series signals into separate intrinsic mode functions (IMFs) with a complete ensemble
empirical mode decomposition with added noise algorithm. Extracted IMFs are then
used to construct high and low-frequency components through a fine-to-coarse algo-
rithm. In the second phase, we utilized a cross-quantilogram technique to analyze the
dependence in quantiles of the original return series along with frequency components
obtained in the previous stage. Results revealed several important insights. Firstly, a
relatively higher effect ran from stock returns to exchange rate returns for the perti-
nent period. Secondly, tail dependence is apparent, as returns are discernibly linked.
Thirdly, the tail dependence in the returns ismore profound in the high-frequency com-
position than in the low-frequency component. Lastly, the structure of dependence has
stayed mostly constant throughout the sample period analyzed.

Keywords CEEMDAN · Cross-quantilogram · Borsa Istanbul · Turkish Lira

JEL Classification C49 · F31 · G15

1 Introduction

Giudici [1] defines data science as ’an integrated process that consists of a series of
activities that go from the definition of the objectives of the analysis, to the selection
and processing of the data to be analyzed, to the statistical modelling and summary
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such data and, finally, to the interpretation and evaluation of the obtained statistical
measures’. This definition highlights the broad scope of the term ’data science’, which
encompasses a wide range of components, the application of which depends on the
objectives of the analysis. For instance, data mining, a key component of data sci-
ence often lacks a systematic exploration from the mathematical perspective [2]. To
investigate the foundations and components of data science, a multidisciplinary effort
is required [3]. Therefore, while sophisticated analytical methods offer refined mea-
sures, effective insights are drawn through interdisciplinary applications. The financial
market, particularly, stock investment is one of the typical cases where complete and
accurate data availability allows for the application of advanced analytical techniques
[4]. Stock prices constitute a critical component of financial and risk management
[5]. Despite being difficult to forecast [6, 7], financial asset prices, including returns,
are challenging to model. While this empirical study focuses on analyzing emerging
financial market data, the scalability and robustness of our applied methods could
underscore their relevance to different components of data science such as statistics,
data analysis, and even big data. For example, [8] identified correlational analysis as
one of the major categories of big data analytics.

Since the 2001 economic crisis, the Turkish financial markets have experienced
prolonged growth periods. The economic growth increased the investor’s confidence
and eventually led to overall stability regarding interest rates and inflation. Low invest-
ment risk was a key feature in leading the financial boom. For example, [9, 10] showed
that investment and trading in Turkey increased during this period due to steady rates
of interest, inflation, and currency along with stock market liberalization. However,
the recent devaluation of the currency demonstrated the vulnerability of the overall
economic structure [11]. Currency and stock markets in Turkey are interlocked in a
way that makes it an interesting case study, particularly when one asset is experiencing
a volatile period. Understanding the depths of interaction among financial markets is
imperative. After evaluating modern literature, we can observe that researchers place
the utmost value on the links between foreign exchange and stock markets. One of the
reasons for putting this much importance on analyzing this phenomenon could be due
to the critical economic consequences of the relationship [12]. For instance, to off-
set the risk associated with hedging portfolios, investors must understand the braided
dynamics of these markets. If an increase in currency value denotes loss, a positive
correlation between both markets may neutralize risk, whereas a negative correlation
might amplify the risk associated with both variables [13]. The implications of the
nexus are multi-fold. It provides insights not only to investors and portfolio managers
but also helps policymakers to understand the financial perspective [14].

Numerous empirical studies have demonstrated a clear linkage between the two
assets and axiomatically in their respective returns. However, since most studies ana-
lyze asset returns in their nominal values, raising a question of whether there is a
difference in correlation that can be attributed to separate frequencies such as short-
term and long-term fluctuations. How much do we understand about the connectivity
in the tails of returns?Many papers explored the direction and strength of causality and
correlation, but evidence on which frequency provides better explanatory power for
directional predictability is scarce. Furthermore, how does this relation evolve when
these markets experience calm and crisis periods? Any insights we can obtain from
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answering these questions can be of great significance, especially towards hedging tail
risk, which is often the most challenging part of portfolio management. Our empirical
investigation aims at answering these questions.

Two frameworks can explain the connection between forex and stock markets:
flow-oriented and stock-oriented. The flow-oriented approach presents the idea that
exchange rate fluctuations will impact export competitiveness and the balance of trade.
Due to this, profits and incomewill be affected, thereby shifting stock prices [15]. Also,
[16] proposed that because of the exchange rate, stockmarket innovations affect aggre-
gate demand through liquidity and wealth effects, hence inducing money demand
and exchange rates. Another way of understanding it is by explaining the effect of
exchange rates on both, that is, the international and the domestic operations of a
company. Regarding overseas operations, exchange rates influence exports, imports,
and assessments of assets and liabilities, whereas domestic operations are affected by
competition and input/output prices. It affects the cash flows and profitability of a com-
pany, thereby influencing investors’ assessment of stocks and inducing a change in the
prices of stocks.1 The stock-oriented approach suggests an effect flowing from stock
prices toward exchange rates. In literature, this approach has two explanations: mon-
etary models and portfolio balance models. Under a monetary-based model, financial
asset prices absorb exchange rate effects. Asset prices obtained through discounting
expected future cash flows and common macroeconomic factors may affect stock
prices and exchange rate dynamics [19, 20]. Portfolio balance models suggest a nega-
tive relation between stock prices and exchange rates.2 The inverse relationship can be
viewed through direct and indirect channels [25]. To account for direct channels, con-
sider an increase in domestic stock prices. Hence, it will encourage foreign investors
to sell foreign assets in their portfolios and buy more domestic assets with domestic
currency. Increased demand will appreciate the local currency. Indirect channel con-
siders that a rise in the stock market will attract foreign investment, increasing net
worth and domestic wealth. As demand for domestic goods increases, interest rates
will have to be synced. Subsequently, an increase in interest rates will lead to higher
demand for local currency and therefore, the currency will appreciate.

Even though the relationship between exchange rates and stock markets possesses
a theoretical foundation, there is a lack of sufficient advanced analytical methods
applied to this area [26]. In this study, we attempt to fill the gap in the literature by
introducing a unique two-step approach and testing it on the Turkish Lira’s USD/TRY
exchange rate (TL hereafter) and Borsa Istanbul 100 (BIST hereafter) returns. In the
first stage, we decompose the nominal returns into separate IMFs and residuals using a
novel decomposition technique, Complete Ensemble Empirical Mode Decomposition
with Added Noise (CEEMDAN). This step allowed us to differentiate between short
and long-term timeframes. There are a few advantages of using this method over its
preliminary versions.3 Firstly, it solves the problem of mode mixing that might appear
in its predecessors. Secondly, it reduces the construction error and is computationally
more efficient. After extracting IMFs from CEEMDAN, we applied a fine-to-coarse

1 For details, readers are referred to [17, 18].
2 For details, readers are referred to [21–24].
3 such as empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD).
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algorithm to construct high and low-frequency components for the original time series.
In the next step, we applied the cross-quantilogram (CQ) method, testing for possible
dependence in conditional quantiles of returns’ series. CQ works on the premise of
permitting the analysis of quantiles through a regression-like framework. The main
difference between quantile regression and CQ is that in a regression framework,
only the quantile of the dependent variable gets checked for predictability through
independent variable(s); whereas CQ measures predictability in the quantiles of both,
that is, dependent and independent variables [27]. Moreover, using CQ allows us to
consider long lags in contrast to regression, which is crucial to our research questions.
Our contribution holds in the difference of approach that we apply here, thereby
supplementing the present literature. Our method to analyze the relationship relies on
a two-stage process presented in the next section. The two-step approach enabled us
to analyze markets when returns are in extreme quantiles, that is when markets are
experiencing bearish and bullish phases. Moreover, we were able to infer additional
economic insights, like how this connection changes concerning short and long-term
periods.

Ordering of the paper is as follows: Sect. 2 provides a brief overview of the current
studies. Section3 sets forth the methodology used in the analysis. Section4 describes
the data used in the analysis. Section5 lists the estimation results and their summary.
Section6 presents the discussion, policy implications, and conclusion of the study.

2 Literature Review

In one of the earliest empirical studies on the connection between stock prices and
exchange rate changes, [28] found no significant pattern of interaction between forex
and the stock market. Despite this, their work inspired researchers to explore the
relationship under different conditions. However, empirical evidence has been opaque.
Agarwal [29] proposed a positive correlation between US stock and exchange rate
markets; however, the relation was coincidental rather than predictive. Ma and Kao
[30] concluded that foreign exchange rates have financial and economic effects on
stock prices. The financial effect suggests that stronger currencies are associated with
favorable stock prices, whereas the economic effect marks that currency appreciation
will have a two-way impact on the stock markets of export-dominant and import-
dominant countries. Jorion [31] found that the exchange rate risk for investors in the
US stockmarket varies by industry, however, it is diversifiable. It can be noted here that
their methodology rested on a rather strict assumption that exchange risk is constant,
which is at oddswith someother findings in the literature, such as [32],which identified
the presence of nonzero conditional risk premia. As discussed in the previous section,
two main theoretical models, that is, stock and flow-oriented approaches, have been
examined to explain these empirical findings (see e.g., [33–37] among others).

Considering the Turkish context, several studies provide valuable insights into the
interaction between these two markets. Tiryaki et al. [38] used NARDL analysis to
show that an appreciation in the real rate of TL causes a decrease in stock index
returns, which is in line with the flow-oriented theory. Altin [39] applied the Johansen
cointegration test on daily closing prices of exchange rates and stock index for the
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period 2001–2013 and found that the effect runs from forex to stock index, provid-
ing evidence of a clear long-term relationship between the two markets; however, it
varies depending on the denominations of TL. Aydemir and Demirhan [40] analyzed
the relation between TL and individual indices (technology, industry, financial, ser-
vices, and national index) and proposed a significant presence of a bi-directional effect
between the two markets. Other studies that explored the impact of Turkish foreign
exchange rate movements on the firm and sector levels include [18, 41, 42]. Some
studies incorporated additional information into the framework to uncover specific
directional predictability. Aydin and Cavdar [43] applied VAR and ANN to monthly
series of exchange rates, gold prices, and stock index for the period 2000–2017. Econo-
metric forecasting obtained with ANN produced better results in comparison to VAR
for predicting fluctuations in variables for the period 2015–2017. Likewise, [44] used
the ARDL Bounds test and error correction model on quarterly data that included
stock index, interest rate, portfolio investment flows, FDI flows, GDP, and oil price.
GDP, exchange rate, portfolio inflows, and FDI had a positive impact on the stock
market, whereas oil and interest rates affected it negatively. Recent advancements in
econometrical approaches also contributed to novel analysis applied to this problem.
He et al. [26] used a wavelet coherence approach on monthly exchange rates and
stock index. Their results showed that the direction and strength of causality are dif-
ferent for time and frequency domains. Literature suggests that asymmetries exist in
the connections between these two markets concerning time. It will be interesting to
explore whether there exists a difference in linkage concerning different quantiles.
The advantages of using a quantile-based framework can aid us in extracting use-
ful economic interpretations. For example, when returns are in extreme quantiles, it
reflects the bearish or bullish period within a market. Some studies have used a quan-
tile framework to get insights into this phenomenon. Tekin and Hatipoğlu [45] used
quantile regression on the Turkish stock market to test the effect of exchange rate and
oil prices. Gokmenoglu et al. [46] applied quantile-on-quantile regression to study the
nexus between stock prices and exchange rates for the selected emerging economies,
including Turkey. Their findings suggest that stock prices are not uniformly affected
by exchange rates across all quantiles. Most variation exists in tail quantiles, whereas
heterogeneity among countries could be due to the openness of the economies. When
the stock market is in a bearish state, the exchange rate’s effect is more pronounced.

Based on the literature review, we can observe that numerous scholars have evalu-
ated this relationship through alternative perspectives, but evidence varies due to the
employed statistical approach, data, and timeframe used. Additionally, most studies
have employed a one-dimensional approach that allows one to check for a static rela-
tion between the two markets. Existing empirical evidence suggests that asymmetries
and heterogeneity in the relationship between these twomarkets exist, however, a small
number of papers have looked into the linkage through the application of nonlinear and
dynamic techniques. Moreover, fewer studies have inspected the financial markets for
an analysis that captures the extreme ends of tail returns. Our adopted approach would
aid us in distinguishing between the short and long-term effects of extraordinary times
in each market, which may be extremely useful in formulating sophisticated hedging
strategies. The variables employed in our study have a well-established theoretical
and empirical foundation in the literature. The presence of a dynamic relation is clear,
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but the extent of the linkage is vague. Even studies that found no long-run relation
between these two markets, argued that there exists some predictive ability in each
market that may facilitate in explaining the movements of the other market [35]. We
aim to supplement current literature and fill in the gaps identified. To the best of our
knowledge, this is the first study that employs this methodology on Turkish financial
data.

3 Methodology

3.1 Complete Ensemble Empirical Mode Decomposition with Added Noise
(CEEMDAN)

3.1.1 Empirical Mode Decomposition (EMD)

Based on the spirit of fourier transform, EMDmethod introduced by [47] is a nucleus
of Hilbert Huang Transform (HHT). It plainly is a signal processing technique that
decomposes a complex signal into finite functions known as Intrinsic Mode Functions
(IMFs). These contain signals at different time scales. Consider X(t) to be a signal
with the following representation:

X(t) =
n∑

i=1

I MFi (t) + εn(t) (1)

where εn(t) is extracted residual of the signal. EMD can be defined in the following
steps:

1. Considering the signal X(t) and its local extrema, lower and upper envelopes are
found by fitting a cubic spline function.

2. Let f m(t) be the local mean of the lower and upper envelopes, curve of this local
mean and the difference between original signal and local mean are the first residue
(ε1) and I MF1, respectively.

3. Above steps are repeated, until the residue ε(t) becomes a constant or monotonic
function.

3.1.2 Ensemble Empirical Mode Decomposition (EEMD)

To counter the issue of mode mixing, [48] proposed adding Gaussian white noise to
the original series and then performing EMD.4 Steps are given below:

1. Add noise component n j (t) to the signal X(t).
2. Perform EMD to get IMF component Ki, j (t) which is j th component at the i th

time.
3. Repeat above steps for N times, by adding different noise each time.

4 It refers to the situation where an IMF contains the signals of another IMF.
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4. After decomposing IMFs N times, resulting mean value is considered to be the
final IMF:

K j (t) = 1

N

N∑

i=1

Ki, j (i = 1, 2, ..., N j = 1, 2, ..., K ) (2)

3.1.3 Complete Ensemble Empirical Mode Decomposition with Added Noise
(CEEMDAN)

Torres et al. [49] proposed that EEMD could not eliminate the white noise error
after computation and therefore put forward another method CEEMDAN. It follows
following steps:

1. First IMF and residue is obtained as in EMD, then second IMF and corresponding
residue is given by:

I MF2(t) = 1

N

N∑

i=1

E1(εt (t) + τ1E1(wi (t)))

ε2(t) = ε1(t) − I MF2(t) (3)

where E1 is IMF1 and τ1 is signal-to-noise ratio.
2. Similarly kth IMF and εn can be taken as:

I MFk(t) = 1

N

N∑

i=1

E1(εn−1(t) + τk−1Ek−1(wi (t)))

εk(t) = εk−1(t) − I MFk(t) (4)

3. Above process carries on until ending criterion is met by residual εn . Finally,
original signal can be obtained as:

X(t) =
M∑

i=1

I MFi (t) + ε(t) (5)

where ε(t) is the residual signal.

EEMD solves mode mixing issue that may emerge in EMD during signal pro-
cessing. It resolves it by adding a white noise to the signal, however, during signal
reconstruction, it cannot entirely eliminate the Gaussian noise, which may lead to
spurious signals. CEEMDAN, on the other hand, effectively deals with mode mixing,
reduces reconstruction error, and provides efficieny in calculation costs [50].

3.2 Fine-to-Coarse Algorithm

We followed [51, 52], and [53], among others, and used a fine-to-coarse algorithm
to construct different components from IMFs. This algortihm basically composes
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three components, high-frequency, low-frequency, and a long term trend. It works on
the premise that the sum of the IMFs before the change point will form short term
component, the sum of IMFs after the change point will form long term component,
and the residual will be the trend component.5 Our process can be summarized in the
following steps:

1. Keep adding I MF1(t) to I MFi (t) for each component except residual.
2. Perform Jarque-Bera test on each step.
3. PerformWilcoxon rank sum test and check for which i the median departs signif-

icantly from 0.
4. Set i identified in step 3 as break point.
5. All IMFs until point i are considered as high frequency components, whereas rest

of the IMFs are taken as low frequency element of the original signal.

3.3 Cross Quantilogram (CQ)

Hanet al. [54] developed amethod thatmeasures cross quantile dependenceof two time
series. Let {yi,t , t ∈ Z}, i = 1, 2 be a bidimensional time series.6 We define y1,t and
y2,t as TL and BIST returns, respectively. Denoting Fi (·) as the distribution function
of yi,t having density function fi (·), corresponding conditional quantile function can
be represented as qi (Bi ) = in f {v : Fi (v) ≥ βi } for βi ∈ (0, 1). Range of quantiles
we require is denoted by β̃, assuming β̃ is a Cartesian product of closed intervals (0,1)
such that β̃ ≡ β̃1 × β̃2, where β̃i = [βi , β̄i ] for some 0 ≤ βi ≤ β̄i ≤ 1.

For an arbitrary pair of quantiles, we consider a measure of serial dependence
between two events {y1,t ≤ q1,t (β1)} & {y2,t−k ≤ q2,t−k(β2)}. According to [54],
{1[yi,t ≤ qi,t [·]]} is called the quantile exceedance process or quantile-hit for i = 1, 2.
CQ is simply the cross correlation of such processes and can be defined as:

ρβ(k) = E[�β1(y1,t − q1,t (β1))�β2(y2,t−k − q2,t−k(β2))]√
E[�2

β1
(y1,t − q1,t (β1))]

√
E[�2

β2
(y2,t−k − q2,t−k(β2))]

(6)

for k = 0,±1,±2, ..., where �β(μ) ≡ 1[μ ≤ 0] − a.7 Unconditional quan-
tile functions can be estimated by minimizing two separate problems: q̂1(β1) =
argmin

v1∈R

∑T
t=1 πβ1(y1 −v1) and q̂2(β2) = argmin

v2∈R

∑T
t=1 πβ2(y2 −v2)where πβ(μ) ≡

μ(α − 1[μ ≤ 0]). Sample cross quantilogram is given as:

ρ̂β(k) =
∑T

t=k+1 �β1(y1,t − q̂1,t (β1))�β2(y2,t−k − q̂2,t−k(β2))√∑T
t=k+1 �2

β1
(y1,t − q̂1,t (β1))

√
�2

β2
(y2,t−k − q̂2,t−k(β2))

(7)

5 To construct separate components, we preferred Wilcoxon rank sum test over t-test used by [51] to
overcome misspecifying normal distribution assumption of IMF sums.
6 The process requires both time series to be strictly stationary.
7 CQ is defined for a bivariate process. For the analysis of a single series, the process is simply quantilogram
of [55].
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Table 1 Summary statistics of daily log returns

Mean Sd Min Max Skew Kurt J.B ADF PP

TL 0.06 1.10 −20.90 20.54 0.41 66.32 817,706*** −15.65*** −3905.70***

BIST 0.06 1.64 −11.06 12.13 −0.48 4.26 3537.70*** −15.21*** −4418.20***

This table presents summary statistics of daily log returns of TRY for the period January 2005 to October
2022, includingmean (Mean), standard deviation (Sd),minimum(Min),maximum(Max), skewness (Skew),
and kurtosis (Kurt), JB is Jarque-Bera statistic. ADF and PP are Augmented Dickey-Fuller and Phillips-
Perron unit root tests, respectively
***Significant at 1% level

for k = 0,±1,±2, ..., �̂β(k) ∈ [−1, 1]. Here we are interested in testing null
hypothesis: �̂β(k) = 0 (indicates no directional predictability) against alternative
�̂β(k) �= 0 (corresponding to the presence of directional predictability). Han et
al. [54] proposed a stationary bootstrap procedure to construct confidence interval
bands around estimated values. In this paper, we opt for a Box-Ljung portmanteau test
Q̂ p

β = T (T + 2)
∑p

k=1 �̂2
β(k)/(T − k).8

4 Data

Our data sample comprises closing prices of the USD/TRY exchange rate (TL) and
the Borsa Istanbul 100 (BIST) index taken over the period January 2005 and October
2022.9We follow [26, 39–41, 57, 58], among others, while choosing our variables for
foreign exchange and stockmarkets. These variables correspond to daily closing values
of domestic currency units against the U.S. dollar and daily closing values of the stock
market’s main index. We use daily log differences of closing prices as returns Rt .10

Nominal returns represent trading returns which are reflected through adjustments in
information transfer between prices. These returns capture information transmission
between the stock market and exchange rates, hence providing an explanatory and
instantmeasure for trading profits or losses. According to [32], nominal returns assume
that the dollar denominates the investor’s consumption basket, which is not subject
to parity risk. We report summary statistics and unit root tests for both returns in
Table 1. While both series are non-normally distributed, ADF and PP tests suggest the
absence of unit roots within both financial returns at levels. The correlation between
the asset returns is plotted in Fig. 1. The top right panel shows the Pearson correlation
coefficient alongwith test significance.Both asset returnsmove in anopposite direction
with a moderate correlation. We conducted all our analysis using open source [59, 60]
programming languages.

8 In practice, the Box-Ljung version is preferred due to its superior performance for a small sample and a
large p [56].
9 For creating a matching sample for the two series, we removed missing dates so that both returns are
synced.
10 Rt = 100 ∗ log(Pt/Pt−1), where Pt is the price at time t .
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Fig. 1 This figure plots the correlation between TL returns and BIST returns for the period Jan, 2005 to
Oct, 2022

5 Empirical Results

5.1 Decomposition Results

We first decomposed the original series using EMD, EEMD, and CEEMDAN. To
compare the decomposition results among the three algorithms, we checked for cor-
relation between log returns and individual IMFs. Results are reported in Table 2.
While correlations between calculated and original signals are similar across the three
methods, EEMD and CEEMDAN performed slightly better in comparison to EMD.
One reason could be that the EMD is prone to mode mixing, that is, spurious signal
generation in the presence of white noise. More specifically, estimates suggest that
for most functions, CEEMDAN generated better results across both series. As can be
observed, the correlations obtained using EEMD and CEEMDAN are close to each
other. To further check for the aggregated effect, we computed the reconstruction
error. According to this approach, the sum of all components is aggregated and then
the difference between the aggregated sum and the original signal is computed. Mean
values close to zero suggest better performance of the decomposition technique. For
TL, the mean error of EEMD is−0.001 (standard deviation is 0.033 and the maximum
value is 0.12), which is higher than CEEMDAN error of 7.9e−20 (standard deviation
is 1.7e−16 and the maximum value is 1.8e−15). For BIST returns, the mean error of
EEMD is−0.0015 (standard deviation is 0.049 and themaximumvalue is 0.18), which
is higher than CEEMDAN error of -3.3e−19 (standard deviation is 2.6e−16 and the
maximum value is 3.6e−15).11 Based on both diagnostic evaluations, we decided to
proceed with our analysis using the CEEMDAN method.

11 To conserve space, plots for reconstruction errors are not reported, however, they are available upon
request from the corresponding author.
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Table 2 Correlation results

TL BIST
EMD EEMD CEEMDAN EMD EEMD CEEMDAN

IMF1 0.63 0.66 0.66 0.71 0.73 0.73

IMF2 0.46 0.54 0.48 0.41 0.5 0.44

IMF3 0.35 0.44 0.47 0.37 0.43 0.45

IMF4 0.24 0.31 0.36 0.23 0.31 0.39

IMF5 0.17 0.19 0.25 0.17 0.22 0.27

IMF6 0.14 0.16 0.18 0.13 0.17 0.20

IMF7 0.10 0.12 0.15 0.08 0.11 0.15

IMF8 0.06 0.07 0.10 0.06 0.09 0.10

IMF9 0.05 0.06 0.05 0.04 0.07 0.09

IMF10 0.04 0.01 0.04 0.02 0.03 0.06

IMF11 −0.01 0.02 0.02 0 −0.01 0.04

Residual 0.04 0.04 0.03 0.03 0.03 0.04

This table presents correlation coefficient estimates between decomposed components and returns of TL and
BIST obtained through EMD, EEMD, and CEEMDAN techniques. Bold values show highest correlation
among three techniques

With an ensemble size of 100, each member estimated contained additional white
noise with a standard deviation of 0.3.12 In Figs. 2 and 3, we plot IMFs extracted
through signal processing. Frequencies with sharp fluctuations are apparent in ini-
tial functions but gradually smoothed into low amplitudes. The last frequency carries
residue, which we have considered to be the long-term trend for financial returns.
Statistics for IMFs of TL and BIST returns are given in Tables 3 and 4, respectively.
We report the correlation between the original series and obtained IMFs with: Pear-
son’s and Kendall’s coefficients. Let us first consider FX returns. A highly significant
correlation exists between IMFs and returns, with decreasing magnitude as we move
towards higher IMFs. Variance as a sum of IMFs & residual reported in the last col-
umn is suggestive that the first three IMFs account for over 81% of the total variance.
It highlights the importance of short-term fluctuations. If we observe stock returns,
a similar pattern is clear. Correlation is gradually declining, from IMF 1 to IMF 11
though almost all values are significant. Like FX returns, the sum of the variance of the
first 3 IMFs explains around 80% of the total variance. Hence, short-term fluctuations
are crucial for stock returns as well. The shortest mean period for both assets is around
2.7 days.

5.2 Component Reconstruction Results

Following [52, 53], and [51], and as detailed in subsection 3.2,we use the fine-to-coarse
algorithm to reconstruct high-frequency and low-frequency components from IMFs
obtained previously. Table 5 reports estimation results. Jarque-Bera test results find

12 In their original paper, [47] defined two conditions that an IMF must satisfy, our obtained functions
fulfill both the conditions. For details, readers are referred to section 4 of their paper.
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Fig. 2 This figure plots the TL returns decomposition with CEEMDAN for the period Jan, 2005 to Oct,
2022. Estimation is done by using an ensemble size of 100 and 0.3 standard deviation
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Fig. 3 This figure plots the BIST returns decomposition with CEEMDAN for the period Jan, 2005 to Oct,
2022. Estimation is done by using an ensemble size of 100 and 0.3 standard deviation

significant non-normality in IMFs of both asset returns. Then, we use the Wilcoxon
rank sum test to identify the median departing significantly from zero. Test statistics
for FX returns started to be statistically significant at acceptable levels from IMF 5
and onwards, whereas, in the case of stock returns, IMF 7 is the index i . Therefore, as
high-frequency components, we use the sum of IMFs 1–4 for the exchange rate, and
the sum of IMFs 1–6 for stock index returns. The sum of all remaining IMFs is used
as a low-frequency component whereas, the residual is the long-term trend for both
series. To show the phenomenon visually, we plot only last year’s values containing
the original series and estimated components in Figs. 4 and 5.
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Table 5 Reconstruction results

TL BIST
J.B W.R.S J.B W.R.S

IMF1 56,601*** 4,908,358 235.3*** 4,934,614

IMF2 213,397*** 4,911,613 1092.2*** 4,942,127

IMF3 369,735*** 4,865,335 1597.2*** 4,951,016

IMF4 469,496*** 4,872,272 2228.5*** 4,977,141

IMF5 553,915*** 4,818,902* 2861*** 5,012,193

IMF6 628,932*** 4,783,081** 3308.3*** 5,082,068

IMF7 720,730*** 4,745,892*** 3434.4*** 5,111,140*

IMF8 765,083*** 4,756,035** 3618.3*** 5,121,411*

IMF9 784,430*** 4,644,915*** 3669.9*** 5,188,583**

IMF10 805,114*** 4,647,780*** 3669.3*** 5,197,518***

IMF11 811,537*** 4,620,697*** 3649.8*** 5,181,104**

This table presents estimates for Jarque-Bera normality test (J.B.), and Wilcoxon Rank Sum test (W.R.S.)
of TL and BIST returns. These values are used to reconstruct time series into short term and long term
components
***, **,*Significant at 1%, 5%, and 10% levels, respectively
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Fig. 4 This figure graphs the TL return and components obtained after reconstruction of IMFs. This plot
contains only last year of the complete data so to provide a ’zoomed in’ version of the total sample

5.3 Directional Connectivity Results

For better comprehension, we present our results through CQ plots and heat maps.
We subdivide this section into two parts. First, we present predictability directed from
TL returns toward BIST returns for all components. In the second part, we provide
the possible linkage moving in the opposite direction, i.e., from BIST to TL returns.
We provide sample CQ ρ̂β(k) and portmanteau test Q̂ p

β for possible dependence in
tails of both returns so that we’ll be able to infer how extreme events impact returns
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Fig. 5 This figure graphs the BIST return and components obtained after reconstruction of IMFs. This plot
contains only last year of the complete data so to provide a ’zoomed in’ version of the total sample

in the other market. Precisely, we consider β1 = 0.1, 0.9 and β2 = 0.1, 0.9 for the
quantiles. We also checked for an effect on the median quantile, i.e., when β = 0.5
but, for brevity, results are not reported.13 To summarize the effect in median returns,
significant directional predictability in both directions exists only in the first few lags
of the low-frequency component.

5.3.1 Exchange Rate to Stock Index

In Fig. 6a-c, we plot predictability from the exchange rate to the stock index. We also
show 95% confidence interval bootstrap values based on 1000 replicates testing the
null hypothesis of no directional predictability. Consider the case when β2 and β1 =
0.1, CQ is not significant for many lags given through the portmanteau test for 60 lags.
It means that high loss in TL failed to predict greater negative returns in BIST. When
β1 = 0.9, CQ is negative but mostly insignificant. This result suggests that high losses
in TL returns do not facilitate significant prediction in tail returns of BIST. Figure 6b
presents CQ when β2 = 0.9. It shows significance but only in the initial lags. The
implication is that when TL is higher than its 0.9 quantiles, there is a likelihood of a
large loss in BIST returns within the first few days. For β1 = 0.9, CQ is positive and
significant for the initial lags implying that there is a chance of a high positive return
in BIST when TL is in a high quantile. However, the magnitude of the correlation is
not too strong. Figure 6c plots the CQ heatmap of directional predictability with one
day lag for all quantiles. A star in the box means the significance of the portmanteau
test. As noted before, even though there is some correlation, it may not be considered
evidence of strong directional predictability.

In Fig. 7a–c, we plot the high-frequency component of the returns. The outcomes
are very close to the results of the original series. There exists some dependence but

13 Results can be shared upon request from the corresponding author.
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(a)

(b)

(c)

Fig. 6 Directional predictability from TL to BIST. a This subfigure presents the directional predictability
from TL returns to BIST returns when ρ̂β (k) for β2 = 0.1. In first row plots, bars are sample cross quan-

tilogram whereas Q̂ p
β values are given in second row. Red lines are bootstrap values with 95% confidence

interval centered at zero. b This subfigure presents the directional predictability from TL returns to BIST
returns when ρ̂β (k) for β2 = 0.9. In first row plots, bars are sample cross quantilogram whereas Q̂ p

β values
are given in second row. Red lines are bootstrap values with 95% confidence interval centered at zero. c
Heatmap of spillover from TL to BIST: This subfigure presents the heatmap for sample cross quantilogram
at (β2, β1)|(β2, β1) ∈ 0.1, ..., 0.9 and k = 1. It gives magnitude of spillover from TL returns to BIST
returns with lag 1. The star means significance in test. Quantiles for BIST and TL are given in x-axis and
y-axis, respectively. (Color figure online)

123



Annals of Data Science

only in the first few lags and when TL is in a high quantile. It shows weak evidence
of directional predictability. It is expected since the results obtained in the previous
section showed that initial IMFs explain most of the variance present in the original
series. When TL is lower than its 0.1 quantiles, the CQ is insignificant for the low-
frequency component plotted in Fig. 8a–c. In addition to that, most of the lags are
not significant when TL is in its quantile 0.9. It suggests that the tail returns of TL’s
low-frequency component do not help predict the tail returns of BIST’s low-frequency
component.

5.3.2 Stock Index to exchange rate

In Fig. 9a–c, we show estimation results of directional predictability of returns from
BIST to TL. Figure 9a presents q1(β1) = 0.1, which is when BIST returns are in
low quantile. When β2=0.1, the CQ plot is positive and significant for most lags,
implying that when BIST returns are negative, it is likely to have a high negative
return in the TL market. Similarly, when β2 = 0.9, CQ is negative and significant in
most lags suggesting a large gain in TL returns. The portmanteau test confirms this
relation. Figure 9b presents a scenario when q1(β1) = 0.9, which is when BIST returns
are within a high quantile. Considering β2 = 0.1, sample CQ is mainly negative and
significant for some lags, providing evidence that there is a chance of having a high loss
in TL returns. Likewise, when β2 = 0.9, CQ bars are positive but mostly insignificant
for almost all lags, suggesting a low likelihood of having a high positive gain. The
heatmap given in Fig. 9c shows strong directional predictability in the returns from
BIST to TL in almost all quantiles with one day lag. Another observation to note here
is that, compared to the effect from TL to BIST, the correlation is relatively higher in
most quantiles. Like the casewith high-frequency dependability fromTL toBIST, here
we notice a similar pattern plotted in Fig. 10a–c. High-frequency component results
are akin to the return series results. It implies that BIST tail returns in high frequency
provide significant predictability for the tail returns of TL. However, the effect is not
significantly strong for all lags. As far as low-frequency dependence is concerned, it
does not provide significant connectivity from BIST to TL plotted in Fig. 11a–c.

5.4 RollingWindow Analysis

Based on the results that we obtained in the previous sections, it is quite evident
that directional predictability is stronger from BIST to TL returns, and within com-
ponents, the high-frequency component reveals more information compared to the
low-frequency component. We decided to explore how this relationship has evolved
over the period under analysis. For this purpose, we used a one-year rolling win-
dow analysis to check if any irregular movements may provide us with some further
insights. Here we plot dependence in tails that is β1 = β2 = 0.1, 0.9 and k = 1
for the years 2005, ..., 2022. Considering returns in the lower tail, Fig. 12 shows that
dependence was significantly high until around 2009, after which it mostly stayed
constant throughout the whole sample under analysis. Moving towards the opposite
direction, i.e., on the other side of the tail, we see that it has remained rather calm
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(a)

(b)

(c)

Fig. 7 Directional predictability from TL (high frequency) to BIST (high frequency). a Directional pre-
dictability from TL (high frequency) to BIST (high frequency) when ρ̂β (k) for β2 = 0.1: This subfigure
presents the directional predictability from high frequency TL returns to high frequency BIST returns when
ρ̂β (k) for β2 = 0.1. In first row plots, bars are sample cross quantilogram whereas Q̂ p

β values are given in
second row. Red lines are bootstrap values with 95% confidence interval centered at zero. b Directional
predictability from TL (high frequency)to BIST (high frequency) when ρ̂β (k) for β2 = 0.9: This subfigure
presents the directional predictability from high frequency TL returns to high frequency BIST returns when
ρ̂β (k) for β2 = 0.9. In first row plots, bars are sample cross quantilogram whereas Q̂ p

β values are given
in second row. Red lines are bootstrap values with 95% confidence interval centered at zero. c Heatmap
of spillover from TL (high frequency) to BIST (high frequency): This subfigure presents the heatmap for
sample cross quantilogram at (β2, β1)|(β2, β1) ∈ 0.1, ..., 0.9 and k = 1. It gives magnitude of spillover
from high frequency TL returns to high frequency BIST returns with lag 1. The star means significance in
test. Quantiles for BIST and TL are given in x-axis and y-axis, respectively. (Color figure online)
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(a)

(b)

(c)

Fig. 8 Directional predictability from TL (low frequency) to BIST (low frequency). a Directional pre-
dictability from TL (low frequency) to BIST (low frequency) when ρ̂β (k) for β2 = 0.1: This subfigure
presents the directional predictability from low frequency TL returns to low frequency BIST returns when
ρ̂β (k) for β2 = 0.1. In first row plots, bars are sample cross quantilogram whereas Q̂ p

β values are given in
second row. Red lines are bootstrap values with 95% confidence interval centered at zero. b Directional
predictability from TL (low frequency)to BIST (low frequency) when ρ̂β (k) for β2 = 0.9: This subfigure
presents the directional predictability from low frequency TL returns to low frequency BIST returns when
ρ̂β (k) for β2 = 0.9. In first row plots, bars are sample cross quantilogram whereas Q̂ p

β values are given
in second row. Red lines are bootstrap values with 95% confidence interval centered at zero. c Heatmap
of spillover from TL (low frequency) to BIST (low frequency): This subfigure presents the heatmap for
sample cross quantilogram at (β2, β1)|(β2, β1) ∈ 0.1, ..., 0.9 and k = 1. It gives magnitude of spillover
from low frequency TL returns to low frequency BIST returns with lag 1. The star means significance in
test. Quantiles for BIST and TL are given in x-axis and y-axis, respectively. (Color figure online)

with no significant peaks and troughs; however, post-2020, it slightly increased but
reverted towards its mean trajectory. This behavior can be accredited to the extreme
jump in TL’s nominal rate, gesturing to a weakening of the currency. A similar pattern
is obvious for the high-frequency component of the returns plotted in Fig. 13.
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(a)

(b)

(c)

Fig. 9 Directional predictability from BIST to TL. a Directional predictability from BIST to TL when
ρ̂β (k) for β1 = 0.1: This subfigure presents the directional predictability from BIST returns to TL returns

when ρ̂β (k) for β1 = 0.1. In first row plots, bars are sample cross quantilogram whereas Q̂ p
β values are

given in second row. Red lines are bootstrap values with 95% confidence interval centered at zero. b
Directional predictability from BIST to TL when ρ̂β (k) for β1 = 0.9: This subfigure presents the directional
predictability from BIST returns to TL returns when ρ̂β (k) for β1 = 0.9. In first row plots, bars are sample

cross quantilogram whereas Q̂ p
β values are given in second row. Red lines are bootstrap values with 95%

confidence interval centered at zero. c Heatmap of spillover from BIST to TL: This subfigure presents the
heatmap for sample cross quantilogram at (β2, β1)|(β2, β1) ∈ 0.1, ..., 0.9 and k = 1. It gives magnitude
of spillover from BIST returns to TL returns with lag 1. The star means significance in test. Quantiles for
TL and BIST are given in x-axis and y-axis, respectively. (Color figure online)

5.5 Summary of the Empirical Evidence

Based on the empirical analysis, we can extract key insights into the questions raised
earlier. The correlation between components varied noticeably, with the short-term
frequency having a more profound effect. Tail connectivity is compelling in one direc-
tion, from stock returns to exchange rate returns. It could be considered as evidence
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(a)

(b)

(c)

Fig. 10 Directional predictability from BIST (high frequency) to TL (high frequency). a Directional pre-
dictability from BIST (high frequency) to TL (high frequency) when ρ̂β (k) for β1 = 0.1: This subfigure
presents the directional predictability from high frequency BIST returns to high frequency TL returns when
ρ̂β (k) for β1 = 0.1. In first row plots, bars are sample cross quantilogram whereas Q̂ p

β values are given in
second row. Red lines are bootstrap values with 95% confidence interval centered at zero. b Directional
predictability from BIST (high frequency)to TL (high frequency) when ρ̂β (k) for β1 = 0.9: This subfigure
presents the directional predictability from high frequency BIST returns to high frequency TL returns when
ρ̂β (k) for β1 = 0.9. In first row plots, bars are sample cross quantilogram whereas Q̂ p

β values are given
in second row. Red lines are bootstrap values with 95% confidence interval centered at zero. c Heatmap
of spillover from BIST (high frequency) to TL (high frequency): This subfigure presents the heatmap for
sample cross quantilogram at (β2, β1)|(β2, β1) ∈ 0.1, ..., 0.9 and k = 1. It gives magnitude of spillover
from high frequency BIST returns to high frequency TL returns with lag 1. The star means significance in
test. Quantiles for TL and BIST are given in x-axis and y-axis, respectively. (Color figure online)

of asymmetry, heterogeneity, and to some extent, support for a stock-oriented effect
highlighted in theoretical and empirical literature. Short-term frequency is crucial,
especially if the purpose is to hedge tail risk between the Turkish stock returns and
exchange rate returns. Connectivity became slightly higher during turbulent phases
while the overall pattern of linkage stayed more or less constant. Our findings pro-
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(b)

(c)

Fig. 11 Directional predictability from BIST (low frequency) to TL (low frequency). a Directional pre-
dictability from BIST (low frequency) to TL (low frequency) when ρ̂β (k) for β1 = 0.1: This subfigure
presents the directional predictability from low frequency BIST returns to low frequency TL returns when
ρ̂β (k) for β1 = 0.1. In first row plots, bars are sample cross quantilogram whereas Q̂ p

β values are given in
second row. Red lines are bootstrap values with 95% confidence interval centered at zero. b Directional
predictability from BIST (low frequency) to TL (low frequency) when ρ̂β (k) for β1 = 0.9: This subfigure
presents the directional predictability from low frequency BIST returns to low frequency TL returns when
ρ̂β (k) for β1 = 0.9. In first row plots, bars are sample cross quantilogram whereas Q̂ p

β values are given
in second row. Red lines are bootstrap values with 95% confidence interval centered at zero. c Heatmap
of spillover from BIST (low frequency) to TL (low frequency): This subfigure presents the heatmap for
sample cross quantilogram at (β2, β1)|(β2, β1) ∈ 0.1, ..., 0.9 and k = 1. It gives magnitude of spillover
from low frequency TL returns to low frequency BIST returns with lag 1. The star means significance in
test. Quantiles for BIST and TL are given in x-axis and y-axis, respectively. (Color figure online)

vide a unique perspective of information. It has meaningful economic interpretations
critical to investors, hedgers, policymakers, practitioners, and market analysts.
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Fig. 12 This figure plots rolling window analysis for the effect from BIST returns to TL returns. In first row
plots, black line is sample cross quantilogram over one year window with k = 1 whereas Q̂ p

β values are
given in second row. Red lines are bootstrap values with 95% confidence interval centered at zero. (Color
figure online)

Fig. 13 This figure plots rolling window analysis for the effect from high frequency BIST returns to high
frequency TL returns. In first row plots, black line is sample cross quantilogram over one year window with
k = 1 whereas Q̂ p

β values are given in second row. Red lines are bootstrap values with 95% confidence
interval centered at zero. (Color figure online)

6 Discussions, Policy Implications, and Conclusion

In this study, we delved into the returns of the Turkish exchange rate and the stock
market’s main index through a two-stage process. In the first phase, we used the
CEEMDAN algorithm to decompose individual nominal returns into separate IMFs
and a residual. Then, we applied a fine-to-coarse algorithm aided by theWilcoxon rank
sum test to obtain high and low-frequency components of returns. Both these compo-
nents could be interpreted as short-term and long-term fluctuations, respectively. In
the second stage, we investigated tail connectivity between exchange rate and stock
returns through a quantilogram, shedding light on market behavior during phases of
significant gains or losses. Results suggest that in both markets, short-term fluctua-
tions are comparatively more significant than long-term movements, having a mean
period of almost three days. High loss in the currency market does not necessarily
translate to a loss in the stock market. However, a high gain for investors in exchange
rate returns may affect the stock returns for a short-term period. Alternatively, major
losses or gains in the stock market will likely affect returns in the TL market for a
shorter period. The low-frequency component (long-term dependence), shows little
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significance in both directions. Rolling window analysis revealed that under turbulent
phases such as 2008 and 2020, the correlation seemed to peak. This result is in line
with [26], who suggested that during market distress, interaction becomes stronger.

Our analysis confirmed a few assertions in the literature while extending the line of
empirical evidence. For example, [46] argued that exchange rates will not affect stock
markets unless certain conditions are fulfilled. [37] and [40] proposed a bidirectional
long-run causality between two markets which we could not confirm since our results
provide evidence of a strong unidirectional link. A possible explanation for this result
could be the difference in the approach employed. Our method specifically looked for
connectivity within tail returns. While we found a strong correlation effect between
returns, we argue that this effect varies concerning frequency and direction, similar to
the findings of [26], who advocated the use of nonlinear and dynamic econometrical
techniques. We also extend the notion put forward by [61] that between the stock and
exchange rate markets of Turkey, an asymmetry exists in both, the short and long run.
Our results also suggested different behavior of short-term and long-term components.
As indicated by [52], the short-term component’s attribution may be due to investor
sentiments, and the long-termmovements could be due to fundamentals such as supply
and demand, interest rates, inflation, economic growth, and current account, among
other variables. To some extent, we can conclude that our results partially support
stock-oriented theory in the case of Turkish markets, as far as linkage in tail returns is
concerned.

These results could be of great importance not only to policymakers but also to
other market participants. For instance, our inference based on tail dependence exist-
ing between two return series could provide further insights into hedging behavior. It
becomes critical, especially when markets are in their bearish or bullish state. Another
implication from observing individual components is that market sentiment is of
greater importance in determining the market prices than long-term fundamentals
since it explains most of the variance out of the total variance observed. Even though
low-frequency fluctuations moved in opposite directions, confirming the theoretical
relation, we did not find it to be highly significant in the explanation of tail dependence.
Finally, as far as directional predictability is concerned, BIST returns have relatively
more influence on TL returns than the other way around.

Future work could incorporate additional causality methods to provide further evi-
dence of dependence. In addition, since the technique employed in this paper only
allows for a bi-directional relationship, which constrains the use of other economic
variables, econometricians and data scientists could extend this method into higher
domains, hence allowing the inclusion of additional market information into the anal-
ysis.
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38. Tiryaki A, Ceylan R, Erdoğan L (2019) Asymmetric effects of industrial production, money supply

and exchange rate changes on stock returns in turkey. Appl Econ 51(20):2143–2154
39. Altin H (2014) Stock price and exchange rate: the case of bist 100. Eur Sci J 10(16)
40. Aydemir O, Demirhan E (2009) The relationship between stock prices and exchange rates: evidence

from turkey. Int Res J Financ Econ 23(2):207–215
41. Kasman S (2003) The relationship between exchange rates and stock prices: a causality analysis. Dokuz

Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 5(2):70–78
42. Akay GH, Cifter A (2014) Exchange rate exposure at the firm and industry levels: evidence from

turkey. Econ Model 43:426–434
43. Aydin AD, Cavdar SC (2015) Comparison of prediction performances of artificial neural network

(ANN) and vector autoregressive (VAR) models by using the macroeconomic variables of gold prices,
Borsa Istanbul (bist) 100 index and USDollar-Turkish Lira (USD/TRY) exchange rates. Procedia Econ
Finance 30:3–14

44. Demir C (2019) Macroeconomic determinants of stock market fluctuations: the case of BIST-100.
Economies 7(1):8
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