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Abstract
A mathematical approach to developing new distributions is reviewed. The method
which composes of integration and the concept of a normalizing constant, allows
for primitive interjection of new parameter(s) in an existing distribution to form new
model(s), called Omega-Type probability models. A probability distribution is pro-
posed from a root model, Lindley distribution, and some properties, such as the series
representation of the density and cumulative distribution functions, shape of the den-
sity, hazard and survival functions, moments and related measures, quantile function,
order statistics, parameter estimation and interval estimate, were studied. Amidst the
usual hazard and survival shapes, a constant or uniform trend was realized for the
survival function, which projects the possibility of modeling systems that may not
terminate over a given period of time. Three different methods of estimation, namely,
the Cramer–vonMises estimator, maximum product of the spacing estimator andmax-
imum likelihood estimator, were used. The modified unimodal shape of the proposed
distribution is added as a special feature in the improvements made among the Lindley
family of distributions. Finally, two real-life datasets were fitted to the new distribution
to demonstrate its economic importance.
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1 Introduction

In research analysis, consequential occurrencesmay not be necessary to obtain data for
decision making, where we have access to antecedent outcomes. So, data science, data
analysis and data modeling help us to gain meaningful insights in an attempt to obtain
viable information. Data science is an interdisciplinary field that intertwines statisti-
cal applications, computational and machine learning methods to extrapolate usable
information from big data for predictive modeling. In this area, lucrative advances
have been made in big data analytics, business and optimization based data mining,
internet of things, real-time decision making and artificial Intelligence [1–4]. These
data that go through statistical, algorithmic or scientific processes is usually unstruc-
tured involving tasks such as data preprocessing and feature engineering; unlike data
analysis which deals with data cleaning and visualization for structured data. However,
data modeling as a primary objective of probability distribution is the analysis of data
by projecting the likelihood of different outcomes using relevant models.

The development of new probability distributions does not entail a lack of appre-
ciation for the existent; rather, it is an attempt to achieve greater effectiveness in
data modeling. There are many methodologies for the modification of an existing
distribution, as studied by Lai [5]. Among many methods are the transformation
method, compounding, convolution, mixture model, skewing, parameterization and
the avalanched generalization methods. More emphatically, the generalization method
has been used more frequently in recent decades to increase the number of parameters
of classical distributions. This approach is conventionally aimed at improving model
flexibility by primarily reconstructing for robustness. Moreover, these modifications
also have a great impact on the nature of hazard functions of distributions, featuring
various real-life representations.

Tahir et al. [6] described a methodology for the development of some of these
generalized distributions, given in cumulative distribution function (CDF) order:

F(x , ω) �
�(x)∫

Rl

m(t)dt or

Ru∫

�(x)

m(t)dt . (1)

where �(x) is the link function, which is derived from the quantile function of a ran-
dom variable X ; m(t) is the probability density function (PDF) of a dummy random
variable T; and R is the (lower or upper) boundary support. Tahir tabulated the var-
ious link functions for the continuous distribution category. Some of the generators
or distributions developed in this order are logistic X, Gompertz inverse exponen-
tial, Sin G, the Marshal–Olkin transformation with TX, the Gull Alpha Power, the
Normal-Power-Logistic, the Exponentiated Odd Log-Logistic Weibull, and several
others [6–12].

The addition of parameter(s) is a great economic process harnessed by different
methods of probability model development. The motivation of this research stems
from the challenge posed by the parameter inclusion strategy of some existing distri-
butions, which allows the incorporation of (extra) parameters by inserting PDF and/or
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CDF structures to form higher parametric compound models. However, a more direct
procedure can be adopted to efficiently achieve the same result. Hence, our interest
in this study is to develop a new approach for increasing the number of parame-
ters in an existing distribution without allowing for model insertions, as found with
the generalization method. Second, we propose a probability distribution to exem-
plify the relevance of the approach. Of course, the proposed model is flexible and can
model outcomes that mirror monotonically decreasing and increasing, right-skewed
and modified unimodal trends.

The remaining parts of this work are arranged as follows: Sect. 2 of this paper
features a direct strategy for parameter inclusion. In Sect. 3, a proposal is made for
a new probability model using the insights in the previous section. Section 4 details
the study on some of the properties of the proposed distribution. Section 5 describes
the applicability of the proposed model through data analysis and/or performance
comparison.

2 Omega Type Probability Models

In this development, extra parameters are premeditatedly implanted as a function of a
variable, directly into an extracted variable component from a root model. After the
application of a mathematical technique, the derivation of a new PDF is suitable. The
procedure composes of the “integration method” and the concept of the “normalizing
constant”, as detailed in [13].

To achieve this, we capture the variable components, say θ(x , ω), of an existing
distribution and treat it as an arbitrary function, where xandω are the variable and
vector of parameters, respectively. The extracted components, however, can be mod-
ified by primitively adding some parameters to form new probability distribution(s).
This is constructed such that the root distribution f (x , ω) is obtained as a special
case of the new development, as in the generalization method. Now, the choice of the
number of parameters to possibly add depends on the structure of the variable in a den-
sity function. For example, the variable x in the variable component θ(x , ω) � e−ax

from the exponential distribution can discretely be changed to xb. Hence, we obtain

θr (x , ω) � e−axb as a new arbitrary function, so long as it retains the propensity to
return the initial component e−ax at a given value of b.

Moreover, if we define

θ(x , ω) � (1 + x)e−ax , (2)

from the Lindley distribution, for example; thus, we have increased options for para-
metric inclusion. In this case, the new possible arbitrary functions become

θr (x , ω) � (1 + x)e−axbor (3)

θr (x , ω) �
(
1 + xb

)
e−axc , (4)

123



Annals of Data Science

which are composites of two or three parameters, respectively. Another approach to
this inclusion is to replace a replicated parameter in the root variable component θ(x ,
ω) with a new parameter. Recall the Kumaraswamy distribution, which has a variable
component given by,

θ(x , ω) � x−1+a(1 − xa
)−1+b

. (5)

The parameter “a” is replicated twice. However, the variable xa in the second
component (1 − xa) can be replaced with xc which gives us a new three-parameter
arbitrary function.

θr (x , ω) � x−1+a(1 − xc
)−1+b (6)

Consequently, by integrating the new arbitrary functions θr (x , ω) and applying the
concept of a normalizing constant, a new probability density function can be realized.
Currently, this development is not limited to cases of superscripts, as in x∗, but seems
more consistent in mathematical structures expressed in chain format. This suggests
that we could also integrate parameters in components of this sort:

sin(x) → sin(ax), Log(x) → Log(bx), �(x) → �(cx), er f (x) → er f (ax)

and several others. Now, let X and ω be a random variable and a vector of parameters,
respectively; then, a probability distribution can be constructed:

u(x , ω) � θr (x , ω)

⎡
⎣

∞∫

−∞
θr (x , ω)dx

⎤
⎦

−1

(7)

for the probability density function, and the cumulative distribution function is

U (x , ω) �
x∫

−∞

⎧⎪⎨
⎪⎩θr (t , ω)

⎡
⎣

∞∫

−∞
θr (t , ω)dt

⎤
⎦

−1
⎫⎪⎬
⎪⎭dt (8)

where θr (x , ω) is the new variable component modified from an existing distribu-

tion as already defined. Of course, the result obtained from

[ ∞∫
−∞

θr (x , ω)dx

]−1

is

a constant-parameter function that serves as the normalizing constant. This implies
that the product of θr (x , ω) and the normalizing constant yields a new PDF. In this
approach, it should be noted that, consistently, the root distribution is returned as a
special case of new development.

For the purposes of nomenclature, we term this construction Omega ω-Type Prob-
ability Models, where omega ω represents the primitive parametric substitution and
Type denotes the root model from which the arbitrary function was taken.
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3 Omega Lindley Distribution

Originally, the Lindley distribution was introduced by Lindley [14], and its properties
were studied by Ghitany Atieh and Nadarajah [15]. However, to compensate for the
monotonic property of the Lindley distribution, several authors, including [16–19]
among others, have proposed at least a generalization of the Lindley distribution.
These developments have increased the flexibility of the baseline distribution in dif-
ferent ways, ranging from monotone increasing trends, symmetric trends, left- and
right-skewed trends, bathtubs, etc., in terms of density and hazard considerations.
However, a real-life observation characterized by a modified unimodal (bathtub +
inverted bathtub) trend in both density and hazard function considerations is not yet
a feature of the Lindley family of distributions. Hence, we introduce a probability
model, which will capture that essence. Considering the exemplified function in (4),
we give a construction, and by recalling (7), we obtain the new PDF as

(9)

u (x , ω) �
{(

1 + xb
)
e−axc

} [ ∞∫
−∞

(
1 + xb

)
e−axcdx

]−1

,

� c a1+b/c

N◦

(
1 + xb

)
e−axc , x > 0, a > 0, b > 0, c > 0.

where N◦ � ab/c�
[ 1
c

]
+ �
[ 1+b

c

]
.

and the corresponding cumulative distribution function is given by

U (x , ω) � (axc)a
1+b
c x− 1+b

c ϕabc

N◦
, (10)

where ϕabc �
{[

(axc)b/c
(
�
[ 1
c

]− �
[ 1
c , ax

c
])]

+
[
xb�

( 1+b
c

)]− [�( 1+bc , axc
)]}

.

However, by evaluating b � c � 1, (9) and (10) reduce to the Lindley distribution,
which is the root model.

4 Mathematical Properties of the Omega Lindley Distribution

In this section, we derive several possible mathematical properties, such as series rep-
resentation, shape of the density, hazard and survival functions, moments and related
measures, order statistics, quantile function and parameter estimation. Notably, algo-
rithms from Wolfram Mathematica aided the derivations and numerical analyses in
this work.
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4.1 Series Representation

The following forms of mathematical (and special) functions can be represented as
series:

e−axc �
∞∑
i�0

(−axc)i

i!
. (11)

(
1 + xb

)
�

∞∑
j�0

(
1
j

)
xbj (12)

�(θ , x) � �(θ) −
∞∑
p�0

(−1)pxθ+p

p! (θ + p)
(13)

→ �

[
1

c
, axc

]
� �

(
1

c

)
−

∞∑
p�0

(−1)p(axc)
1
c +p

p!
( 1
c + p

) . (14)

�

(
1 + b

c
, axc

)
� �

(
1 + b

c

)
−

∞∑
p�0

(−1)p(axc)
1+b
c +p

p!
( 1+b

c + p
) (15)

By implication generally, Eqs. (9) and (10) are represented as.

u(x , ω) � cab/c

N◦

∞∑
j�0

∞∑
i�0

(
1
j

)
(−axc)i

i!
xbj . (16)

U (x , ω) � (axc)a
1+b
c x− 1+b

c ϕabc

N◦
, (17)

where

ϕabc �
⎡
⎣(axc)b/c

⎛
⎝�

[
1

c

]
−
⎡
⎣�

(
1

c

)
−

∞∑
p�0

( − 1)p(axc)
1
c +p

p!
( 1
c + p

)
⎤
⎦
⎞
⎠
⎤
⎦

+

[
xb�

(
1 + b

c

)]
−
⎡
⎣�

(
1 + b

c

)
−

∞∑
p�0

( − 1)p(axc)
1+b
c +p

p!
( 1+b

c + p
)

⎤
⎦
.

These, in essence, simply reduce the computational complexities that come with
having a variable in special functions such as the incomplete gamma function.

4.2 The Shape of the Density, Hazard and Survival Functions of the Omega Lindley
Distribution

Here, we examine the various possible shapes of the density function obtained in (9),
where the hazard rate function and survival model of the ω− Lindley distribution are
derived as
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H(x , ω) � u(x , ω)

1 −U (x , ω)
; S(x , ω) � 1 −U (x , ω). (18)

The different plots are intended to X-ray the modeling potentials of the proposed
distribution.

The graphical plot in Fig. 1 indicates that the density function of the ω − Lindley
distribution exhibits a monotonic increasing and decreasing trend and a right skewed,
approximately symmetric and modified unimodal trend (bathtub and inverted bath-
tub). This is a more robust improvement to the exponential and Lindley distribution,
which is characterized by amonotonic decreasing trend only. The respective parameter
combinations for each of the density shapes are given thus:

• a � 1.28, b � 6.48, c � 1 || a � 0.21, b � 3.4, c � 1.2;
• a � 1, b � 1.15, c � 1 || a � 1, b � 1, c � 1;
• a � 0.01, b � 2.11, c � 0.29;
• a � 0.1, b � 0.51, c � 0.57.

The respective parameter combinations for each of the hazard shapes are given
thus:

• a � 2.43, b � 1, c � 0.25
• a � 1, b � 2, c � 0.27
• a � 2.26, b � 1, c � 0.24
• a � 4.17, b � 2.56, c � 0.49

The graphical plots in Fig. 2 show that the hazard rate function of the ω− Lind-
ley distribution exhibits both decreasing and increasing trends: bathtub and modified
unimodal shaped properties. In addition, Fig. 3 shows the survival trend, which is

Fig. 1 Density shapes of the ω − Lindley distribution
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Fig. 2 Hazard plots for the ω − Lindley distribution

Fig. 3 Survival plots for ω − Lindley distribution

conventionally marked by its decreasing characteristics; however, a constant trend is
also obtained. By implication, the proposed distribution would not only model sys-
tems or components that will definitely terminate but also one such system that can
be sustained over a given time.

123



Annals of Data Science

4.3 Moments and RelatedMeasures

If X is a random variable from a continuous distribution and g(x) is the density
function, then the r th moment about the origin of X is defined by

E
(
Xr ) �

∞∫

0

xr g(x)dx � μr′ . (19)

Now, for the ω− Lindley distribution, we recall (9) and obtain

E
(
Xr ) � ca1+b/c

N◦

∞∫

0

xr
(
1 + xb

)
e−axc , (20)

� a
1+b
c − 1+b+r

c
(
ab/c�

[ 1+r
c

]
+ �
[ 1+b+r

c

])
N◦

. (21)

Of course, the first four r th moments of the ω− Lindley distribution are further
obtained at r � 1, 2, 3 and 4

μ′
1 � a

1+b
c − 2+b

c
(
ab/c �

[ 2
c

]
+ �
[ 2+b

c

])
N◦

� μμ′
2 � a

1+b
c − 3+b

c
(
ab/c�

[ 3
c

]
+ �
[ 3+b

c

])
N◦

,

(22)

μ′
3 � a

1+b
c − 4+b

c
(
ab/c�

[ 4
c

]
+ �
[ 4+b

c

])
N◦

μ′
4 �

a
1+b
c − 5+b

c

(
ab/c�

[
5
c

]
+ �
[
5+b
c

])

N◦
(23)

Therefore, the variance, skewness and kurtosis of the ω− Lindley distribution can
be obtained

Variance(μ2) � μ′
2 − μ2 � σ 2 Skewness(Sk) � μ3

(μ2)
3/2 � μ′

3 − 3μ′
2μ + 2μ3

(
μ
,
2 − μ2

)3/2
(24)

Kurtosis(Ks) � μ4

(μ2)
2 � μ′

4 − 4μ′
3μ + 6μ′

2μ
2 − 3μ4

(
μ′
2 − μ2

)2 . (25)

Numerical analysis of the theoretical moments of the ω− Lindley distribution for
the selected parameter values is shown in Tables 1, 2 and 3.

By carefully observing Tables 1, 2 and 3, we see that the ω − Lindley distribution
is right skewed (Sk > 0), approximately symmetric (Sk ≈ 0), leptokurtic (Ks > 3),
platykurtic (Ks < 3) and mesokurtic (Ks ≈ 3). These numerical characteristics are
backup points that support the graphical illustration of the density function, as shown
in Fig. 1.
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Table 1 Moments of ω −Lindley
distribution at c � 1 μr∗ a � 1.2

b � 0.5

a � 2.5

b � 5

a � 2

b � 5.095

μ′
1 1.0197 1.5027 2.5511

μ′
2 1.9324 3.8485 8.8019

μ′
3 5.3162 12.028 35.377

μ′
4 19.136 42.956 160.51

σ 2 0.8926 1.5904 2.2938

Sk 1.8088 0.4268 0.3511

Ks 7.8627 2.9665 3.0670

Table 2 Moments of ω −Lindley
distribution at c � 1.5 μr∗ a � 0.5

b � 1

a � 0.1

b � 6.5

a � 3.25

b � 0.75

μ′
1 1.1275 3.5664 0.5111

μ′
2 2.4450 33.068 0.2861

μ′
3 6.7750 353.611 0.2105

μ′
4 22.3698 4249.4 0.1877

σ 2 1.1737 20.3494 0.0249

Sk 1.0786 0.9862 9.8864

Ks 4.0764 3.0024 1.7046

Table 3 Moments of ω −Lindley
distribution at c � 5 μr∗ a � 1.3

b � 4

a � 1

b � 4.5

a � 3.25

b � 0.75

μ′
1 0.642 0.5622 1.0775

μ′
2 0.4541 0.4286 0.5995

μ′
3 0.3685 0.3740 0.3819

μ′
4 0.3249 0.3540 0.265

σ 2 0.0419 0.1125 − 0.5615

Sk 2.6959 0.1726 9.8864

Ks − 4.593 2.0585 − 3.9604

4.4 Order Statistics

Let X1, X2, . . . , Xn be a random sample of size n from the ω− Lindley distribution.
Let X1 < X2 <, . . . , < Xn denote the corresponding order statistics. The density
and distribution functions of the kth-order statistics Y � Xk are given by:
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fY (y) � n!

(k − 1)! (n − k)!
f (y)Fk−1(y){1 − F(y)}n−k , (26)

However, {1 − F(y)}n−k �
∞∑
l�0

(
n − k
l

)
( − 1)l [F(y)]l

∴ fY (y) � n! ca1+b/c

(k − 1)! (n − k)!

{(
1 + yb

)
e−ayc

}
N−2◦

{(
ayc
)
a

1+b
c y− 1+b

c ϕabc

}k−1

⎧⎨
⎩

∞∑
l�0

(
n − k
l

)
(−1)l

[
(ayc)a

1+b
c y− 1+b

c ϕabc

N◦

]l⎫⎬
⎭. (27)

and FY (y) �
n∑
j�k

(
n
j

)
F j (y){1 − F(y)}n− j (28)

� FY (y) �
n∑
j�k

n− j∑
l�0

(
n
j

)(
n − j
l

)
(−1)l F j+l(y), (29)

�
n∑
j�k

∞∑
l�0

(
n
j

)(
n − j
l

)
(−1)l

[
(ayc)a

1+b
c y− 1+b

c ϕabc

N◦

] j+l

. (30)

By implication, the PDF of minimum order statistics is obtained by evaluating
j � k � 1 in (27) to obtain:

f1:n � ca1+b/c
{(

1 + yb
)
e−ayc

}
N−2◦

⎧⎪⎨
⎪⎩

∞∑
l�0

(
n − 1
l

)
(−1)l

⎡
⎣
(
ayc
)
a
1+b
c y− 1+b

c ϕabc

N◦

⎤
⎦
l
⎫⎪⎬
⎪⎭. (31)

where the corresponding PDFof themaximumorder statistics is obtained at j � k � n
in (27):

fn:n � ca1+b/c
{(

1 + yb
)
e−ayc

}
N−2◦

{(
ayc
)
a

1+b
c y− 1+b

c ϕabc

}n−1

⎧⎨
⎩

∞∑
l�0

(
0
l

)
(−1)l

[
(ayc)a

1+b
c y− 1+b

c ϕabc

N◦

]l⎫⎬
⎭. (32)

4.5 The Quantile Function of the Omega Lindley Distribution

The expression Qx (p) � U−1(p) gives the quantile function of the ω − Lindley
distribution, where 0 < p < 1 and the function U is the cumulative distribution
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function. Now, recalling (10), the pth quantile function is obtained by solving

U (x , ω) � p. (33)

Structurally, it may not be feasible to obtain the inverse of x as in Qx (p) � U−1(p)
due to the gamma components in the CDF; hence, we leave the expression as a non-
linear equation; thus,

U (x , ω) − p � 0. (34)

Moreover, themedian of theω−Lindley distribution can be obtained by evaluating
p � 0.5 in (34). The derivation of the quantile function of the proposed distribution is
intentionally skipped due to the special functions in theCDF.Hence,we use algorithms
in Wolfram Mathematica to generate random numbers.

4.6 Parameter Estimation

In this section, we present methods for estimating the parameters of the ω − Lindley
distribution, which include the Cramer–von Mises estimator, the maximum product
of spacing estimators and the maximum likelihood estimator.

4.6.1 Cramer–Von Mises (CVM) Estimator

Macdonald [20] proposed CVM as an estimation method with the objective of mini-
mizing the following function:

Vc � (12n)−1 +
n∑

i�1

[
F
(
x(i)
)− 2i − 1

2n

]2
. (35)

Now, by substituting the CDF of the ω − Lindley distribution U (x , ω) as in (10)
into (35), we obtain

Vc(a, b, c) � (12n)−1 +
n∑

i�1

[
A

(
axc(i)x

− 1+b
c

(i) ϕ
x(i)
abc

)
− 2i − 1

2n

]2
, (36)

where A � a
1+b
c

N◦ .

Using a software algorithm, (36) can be minimized to obtain the estimates of the
CVM, or we can maximize it by solving

∂Vc(a, b, c)

∂a
� 0;

∂Vc(a, b, c)

∂b
� 0;

∂Vc(a, b, c)

∂c
� 0. (37)
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4.6.2 Maximum Product of Spacing (MPS) Estimators

This method was originally used by Cheng and Amin [21] to estimate the parameters
of lognormal distributions and is given as

Mp � 1

n + 1

n+1∑
i�1

log Ri , (38)

where Ri � F
(
x(i)
)− F

(
x(i−1)

)
and F

(
x(0)
) � 0; F

(
x(n+1)

) � 1.

To obtain the function in (38) for the ω − Lindley distribution, we substitute the
CDF U (x , ω) in F

(
x(∗)

)

Mp(a, b, c) � 1

n + 1

n+1∑
i�1

log
[
U
(
x(i)
)−U

(
x(i−1)

)]
, (39)

� A

n + 1

n+1∑
i�1

log

[((
axc(i)

)
x

− 1+b
c

(i) ϕ
x(i)
abc

)
−
((

axc(i−1)

)
x

− 1+b
c

(i−1)ϕ
x(i−1)
abc

)]
(40)

The MPS can be estimated by maximizing (40) at ∂Mp(a, b, c)
∂ω

� 0, where

∂Mp(a, b, c)

∂a
� 1

n + 1

n+1∑
i�1

∂

∂a

{
log
[
U
(
x(i)
)−U

(
x(i−1)

)]}
. (41)

∂Mp(a, b, c)

∂b
� 1

n + 1

n+1∑
i�1

∂

∂b

{
log
[
U
(
x(i)
)−U

(
x(i−1)

)]}
. (42)

∂Mp(a, b, c)

∂c
� 1

n + 1

n+1∑
i�1

∂

∂c

{
log
[
U
(
x(i)
)−U

(
x(i−1)

)]}
. (43)

4.6.3 Maximum Likelihood Estimator (MLE)

Myung [22] highlighted the objective of MLE, which is to obtain the parameter values
of a model that maximizes the likelihood function over the spatial dimension of the
parameters.

Let xi , i � 1, 2, . . . , n be a vector of observations from the ω − Lindley distri-
bution; then, the log-likelihood function is defined by

lnL �
n∑

i�1

log f (xi ;ω) �
n∑

i�1

log

[
ca1+b/c

(
1 + xb

)
e−axc

ab/c�
[ 1
c

]
+ �
[ 1+b

c

]
]
, (44)
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� log

[
ca1+b/c

ab/c�
[ 1
c

]
+ �
[ 1+b

c

]
]n

+
n∑

i�1

log
(
1 + xb

)
− a

n∑
i�1

xci , (45)

� nlogc + n

(
1 +

b

c

)
log a − n

(
b

c

)
log a − log�

(
1

c

)

− log�

(
1 + b

c

)
+

n∑
i�1

log
(
1 + xb

)
− a

n∑
i�1

xci . (46)

The score function for (46) is defined by

∂lnL

∂a
� n

(
1 +

b

c

)(
1

a

)
− n

(
b

c

)(
1

a

)
−

n∑
i�1

xci , (47)

n
a −

n∑
i�1

xci � 0.

∂lnL

∂b
� n

(
1

c

)
log a − n

(
1

c

)
log a − Pg

(
0, 1+b

c

)
c

+
n∑

i�1

xblogx(
1 + xb

) , (48)

n∑
i�1

xbi logx(
1 + xbi

) − Pg
(
0, 1+b

c

)
c

� 0.

∂lnL

∂c
� n

c
− n

(
b

c2

)
log a + n

(
b

c2

)
log a +

Pg
(
0, 1

c

)
c2

+
(1 + b)Pg

(
0, 1+b

c

)
c2

− a
n∑

i�1

xci log(xi ), (49)

n
c +

Pg
(
0, 1c

)
c2

+
(1+b)Pg

(
0, 1+bc

)
c2

− a
n∑

i�1
xci log(xi ) � 0.

where Pg(∗, ∗) is poly-gamma.
It can be clearly seen that (47, 48 and 49) is in close form. Therefore, a numer-

ical analysis such as the Newton–Raphson iterative method, which is a root finding
algorithm, can be used to obtain the MLEs of â, b̂ and ĉ. This scheme is given by

ω̂ � ω − H−1(ω)S(ω). (50)

where S(ω) is the score function and H−1(ω) is the second derivative of the log-
likelihood function termed the Hessian matrix. Refer to [23, 24] for a detailed study.
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4.7 Interval Estimation

Furthermore, we present the asymptotic confidence intervals for the parameters of the
ω − Lindley distribution. In this attempt, the Fisher information matrix is adopted
with the goal of measuring the amount of information that a random vector of variables
carries about unknown parameters of a probability model that forecasts for Xi , i � 1,
2, 3, . . . n. The information matrix is given by

I (ωk) � −E[H(ωk)] � −E

⎡
⎢⎢⎢⎣

∂2l
∂a2

∂2l
∂a∂b

∂2l
∂a∂c

∂2l
∂a∂b

∂2l
∂b2

∂2l
∂b∂c

∂2l
∂a∂c

∂2l
∂b∂c

∂2l
∂c2

⎤
⎥⎥⎥⎦, ω � (a, b, c)T . (51)

Under the normality condition ω̂ ∼ N
(
ω, I−1(ω)

)
, is obtained by inverting (51).

Consequently, the interval estimate is obtained by the approximation of (1 − α)100
confidence intervals constructed for the parameters a, bandc:

â ± Zα/2

√
var
(
â
)
; b̂ ± Zα/2

√
var
(
b̂
)
; ĉ ± Zα/2

√
var
(
ĉ
)
. where var(ω) are the

variances of the parameters, which are given by the respective diagonal elements of the
variance–covariance matrix I−1(ωk), and Zα/2 is the upper percentile of the standard
normal distribution.

5 Real Data Analysis

The analyses of two real-life datasets are detailed in this section to demonstrate the
applicability of the proposed distribution. Ghitany [15] presented a dataset that mea-
sures the waiting time (in minutes) of 100 bank customers, whereas the second dataset
represents the remission time of 128 bladder cancer patients, as reported in [25]. The
omegaω−Lindley distribution is fitted to these data alongside other Lindley families
of distributions:

• The three-parameter generalized Lindley distribution (TPGLD) was described in
[18]:

g(x) � ac2e−cxa x−1+a(b + xa)

1 + bc
, x > 0, a, b, c > 0. (52)

• The new generalized two parameter Lindley distribution (NG2PLD) was described
in [17]:

g(x) �
a2e−ax

(
1 + a−2+bx−1+b

�[b]

)

1 + a
, x > 0, a, b > 0. (53)
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Table 4 Parameters for the
comparative analysis of dataset 1 Models a b c

ω − Lindley 0.21 3.4 1.2

TPGLD 1.48 0.0001 0.33

NG2PLD 0.25 1.69

PLD 1.18 0.46

LD 0.34

Table 5 Inferential results of the proposed model and selected Lindley families of distribution (data 1)

Models (Pvalue) CvM
(Pvalue)

χ2

(Pvalue)

ω − Lindley 14.0609
(6.2 × 10−6)

1.6761
(6.9 × 10−5)

68.22
(6.9 × 10−10)

TPGLD 303.825
(0.)

16.4226
(0.)

441.52
(6.0 × 10−87)

NG2PLD 19.0733
(
6.0 × 10−6

)
3.3672(
1.2 × 10−8

) 43.78(
1.7 × 10−5

)

PLD 190.976
(0.)

16.9311
(0.)

474.86(
4.93 × 10−8

)

LD 37.8204
(0.)

5.9551(
2.53 × 10−14

) 90.32(
4.2 × 10−14

)

Table 6 Parameters for the
comparative analysis of data 2 Models a b c

ω − Lindley 0.55 0.12 0.46

TPGLD 0.38 0.97 1.27

N2PLD 0.17 0.08

PLD 0.25 0.5

LD 0.5

The power Lindley distribution (PLD) was described in [16]:

g(x) � ab2e−bxa (1 + xa)xa−1

1 + b
, x > 0, a, b > 0. (54)
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Table 7 Inferential results of the proposed model and selected Lindley families of distribution (data 2)

Models (Pvalue) CvM
(Pvalue)

χ2

(Pvalue)

ω − Lindley 32.5098
(0.)

7.0544
(0.)

95.3438(
1.3 × 10−14

)

TPGLD 76.6006
(0.)

15.796
(0.)

190.938(
9.9 × 10−34

)

N2PLD 181.491
(0.)

28.8656
(0.)

556.688(
1.3 × 10−110

)

PLD 47.8123
(0.)

10.5599
(0.)

324.375(
1.8 × 10−61

)

LD 85.2727
(0.)

9.9772
(0.)

216.75(
4.9 × 10−39

)

Fig. 4 Density fit plots for dataset 1

The Lindley distribution (LD) was described in [14]:

g(x) � a2e−ax (1 + x)

1 + a
, x > 0, a > 0. (55)

The measurement criteria used for performance comparison in this work were the
Cramer–von Mises (CvM), Anderson Darling , and Pearson chi-square (χ2) test
statistics and their corresponding P values. These automatically selected statistics are
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Fig. 5 Fitted quantile (q-q) plot [left] and probability (p-p) plot [right] for data 1
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Fig. 6 Density fit plots for dataset 2

based on the following:

CvM ∼ Expectation

{[
F̂(x) − F(x)

]2}

where F(x) and F̂(x) are theCDFs

of the distributions and the empirical CDFs of the data, respectively, and oi and ei
are the observed and expected frequencies, respectively. The parameter estimates and
analytical results are summarized in Tables 4, 5, 6 and 7, and Figs. 4, 5, 6 and 7 are
the supporting diagrammatical analogy of the empirical inference.

Judging from the inferential measures, which project comparative goodness based
on the least empirical status of the three automatically selected test criteria, it can
clearly be observed from Tables 5 and 7 that the proposed distribution is a better fit for
the datasets. This is also proven diagrammatically according to Figs. 4 and 6, which
represent the density fit plots. Further support for the results can be found in Figs. 5
and 7, which include quantile and probability (q-q and p-p) plots.

6 Concluding Remarks

In this research, a more efficient approach to increasing the number of parameters
in an existing distribution apart from the generalization method is presented, and by
applying this concept, a new distribution is proposed. Some mathematical properties
of the proposed distribution, including series representations of the PDF and CDF,
density, hazard and survival shapes, moments and related measures, quantile func-
tions, parameter estimations, interval estimates and order statistics, are derived and/or
realized. Due to the special functions in the CDF, both the hazard and survival func-
tions are rendered in a closed-form structure. As a result, they yield both monotonic
and nonmonotonic trends, which is a great economy in data modeling. The survival
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Fig. 7 Fitted quantile (q-q) plot [left] and probability (p-p) plot [right] for dataset 2
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function uniquely features a uniform trend, which implies that the proposed distri-
bution can model systems or components whose lifespan is sustained over a given
range of time. The parameter estimation is theoretically studied under three different
methods, including the CramerVonMise, maximumproduct of spacing andmaximum
likelihood approaches. Finally, the proposed model is fitted to two real-life datasets to
assess its flexibility. Based on the obtained empirical and diagrammatical results, the
proposed distribution can better forecast the datasets than several other rival lifetime
models. The proposed parameter inclusion strategy is expected to be adopted in the
field ofmathematical statistics, and the proposedmodel has wider applications in areas
consistent with survival data analysis.
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