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Abstract
In this paper, we introduce a new distribution for modeling count datasets with some
unique characteristics, obtained by mixing the generalized Poisson distribution and
the moment exponential distribution based on the framework of the Lagrangian prob-
ability distribution, so-called generalized Poisson moment exponential distribution
(GPMED). It is shown that the Poisson-moment exponential and Poisson-Ailamujia
distributions are special cases of theGPMED.Some importantmathematical properties
of the GPMED, including median, mode and non-central moment are also discussed
through this paper. It is shown that the moment of the GPMED do not exist in some sit-
uations and have increasing, decreasing, and upside-down bathtub shaped hazard rates.
The maximum likelihood method has been discussed for estimating its parameters.
The likelihood ratio test is used to assess the effectiveness of the additional parameter
included in the GPMED. The behaviour of these estimators is assessed using sim-
ulation study based on the inverse tranformation method. A zero-inflated version of
the GPMED is also defined for the situation with an excessive number of zeros in
the datasets. Applications of the GPMED and zero-inflated GPMED in various fields
are presented and compared with some other existing distributions. In general, the
GPMED or its zero-inflated version performs better than the other models, especially
for the cases where the data are highly skewed or excessive number of zeros.
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1 Introduction

Numerous practical and theoretical fields, such as engineering, health, transportation,
and insurance, depend on count models. To describe pandemonium behaviour, crop
harvesting, corporate data mining, e-commerce fraud, and other difficulties, data sci-
ence methodologies have been utilised (see [30, 34–36]). One of the most significant
applications of statistics is dealing with natural events or various real-world situations
and representing them in a probability function that has a particular probability distri-
bution that fits with those events. As a result, we must be aware of these accidents and
express them using a random variable (rv). Every rv can be expressed by a probability
distribution function, which can be discrete, continuous, or mixed. In this article, we
present a mixed count model based on the Lagrange expansion given in [20].

In modeling count data, Poisson distribution is one common model in literature.
This distribution, however, has unique characteristics that make it unsuitable for the
majority of count data, particularly when there are problems with overdispersion or
underdispersion. Themajority of count data deviates from the assumption that the Pois-
son distribution’smean and variance are equal (equidispersion). Consequently, it limits
the applications of this distribution, see [23, 25]. Researchers have provided mixed-
Poisson distributions in modeling count datasets as a possible solution to this issue.
For instance, the authors in [7] created the Poisson-transmuted exponential distribu-
tion, a new mixed-Poisson distribution by combining the Poisson distribution with the
transmuted exponential distribution (PTED). The Poisson-Bilal distribution was first
introduced by [3]. The author in [5] introduced the Poisson-x gamma distribution. The
Poisson-generalized Lindley distribution was first developed by [4]. An extensive lit-
erature review on mixed-Poisson distributions can be found in [22]. Many researchers
have recommended using generalized distributions to explain the behaviour of their
problems in order to deal with situations where many non-homogeneous events and
common distributions are ineffective. The generalized distributions characterized by
their ability to represent homogeneous and non-homogeneous population, also it is
much wider than their traditional forms, see [8, 10, 39].

The authors in [10] developed generalized Poisson distribution (GPD) by using
Lagrange expansion given in [20]. In contrast to the usual Poisson distribution, which
has no dispersion flexibility, the GPD must be more appropriate in many types of
data with overdispersion or underdispersion. The authors in [10] demonstrated that,
depending on the value of the parameter, if it is positive, zero, or negative, respectively,
the variance of the GPD is larger than, equal to, or less than the mean. Additionally,
they demonstrated that when parameter values increased, so did the variance andmean
values, see [23, 39]. The GPD model, which generalizes the Poisson distribution, is
preferred in many statistical applications. In distribution theory and numerous appli-
cations, including branching processes, queuing theory, science, ecology, biology, and
genetics, the properties of the GPD and the potential to represent data with overdisper-
sion or underdispersion as well as the data with equal dispersion make it a desirable
distribution. In the theory of Lagrangian distributions, GPD also occupies the greatest
space and is the most important concept, one can refer by [29].

Themoment distributions arise in the context of unequal probability sampling; have
great importance in reliability, biomedicine, ecology, and life-testing. The authors in
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[12] proposed the moment exponential distribution (MED) through assigning weight
to the exponential distribution by following the idea of [14]. The MEDmodel attained
great attention due to its flexibility so various authors studied and further generalized it
for more complex datasets. For example, exponentiated-MED (see [15]), generalized
exponentiated-MED (see [19]), Marshall-Olkin length biased MED (see [37]). The
author in [2] recently put forth the Poisson-MED (PMED) model with one parameter
count. Given the need for a more flexible distribution for statistical data processing, a
new three-parameter discrete probability distribution with mixed generalized Poisson
and moment exponential distributions is proposed in this paper. The proposed distri-
bution will be more suited for analyzing count datasets. After little parameterization,
the GPMED is similar to the Poisson Ailamujia distribution proposed by [16]. Also,
the GPMED is a generalization of the PMED.

In addition, count data containing extra zeros are prevalent inmany fields, including
agriculture, biology, ecology, engineering, epidemiology, sociology, etc. Examples of
such data include the number of women over 80 who pass away each day ([17]), the
number of fetal movements per second ([26]), the number of HIV-positive patients
([38]), and the number of ambulances call for illnesses brought on by the heat ([6]),
the number of health services visits during a follow-up time ([13]). Numerous zero-
inflated models, including the zero-inflated Poisson distribution (ZIPD), the zero-
inflated negative binomial distribution, and many others, have been researched in the
literature to explain count data with excess zeros (see [40]). Zero-inflated models are
becoming more andmore common in various disciplines. In this article, we also create
the zero-inflated version of the GPMED and give it the name zero-inflated GPMED
(ZIGPMED).

The following is how the rest of the article is sorted. The detailed description of the
Lagrange expansion and MED are covered in Sect. 2. The definition and some of its
special cases are discussed in Sect. 3. Some mathematical properties, and other details
are presented in Sect. 4. In Sect. 5, the maximum likelihood estimation technique is
defined to estimate the unknown parameters of the new distribution, and the significane
of the additional parameters included in the new distribution is tested in Sect. 6. The
performance of the GPMED parameters for the maximum likeliood estimation is also
studied using simulation technique in the Sect. 7. A zero-inflatedmodel with respect to
the new distribution is discussed in Sect. 8. The applications and the empirical studies
based on the new model concerning two real datasets are conducted in Sect. 9. Then,
Sect. 10 finishes with the decisive concluding words.

2 Some Preliminaries

In this section, we provide somemathematical background on the discrete generalized
Lagrangian probability distribution (DGLPD), and definition of the MED.

123



Annals of Data Science

2.1 The Discrete Generalized Lagrangian Probability Distribution

Let g(z) and h(z) be two analytic function of z, which are successively differentiable
in [-1,1] such that g(1) = h(1) = 1, and g(0) �= 0. Lagrange considered the inversion
of the Lagrange transformation u = z

g(z) , and expressed it as a power series of u. The
author in [20] defined the Lagrange expansion to be:

h(u) = h(0) +
∞∑

x=1

ux

x ! Dx−1
[(
g(z)

)x
h

′
(z)

]∣∣∣∣
z=0

, (2.1)

where Dr = ∂r

∂zr and h
′
(z) = ∂h(z)

∂z .
If every term in the series (2.1) is non-negative, the series turns into a probability

generating function (pgf) in u and gives the probability mass function (pmf) of the
class of DGLPD, which is as follows:

P(X = x) =

⎧
⎪⎨

⎪⎩

h(0) x = 0,

Dx−1[(g(z))x h′(z)]|z=0
x ! x = 1, 2, 3 . . .

(2.2)

Using the Lagrange expansion described in (2.1), The authors in [11] defined and
studied the class of DGLPD. For more references on the class of DGLPD, see [9].

According to [27], it is possible to derive the DGLPDs by relaxing the requirement
that g(1) = h(1) = 1 for creating Lagrangian probability distributions. We create the
new discrete mixture distribution based on the DGLPD using this relaxation.

2.2 TheMoment Exponential Distribution

A rv T follows a MED, denoted as X ∼ MED(α), if its probability density function
(pdf) is given by

f (t) = t

α2 e− t
α , t > 0, α > 0. (2.3)

Now, the cumulative density function (cdf) of the MED is given as

F(t) = 1 −
(
1 + t

α

)
e− t

α ,

where t > 0 and α > 0.
The rth order non-central moment (μr ) associated with the MED is given by

μr = E(T r ) = αr�(r + 2), r = 1, 2, . . . ,

We have employed the gamma function defined by �(m) = ∫ ∞
0 tm−1e−t dt , with the

relation �(m) = (m − 1)! for any positive integer m.
The graphical depiction of the pdf of the MED is shown in the plots in Fig. 1. To

learn more about the MED, see [12].
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Fig. 1 Various shapes of pdf of the MED for different parameter values

3 The Generalized Poisson-Moment Exponential Distribution

With theDGLPD, the following theorem from [28] is applied to create the newmixture
of the MED, is given by

Theorem 3.1 Let g(z) > 0 and h(z) > 0 (for all z > 0) be analytic functions such

that g(0) �= 0,

{
Dx−1

[
(g(z))x h

′
(z)

]}∣∣∣∣
z=0

≥ 0, and h(0) ≥ 0, where D = ∂
∂z is a

derivative operator. If the series

h(u) = h(0) +
∞∑

x=1

ux

x !
{
Dx−1

[
(g(z))x h

′
(z)

]}∣∣∣∣
z=0

converges uniformly on any closed and bounded interval, then a rv X has a unform
mixture of Lagrangian distribution with the pmf

P(X = x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ 1
0

{ h(0)
h(t)

}
dt, x = 0,

∫ 1
0

{(
t

g(t)

)x
x !h(t)

{
Dx−1

[
(g(z))x h

′
(z)

]}∣∣∣∣
z=0

}
dt, x ≥ 1.

(3.1)

Proof Proof is given in [28] and hence omitted. ��

Theorem 3.2 Let g(t) and h(t) satisfy the conditions in Thorem 3.1 and let f (t) be a
pdf for some continuous rv T , then the pmf of X, a continuous mixture of Lagrangian
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distribution, is given by

P(X = x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h(0)
∫ ∞
−∞

( f (t)
h(t)

)
dt, x = 0,

∫ ∞
−∞

{
f (t)

(
t

g(t)

)x
x !h(t)

{
Dx−1

[
(g(z))x h

′
(z)

]}∣∣∣∣
z=0

}
dt, x ≥ 1.

(3.2)

Proof Proof is given in [28] and hence omitted. ��

Proposition 3.1 Assume that X follows the new mixture generalized Poisson-moment
exponential distribution (GPMED) with λ > 0, 0 < ρ < 1 and α > 0, the pmf of X
is given by

P(x) = λαx (λ + ρx)x−1 (x + 1)
(
1 + α(λ + ρx)

)x+2 , x = 0, 1, 2, . . . (3.3)

This distribution is denoted as GPMED(λ, ρ, α), and one can note X ∼
GPMED(λ, ρ, α) to inform that X follows the GPMED with parameters λ, ρ and α.

Proof Let g(z) = eρz and h(z) = eλz , where 0 < ρ < 1 and λ > 0. Under the
transformation z = ueρz and using the Lagrange expansion given in (2.1), we have

eλz = 1 +
∞∑

x=1

ux

x !
{
Dx−1

[ (
eρz)x λ eλz

]}∣∣∣∣
z=0

= 1 +
∞∑

x=1

λ ux

x !
{
Dx−1

[
e(λ+ρx)z

]}∣∣∣∣
z=0

= 1 +
∞∑

x=1

λ

x !
(

z

g(z)

)x

(λ + ρx)x−1

= 1 +
∞∑

x=1

λ

x !
(

z

eρz

)x

(λ + ρx)x−1.

substituting z = t , we get

eλt =
∞∑

x=0

λ
(
te−ρt

)x
(λ + ρx)x−1

x ! ,

which implies

1 =
∞∑

x=0

λt (λt + ρt x)x−1 e−λt−ρt x

x ! .

when t = 1 the above formulation reduces to the GPD given in [10].
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Therefore, by Theorem 3.1, we have a uniform mixture of the GPD as:

P(x) =
∫ 1

0

λt (λt + ρt x)x−1 e−λt−ρt x

x ! ,

= λ

(λ + ρx)2

[
1 − e−(λ+ρx)

x∑

j=0

(λ + ρx) j

j !
]
,

where x = 0, 1, 2, . . .
Clearly, g(t) and h(t) generate a DGLPD, which satisfies the conditions given in

Theorem 3.1.More generally, assuming that the conditions given in Theorem 3.1 hold,
and by letting the variable t to be a continuous rv from the MED with pdf given in
(2.3).

By using Theorem 3.2, the pmf of the proposed new mixture model is obtained as
follows:

p(x) =
∫ ∞

0

(
t

α2 e
− t

α

)
t x e−λt−ρt x

x ! λ (λ + ρx)x−1 dt

= λ (λ + ρx)x−1

x ! α2

∫ ∞

0
t x+1 e−(λt+ρxt+ t

α )dt

= λ (λ + ρx)x−1

x ! α2

�(2 + x)
(
λ + ρx + 1

α

)2+x

= λαx (λ + ρx)x−1 (1 + x)
(
1 + α(λ + ρx)

)x+2 .

Hence the proof. ��

Some special cases of the GPMED are discusseed below,

(a) Now, for λ = 1, ρ = 0, the pmf of the GPMED reduces to

p(x) = αx (1 + x)

(1 + α)2+x
, x = 0, 1, 2, . . . (3.4)

The expression in Eq. (3.4) is the pmf of PMED, which was introduced by [2].
Thus, the GPMED is a special case of the PMED and hence GPMED is a gener-
alization of the PMED.

(b) For λ = 1, ρ = 0 and α = 1
β
, we obtain the pmf of Poisson Ailamujia, which

was introduced by [16]. Hence the GPMED is a special case of Poisson Ailamujia
distribution.

Now, the possible pmf and hazard rate function (hrf) plots for various values of the
parameters of the GPMED are portrayed in Figs. 2 and 3, respectively.
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Fig. 2 Various shapes of pmf of the GPMED for different parameter values

Fig. 3 Various shapes of hrf of the GPMED for different parameter values

4 Mathematical Properties

In this section, different structural properties of the GPMED have been evaluated.
These include median, mode, non-central moment, etc.

4.1 Median

Let X be a rv following the GPMED. Then the median of X is defined by the smaller
integer m in {0, 1, 2, . . . }. By the definition, m is the smallest integer in {0, 1, 2, . . . }
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such that P(X ≤ m) ≥ 1
2 ,

m∑

x=0

{
(λ + ρx)x−1 αx (1 + x)
(
1 + α(λ + ρx)

)x+2

}
≥ 1

2λ
, (4.1)

which is equivalent to the desired result.

4.2 Mode

Let X be a rv following the GPMED. Then, the mode of X , denoted by xm , exists in
{0, 1, 2, . . . }, and lies in the case:

We must find the integer x = xm for which f (x) has the greatest value. That is, we
aim to solve f (x) ≥ f (x − 1) and f (x) ≥ f (x + 1). First, note that f (x) can also
be written as:

f (x) = λαx (λ + ρx)x−1(1 + x)

(1 + α(λ + ρx))x+2 ,

Obviously, f (x) ≥ f (x − 1) implies that

η(x)

η(x − 1)
≥ 1

α
, (4.2)

where

η(x) = (1 + x)(λ + ρx)x−1

(1 + α(λ + ρx))x+2

Also, f (x) ≥ f (x + 1) implies that

η(x)

η(x + 1)
≥ α (4.3)

By combining (4.2) and (4.3), we get (4.4).

η(xm − 1)

η(xm)
≤ α ≤ η(xm)

η(xm + 1)
, (4.4)

where

η(xm) = (1 + xm)(λ + ρxm)xm−1

(1 + α(λ + ρxm))xm+2 .

4.3 rth Order Non-Central Moment

The rth non-central moment μ
′
r = E(Xr ) of the discrete variable X from the pmf

given in (3.2) is:

μ
′
r = E(Xr ) =

∞∑

x=0

xr p(x) (4.5)
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and

E(Xr ) =
∞∑

x=0

xr
∫ ∞

−∞
f (t)

t x

x ! (g(t))x h(t)

[
Dx−1 (g(z))x h

′
(z)

]∣∣∣∣
z=0

dt . (4.6)

Then

E(X) =
∫ ∞

−∞
f (t)

h(t)

∞∑

x=0

x
t x

(g(t))x x !
[
Dx−1 (g(z))x h

′
(z)

]∣∣∣∣
z=0

dt . (4.7)

[20] showed that the Lagrange expansion could be written as

h(t) = h(0) +
∞∑

x=1

( t
g(t)

)x

x !
[
Dx−1 (g(z))x h

′
(z)

]∣∣∣∣
z=0

. (4.8)

Taking the first derivative of (4.8) partially with respect to t , we have

D1 [h(t)] =
(
g(t)

t

)
D1

[
t

g(t)

] ∞∑

x=1

x
( t
g(t)

)x

x !
[
Dx−1 (g(z))x h

′
(z)

]∣∣∣∣
z=0

. (4.9)

which implies that

t D1(h(t))

g(t)D1
(

t
g(t)

) =
∞∑

x=1

x
( t
g(t)

)x

x !
[
Dx−1 (g(z))x h

′
(z)

]∣∣∣∣
z=0

. (4.10)

On using (4.10) in (4.7), we get

E(X) =
∫ ∞

−∞
f (t)

t D1(h(t))

h(t)g(t)D1
(

t
g(t)

)dt =
∫ ∞

−∞
f (t)D1 log (h(t))

D1 log
(

t
g(t)

) dt . (4.11)

Taking the second derivative of (4.10), we get

D1
[

t D1(h(t))

g(t)D1
(

t
g(t)

)
]

=
∞∑

x=1

x2
( t
g(t)

)x−1

x ! D1
[

t

g(t)

] [
Dx−1 (g(z))x h

′
(z)

]∣∣∣∣
z=0

.

On multiplying both sides by f (t)t
[
h(t)g(t)D1

(
t

g(t)

)]−1
, we get

f (t)t

[
h(t)g(t)D1

(
t

g(t)

)]−1

D1
[

t D1(h(t))

g(t)D1
(

t
g(t)

)
]

=
∞∑

x=1

x2 f (t)
( t
g(t)

)x

h(t)x !
[
Dx−1 (g(z))x h

′
(z)

]∣∣∣∣
z=0

. (4.12)
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Therefore,

E(X2) =
∞∑

x=0

x2 p(x)

=
∞∑

x=0

x2
∫ ∞

−∞

f (t)( t
g(t) )

x

h(t)x !
[
Dx−1 {

(g(z))xh′(z)
} ]∣∣∣∣

z=0
dt

=
∫ ∞

−∞

∞∑

x=0

x2 f (t)
(

t
g(t)

)x

h(t)x !
[
Dx−1 {

(g(z))xh′(z)
} ]∣∣∣∣

z=0
dt

=
∫ ∞

−∞
f (t)t

h(t)g(t)D
(

t
g(t)

) D

[
t D h(t)

D
(

t
g(t)

)
g(t)

]
dt

=
∫ ∞

−∞
f (t)

h(t)D log
(

t
g(t)

)D

[
D log h(t)

Dlog
(

t
g(t)

)
]
dt

Similarely, the rth order non-central moment of X is given by,

E(Xr ) =
∫ ∞

−∞
f (t)Wr (t)dt = E(X)Wr (T ), (4.13)

where W1(t) = D

{
log h(t)

[
D log

(
t

g(t)

)]−1
}

,W2(t) = L(t)D {W1(t)} ,

. . . ,Wr (t) = L(t)D (Wr−1(t)), where

L(t) =
[
D log

(
t

g(t)

)]−1

.

4.4 Mean andVariance

Using (4.13), the mean (μx ) of the GPMED is derived as:

E(X) = μx =
∫ ∞

0

f (t)D1 log (h(t))

D1 log
(

t
g(t)

) dt

= λ

α2

∫ ∞

0
t2e− t

α (1 − tρ)−1dt .
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Analogously, the variance (σ 2
x ) of the GPMED is given by

σ 2
x = E(X2) − (

μx
)2

=
∫ ∞

0

f (t)

h(t)D log
(

t
g(t)

)D

[
D log h(t)

Dlog
(

t
g(t)

)
]
dt − (

μx
)2

= λ

α2

∫ ∞

0
t2e−(λ+ 1

α
)t (1 − tρ)−3dt − (

μx
)2

,

where μx = λ
α2

∫ ∞
0 t2e− t

α (1 − tρ)−1dt .
It is important to observe that the integral part is incomplete gamma distribution

and consequently the mean and variance of the GPMED do not exist as in the case of
quasi-negative binomial distribution (see [29]).

5 Estimation

Here, we employ the method of maximum likelihood (ML) to estimate the GPMED’s
unknown parameters.

Let X1, X2, . . . , Xn be n independently and identically distributed (iid) from the
GPMED(λ, ρ, α) (consequently, using the pmf from (3.3)), and x1, x2, . . . , xn be n
observations. Following that, the appropriate likelihood function is provided by

L = λnα
∑n

i=1 xi
∏n

i=1 (λ + ρxi )xi−1 ∏n
i=1 (1 + xi )

∏n
i=1

[
1 + α (λ + ρxi )

]2+xi
.

The log-likelihood function is given by

Ln = n log λ +
n∑

i=1

log (λ + ρxi )
xi−1 +

n∑

i=1

xi logα +
n∑

i=1

log (1 + xi )

−
n∑

i=1

log
[
1 + α (λ + ρxi )

]2+xi .

(5.1)

The ML estimate (MLE) of the parameter vector 
 = (λ, ρ, α), say 
̂ = (λ̂, α̂, ρ̂), is
obtained by the solutions of the likelihood equations ∂Ln

∂λ
= 0, ∂Ln

∂ρ
= 0, and ∂Ln

∂α
= 0

with respect to λ, ρ and α. With these notations, λ̂, ρ̂ and α̂ are also called MLEs of
λ, ρ and α, respectively.

∂Ln

∂λ
= n

λ
+

n∑

i=1

(xi − 1)

(λ + ρxi )
−

n∑

i=1

(2 + xi ) α[
1 + α (λ + ρxi )

] = 0

∂Ln

∂ρ
=

n∑

i=1

(x1 − 1) xi
(λ + ρxi )

−
n∑

i=1

(2 + xi ) αxi[
1 + α (λ + ρxi )

] = 0
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and
∂Ln

∂α
=

∑n
i=1 xi
α

−
n∑

i=1

(2 + xi ) (λ + ρxi )[
1 + α (λ + ρxi )

] = 0.

It is impossible to find analytical solutions to the likelihood equations. Even so, the
MLEs can still be calculated numerically by maximizing the log-likelihood function
provided in (5.1) using the best method enabled in the R programming language when
adopting the L-BFGS-B algorithm.

6 Generalized Likelihood Ratio Test

In this section, we use the generalized likelihood ratio test (GLRT) to examine the
importance of an extra parameter included in the GPMED. To learn more, see [32].

To test whether the additional parameter λ and ρ of the GPMED(λ, ρ, α) is signif-
icant, we take over the GLRT method. Here, the null hypothesis is:

H0 : λ = 1, ρ = 0 verses H1 : λ �= 1, ρ �= 0.

In the case of the GLRT, the test statistic is given as:

− 2 log λ∗ = 2
(
Ln(
̂) − Ln(
̂

∗)
)

, (6.1)

where Ln(
̂), with 
̂ is the MLE of 
 = (λ, ρ, α) with no restrictions and 
̂∗ is the
MLE of 
 under H0. The test statistic shown in (6.1) is asymptotically distributed as
the chi-square distribution with two degree of freedom.

7 Simulation Study

To evaluate the performance of the estimates obtained using the ML estimation
approach in random samples, we run a quick simulation exercise in this section. Here,
we simulate a GPMED random sample using the inverse transformation method (see
[33]). The following is the inverse transform algorithm for generating the GPMED rv:

Step 1 : Generate a random number from uniform U (0, 1) distribution.
Step 2 : i = 0, p = (1 + λα)−2, F = p.
Step 3 : If U < F , set X = i , and stop.

Step 4 : p = p × α(i+2) [λ+ρ(i+1)]i [1+α(λ+ρi)]i+2

(i+1)[λ+ρi]i−1[1+α(λ+ρ(i+1))]i+3 , F = F + p, i = i + 1.

Step 5 : Go to Step 3.

where p is the probability that X = i , and F is the probability that X is less than or
equal to i .

The iteration process is repeated for N = 1, 000 times. The specification of the
parameter values is as follows:

(i) λ = 0.97, α = 0.5 and ρ = 0.01.
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(ii) λ = 0.71, α = 0.16, ρ = 0.27.
(iii) λ = 0.15, α = 0.25, ρ = 0.75.

Thus, we computed the average of the mean square error (MSE), and average absolute
bias using the MLEs.

The average absolute bias of the simulated estimates equals 1
1000

∑1000
i=1 |d̂i − d|

and the average MSE of the simulated estimates equals 1
1000

∑1000
i=1 (d̂i −d)2, in which

i is the number of iterations, d ∈ {λ, ρ, α} and d̂ is the estimate of d.
Table 1 provides a summary of the study for the samples of sizes 50, 125, 500, and

1,000. As the sample size increases, it can be seen that the MSE in both cases of the
parameter sets is in decreasing order, and the MLEs of the parameters go closer to
their original parameter values, indicating the consistency property of the MLEs.

8 Zero-inflated GPMED

Overdispersed count data are often characterized with an excessive number of zeros
and long or heavy tail properties. Common distributions used to fit data with long
or heavy tail are either NBD or GPD. However, for the situation with an excessive
number of zeros, these distributions may fail to adequately fit the proportion of zeros.
The situation of excessive zeros often arises from the results of clustering (see [21]).
For instance, in the insurance industry, excess zeros may arise when claims near the
deductible are not reported to the insurer, as claim payments could be less than the
increase in future premiums. In this article, we present the definition and some impor-
tant properties of the zero-inflated version of the new proposedmodel GPMED, known
as zero-inflated generalized Poisson moment exponential distribution (ZIGPMED).

Definition 8.1 Let ψ be a rv degenerate at the point zero and let X follows
GPMED(λ, ρ, α). Assume that ψ and X are statistically independent. Then a dis-
crete rv Y is said to follow the zero inflated GPMED if its pmf has the following
form.

f (y) = ω P(ψ = y) + (1 − ω) P(X = y)

=

⎧
⎪⎪⎨

⎪⎪⎩

ω + (1 − ω)(1 + λα)−2, y = 0

(1 − ω)
λαy(λ+ρy)y−1(y+1)
[1+α(λ+ρy)]y+2 , y = 1, 2, 3 . . .

(8.1)

in which ω ∈ [0, 1], λ > 0, 0 < ρ < 1 and α > 0.
Clearly, when ω = 0, the ZIGPMED reduces to the GPMED(λ, α, ρ) with pmf

given in (8.1). Next, we present certain properties of the ZIGPMED through the fol-
lowing results.
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By definition, the pgf of the ZIGPMED with pmf given in (8.1) is

(t) =
∞∑

y=0

t y f (y)

= ω + 1 − ω

(1 + λα)2
+ (1 − ω)

∞∑

y=1

(y + 1) [t(λ + ρy)]y

(λ + ρy) [1 + α(λ + ρy)]y

The corresponding mean and variance of the ZIGPMED is as follows:

Mean = (1 − ω)

∞∑

y=1

y(y + 1)(λ + ρy)y−1

[1 + α(λ + ρy)]y+2

and

Variance = (1−ω)

∞∑

y=1

y2(y + 1)(λ + ρy)y−1

[1 + α(λ + ρy)]y+2 −(1−ω)2
{ ∞∑

y=1

y(y + 1)(λ + ρy)y−1

[1 + α(λ + ρy)]y+2

}2

.

The likelihood function of theZIGPMEDbased on n observations, say (x1, x2, . . . , xn)
is:

L(ω, λ, α, ρ) =
n∏

i=1

{[
ω+(1−ω)(1+λα)−2

]
+

[
(1−ω)

(λ + ρxi )xi−1(xi + 1)

[1 + α(λ + ρxi )]
]xi+2}

.

(8.2)
The log-likelihood function of the equation given in (8.2) can be expressed as follows:

logL(ω, λ, ρ) = L =
n∑

i=1

log

{[
ω + (1 − ω)(1 + λα)−2

]
+

[
(1 − ω)

(λ + ρxi )xi−1(xi + 1)

[1 + α(λ + ρxi )]
]xi+2}

.

(8.3)
The estimates of the parameters in the non-linear equation given in (8.3) can be

obtained by numerical optimization using “optim” or “nlm” functions in the R soft-
ware, see [31].

9 Applications in Real Life Study

This section consists of demonstrating the empirical importance of the GPMED and
ZIGPMED.

9.1 Presentation

To show the usage of the proposed model, we utilize two real life data applications
in this paper: the first is the number of potato data set given in [18], which is used to
compare the datamodeling ability of theGPMEDover some competitive distributions,

123



Annals of Data Science

Table 2 The considered competitive distributions

Distributions Abbreviation Reference

Poisson Distribution PD -

Poisson Ailamujia distribution PAD [16]

Poisson moment exponential distribution PMED [2]

and the second is the number of insurance claims data set given in [24], which is
used to compare the data modeling ability of the ZIGPMED over some competitive
distributions.

In order to compare our proposed distribution and other competing models given
in Tables 2 and 5, respectively. We consider the negative log-likelihood (-logL), the
criteria like Akaike information criterion (AIC), Bayesian information criterion (BIC)
and correctedAkaike information criterion (AICc). The better distribution corresponds
to lesser AIC, BIC and AICc values.

AIC = 2k − 2 logL,BIC = klog n − 2 logL andAICc = AIC + 2k(k + 1)

n − k − 1
.

where k is the number of parameters in the statistical model, n is the sample size
and logL is the maximized value of the log-likelihood function under the considered
model.

Furthermore, the form of the hrf of the datasets is determined using a graphical
method based on Total Time on Test (TTT). If the empirical TTT plot is convex,
concave, convex then concave, and concave then convex, then the form of associated
hrf is decreasing, increasing, bathtub shape, upside-down bathtub shape, respectively
(see [1]). We use the RStudio software for numerical evaluations of these datasets.

9.2 Number of Potato Data Set

These data are available in [18]. Table 3 shows the descriptive measures of this data,
which include sample size n, minimum (min), first quartile (Q1), median (Md), third
quartile (Q3), maximum (max), and interquartile range (I QR). The empirical index
of dispersion (ID) of the data is equal to 3.4557. As a result, our model employed to
describe the current data set is capable of dealing with overdispersion.

In addition, Fig. 4 shows an empirical TTT plot of the data and it reveals an decreas-
ing hrf. To demonstrate theGPMED’s potential benefit, the distributions given in Table
2 are considered for comparison.

According to Table 4, the GPMED’s AIC, BIC and AICc values are lower than
those of the other distributions under consideration. Therefore, the proposed model is
the best choice for modeling the provided data set.

In the case of GLRT, the calculated value based on the test statistic in (6.1) is
2(−128.5026 + 134.7959) = 12.5866 (p-value = 0.00153). As a result, at any
level> 0.00153, the null hypothesis is rejected in favour of the alternative hypothesis.
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Fig. 4 Total Time on Test (TTT)
plot for the student enrollment
data set

Table 3 Descriptive statistics for
the number of potato datasets

Statistic n min Q1 Md Q3 max I QR

Values 70 0 0 1 3 8 3

Table 4 MLEs, AIC, BIC and AICc values for the potato data set

X OF P PAD PMED GPMED

0 33 11.57 19.39 19.38 28.76

1 12 20.83 18.37 18.36 16.61

2 5 11.24 8.24 8.24 5.10

3 6 0.54 1.53 1.53 1.28

4 5 25.80 22.46 22.46 18.24

5 0 – – – –

6 2 – – – –

7 2 – – – –

8 5 – – – –

Total 70 70 70 70 70

MLE ρ = 1.79997 ρ = 1.1112 ρ = 0.9000 λ = 0.6830
α = 0.8199
ρ = 0.1431

− log L 165.2773 134.7951 134.7959 128.5026

AIC 332.5546 271.5709 271.5919 263.0052

BIC 334.8031 273.7214 273.8404 269.7507

AICc 332.613 271.629 271.650 263.369
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Fig. 5 Total Time on Test (TTT)
plot for the number of insurance
claims datasets

Table 5 The considered competitive distributions

Distributions Abbreviation Reference

Zero-inflated Poisson distribution ZIPD [38]

Zero-inflated negative binomial distribution ZINBD [41]

Zero-inflated negative binomial Sushila distribution ZINB-SD [41]

Hence,we conclude that the additional parametersλ andρ in theGPMED is significant
in the light of the test procedure outlined in Sect. 6.

9.3 Number of Insurance Claims Data Set

We consider the second data set which reports the number of claims for 9461 auto-
mobile insurance policies, see [24]. This datasets also used in [41]. The percentage of
zeros in insurance policies data is 81.32. Likewise, this data indicates overdispersion
problem with ID 1.3476. As a result, our model employed to describe the current data
set is capable of dealing with overdispersion. Table 6 shows the descriptive measures
of this data, which include n, min, Q1, Md, Q3, max , and interquartile I QR. The
fitted distributions for the number of claims are shown in Table 5. It illustrates that the
best fit is the ZIGPMED, followed by the ZIPD, ZINBD and finally the ZINB-SD.

In addition, Fig. 5 shows an empirical TTT plot of the data and it reveals an decreas-
ing hrf.

According to Table 7, the ZIGPMED’s AIC, BIC and AICc values are lower than
those of the other distributions under consideration. Therefore, the proposed zero-
inflated model is the best choice for modeling the provided data set.
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Table 6 Descriptive statistics for
the potato data set

Statistic n min Q1 Md Q3 max I QR

Values 9461 0 0 0 0 7 0

Table 7 MLEs, AIC, BIC and AICc values for the insurance claims datasets

X OF ZIPD ZINBD ZINB-SD ZIGPMED

0 7840 7835.279 7867.870 7845.504 7845.64

1 1317 1275.796 1276.604 1294.457 1303.1766

2 239 297.675 262.926 249.020 240.6866

3 42 52.2511 53.6 71.967 71.4940

4 14 - - - -

5 4 - - - -

6 4 - - - -

7 1 - - - -

8 0 - - - -

Total 9461 9461 9461 9461 9461

MLE ω = 0.467 ω = 0.442 ω = 0.003 ω = 6.3843 × 10−06

λ = 0.539 λ = 2.905 λ = 4.946 λ = 3.2315 × 10−01

ρ = 0.895 ρ = 0.734 ρ = 8.9370 × 10−02

α = 18.469 α = 3.0367 × 10−01

− log L 5375.622 5359.021 5344.785 5343.264

AIC 10755.244 10724.042 10697.570 10694.53

BIC 10759.195 10729.969 10704.818 10702.431

AICc 10755.256 10724.044 10697.574 10694.534

10 Conclusion

In this work, the mixed count model is proposed, known as GPMED. We show that
its special case is the PMED. In particular, we derive some mathematical properties
of the GPMED. The estimation procedure for parameters is also implemented by the
maximum likelihoodmethod. Also, we proposed zero-inflated version of the GPMED,
known as ZIGPMED. The two proposed distributions are applied to two real datasets
and it is compared with some important competitive distributions. The comparison
results of the minus log-likelihood, AIC, BIC and AICc values for distributions show
that the best fit model is the GPMED and ZIGPMED. In conclusion, the GPMED is
a flexible model that can be an alternative way to model count data with too many
zeros. If the bivariate version of the GPMED is constructed, the direction of this study
might change. This task needs a lot of revisions and research, which we will leave for
further study.
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