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Abstract

Brain tumor segmentation is an important field and a sensitive task in tumor diagno-
sis. The treatment research in this area has helped specialists in detecting the tumor’s
location in order to deal with it in its early stages. Numerous methods based on deep
learning, have been proposed, including the symmetric U-Net architectures, which
revealed great results in the medical imaging field, precisely brain tumor segmenta-
tion. In this paper, we proposed an improved U-Net architecture called Inception U-Det
inspired by U-Det. This work aims at employing the inception block instead of the
convolution one used in the bi-directional feature pyramid neural (Bi-FPN) network
during the skip connection U-Det phase. Furthermore, a comparison study has been
performed between our proposed approach and the three known architectures in medi-
cal imaging segmentation; U-Net, DC-Unet, and U-Det. Several segmentation metrics
have been computed and then taken into account in these methods, by means of the
publicly available BraTS datasets. Thus, our obtained results have showed promising
results in terms of accuracy, dice similarity coefficient (DSC), and intersection—union
ratio (IOU). Moreover, the proposed method has achieved a DSC of 87.9%, 85.5%,
and 83.9% on BraTS2020, BraTS2018, and BraTS2017, respectively, calculated from
the best fold in fourfold cross-validation employed in the present approach.
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1 Introduction

Data science is a combination of many disciplines which main purpose is extracting
knowledge and information from data, both structured or not structured, using vari-
ous technologies, tools, and methods. It mainly concerns the study of data analysis,
statistics, and machine learning, to understand complex phenomena, make predictions
and/or informed accurate decisions. Nowadays, data is used in an eminent increasing
way. It is provided from various sources such as structured databases, unstructured
text documents, sensor readings, medical laboratories, social media platforms, etc.
In the meantime, Data mining is considered one of the remarkable subfields of data
science. It aims at discovering patterns, relationships, and insights from large data
sets. Its techniques provide valuable information and insights considered indispens-
able in decision-making, forecasting, and optimization. Notably, in [1], Shi et al. have
presented a comprehensive and cutting-edge study on big data analysis, as they have
introduced some essential skills to deal with real-world big data applications in solving
some critical problems. Precisely, they have presented an optimization technique based
on data mining. Actually, their work is focused on Support Vector Machines (SVMs)
and different versions of Multiple Criteria Programming (MCP), not to mention the
recent theoretical progress and real-life applications in various fields.

The importance of data mining is actually illustrated by discovering hidden patterns
and relationships in complex big data. It is, in fact, used in many industries such as
businesses [2], internet of things [3], banking, consultancy, manufacturing, health-
care, etc. This latter domain possesses several key applications in data science with a
significant impact on medical imaging and diagnostic support. Diseases, pandemics
and medical phenomena were rigorously treated thanks to automatic machine learn-
ing algorithms using many technologies and diagnostics tools. Coronavirus disease of
2019 (COVID-19), for instance, is the recent century pandemic; it appeared for the
first time in Wuhan, China, in December 2019. Scientifically, the appearance of this
disease has generated a significant number of scientific research articles, constantly
increasing on a variety of related topics. Accordingly, Radanliev et al. [4] have utilized
data mining and statistical analysis of the most developed countries, universities, and
companies. In their study, the authors have used Web of Science data to examine the
links between the findings of various scientific studies on COVID-19. On the other
hand, the classification of positive and negative COVID-19 patients was genuinely a
crucial task, therefore, it required an efficient resolution in order to achieve a high
accuracy to, eventually, save people’s lives. In this regard, Gada et al. [S] have pro-
posed an approach based on Knuth-Morris-Pratt algorithm. Furthermore, they have
analyzed the Covid-19 considered data; medical services and tests, pulse count, body
temperature, and the overall effect of age and gender. The accuracy classification has
achieved 97.4 %. In addition to COVID-19, cancer is one of the top ten deadliest
diseases in the world. Brain and nervous system cancers include a variety of tumor
types that can occur in the brain, spinal cord, and other parts of the central nervous
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system. Recently, according to the global cancer observatory, over 241000 have been
dying of these types of cancer in 2020, and this number keep on rising each year,
for which the brain tumors researches have taken the edge on the priority levels in
healthcare field. As a matter of fact, Brain tumors are the growth of abnormal cells
in the brain. These tumors can be benign or malignant and can start in the brain or
spread to the brain from other body parts. Depending on their size, location, and
type, brain tumors can cause a range of symptoms and impair brain function, leading
to disability or death. However, medical image analysis has helped patients and has
saved lives by providing diagnoses using new and safe technologies such as positron
emission tomography (PET), computed tomography (CT), and magnetic resonance
imaging (MRI). The four MRI imaging modalities are T1-weighted, T2-weighted,
T1-enhanced (T1c), and fluid-attenuated inversion recovery (FLAIR). Each pattern is
presented as a two-dimensional slice. By putting all the slices together, we obtain a 3D
structure of the brain. Semi-automatic and automatic methods have been proposed for
various segmentation tasks, especially in brain tumor segmentation. Generally, manual
segmentation of brain tumors is notoriously time-consuming, tedious, and error-prone.
Therefore, a fully automated and accurate process is required. So far, several automated
systems, that actually proved to be a remarkable success and reach accurate results,
have been developed using deep learning. Convolution neural networks (CNNs) have
been used excessively to get multi-object detection and medical image segmentation
as the mentioned methods [6-9] taking the advantage of the automatic features repre-
sentation of CNNs. Moreover, several deep learning approaches such as [10—12] have
opted for auto encoders(AEs) structure, thus, demonstrated a power impact in the field.
Inspired from CNNs and AEs networks, U-Net and its extension architectures have
been introduced. The latter has, indeed, been an extreme push up in medical imaging
segmentation, especially brain tumor segmentation.

In our paper, we have compared three architectures: U-Net, DC-Unet, and U-Det
belonging to the U-Net class of approach, to our proposed method, similar to U-Det,
called Inception-UDet. In our approach, we replace the convolution block used in U-
Det, and precisely in Bidirectional Feature Pyramid Network with an inception block.
The purpose of this modification is to enrich the features by applying several filters of
different sizes. This block allows the reduction of the dimensions and the execution
time helps avoiding the vanishing gradient problem, hence an improvement in the
segmentation results.

This paper is organized as follows: in Sect. 2 we introduce some approaches that
we used as related work. The proposed methods are presented and described in Sect. 3.
In Sect. 4 figures thoroughly the experimental setup. We, then, summarize and discuss
the results in Sect. 5. Finally, after the conclusion in Sect. 6, we cared to present our
plans for future research.

2 Related Works

Deep learning remains the best path for medical image analysis in order to solve dif-
ferent problems of biomedical image segmentation namely brain tumors, liver, skin
lesions, and vessels. U-Net and the U-Net-like architectures are well and truly the
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most accurate and successful ones in this field, as they accomplished the majority of
brain tumor segmentation tasks. Therefore, U-Net introduced by Ronneberger et al.
[13] has employed a symmetric fully convolutional network that contains a contracting
path to capture context information and an expanding path to ensure accurate location.
Lou et al. [14] have developed an enhanced U-Net architecture called DC-Unet. They
used a dual channel block in the encoder-decoder part and a modified skip connec-
tion called res-path. This method has been inspired by MultiResUNet architecture
which employed MultiResidual block in the encoder-decoder part. Keetha et al. [15]
were inspired from the encoder-decoder backbone of U-Net structure, and the feature-
enriched Bi-FPN in the skip connection part, to eventually propose an End-to-End
deep learning architecture called U-Det. They have also used a Mish activation func-
tion and class weights of masks to enhance model training and segmentation efficiency.
On the other side, an Attention U-Net segmentation approach has been implemented
by Oktay et al. [16], where the attention gate is incorporated into the standard U-Net
to highlight salient features that are passed through the skip connections. In addition,
Punn et al. [17] have proposed a residual cross-spatial attention-guided inception U-
Net for tumor segmentation. They actually replaced the standard convolution with the
inception convolution, and they used pooling operations with a hybrid pooling along
with the cross-spatial attention filter on long skip connection, to focus on the most
relevant features. Moreover, they have employed depth-wise separable convolution
operation to minimize the training parameters and the number of multiplications. As
for Pravitasari et al. [18], they have proposed a new model based on transfer learning
called UNet-VGG16. They have exploited the pre-trained model VGG-16 [19] and
fine-tuned it to be used in the segmentation task as a feature extractor in the encoder
part. They have frozed the VGG-16 layers to reuse their weights. Based on the same
technique of transfer learning and the attention mechanism, in a recent previous work,
we have recently proposed, an efficient U-Net [20] architecture employing three dif-
ferent pre-trained models VGG-19 [19], ResNet50 [21] and MobileNetV2 [22] in the
encoder part besides an attention decoder to segment different sub-region of brain
tumor. Concerning Zhang et al.’s approach [23], they have investigated the effective-
ness of a recently released attention model called attentional gate as a novel attention
gate with the U-Net model, namely, AGResU-Net. It integrates residual models and
attention gates with the original single U-Net architecture, where a series of attention
gate units are added to skip connections and emphasize the information of salient
features. On the other hand, a three dimensions U-Net-likes architecture has been
employed by Cicek et al.’s work [24], where they have proposed the 3D Unet which
is one of the earliest proposed 3D fully convolutional neural networks originally pro-
posed for segmenting kidney embryos on Xenopus. Finally, Chen et al. [25] used
the separable three dimensions in the encoder-decoder part of U-Net to get a novel
framework named Separable 3D U-Net (S3D-Unet) for brain tumor segmentation.
Table 1 shows the performance results of the related works.
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Fig.1 Architecture of U-Net

3 Methods

In this section, we study three architectures: U-Net, DC-Unet, and U-Det, and apply
them to the brain tumor segmentation’s problem, then compare the obtained results
with the proposed modified U-Det

3.1 U-Net

U-Netis a symmetric network that uses a convolution neural layer. It contains two parts:
an encoder and a decoder. The encoder is a convolution network, with four convolution
blocks repeated. Each one starts with two 3 x 3 convolution operations, followed by
a max-pooling operation with a pooling size of 2 x 2 and a stride of 2. While each
down-sampling, the number of filters in the convolution is doubled, and to connect
the encoder to the decoder part, a progression of two 3 x 3 convolution operations
is utilized. The decoder is the construction part of the segmentation map from the
encoder feature. The decoder employs a 2 x 2 transposed convolution operation to
up-sample the feature map and reduce simultaneity the feature channels to half. Then
a sequence of two 3 x 3 convolution operations is performed once again. Similar to
the encoder, these series of up-sampling and two convolution operations are repeated
four times, reducing the number of filters at each stage by half. Finally, a 1 x 1
convolution operation is performed to generate the final segmentation map. As a fact,
all convolutional layers in U-Net use ReLu (Rectified Linear Unit) as an activation
function, except for the last layer which uses a 1 x 1 convolutional layer and sigmoid
activation function. Furthermore, the U-Net architecture introduces skip connections
to transfer the output from the encoder to the decoder. Whereas, these skip connections
allow the network to retrieve spatial features, those lost during the pooling operation

(Fig. ).
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Fig.2 Architecture of MultiResUNet
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Fig.3 The MultiRes Block employed in MultiResUNet architecture
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Fig.4 Illustration of Res-Path

3.2 DC-Unet

DC-Unet is a modified and advanced version of MultiResUNet, therefore MultiRe-
sUNet Fig.2 utilizes Multi-Res blocks Fig.3 in the encoder and decoder part, those
blocks are constructed by adding a residual connection to a succession of 3 x 3 filters
of a simple version of inception. Moreover, they have made some modifications in the
skip connection between the encoder and decoder called Res-Path Fig.4. This path
is a chain of 3 x 3 convolutional layer with residual connection, where each stage of
MultiResUNet contains a precise number of 3 x 3 convolutional layer with a residual
connection, starting with 4 and ending with 1 in the last stage. In this architecture, after
each convolution layer, a nonlinear activation function ReLu is applied, in addition
of a batch normalization, which is used to avoid overfitting, are employed. Then, in
the last output layer, a sigmoid function is applied. Table 2 shows the details of the
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Table 2 Details of MultiResUNet architecture

Block Layer #Filter Path Layer #Filter
Conv2D(3,3) 17 Conv2D(3,3) 64
MultiRes Block1 Conv2D(3,3) 35 Conv2D(1,1) 64
MultiRes Block9 Conv2D(3,3) 53 Conv2D(3,3) 64
Conv2D(1,1) 105 Res Pathl Conv2D(1,1) 64
Conv2D(3,3) 35 Conv2D(3,3) 64
MultiRes Block2 Conv2D(3,3) 71 Conv2D(1,1) 64
MultiRes Block8 Conv2D(3,3) 106 Conv2D(3,3) 64
Conv2D(1,1) 212 Conv2D(1,1) 64
Conv2D(3,3) 128
Conv2D(3,3) 71 Conv2D(1,1) 128
MultiRes Block3 Conv2D(3,3) 142 Res Path2 Conv2D(3,3) 128
MultiRes Block7 Conv2D(3,3) 213 Conv2D(1,1) 128
Conv2D(3,3) 426 Conv2D(3,3) 128
Conv2D(3,3) 142 Conv2D(3,3) 256
MultiRes Block4 Conv2D(3,3) 284 Res Path3 Conv2D(1,1) 256
MultiRes Block6 Conv2D(3,3) 427 Conv2D(3,3) 256
Conv2D(1,1) 853 Conv2D(1,1) 256
Conv2D(3,3) 285
MultiRes Block5 Conv2D(3,3) 56 Res Path4 Conv2D(3,3) 512
Conv2D(3,3) 855 Conv2D(1,1) 512
Conv2D(1,1) 1709
p— -> ou
t
-
t et
-_D(B\od(s e

(a)

Fig.5 a DC Block, b DC-Unet architecture

(b)

other parameters used in MultiResUNet architecture. The results illustrate that the
residual connection used in MultiResUNet is simple and provides a few additional
spatial features that may not be enough for the medical images segmentation task.
To overcome the insufficient spatial features, the authors of those previous archi-
tectures have suggested to replace the residual connection in MultiRes blocks with a
sequence of three 3 x 3 convolutional layers to get a new extractor spatial features
block named Dual Chanel block as shown in Fig. 5 on one hand. In addition, to save the
same connection between encoder and decoder part Res-Path used in MultiResUNet
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Table 3 Details of DC-Unet architecture

Block Layer(left) #Filter Layer(right) #Filter Path Layer #Filter
Cv2D(3.3) 8 Cv2D(3.,3) 8 Cv2D(3.3) 32
DC Blockl Cv2D(3.3) 17 Cv2D(3.3) 17 Cv2D(1,1) 32
DC Block9 Cv2D(3.3) 26 Cv2D(3.,3) 26 Cv2D(3.3) 32
RP1 Cv2D(1,1) 32
Cv2D(3,3) 17 Cv2D(3,3) 17 Cv2D(3.3) 32
DC Block2 Cv2D(3.,3) 35 Cv2D(3.,3) 35 Cv2D(1,1) 32
DC Block8 Cv2D(3,3) 53 Cv2D(3,3) 53 Cv2D(3,3) 32

Cv2D(1,1) 32
Cv2D(3.3) 64

Cv2D(3.3) 35 Cv2D(3.3) 35 Cv2D(1,1) 64
DC Block3 Cv2D(3.,3) 71 Cv2D(3.,3) 71 RP2 Cv2D(3.3) 64
DC Block7 Cv2D(3.,3) 106 Cv2D(3.,3) 106 Cv2D(1,1) 64

Cv2D(3,3) 64
Cv2D(3,3) 64

Cv2D(3,3) 71 Cv2D(3,3) 71 Cv2D(33) 128
DCBlockd  Cv2D(33) 142 Cv2D(3,3) 142 RP3  Cv2D(L,1) 128
DCBlock6  Cv2D(3,3) 213 Cv2D(3,3) 213 Cv2D(33) 128
cvaD(L,l) 128

Cv2D(33) 142 Cv2D(3,3) 142
DCBlock5S  Cv2D(33) 284 Cv2D(3,3) 284 RP4  Cv2D33) 256
Cv2D(33) 427 Cv2D(3,3) 427 cv2D(L,1) 256

“#” means ‘“number”, “Cv2D” means “Conv2D”, “RP” means “Res-Path”

besides constructing a new U-Net architecture named DC-Unet architecture on the
other hand. Figure 5 In Table 3, details of DC-Unet architecture are explicitly figured.

3.3 U-Det

U-Det Fig. 7 is an end-to-end deep learning approach that incorporates a bidirectional
feature network (Bi-FPN) between the encoder and decoder to enhance integrating
multi-scale feature fusion for efficient feature extraction. Furthermore, it employs the
Mish activation function and the class weights of masks to improve the segmentation
precision.

Bi-FPN is based on the traditional top-down Feature Pyramid Network Fig (FPN)
method [26]. It brings efficient bidirectional cross-scale connections and weighted
feature fusion to the model [27]. Meanwhile, multi-scale feature fusion aims at fuse
features of different resolutions for efficient feature extraction. The unidirectional
flow of information inherently limits traditional top-down FPN. Furthermore, BiFPN
does not contain nodes with only one input edge. If a node has only one input and
no feature fusion, its contribution to the feature network designed to inject different
features will be less relevant. It is based on the traditional top-down FPN (Feature
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Fig.6 Architecture of mish

. Mish
function

-t

Pyramid Network) method [26]. Bi-FPN also integrates additional weights for each
input during feature fusion, allowing the network to learn the importance of specific
input features. Fast normalized fusion (one of the methods to include weights during
feature fusion) is used for dynamic learning. Furthermore, to improve the model’s
efficiency, depthwise separable convolution is implemented, followed by batch nor-
malization and nonlinear activation function Rectified Linear Unit(ReLu). In neural
networks, activation functions are the gateway to introducing nonlinearities. Its role
on training and evaluating deep neural networks is paramount. Activation functions
that are most employed are ReLU, Sigmoid, Leaky ReLU, Tan Hyperbolic, and the
recently introduced Swish. The proposed method implements the state-of-the-art acti-
vation function Mish. In accordance with the carried out results, Mish outperforms
ReLU and Swish. Not to mention its simplicity, that allows smooth implementation
of neural networks programs. Mish is a non-monotonic and smooth neural network
activation function. It is defined as:

f(x) =x.tanh(w(x)) (1)

where w (x) is the softplus activation function given by In(1+exp(x)) Fig. 6 illustrates
the plot of the Mish activation function.

We have exploited the power of the two contributions of the U-Det method, Mish
function and Bi-FPN, in order to develop a more accurate one. We, thus, have succeeded
on creating a new architecture similar to U-Det based on the inception blocks in
the encoder-decoder part. We, then, took the liberty on calling it “Inception U-Det”,
explicitly addressed in the next subsection (Fig. 7).
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Fig.7 Architecture of U-Det

3.4 Inception-UDet

Similarly to the encoder and decoder part of U-Net architecture, U-Det architecture
consists of two phases: the contraction and the expansion. The contraction path is a
simple convolution neural network that contains a repetition of two 3 x 3 convolutions
(with padding="same’), followed by a non-linear Mish activation function and 2 x 2
max-pooling operation of stride 2 for the downsampling of the input image features.
At each downsampling step, the number of features is doubled and the model is
regularized by employing a Dropout layer with factor 0.5, after the second 3 x 3
convolution block at depth 4. The size of features corresponding to each section of
the five depths of the contraction is 192 x 192 x 64, 96 x 96 x 128, 48 x 48 x 256,
24 x 24 x 512, 12 x 12 x 1024 where 64, 128, 256, 512 and 1024 are the number
of features channels. The convolution operation used at each layer of the model is
formulated as:

Clm,n]l=U x k)[m,n] = ZZkz] Alm —i,n—j] 2)
z“:w”.A’ ‘ Iy pll] 3)
Al — flll(ZU]) 4)

where Eq. | represents the kernel convolution and Eqgs. 3 and 4 denote the forward
process in CNN. In Eq. 2, I and k indicate the input image and the kernel respectively.
Al wll plilang f /] denote the activations, weights, bias, and activation function of
layer [ respectively.

The features of five depths are input to the feature network (Bi-FPN), and the output
feature vector is input to the expansion part. Each step in the expansion path contains
upsampling of subsequent feature maps doubles the number of feature channels per
depth by 2 x 2 convolution (“upconvolution”). The resulting feature vectors after
upsampling are then concatenated with the corresponding feature vectors from the
feature network. The concatenation operation is followed by two 3 x 3 convolutions
(“equal” padding), each followed by a Mish activation function. In the last layer of
the network, the feature map of 192 x 192 x 64 is obtained by traversal of Two 3 x 3
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3x3 max poling

Fig. 8 a Convolution block used in U-Det, b inception module, naive version, ¢ inception block with
dimension reduction used in Inception-UDet

circles. Next is the mish activation function and the final 1 x 1 convolutional block, and
finally the sigmoid activation function. This gives the logits that match with the mask
of the input MRI image of shape 192 x 192. Network training aims to increase the
probability of the correct class for each voxel in the mask. To achieve this, a weighted
binary cross-entropy loss for each training sample is used. This function is formulated
as:

output size

1

Loss = ——————— i log 9 + (1 — y;).log(1 — 3; 5
o8 output size lz yi-log yi +( yi)-log(1 — yi) 4)

where y; is the i-th scalar value in the model output, y; is the corresponding target
value, and the output size is the number of scalar values in the model output. To
minimize this loss function, we used Adam optimizer with an initial learning rate of
ap = 10~ and progressively decreased it according to:

0 \09
a=a0x<l—ﬁ) (6)

e

where e is an epoch counter, and N, is the total number of epochs. In our case the
maximum number of epochs = 200 and in every epoch, the batch size = 10.

Our method “Inception-UDet” Fig. 9 is similar to UDet. This novel architecture’s
work consists in replacing the convolution block with the Inception one to get pertinent
and significant features. The inception block illustrated in Fig. 8, which process is, from
one hand, the contraction path’s output features are, in fact, the Bi-FPN’s input, then
the output features of Bi-FPN are generally the input of the expansion part, on the
other hand.

Inception Models are used in Convolution Neural Networks to achieve more effi-
cient computation and deeper networks by stacking 11 convolutions. Since neural
networks process a large number of images, the presented image content varies widely,
also known as salient parts, and they must be designed properly. By building a CNN
to perform its folding at the same level, the network gradually becomes wider, not
deeper. To make the process less computationally intensive, the neural network can
be designed to add an extra 1 x 1 convolution before the 3 x 3 and 5 x 5 layers.
This limits the number of input channels and makes 1 x 1 convolutions much cheaper
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K2 T ! P 2x2 Max Pooling
o= e
nnection

Fig.9 Inception-UDet Architecture

Table 4 Number of kernels for each Inception block

Depth Input size Number of kernels of inception block
1 192 x 192 x 64 (192,96, 208, 16, 48, 64)

2 96 x 96 x 128 (160, 112, 224, 24, 64, 64)

3 48 x 48 x 256 (128, 128, 256, 24, 64, 64)

4 24 x 24 x 512 (160, 112, 224,24, 64, 64)

5 12 x 12 x 1024 (192, 96, 208, 16, 48, 64)

than 5 x 5 convolutions (Fig. 9). At each depth, an inception block is applied before
entering the features to Bi-FPN, and the number of kernels at each one is shown in
Table 4 below: We summarize all the U-net like architectures analyzed in this paper
including our proposed one Inception-UDet, in Fig. 10, and show all the blocks and
operations used for each approach.

4 Data and Experiment

In this section, we present data, implementation data, and evaluation metrics.

4.1 Data

BraTS2020 [28-30] contest provides a large training set of 369 MRI scans and a vali-
dation set of 125 scans. The BraTS2018 dataset consists of 285 training scans (HGGs
and LGGs) and 66 scans, while the BraTs2017 contains 285 training scans(HGGs and
LGGs), 46 validation scans, and 146 test scans. Each MRI scan was 240 x 240 x 155
in size, and each case had FLAIR, T1, T1 extension, and T2 volumes. The dataset is
co-registered, re-sampled to 1 x 1 x 1 mm?, and skull-stripped. Segment brain tumors,
including necrosis, edema, non-enhancing, and enhancing tumors. The ground truth
of the training set is only obtained by manual segmentation results given by experts.
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4.1.1 Data Preprocessing

To make the features of the tumor more obvious, we normalize the input image i,
to improve the accuracy of the segmentation, by subtracting the mean value © and
dividing by the standard deviation o to get the output ip as:

i— W
o

(N

ip =
4.1.2 Data Augmentation

Data augmentation improves network performance, reduces the occurrence of over-
fitting, and generates more training data from the original data. Indeed, in this paper,
we apply the augmentation methods with simple transformations such as flipping,
rotating, adding noises, and translating.

4.2 Implementation Details

In this experiment, we used SIMPLTIK an open-source multi-dimensional image
analysis in Python for image registration and segmentation to read MRI images
from the BraTS2017, BraTS2018, and BraTS2020 datasets with NIFTI format type.
Since we are interested in the segmentation of the whole tumor only in two dimen-
sions, the best extension to choose is FLAIR one and the significant slice which
contains more features is the 90th slice of 155. Before data preprocessing (Sect.
4.1.1) and data augmentation (Sect. 4.1.2) steps, we cropped each image and saved
their size as (192, 192, 3) instead of (240, 240, 3). Furthermore, data augmenta-
tion is implemented in the three BraTS training set to improve the robustness of
the model. An early termination training strategy is actually required to prevent
the model from overfitting; that is when the model’s performance stops improv-
ing. The training dataset was divided randomly into training and testing sets with
80:20 ratios, and a k-fold cross-validation was employed to get more performance.
We have tested several numbers of fold (k = 3,k = 4,k = 5,k = 10) and
eventually found that k¥ = 4 was the best choice. The inception block kernels
were initialized with a constant value equal to 0.2 and bias values set to zero.
The best parameters to choose for all the methods are shown in Figs. 1, 7, 9 and
Tables 3, 4. The experiment is implemented in the Kaggle platform using Keras
(Version 2.6.0) library based on Tensorflow (Version 2.6.2) and Python (Version
3.7.12) as the used coding language. The experiment was carried out on the Kag-
gle platform on a virtual instance equipped with CPUs, 13GB memory, and an
HDD drive of 73 GB. During the training of the model, acceleration was executed
on Tesla (P100-PCIE-16GB) GPU (16GB video memory). Well, it took 6h to con-
verge.
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4.3 Evaluation Metrics

The experimental results have been evaluated using different types of performance
indicators: Accuracy, Dice Similarity Coefficient (DSC), and intersection over union
(IoU) for tumor segmentation:

e Accuracy: Formally, accuracy has the following definition:

Truepositive + TrueNegative
Accuracy = Toral (8)
ota

e The DSC represents the overlapping of predicted segmentation with the manually
segmented output label and is computed as:

GNS
DsC =2 x 19051 )
|G|+ |S]

where G and S stand for output label and predicted segmentation, respectively.
e The IoU is used when calculating Mean Average Precision (mAP). It specifies the
amount of overlap between the predicted and ground truth and is computed as:

ol — 2 x Area of Overlap

; (10)
Area of Union

5 Results and Discussion

This section covers the detailed results of all methods, their analysis, an experimental
comparison, and a visualization.

The braTS2020 training dataset was applied to train all the methods cited in this
manuscript, this dataset was divided randomly into two subsets: training and validation
(80:20 ratios) and a fourfold cross-validation was implemented into this data. On
the other hand, BraTS2018 and 2017 training datasets were utilized to perform our
proposed model with the same number of folds. Tables 5 and 6 summarize the results
obtained with and without data augmentations. Effective results are illustrated in Table
5 which concerns the training subset, where we denote the high accuracy reached by
all methods in all the folds and an interesting difference in terms of other metrics; DSC
and IoU. U-Det and Inception-UDet show a significant improvement over U-Net and
maintain good robustness, however the other metrics decrease, which shows the effect
of the Bi-FPN and the Mish activation function. Hence, the use of the Inception block
in our method to extract more pertinent features in order to get high performance, is
considered paramount. Our architecture compiled from the fourth fold has achieved
99.9%, 95.8% and 93.3% in terms of accuracy, DSC and IoU respectively, without
data augmentation and 98.9%, 97.4% and 94% respectively with data-augmentation.

Table 6 presents the metrics of the validation subset, the best fold of our Inception-
UDet method achieved 98.8%, 86.8% and 77.7% in terms of accuracy, DSC and IoU
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Table6 Whole tumor segmentation results with and without data augmentation per fold on the BraTS2020
validation subset

f1 2
NDA DA NDA DA
Method Acc DSC IoU Acc DSC 1IoU Acc DSC IoU Acc DSC IoU

U-Net 96.5 65.1 60.1 972 681 619 964 692 61.1 983 71.6 63.8
DC-Unet  99.1 149 207 993 258 15 97.6 359 229 994 397 248
U-Det 9712 74 66.8 977 76.1 671 976 754 655 988 772 679
I-UDet 98 789 652 989 80 66.7 978 826 704 989 841 725

3 f4
NDA DA NDA DA
Method Acc DSC 1IoU Acc DSC 1IoU Acc DSC IoU Acc DSC IoU

U-Net 999 815 692 999 821 738 996 795 701 99.8 804 719
DC-Unet 993 467 424 992 575 392 983 519 379 994 588 42

U-Det 989 848 759 993 86.6 77.6 99.1 809 749 99.7 82 759
I-UDet 983 849 753 99.1 864 761 988 868 777 993 879 T84

“fk” means “fold k in k-fold cross-validation”, “N-DA” means “Without data augmentation”DA” means

»

“With data augmentation”, “I-UDet” means “Inception-UDet”, “avg” means “average of all folds”

Table 7 DSC results of our

Dat: Foldl  Fold2  Fold3  Fold4 A
method on BraT$2017 and at ° ° ° ° Ve
BraTS2018 validation datasets 12017 75.8 79.9 83.9 762 789

er fold
P BraTS2018  79.5 80 84 85.5 82.4

“avg” means “average of all folds”

Table 8 Comparison study of a whole tumor performance between our proposed method and different
supervised and non-supervised approaches on different BraTS datasets

Methods Data Performance
Aboussaleh et al. [9] BraTS2017 DSC 82.35 %
Single-Path MLDeepMedic [31] BraTS2017 DSC 79.73%
ResNets [32] BraTS2017 DSC 85%
Myronrnko et al. [10] BraTS2018 DSC 81%
Fang et al. [33] BraTS2018 DSC 85.60%
Chen et al. [25] BraTS2018 DSC 83.60%
AGResU-Net [23] BraTS2019 DSC 87%
Efficient U-Net [20] BraTS2020 DSC 86.89%
Inception-UDet (best fold performance) BraTS2020 DSC 87.9%
BraTS2018 DSC 85.5%
BraTS2017 DSC 83.9%
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respectively without data-augmentation and 99.3%, 87.9% and 78.4% respectively
with data-augmentation.

By observation of all the results, our method is proved more performant than UDet
in a close manner, which justifies the crucial impact of using the Inception block
instead of the convolution one that UDet has employed.

Data augmentation and the k-fold cross-validation are still helpful and useful to
improve the performance, as shown in the table of results, where all the results are
increasing.

Table 7 demonstrates that fold 3 and fold 4 of the cross-validation used in BraTS
2017 and 2018 respectively have achieved a great DSC of 83.9% and 85.5%.

Table 8 demonstrates a comparison study between our proposed method and some
of the state of art methods. Therefore, the U-Net-like architecture [20, 23, 25, 33]
in fact, tops the rankings. It conferred a high performance in terms of DSC on the
brain tumor segmented. Besides, the attention mechanism used in methods [20, 23]
has showed a significant effect on the results. All of these methods have exceeded
86% and been close to the top score that we have obtained. It is obvious that our
method overcomes all the unsupervised ones [9, 31], and the approach belongs to the
FCNNs [32] and AEs [10]. Additionally, we notice that the obtained results based
on BraTS2020 using our proposed approach skip all the methods cited in terms of
DSC, and thus, get an acceptable score employing the other version of the BraTS
dataset (2017 and 2018). This can only ensure the performance and the impact of our
contributions.

Fig. 11 Visual results of stat of art methods on some BraTS2020 validation subset images. a original image,
b U-Net, ¢ DC-Unet, d U-Det, e Inception-UDet, f Ground Truth
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Fig. 12 Visual results of stat of art methods on some BraTS2020 validation set images. a original image,
b U-Net, ¢ DC-Unet, d U-Det, e Inception-UDet

Figure 11 illustrates the qualitative results of the tumor on some images from the
BraTS2020 validation subset of the proposed architectures Unet, DC-Unet, U-Det,
and Inception-UDet. Our method shows good performance compared to the others,
it almost reaches the true label. Although, the DC-Unet method cannot assign clear
segmentation to non-tumor images. Consequently, its performance keep on dropping.
On the other hand, U-Net and UDet neglect some pixels core of the tumor.

The visual results of some Brats2020 validation sets are summarized in Fig. 12. All
the methods show an efficient performance in some different levels, particularly in the
second sample that proves the power of our method.

6 Conclusion

Above all, this work represent a concreate proof of existence of a tight link between the
improvement of scientific research in medicine and data mining. Precisely, Brain tumor
segmentation is a dainty field, that, through and through, requires a rigorous kind of
treatment. Therefore, in this manuscript, we meticulously tried to improve the Brain
tumor segmentation architectures, by introducing an improved U-Net architecture
with an Inception block for brain tumor segmentation. Our model’s structure consists
concisely in the following steps: as after the pre-processing and data-augmentation
phases, our proposed method keeps the structure of U-Det and changes the convo-
lution block by the inception one in each depth in order to get more features. This
modification genuinely increases the evaluation metrics. As a matter of fact, we have
trained and evaluated our model on BraTS2020, BraTS2018, and BraTS2017 datasets
using ground truths (extracted by medical experts). Afterwards, we have compared our
results with the state of the art works mentioned earlier. Eventually, the experimental
results concretely demonstrate the high capacity and performance of our architecture
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in segmentation tasks. Last but not least, our perspective work will focus on improving
these previous results, segmenting the other type of tumor core and enhancing edema,
as well as using deeper architectures to improve the performance of segmentation
outputs.
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