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Abstract
The geographical information system has been generally used for analyzing different
types of data. The notions and results of topology have been applied in this connection,
known as a spatial topological relation. In this article, we have studied the different
layers of geographical data and their intersection property, separation axioms on spatial
topological space, spatial analysis.
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1 Introduction

The entire situation of GIS geographical data offers an understanding of the location
of different items in the real world, and creation is a proper layout of geometry.
The information can be represented as discrete data (referred to as "feature data") or
continuous data (referred to as "raster data"). The nature of examining the influences on
how it is best portrayed is self-evident. Raster layers are used to describe the physical
environment (mountains, temperatures, and rainfall), whereas vector data is used to
describe the built environment (roads, buildings), and organizational data (countries,
census areas). Each dataset is organized as a layer in GIS, and analytical engineers can
connect them graphically (called overlay review). In the foundational theory of spatial
analysis, the idea of accumulating layers containing diverse descriptions of data and
associating them with one another based on where things are placed.
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The layers are linkedby the fact that they are all geo-referenced to a specific location.
Geometric and topological qualities are essentially included in spatial data as a

result of which the extension of locational and characteristic information. Geometric
features, such as length, direction, area, and volume, integrate location and dimensions.
Connectivity, composition, and adjacency are all topological qualities that characterize
spatial interactions. Using these spatial attributes, one can analysis the data from
different aspects to acquire deeper insights about it.

GIS reports can be used to answer questions such as where are the best places to
built? Home protection, relative slope, distance to existing streets and rivers, and clay
formation are just a few of the seemingly unrelated aspects that can be produced as
layers and then compared using weighted overlay.

GIShas the true power,which rests in its ability to deliver an inquiry. Spatial analysis
is a way for geographical modelling problems, obtaining conclusions throughmachine
processing, and then searching for and analyzing those decisions.

The ultimate goal is to understand how to overcome spatial problems. The center
of spatial analysis is determined by many essential spatial analysis workflows: spatial
data exploration, modelling with GIS devices, and solving spatial problems.

Data analysis is applied in business related problems to understand the challenges
that a company faces, to resolve decision-making issues, and to study data in mean-
ingful way.

Data consists solely of statistics and facts. The process of organizing, interpreting,
arranging, and presenting data into useful information is known as data analysis.

Data analysis depicts the situation in a more appealing and understandable manner.
Spatial data analysis allows to tackle complicated location-based challenges and

gain a deeper understanding of what’s going on in your world. It goes beyond simple
mapping to allow you to investigate the properties of places and their interactions.
Your decision-making will be enriched by spatial analysis.

If one studies a crime map in the city to see in which regions have the highest crime
rates, will require and look the other forms of data, such as school locations, parks,
and demographics. This is required to look for the best place to buy a house.

We automatically begin turning a map into information by analyzing its con-
tents—finding patterns, identifying trends, or making decisions, every time one will
look at.

This is known as "spatial analysis," and this is what one does automatically when
he/she will look at a map.

Here’s a quick rundown of Adams and Franzosa’s work in [1] "Introduction to
Pure and Applied Topology." In 1996, Felice [2] published "A paradigm for describ-
ing topological links between complicated geometric features in spatial databases."
Point-set topological spatial relations and various models are created by Egenhofer
and Franzosa [3–6]. A large number of researchers are working on multidisciplinary
set theory and spatial set topology [7–10]. Marshall represents “Line Structure Repre-
sentation for Road Network Analysis” in 2016 [11]. "Graph Theory" by Ducruet and
Rodrigue [12, 13] Alvi Geographical Statistics. In 2017, Tien [14] used artificial intel-
ligence to work on decision-making. “Joint Modeling of Longitudinal CD4 Count and
Time-to-Death of HIV/TB Co-infected Patients: A Case of Jimma University Special-
ized Hospital,” Temesgen et al. [15]. Mitra et al. [16] worked on the "Road Network
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System in Agartala Municipal Corporation," and we gathered the rest of the data from
the internet [17]. In the year 2021 Das et al. worked on data analysis [18].

Data analytics and applications are not only promoted how to use interdisciplinary
techniques, but also to interpret and analysis the data. It includes statistics, artificial
intelligence, and optimization, to process Big Data and conduct data mining, but
also how to use the knowledge gleaned from Big Data for real-life applications. AIDS
accepts high-quality contributions on the foundations of data science, technical papers
on various challenging problems in Big Data, and meaningful case studies concerning
business analytics in the context of Big Data. Qualitative and quantitative analysis are
two fundamental methods of collecting and interpreting data in research. The methods
can be used independently or concurrently in since they all have the same objectives.
They may have some errors, and so using them concurrently can compensate for
the errors each has and then produce quality results. In spatial topology qualitative
data analysis and quantitative data analysis both have important mining and role.
Many researchers have worked on data analysis in various methods. In 2022 Shi [19]
studied on Advances in Big Data Analytics: Theory, Algorithm and Practice. In 2021
Thakkar and Shah [20] worked on the topic "An Assessment of Football Through
the Lens of Data Science”. In 2020 Liu and Shi [21] studied on “Investigating Laws
of Intelligence Based on AI IQ Research”. Olson and Shi [22] on “Introduction to
business data mining”. Shi et.al. [23] have widely studied on “Optimization based
data mining: theory and applications”. Tien [14] in 2017 discuss the idea of “Internet
of things, real-time decision making, and artificial intelligence”. Das et.al [24] worked
on "Multi-criteria group decisionmakingmodel using single-valued neutrosophic set”.
In 2020 Mukherjee and Das [25] worked on “Neutrosophic bipolar vague soft set and
its application to decision making problems”.

In this investigation, we use the topological property to analyze spatial data, which
may be used to tackle a variety of essential problems such as health difficulties, crim-
inality, and economic issues.

2 Materials andMethods

For our investigation in this article, we need some definitions and the preliminary idea
of GIS data analysis and spatial topological connection for this one may refer to the
articles Adams and Franzosa [1], Clementini and Felice [2], Egenhofer and Franzosa
[3–5].

We study GIS data for the clarification of confusion and to find the answer mainly
to the following questions, such as,

• What are the basic geometric characteristics of geographic objects to represent their
relationships?

• How can those relationships be formally described in terms of fundamental geo-
metric characteristics?

• What is an insignificant set of spatial relationships?
• What should be the topological relation between the spatial data?
• How to separate spatial data?
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3 Analysis in GIS

Input/updating, data conversion, storage/organization, manipulation, geographical
division, and output (performance/display) are the four essential roles that geographic
knowledge approaches are thought to play.

4 Geometric Networks

Geometric systems are continuous networks of objects that can be used to describe and
analyze interrelated properties. A geographic network is made up of edges that meet
at intersection sites, similar to mathematical and computer science architectures. The
network, like graphs, can have weight and flow assigned to its edges, which can be
used to better accurately depict many interrelated features. Road channels and public
service networks, such as electric, gas and river systems, are typically built using
geometric networks. Transportation planning, hydrology modeling, and foundation
modeling are all examples of when network modeling is used.

We refer to Egenhofer and Franzosa [3] for definitions of spatial data, non-spatial
data, interior, closure, and boundary of geographical region, all of which are related
to the notion of topology.

5 Topological Modeling and Formal Description of Topological
Relations

A GIS can classify and investigate the spatial relationships that exist within digitally
collected spatial data. These topological connections allow complex spatial modeling
and analysis to be performed. Topological relationships between geometric objects tra-
ditionally hold adjacency, containment, and closeness. The topological similarity Rn

between two point sets, U and V , is described by the nine set intersections In of U’s
boundary, interior, and complement with the boundary, interior, and complement of V
called the 9-intersection, one may refer to Egenhofer [5]. This is an extensive descrip-
tion of the originally proposed 4-intersection consisting of the four-set intersections
of boundaries and interiors, one may refer to Egenhofer and Franzosa [3], Egenhofer
and Mark [4].

The tabulated form of various types of spatial connections based on the set {∂U,

U°, U−1} and the matrix In(A,B) =
⎛
⎝

∂U ∩ ∂V ∂U ∩ V 0 ∂U ∩ V−1

U 0 ∩ ∂B U 0 ∩ V 0 U 0 ∩ V−1

U−1 ∩ ∂B U−1 ∩ V 0 U−1 ∩ V−1

⎞
⎠ are the

following (Table 1).

6 Results and Discussion

The main aim of this article is to define the separation axioms on the spatial data set
and analysis of GIS data based on separation axioms.
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Table 1 The specification of then
eight topological relationships
between the two-point sets in
2-D I0(U, V ) =

⎛
⎜⎜⎝

∅ ∅

∅ ∅

¬∅

¬∅

¬∅ ¬∅ ¬∅

⎞
⎟⎟⎠

(a) RDisjoint(U, V )

I1(U, V ) =
⎛
⎜⎜⎝

¬∅ ∅

∅ ∅

¬∅

¬∅

¬∅ ¬∅ ¬∅

⎞
⎟⎟⎠

(b) RMeet(U, V )

I2(U, V ) =

⎛
⎜⎜⎝

¬∅ ∅

∅ ¬∅

∅

∅

∅ ∅ ¬∅

⎞
⎟⎟⎠

(c) REquals(A, B)

I3(U, V ) =
⎛
⎜⎜⎝

∅ ¬∅

∅ ¬∅

∅

∅

¬∅ ¬∅ ¬∅

⎞
⎟⎟⎠

(d) RInside(U, V )

I4(U, V ) =

⎛
⎜⎜⎝

¬∅ ¬∅

∅ ¬∅

∅

∅

¬∅ ¬∅ ¬∅

⎞
⎟⎟⎠

(e) RCovered By(U, V )

I5(U, V ) =
⎛
⎜⎜⎝

∅ ∅

¬∅ ¬∅

¬∅

¬∅

∅ ∅ ¬∅

⎞
⎟⎟⎠

(f) RContains(U, V )

I6(U, V ) =

⎛
⎜⎜⎝

¬∅ ∅

¬∅ ¬∅

¬∅

¬∅

¬∅ ∅ ¬∅

⎞
⎟⎟⎠

(g) RCovers (U, V )

I7(U, V ) =
⎛
⎜⎜⎝

¬∅ ¬∅

¬∅ ¬∅

¬∅

¬∅

¬∅ ¬∅ ¬∅

⎞
⎟⎟⎠

(h) ROverlap(U,V )

Based on GIS data characteristics we have thought some definitions and analyzed
its properties by this definition. We have studied, how GIS data can be analyzed in
topology and separated based on the geographical situation as well as on problem-
based topological formation. For understanding the overlay analysis of GIS data and
point, line, and polygon data analysis and how the raster data transfer into vector data,
etc. using topological property we establish some result which can help us to analyze
spatial data.
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6.1 Separation

Our design of topological spatial relationships is based on the point-set topological
thoughts of the interior, exterior, and boundary. The concepts of separation and con-
nectedness are necessary for establishing future topological spatial relations among
sets. Let Y ⊂X. a separation of Y is a pairU,V of subsets ofX satisfying the following
three conditions:

• U �= Ø and V �= Ø;
• U ∪ V = Y ; and
• U ∩ V = .Ø and V ∩ U = .Ø

Based on GIS data and binary topological relation of spatial relations we have
introduced some definitions on separation, connectedness, and compactness. Onemay
refer to Egenhofer and Franzosa [3].

Any single data of spatial analysis from a GIS spatial data set is called a spatial
point. Spatial point is denoted by ẋ

Definition 3.1 A spatial topological space (X, τ) is said to be completely spatial con-
nected if every spatial point of spatial sets has the same property with the other i.e.,
every two spatial sets A and B follow the relation I2(A, B), i.e. REquals(A, B) and for
each point of a set A and B are connected.

The connectedness and separation of spatial data is based on their internal and
geometrical property.

Example 3.1 When two or more GIS layer of a reason have the same property then
this type of sets are the example of completely spatial connected space.

Definition 3.2 A spatial topological space (X, τ) is said to be completely T0-spatial
connected if there exist a spatial point ẋ such that ẋ∈ A and ẋ∈B, also follows the
relation I3 or I4 or I5 or I6, i.e. one of the relations RInside(A, B), RCovered By (A, B),
RContains(A, B) and RCovers(A, B).

Mathematically spatial T0-connected sets follow the relation A ∩ B �= ∅ for all
cases of sets A and B.

Example 3.2 In a city, the spots of all garbage or pollution sectors come under the
completely T0-spatial connected.

Definition 3.3 A spatial topological space (X, τ) is said to be completely T1-spatial
connected if every two spatial set A and B follow the relation I3 or I4 or I5 or I6 or
I7 i.e. follow the relation among the relations RInside(A, B) or RCovered By (A, B) or
RContains(A, B) or RCovers(A, B) and ROverlap(A, B).

Example 3.3 The example of the above spatial topological space like example 3.2 but
in this case spatial data sometimes may coincide.

Definition 3.4 A spatial topological space (X,τ) is said to be completely T0-spatial
disconnected if for any two spatial point ẋ and ẏ of two spatial set A and B follows
the relation I1(A, B), i.e. RMeet(A, B) and ∃ two open U and V such that ẋ∈U ⊆ A and
ẏ∈V ⊆ B but ẏ /∈U and ẋ /∈V .
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Example 3.4 The natural example of completely T0-spatial disconnected space is the
spatial topological relation between insect live in water and outside the water.

Definition 3.5 A spatial topological space (X,τ) is said to be completely T1-spatial
disconnected if for any two spatial point ẋ and ẏ of two spatial set A and B follows
the relation I0(A, B) i.e. RDisjoint(A, B) and for every ẋ ∈A, ẏ ∈B there exist two open
sets U ⊆ A and V ⊆ B and U ∩ V = ∅.
Definition 3.6 A spatial topological space (X,τ) is said to be compact if every spatial
data covered by finite spatial data.

Example 3.5 All tower of capital is a model of a compact spatial set. Because in every
city there will be a calculable number of towers and that can be covered by finite
spatial extension data.

Note: The above 5 definitions of separation on spatial data sets are divided into
four brilliant way to analysis GIS data set.

Proposition 3.1 Every spatial T1-disconnected space is spatial T0-disconnected space
but not necessarily conversely.

Proof: From the definition it is obvious that every spatial T1-disconnected space is
spatial T0-disconnected space.

For the converse part we take an example which is spatial T0-disconnected space.
Let X = { ȧ, ḃ, ċ, ḋ} and τ = {∅, X, {ȧ}, { ȧ, ḃ}, {ḃ, ċ}, {ḃ}{ȧ, ḃ, ċ}} here (X,τ)

is a spatial T0-disconnected space but not a spatial T1-disconnected space.

Proposition 3.2 Every spatial T1-connected space is spatial T0-connected space but
not necessarily conversely in general.

Proof : The first part of the statement follows from the Definition 3.2 and Definition
3.3 the proof is obvious. For converse part of the theorem we provide an example.

Example 3.6 Consider a set of spatial plane data of a factory and its different layers.
Consider a spatial topology by considering the spatial plane data of factory then the
data set follows spatial T0-connected space but not spatial T1-connected becausewhen
we take the spatial data as a different factory which are connected to another factory,
in that case, some data will cover by, some data contains but no data will project to
other data. So in such cases, the data set follows the spatial T0-connected space but
not spatial T1-connected.

Theorem 3.1 Every spatial T1-disconnected space is T1-space in general topological
space but not necessarily conversely in general.

Proof: Let (X, τ) be a T1-spatial disconnected topological space, so by the definition
of spatial T1-disconnected space follows the conditions I0(A, B) i.e. RDisjoint(A, B)
and for every ẋ ∈A, ẏ ∈B ∃ two open sets U ⊆ A, V ⊆ B and U ∩ V = ∅ where ẋ , ẏ
are spatial points.
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Here from the assumption ẋ ∈A, ẏ ∈B, there exist two open sets U, V such that ẋ
∈U ⊆ A, ẏ∈V ⊆ B and U ∩ V = ∅ shows that the T1-spatial disconnected space is a
T1 space in general.

For the converse part of the theorem we can say that if the data sets are not spatial
disjoint then it cannot be a spatial T1-disconnected even though the set can form a T1
space.

Theorem 3.2 Every spatial T0-disconnected space is T0-space in general topological
space but not necessarily conversely.

Proof: Let (X, τ) be a T0-spatial disconnected topological space so by the definition
of spatial T0-disconnected space the conditions I1(A, B), i.e. RMeet(A, B) follows and
there exist two open U and V such that ẋ∈U ⊆ A and ẏ∈V ⊆ B but ẏ /∈U and ẋ /∈V
where ẋ , ẏ are spatial point.

Since (X, τ) satisfied the condition ẋ∈U ⊆ A and ẏ∈V ⊆ B but ẏ /∈U and ẋ /∈V so
(X, τ) is a T0 space in general topological space.

For the converse part we provide an example.
Let X = {0, 1} and τ = {∅, {0}, {0, 1}} is called Sierpinski space which is T0 also

but not a spatial T0-disconnected.

Theorem 3.3 Every spatial T1 disconnected space is T0 space in general topological
space but not necessarily conversely in general.

Proof: the proof is obvious using the theorem 3.1.

Definition 3.7 A spatial topological space (X, τ) is said to be planner spatial topology
if all elements of X are plane data set.

Example 3.7 Consider X a different spatial plane data with 1. Input layer, 2. Splitting
layer and 3 Output layer. Then Output layer makes a spatial topological relation set.
We make a spatial topology by taking spatial plane data which is the planner spatial
topology.

Definition 3.7 A spatial topological space (X, τ) is said to be Discrete spatial topology
if all the elements of X are point data set.

Example 3.8 Let us consider X be a Mandelbrot set as a spatial data set in which
each similar figure consider as a spatial point data. We can make a spatial topology
by taking spatial points data which will form the discrete spatial topology. Here the
discrete spatial topology is also a spatial T1-connected space as all spatial point like
to be similar. Here we consider each spatial data as a spatial point data set.

Result 3.1 Every planner spatial topological space is spatial compact space.

Result 3.2 Every discrete spatial topological space may not be spatial compact space.
Here the example 3.7 is not a spatial compact space.

Result 3.3 Every spatial planner T1 space is spatial T1-compact.

123



Annals of Data Science (2024) 11(2):411–423 419

7 Application of Spatial Data Analysis with the Help of the Above
Methods

7.1 The Geographical Location of the Area of Data Collected

Agartala, the capital city of Tripura is located in between 23° 45 to 23° 55 N latitudes
and 91°15 to 91°20 E longitudes. Physiographically, the city is located in the flood
plain of the River Haora and Kata Khal. The physiographic structure of Agartala City
is saucer shape and characterized with Tilla (Relatively High land) and Lunga (Low
land) topography. TheAgartalaMunicipal Councilwas established in 1874 and the city
has become the nerve center of all administrative, political, cultural and commercial
activities of the state. The city has emerged as an important border-trading center with
international trading linkage with Bangladesh. National Highway-8 is passing through
the heart of the City. Maharaja Bir Bikram Airport [23°53′33.96" N and 91°14′37.81"
E] is located about 11.75 km north-west from the Central Business District (CBD) of
Agartala City. The city is broadly divided into four planning zones (North, Central,
East and South) and shared international border with Bangladesh on the western side.
Wherever Jirania Rural Development (R.D) Block, Mohanpur R.D. Block and Dukli
R.D. Block are in the east, north–south of the city, respectively. The total area of AMC
is almost 76.150 Km2 with 526,292 of the population (AMC, 2018).

Road network has been increased rapidly inAgartala City. In 2016, road densitywas
7.96 km/km2 and in 2018, it was 11.512 km/km2 (Mitra et al., 2018). The total road
length of AMC is 678.445 km, including all major and minor roads. The maximum
length of the road is found in ward number 5 (31.599 km) and lowest road length
has been observed in ward number 36 (5.723 km), with only 24 route (edges) and 25
nodes (vertices). In Agartala, total edges and vertices are 4252 and 3840, respectively
(Fig. 2). But edges and vertices of Agartala City not equally distributed among the 49
wards. The average edges and vertices are 87 and 78, respectively. 30 (61%) wards
of AMC have below-average edges number. Those wards are 36, 42, 30, 35, 37, 3,
6, 10, 28, 13, 17, 33, 8, 27, 14, 1, 18, 44, 29, 20, 15, 47, 12, 26, 31, 38, 46, 19, 22
and 2. Remaining 19 (49%) wards of AMC have observed with above mean edges
number. Similarly it has been found that 27 (55%) and 22 (45%) wards have vertices
with below and above average, respectively. Maximum vertices (190) found in ward
number 5.

Data of road network has been collected from the field by using handheld Global
Positioning System (GPS) receiver. We consider an arbitrary data set. The ward level
road network map has been prepared by using Global Mapper v.20 and Arc GIS
v.10.7.1. Graph theoretical techniques like alpha (α), beta (β) and gamma (γ) indices
have been calculated by using the following formulas:

Alpha Index(α) = e−v+1
2v−5 , Beta Index(β) = e

v
and Gamma Index(γ ) = e

3(v−2) .
where, e = number of edges or routes and v = number of vertices or nodes.
In this paper, we will analysis only β-index for the spatial connectivity analysis.
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Ward No Edge Node Alpha Beta Gamma

1 63 65 − 0.008 0.969 0.333

2 86 87 0.000 0.989 0.332

3 48 47 0.022 1.021 0.345

4 128 122 0.029 1.049 0.352

5 218 190 0.077 1.147 0.384

6 53 71 − 0.124 0.746 0.251

7 115 133 − 0.065 0.865 0.290

8 60 70 − 0.067 0.857 0.288

9 107 106 0.010 1.009 0.339

10 54 59 − 0.035 0.915 0.309

11 103 90 0.080 1.144 0.384

12 79 68 0.092 1.162 0.391

13 57 57 0.009 1.000 0.337

14 62 49 0.151 1.265 0.428

15 72 72 0.007 1.000 0.336

16 102 76 0.184 1.342 0.451

17 58 48 0.121 1.208 0.408

18 65 56 0.093 1.161 0.392

19 84 81 0.025 1.037 0.349

20 68 49 0.215 1.388 0.469

21 155 130 0.102 1.192 0.399

22 84 74 0.077 1.135 0.382

23 123 100 0.123 1.230 0.413

24 128 107 0.105 1.196 0.401

25 99 81 0.121 1.222 0.411

26 80 67 0.109 1.194 0.402

27 61 59 0.027 1.034 0.349

28 55 53 0.030 1.038 0.350

29 67 39 0.397 1.718 0.583

30 39 40 0.000 0.975 0.331

31 81 80 0.013 1.013 0.340

32 140 102 0.196 1.373 0.461

33 58 45 0.165 1.289 0.436

34 104 87 0.107 1.195 0.402

35 44 42 0.038 1.048 0.355

36 24 25 0.000 0.960 0.329

37 47 55 − 0.067 0.855 0.288

38 82 72 0.079 1.139 0.383

39 110 99 0.062 1.111 0.373

40 109 99 0.057 1.101 0.369

41 116 106 0.053 1.094 0.367
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Ward No Edge Node Alpha Beta Gamma

42 38 35 0.062 1.086 0.369

43 109 95 0.081 1.147 0.385

44 66 64 0.024 1.031 0.347

45 132 131 0.008 1.008 0.341

46 82 86 − 0.018 0.953 0.325

47 75 84 − 0.048 0.893 0.300

48 145 112 0.155 1.295 1.295

49 117 75 0.297 1.560 0.534

One of the relevant metrics of road connectivity is the beta (β) index [11]. The
beta index is calculated by dividing the total number of edges by the total number
of vertices in a network. The relationship between the number of links (e) and the
number of nodes (n) is used to indicate the level of connectivity in a graph (v). A value
larger than one indicates a more sophisticated network. The greater the number of
links in a network with a fixed number of nodes, the greater the number of pathways
feasible in the network. The Beta value of complex networks is very high. The rich-
club coefficient is a Beta index that is used to relationships between nodes of greater
order (degree); it determines whether connectivity is higher among larger d nodes.

Out of 49 wards in Agartala City, 13 (26.53%) were found to have very high road
connectivity and the most complicated road network, with a β-value more than 1.20.
29, 49, 20, 32, 16, 48, 33, 14, 23, 25, 17, 24, and 34 are the wards in question. The
majority of the city’s high-connectivity wards are located in the city’s core. Ward 29
has the highest -value (1.718). High road connection was discovered in 13 of AMC’s
wards (26.53 percent), namely 26, 21, 12, 18, 43, 5, 11, 38, 22, 39, 40, 41, and 42,
where the β-value ranged from 1.09 to 1.20.

With a beta-value of 1.00 to 1.09, it was discovered that 12 wards (24.49 percent)
have poor road connectivity. 4, 35, 28, 19, 27, 44, 3, 31, 9, 45, 13, and 15 are the wards.
Those wards are near to wards with a lot of traffic. Wards 2, 30, 1, 36, 46, 10, 47, 7,
8, 37, and 6 have very low road connectivity, with a beta-value of less than 1.00. The
city’s northwestern wards have the highest concentration of very poor connectivity
wards (6 wards, 54.54 percent). In the southern section of the city, about 4 (36.36
percent) wards have very poor connectivity. Ward number 30 (Subhash Nagar area)
has very low connectivity (β=0.975), but ward number 6 has the worst connectivity
(β = 0.746). (Indranagar).

The ultimate decision has been made, as well as the spatial topological relationship
between spatial data, which is as follows:

Class Class range Characteristic of class Number of the ward

I βi ≥ 1.20 Very high connectivity or completely
spatial connected

29, 49, 20, 32, 16, 48, 33, 14,
23, 25, 17, 24 and 34

II 1.09 ≤ βi ≤ 1.20 High connectivity or completely
T0-spatial disconnected

26, 21, 12, 18, 43, 5, 11, 38,
22, 39, 40, 41 and 42
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Class Class range Characteristic of class Number of the ward

III 1.00 ≤ βi ≤ 1.09 Low connectivity or spatial
disconnected

4, 35, 28, 19, 27, 44, 3, 31, 9,
45, 13 and 15

IV βi ≤ 1 Very low connectivity or completely
T1-spatial disconnected

2, 30, 1, 36, 46, 10, 47, 7, 8, 37
and 6

Result of Alpha, Beta and Gamma Index varying ward to ward. All the indices
represent the degree of connectivity with distinctive results which is not conclusive.

For resource allocation, allotment, and apportionment, as well as policy decisions,
road connectivity is the most important component. For a more requested decision
assistance system, effective metrics of road connectivity were necessary. Over exist-
ing Alpha, Beta, and Gamma indies, the Suggested Composite Weightage Dimension
Index (CWDI) is a more efficient measure of population dispersion. The Compos-
ite Weightage Dimension Index (CWDI) is a decision-making tool that helps with
resource allocation and policy decisions in transportation planning and development.
It also aids in the classification of the direct influence area in terms of connectivity
and infrastructure for future development.

8 Conclusions

In this article, we have some results on spatial data set using the topological property.
The GIS data and have separated the data as much as possible for suitable for making
use in new setting in formation on separation axioms, so that it can get more profit
from GIS spatial data analysis. On using this result one can analyze the GIS data.
This model can further be applied under other situations. This article will help for the
solving the different social problems like controlling crimes and for development by
the spatial topology.

Acknowledgements Thanks for reviewers comments and valuable suggestions.

Author Contributions All author have equal contributions.

Funding There is no external funding for this work.

Data Availability GPS.

Code Availability Not Applicable.

Declarations

Conflict of interest Authors declare that they have no conflict of interest.

Ethical statements We hereby declare that this manuscript is the result of our independent creation under
the reviewers’ comments. Except for the quoted contents, this manuscript does not contain any research
achievements that have been published or written by other individuals or groups. We are the authors of this
manuscript. The legal responsibility of this statement shall be borne by us.

123



Annals of Data Science (2024) 11(2):411–423 423

References

1. Adams C, Franzosa R (2009) Introduction to topology pure and applied. First impression, Pearson
Indian Education Services

2. Clementini E, Felice PD (1996) A model for representing topological relationships between complex
geometric features in spatial databases. Inf Sci 90(4):121–136

3. Egenhofer MJ, Franzosa RD (1991) Point-set topological spatial relations. International Journal of
Geo-Information system 5(2):161–174

4. Egenhofer MJ, Mark DM (1995) Modeling conceptual neighborhoods of toplogical line-region rela-
tions. International Journal of Geo-Information system 9(5):555–565

5. Egenhofer MJ (1991) Categorizing binary topological relationship between regions, lines, and points
in geographic database. Technical Report, Department of Surveying Engineering, University of Maine

6. Egenhofer MJ, Herring J (1990) A mathematical framework for the definition of topological relation-
ships. Fourth international symposium on spatial data handling

7. Shravan K, Tripathy BC (2018) Generalised closed sets in multiset topological spaces. Proyecciones
37(2):223–237

8. Shravan K, Tripathy BC (2019) Multiset mixed topological space. Soft Comput 23:9801–9805
9. Shravan K, Tripathy BC (2020) Some generalised open msets in multiset topological space. Ital J Pure

Appl Math 44(3):683–696
10. Willard S (1970) General topology. Addison Weasly, London
11. Marshall S (2016) Line structure representation for road network analysis. Journal of Transport and

Land Use 1:1–62
12. DucruetC,Rodrigue JP (2020)Graph theory:measures and indices. In:Rodrigue JP (ed)Thegeography

of transport systems. Routledge, New York
13. Alvi Z (2011) Statistical geography. Rawat, Jaipur
14. Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci

4(2):149–178
15. Temesgen A, Gurmesa A, Getchew Y (2018) Joint modeling of longitudinal CD4 count and time-to-

death of HIV/TB co-infected patients: a case of Jimma University specialized Hospital. Ann Data Sci
5:659–678

16. Mitra S, Debbarma D, Santra A, Roy S (2018) Road network system in agartala municipal corporation:
a geographical analysis. Indian Journal of Regional Science 1:66–77

17. https://www.researchgate.net/publication/338536245_Transportation_Network_Analysis_
Connectivity_and_Accessibility_Indices_in_North_East_Nigeria

18. DasR,MukherjeeA, TripathyBC (2021)Application of neutrosophic similaritymeasures in Covid-19.
Ann Data Sci 8(4):1–16. https://doi.org/10.1007/s40745-021-00363-8

19. Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Springer, Singapore
20. Thakkar P, Shah M (2021) An assessment of football through the lens of data science. Ann Data Sci

8:823–836
21. Liu F, Shi Y (2020) Investigating laws of intelligence based onAI IQ research. AnnData Sci 7:399–416
22. Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill, New York
23. Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications.

Springer, Berlin
24. Das S, Das R, Tripathy BC (2020) Multi-criteria group decision making model using single-valued

neutrosophic set. LogForum 16(3):421–429. https://doi.org/10.17270/J.LOG.2020.446
25. Mukherjee A, Das R (2020) Neutrosophic bipolar vague soft set and its application to decision making

problems. Neutrosophic Sets Syst 32:410–424

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.researchgate.net/publication/338536245_Transportation_Network_Analysis_Connectivity_and_Accessibility_Indices_in_North_East_Nigeria
https://doi.org/10.1007/s40745-021-00363-8
https://doi.org/10.17270/J.LOG.2020.446

	Separation Axioms on Spatial Topological Space and Spatial Data Analysis
	Abstract
	1 Introduction
	2 Materials and Methods
	3 Analysis in GIS
	4 Geometric Networks
	5 Topological Modeling and Formal Description of Topological Relations
	6 Results and Discussion
	6.1 Separation

	7 Application of Spatial Data Analysis with the Help of the Above Methods
	7.1 The Geographical Location of the Area of Data Collected

	8 Conclusions
	Acknowledgements
	References




